
Experimental Validation of Fully Quantum Fluctuation Theorems
Using Dynamic Bayesian Networks

Kaonan Micadei,1 John P. S. Peterson,2,3 Alexandre M. Souza ,2 Roberto S. Sarthour,2 Ivan S. Oliveira,2

Gabriel T. Landi,4 Roberto M. Serra ,5,6 and Eric Lutz 1

1Institute for Theoretical Physics I, University of Stuttgart, D-70550 Stuttgart, Germany
2Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, Rio de Janeiro, Brazil

3Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo,
Waterloo N2L 3G1, Ontario, Canada

4Instituto de Física, Universidade de São Paulo, C.P. 66318, 05315-970 São Paulo, São Paolo, Brazil
5Centro de Ciências Naturais e Humanas, Universidade Federal do ABC,
Avenida dos Estados 5001, 09210-580 Santo André, São Paulo, Brazil
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Fluctuation theorems are fundamental extensions of the second law of thermodynamics for small
systems. Their general validity arbitrarily far from equilibrium makes them invaluable in nonequilibrium
physics. So far, experimental studies of quantum fluctuation relations do not account for quantum
correlations and quantum coherence, two essential quantum properties. We here apply a novel dynamic
Bayesian network approach to experimentally test detailed and integral fully quantum fluctuation theorems
for heat exchange between two quantum-correlated thermal spins-1=2 in a nuclear magnetic resonance
setup. We concretely verify individual integral fluctuation relations for quantum correlations and quantum
coherence, as well as for the sum of all quantum contributions. We further investigate the thermodynamic
cost of creating correlations and coherence.
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A defining property of out-of-equilibrium systems is that
they dissipate energy, leading to an irreversible increase of
their entropy. The irreversible entropy production is thus a
central quantity of nonequilibrium thermodynamics in the
same way that entropy is a central quantity of equilibrium
physics [1]. In small systems dominated by thermal or
quantum fluctuations, the entropy production Σ is a
stochastic variable [2,3]. Detailed fluctuation relations
quantify the occurrence of negative entropy production
events via the general equality PðΣÞ=Pð−ΣÞ ¼ expðΣÞ for
the distribution PðΣÞ [4–6]. Integral fluctuation theorems of
the form hexpð−ΣÞi ¼ 1 are obtained after integration over
Σ. Both relations imply the second law of thermodynamics,
hΣi ≥ 0, and are therefore regarded as its far-from-
equilibrium generalization. They are among only a few
exact equalities known to be valid beyond the linear-
response regime [4–6].
A standard procedure to investigate quantum fluctuation

theorems, both theoretically and experimentally, is the two-
projective-measurement approach [7,8]. In this framework,
the energy change of a quantum system, and accordingly its
stochastic entropy production, are determined by projec-
tively measuring the energy at the beginning and at the end
of a nonequilibrium process [9]. Equivalent schemes based
on generalized measurements [10,11] and Ramsey-like
interferometry [12,13] have additionally been developed.

These methods have been successfully implemented to test
quantum fluctuation relations for mechanically driven [14–
18] and thermally driven [19,20] systems, using a variety of
experimental platforms, such as nuclear magnetic reso-
nance, trapped ions, cold atoms, nitrogen-vacancy centers,
and superconducting qubits [14–20]. The two-projective-
measurement approach successfully captures the discrete
quantum energy spectrum of the system, as well as its
nonequilibrium quantum coherent dynamics between the
two measurements [21]. However, due to its inherent
projective nature, it fails to quantify the thermodynamic
effects of quantum correlations and quantum coherence that
may be present in initial and final states. Since these are two
central quantum features [22,23] that affect the expression
of the second law, such fluctuation theorems may be
viewed as not fully quantum [24–31].
In this Letter, we report the first experimental study of

fully quantum fluctuation relations for heat exchange
between two initially quantum-correlated qubits prepared
in local thermal states at different temperatures using
nuclear magnetic resonance techniques [32,33]. To that
end, we apply a general dynamic Bayesian network
approach that fully accounts for quantum correlations
and quantum coherence at all times [34]. After initiating
thermal coupling between the two qubits, we analyze the
statistics of the exchanged heat by tracking the evolution of
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the global two-qubit state with the help of quantum state
tomography [32]. We reconstruct the heat distribution, at
any time, during a forward nonequilibrium heat exchange
process, as well as during its (time) reverse, with the help of
the Bayesian network scheme. We use these distributions to
examine the effect of correlations throughout the dynamics,
and verify detailed fluctuation relations for heat, both with
[34] and without [35] initial correlations between the
qubits. We further demonstrate the validity of independent
integral fluctuation relations for classical correlations (in
the form of a stochastic classical mutual information [36]),
quantum correlations (in the form of a stochastic quantum
mutual information [36]) and quantum coherence (by
means of a stochastic relative entropy of coherence
[37]), as well as for the sum of all the quantum contribu-
tions. Finally, we employ these refined formulations of the
second law to study the energetic cost of generating
quantum correlations and quantum coherence [38–40].
Experimental setup.—We consider two qubits consisting

of the nuclear spins-1=2 of 1H (qubit A) and 13C (qubit B)
from a 13C-labeled chloroform sample diluted in Acetone-
d6. The sample is placed in a superconducting magnet that
produces a static magnetic field in z direction [Fig. 1(a)].
By combining transverse radio-frequency (rf) field with
longitudinal field-gradient pulse sequences, we prepare an
initial global state of the two spins-1=2 of the form [41],

ρ0AB ¼ ρ0A ⊗ ρ0B þ χAB; ð1Þ

where χAB ¼ αj01ih10j þ α�j10ih01j is a correlation term
that satisfies Trj½χAB� ¼ 0, (j ¼ A, B). As a result, the initial
local states are thermal, ρ0j ¼ expð−βjHjÞ=Zj, with inverse
temperature βj and partition functionZj ¼ Trj½expð−βjHjÞ�.

This condition ensures that the thermodynamic quantities of
the local qubits arewell defined, even though they are globally
correlated. The local spin Hamiltonians are given in a double
rotating frame with the nuclear spins resonance frequency by
Hj ¼ hν0ð1 − σzÞ=2, where σz is the usual Pauli operator and
ν0 ¼ 1 kHz is determined by the offset frequency in the
spectrometer observation frame [41]. We denote their respec-
tive eigenstates by j0i and j1i. To guarantee the positivity of
the density operator ρ0AB, the correlation strength α should be
bounded by jαj ≤ exp½−hν0ðβA þ βBÞ=2�=ðZAZBÞ [43]. The
duration of the experiment (a few milliseconds) is much
shorter than the decoherence time (a few seconds), so that the
evolution of the global state can be considered to be unitary to
an excellent degree of approximation [14]. The thermal
interaction between the two qubits is further realized via
the exchange HamiltonianHint ¼ iðπℏ=2ÞJðσþAσ−B − σ−Aσ

þ
B Þ,

where J ¼ 215.1 Hz. We implement the corresponding
energy conserving evolution operator, Ut ¼ expð−itHint=ℏÞ
with ½Ut;HA þHB� ¼ 0, by combining free evolution under
the scalar coupling between 1H and 13C, and rf-field rotations
[Fig. 1(b)].
The experiment is performed in a Varian 500 MHz

spectrometer equipped with a double-resonance probe head
and a magnetic field-gradient coil. A 50 mg liquid sample
of 99% 13C-labeled CHCl3 (Chloroform) is diluted in
0.7 ml of 99.9% deutered Acetone-d6 and flame sealed
in a 5 mm Wildmad LabGlass tube. Intermolecular inter-
actions are negligible due to the high level of dilution and
the system may be considered as a set of identical pairs of
spins-1=2. The superconducting magnet inside the mag-
netometer produces a static longitudinal magnetic field
B0 ≈ 11.75 T, whose direction is chosen as the positive z
axis. The respective Larmor frequencies of 1H and 13C are
about 500 and 125 MHz.

FIG. 1. Schematic representation of the experimental system. (a) Two qubits made of the nuclear spins-1=2 of 1H and 13C of 13C-
labeled chloroform diluted in Acetone-d6 are placed in a NMR magnetometer that produces a high intensity magnetic field (B0) in the
longitudinal direction using a superconducting magnet. The liquid sample inside a 5 mm glass tube and maintained at room temperature
(about 298 K) is placed at the center of the magnet within the radio frequency coil of the probe head. The magnet is composed of a
superconducting coil (that produces a magnetic field strength of 11.75 T) placed in a thermally shielded vessel and immersed in liquid
He (consequently, the temperature along the coil is lower than 10 K). Vacuum chambers and a liquid N chamber are part of the thermal
isolation, and are used to maintain the temperature of the superconducting coil stable. (b) Experimental pulse sequence used to
implement thermal interaction between the two qubits. The brown (green) square represents x (y) rotations by the indicated angle. The
black vertical lines indicate free evolution under the scalar coupling, HHC

J ¼ ðπℏ=2ÞJσHz σCz , between the 1H and 13C nuclear spins with
durations 2τ=πJ and τ=πJ. We perform a total of 22 samplings of the interaction time τ in the interval 0 to 2.32 ms.
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Quantum fluctuation theorems.—Because of the nonzero
correlations between the two qubits, the global state is not
diagonal in the energy representation. Global and local
bases are therefore not mutually orthogonal, and the local
bases, in which the exchanged heat variable is evaluated, do
not contain the entire information about the composite
system. As a consequence, the two-projective-measurement
scheme cannot account for quantum correlations and
quantum coherence. A powerful approach that solves this
incompatibility is provided by dynamic Bayesian networks
[44,45]. This formalism specifies the local dynamics
conditioned on the global states, and hence preserves all
the quantum properties of the system [34]. Introducing
conditional path trajectories for the two quantum corre-
lated systems and taking the average over the ensemble
of all paths generated by the nonequilibrium heat ex-
change process leads to the integral quantum fluctuation
theorem [34],

hexp ½−ðQAΔβ þ I0 − I1 − ΣA − ΣB þ γÞ�i ¼ 1; ð2Þ

whereQA is the energy change of spin A andΔβ ¼ βA − βB
the difference of inverse temperatures. In addition, I0 (I1) is
the stochastic quantum mutual information that describes
initial (final) correlations between two subsystems, and Σj

is the stochastic relative entropy characterizing the entropy
produced in spin j (see Ref. [41] for full definitions,
including how to define the heat QA directly from the
Bayesian network). The last contribution γ originates from
the random nature of the conditional dynamics, in analogy
to the classical result of Ref. [46]. It vanishes on average,
since the global dynamics is unitary and no extra energy is
exchanged with an external reservoir [34]. Equation (2)
shows that even in the absence of initial correlations,
I0 ¼ 0, the two-projective-measurement scheme destroys
correlations, I1 ≠ 0, created during the heat exchange.
Expression (2) generalizes the integral fluctuation theo-

rem of Jarzynski and Wójcik, hexp ðQAΔβÞi ¼ 1, obtained
via the two-projective-measurement scheme [35]. In order
to highlight its quantum nature, we write the stochastic
quantum mutual informations, Il ¼ Jl þ Cl, (l ¼ 0, 1), as a
sum of the stochastic classical mutual information Jl and of
the stochastic quantum relative entropy of coherence Cl,
which is a proper measure of quantum coherence in a given
basis [37]. The fluctuation relation (2) thus fully quantifies
the presence of quantum correlations between the two
subsystems and of quantum coherence in the global and
local bases, at all times. Remarkably, contributions from
both classical and quantum correlations, Jl and Il, as
well as from quantum coherence Cl, and the relative
entropies Σj, which do not occur in the two-projective-
measurement approach, separately obey an integral fluc-
tuation theorem [34],

he−Ili ¼ he−Jli ¼ he−Cli ¼ he−Σji ¼ he−γi ¼ 1: ð3Þ

A detailed quantum fluctuation relation for heat may be
similarly derived for the ratio of the forward heat distri-
bution, PfðQÞ ¼ P

Γ δðQ −QAÞPðΓÞ, and its reverse dis-
tribution, PrðQÞ ¼ P

Γ� δðQ −QAÞPðΓ�Þ [34],

PfðQÞ
Prð−QÞ ¼

exp ðQΔβÞ
ΨðQÞ ; ð4Þ

where the factor ΨðQÞ depends on the initial correlations
between the two qubits, such that the Jarzynski-Wójcik
result, ΨJWðQÞ ¼ 1 is recovered in the absence of initial
correlations between the two qubits [35].
Experimental results.—In order to analyze the influence

of quantum correlations on the second law of thermody-
namics, we prepare the two-qubit system in an initial state
of the form (1) with inverse spin temperatures β−1A ¼
4.7ð3Þ peV ½β−1A ¼ 4.3ð2Þ peV� and β−1B ¼ 3.3ð3Þ peV
½β−1B ¼ 3.7ð3Þ peV� for α ¼ 0 (α ≠ 0); the corresponding
effective spin temperatures are of the order of 45 nK. We
reconstruct the density matrix of the global state using state
tomography [32] for a sequence of 22 values of time from
t ¼ 0 to t ¼ τ ¼ 2.32 ms [47]. We determine from these
global states the respective local qubit states and all the
relevant thermodynamic quantities appearing in the quan-
tum fluctuation relations (2)–(4). The thermal interaction
Hint induces four possible transitions between the eigen-
states of the two qubits. This leads to three stochastic values
of the heat, Q ¼ 0 (twice) and Q ¼ �QA, where QA ¼
ðEa1 − Ea0Þ is the energy variation of spin A, with Ea0 (Ea1)
the initial (final) energy eigenvalue of HA. Contrary to the
heat distribution PðQÞ, the three values of Q do not depend
on the (correlated or uncorrelated) initial conditions, and
are therefore the same in both cases.
Figures 2(a)–2(d) show the corresponding forward heat

distribution PfðQÞ as well as its (time) reverse PrðQÞ as a
function of time, with [α ¼ 0.17ð1Þ þ i0.03ð1Þ] and with-
out [α ¼ −0.00ð1Þ þ i0.0ð1Þ] initial correlations. We
observe that the two heat distributions depend expli-
citly on time and that the forward and reverse distributions
are identical in the absence of initial correlations. This
follows from the fact that the global spin evolution is
invariant under time reversal in that case [35]. Figure 2(e)
further exhibits the detailed heat fluctuation theorem (4)
for t ¼ 1.88 ms. Without initial correlations, we re-
cover the Jarzynski-Wójcik relation which corres-
ponds to ln½PJW

f ð−QÞ=PJW
r ðQÞ� ¼ QΔβ (green triangles).

For α ≠ 0, the effect of quantum correlations is clearly
visible (purple dots), modulating the Q dependence via the
functionΨðQÞ ≠ 1. Quantum correlations therefore modify
both the heat distributions and the exponential dependence
on the heat variable on the right-hand side of Eq. (4)
through the (time-dependent) function ΨðQÞ.
The functionΨðQÞmay be determined directly by taking

the ratio of the fluctuation relations with and without initial
correlations, for fixed Q and Δβ. Noting that ΨJWðQÞ ¼ 1,
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we find ΨðQÞ ¼ ½PJW
f ðQÞPrð−QÞ�=½PJW

r ð−QÞPfðQÞ�.
This function is shown in Fig. 2(f) (symbols) together
with theoretical simulations (line), for t ¼ 1.88 ms.
The experimental study of the integral quantum fluc-

tuation relations Eqs. (2)–(3) is represented in Fig. 3. It
reveals that not only the sum of all the contributions,
σ ¼ −QAΔβ − I0 þ I1 þ ΣA þ ΣB − γ, in the exponent of
Eq. (2) satisfies a quantum fluctuation theorem, but that
also individual contributions, Jl, Il, Cl, Σj (l ¼ 0, 1 and
j ¼ A, B), and γ, separately obey such an integral relation.
These results are verified at all times and are illustrated for
t ¼ 1.77 ms in the figure. Such findings suggest that many
versions of the second law of thermodynamics hold
independently, both for classical and quantum correlations,
as well as for quantum coherence.
As an application, we finally examine the important

issue of the energetic cost of creating quantum correlations
and quantum coherence [38–40], which has not been
studied experimentally so far. Using the concavity of the
exponential, the fluctuation relation (2) implies, in the
absence of initial correlations (I0 ¼ 0), that the rates of
correlation and coherence generation are fundamentally
limited by the rate of (dimensionless) energy change, _I1 ≤
Δβ _QA and _C1 ≤ Δβ _QA. These two inequalities, which
bear a striking resemblance to the Clausius inequality

β _Q ≤ _S [1], are confirmed in Fig. 4. Remarkably, the
upper bounds are saturated at short times, t ≤ 0.5 ms,
indicating that the creation of quantum correlation and
coherence is thermodynamically optimal in this regime.

FIG. 3. Integral fluctuation theorems with initial correlations.
The individual contributions from classical and quantum corre-
lations, Jl and Il, as well as from quantum coherence Cl, and the
relative entropies Σj, for the two qubits (l ¼ 0, 1 and j ¼ A, B),
and γ, separately verify the quantum integral fluctuation theorem
(3). At the same time, the sum of all the quantum contributions
σ ¼ −QAΔβ − I0 þ I1 þ ΣA þ ΣB − γ obeys the integral fluc-
tuation relation (2).

FIG. 2. Detailed quantum fluctuation theorem with and without initial quantum correlations. (a) Forward and (b) reverse heat
distributions, PfðQÞ and Prð−QÞ, as a function of time in the presence of initial quantum correlations between the two qubits.
(c) Forward and (d) reverse heat distributions in the absence of initial correlations between the qubits. Symbols represent data and solid
lines are simulations [34]. Error bars are evaluated by a Monte Carlo sampling of the standard deviation. (e) Heat exchange fluctuation
theorem, Eq. (4), for t ¼ 1.88 ms, with (purple dots) and without (green triangles) initial correlations. In the absence of initial
correlations, the Jarzynski-Wójcik fluctuation relation, PJW

f ðQÞ=PJW
r ð−QÞ ¼ expðQΔβÞ, is obeyed, while the generalized theorem,

PfðQÞ=Prð−QÞ ¼ exp ðQΔβÞ=ΨðQÞ, that fully accounts for quantum correlations and quantum coherence with ΨðQÞ ≠ 1 holds in
their presence (solid and dashed lines are guides to the eye). (f) The function ΨðQÞ may be directly evaluated as the ratio ΨðQÞ ¼
½PJW

f ðQÞPrð−QÞ�=½PJW
r ð−QÞPfðQÞ� (shown here for t ¼ 1.88 ms).

PHYSICAL REVIEW LETTERS 127, 180603 (2021)

180603-4



We further note that _I1 ≃ _C1 throughout the process,
showing that the rate of classical correlation creation is
vanishingly small, _J1 ≃ 0, in our experiment.
Conclusions.—We have employed an original dynamic

Bayesian network approach to experimentally investigate
the quantum thermodynamics of nonequilibrium heat
exchange. In contrast to the two-projective-measurement
method, this general scheme fully accounts, at all times, for
off-diagonal matrix elements in the local energy represen-
tation of a system, induced by either quantum correlations
or quantum coherence. It thus provides a powerful tool to
study generic quantum aspects of thermodynamic proc-
esses. We have, in particular, verified for the first time fully
quantum, detailed, and integral, fluctuation relations and
used these improved formulations of the second law to
examine the energetic cost of establishing correlations and
coherence. In view of their generality, we expect these
results to be useful for the study of the thermodynamic
properties of small interacting quantum systems operating
far from equilibrium.
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