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Quantum scattering is used ubiquitously in both experimental and theoretical physics across a wide
range of disciplines, from high-energy physics to mesoscopic physics. In this Letter, we uncover universal
relations for the energy fluctuations of a quantum system scattering inelastically with a particle at arbitrary
kinetic energies. In particular, we prove a fluctuation relation describing an asymmetry between energy
absorbing and releasing processes which relies on the nonunital nature of the underlying quantum map.
This allows us to derive a bound on the average energy exchanged. We find that energy releasing processes
are dominant when the kinetic energy of the particle is comparable to the system energies, but are forbidden
at very high kinetic energies where well-known fluctuation relations are recovered. Our Letter provides a
unified view of energy fluctuations when the source driving the system is not macroscopic but rather an
auxiliary quantum particle in a scattering process.
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Introduction—Scattering is a mechanism of interaction
between physical systems that is pervasive across nature
and experiment, from low to high energies [1,2]. It is an
essential tool in the characterization of materials and
quantum phenomena in condensed matter [3,4], in describ-
ing the transport properties of quantum systems [5–10] and
the properties of ultracold gases [11–19]. Quantum scatter-
ing theory describes how two (or more) quantum systems
change their state after they collide, which entails an energy
exchange between them when the scattering process is
inelastic [1–3]. Such energy exchanges have been recently
analyzed from a thermodynamic viewpoint, showing that a
particle colliding with a quantum system can act as a source
of heat [20–22] or work [23]. Very massive particles can
also be used to probe the energy statistics that would result
from a two-point measurement scheme on the system [24].
Although these studies validate scattering as a powerful
microscopic approach to thermodynamics of quantum
systems, a more general treatment at the level of energy
fluctuations is still not available.
In thermodynamics, energy fluctuations are usually

studied for small—classical or quantum—systems inter-
acting with macroscopic sources. The assumption of a
macroscopic source allows us to define some Hamiltonian

for the system with a time-dependent parameter that we
imagine is operated in a classical way [25]. Within this
paradigm, some of the most famous results of stochastic
thermodynamics have been derived, for example, the so-
called fluctuation relations [26–31]. As an example, con-
sider a system of any size prepared in thermal equilibrium
with its environment characterized by β ¼ 1=kBT, where
kB is the Boltzmann constant and T is the temperature.
When the system is driven out of equilibrium by a
macroscopic source in a cyclic fashion (so that the system
Hamiltonian is the same before and after the interaction),
then the fluctuation relation reads e−βWpW ¼ p̃−W , where
pW is the probability distribution for an energy change W
during the process and p̃−W is the probability distribution
for an energy change −W in the time-reversed process
[29,30]. Jarzynski’s equality he−βWi ¼ 1 [32] follows by a
simple average over W which, through Jensen’s inequality,
implies (on average) the impossibility of energy extraction
in a cyclic process hWi ≥ 0. Since the macroscopic source
is considered to behave deterministically, i.e., as a work
source, the energy consumed is interpreted as work done on
the system. Through the use of the two-point measurement
scheme, fluctuation relations have been extended to closed
quantum systems [33–38], derived for macroscopic heat
sources [29,39], and experimentally verified across differ-
ent platforms [40–44].
A valid framework to go beyond the macroscopic

source paradigm is that of open quantum systems
[45,46], where the system dynamics is described by a
dynamical map [47–50] obtained after the interaction with
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another quantum system of arbitrary size. It is known that
fluctuation relations can be derived within the two-point
measurement scheme when the map is unital, i.e., if the
maximally mixed state is an invariant state [41,51,52]. If
the map is not unital, it has been shown that Jarzynski’s
equality is modified to he−βWi ¼ 1þ η, where η can be
positive or negative [52–55]. This generalized equality has
been experimentally verified with entangled photons sub-
ject to turbulence [56] and also appears in studies of
fluctuations with generalized measurements [57] and feed-
back control [58,59]. Since Jensen’s inequality then implies
hWi ≥ −β−1 logð1þ ηÞ, this suggests that η > 0 allows for
energy releasing processes; indeed, such processes are
necessary for cooling quantum systems [38]. Despite their
clear relevance for thermodynamics, the physics behind
nonunital fluctuations remains poorly understood and
appreciated. Arguably, this is due to the fact that previous
studies [52–55] focus on the properties of the dynamical
map rather than on a quantummechanical description of the
interacting systems. Progress could be made by using a
realistic and microscopic approach like quantum scattering
theory, whereby one treats the interacting systems as
quantum systems in their own right, potentially providing
a unified view of energy fluctuations beyond the macro-
scopic source limit.
In this Letter, we provide such a unified view on energy

fluctuations by studying a quantum system scattering
inelastically with a particle at an arbitrary kinetic energy.
The dynamical map for the system naturally encodes its
energy fluctuations without relying on any measurement
scheme. Our main result [Eq. (8)] describes a universal
fluctuation relation obeyed for a system driven out of
equilibrium by the colliding particle and reflects the
nonunital nature of the scattering process. From this result,
we derive an exact bound for the energy exchanged
[Eqs. (10) and (11)] as a function of the particle’s kinetic
energy. We show that nonunitality dominates when the
particle’s kinetic energy is comparable to the energy gaps
of the system, allowing energy extraction from the system,
while at very high kinetic energies we recover unitality and
the standard fluctuation relation. Our results show that
nonunital fluctuation relations are intimately connected
with the energy of the quantum source, which can be of the
same order as energy fluctuations themselves.
Setup and energy fluctuations—We consider a quantum

scattering process between a system S and a particle P. In a
reference frame comoving with the center of mass, only the
reduced mass plays a role, but we simplify the treatment by
fixing the position of system S and consider the particle P
to be traveling in one direction with associated momentum
p̂ and position x̂ operators. The total Hamiltonian is
Ĥ ¼ Ĥ0 þ V̂ðx̂Þ, where Ĥ0 ¼ ĤS ⊗ ÎP þ ÎS ⊗ p̂2=2m is
the bare Hamiltonian. The energy of the system is defined
by ĤSjji ¼ ejjji, where fjjig is a basis of eigenvectors
associated to its discrete energy spectrum fejg. The energy

of the particle is described by p̂2=2mjpi ¼ Epjpi, where
fjpig are improper (non-normalizable) eigenvectors
whose position representation are plane waves hxjpi ¼
expðipx=ℏÞ= ffiffiffiffiffiffiffiffi

2πℏ
p

and Ep ¼ p2=2m ≥ 0 is the kinetic
energy. The interaction operator V̂ðx̂Þ is assumed to vanish
sufficiently far away from the scattering region where the
system is located, so that the unitary scattering operator
Ŝ ¼ limt→þ∞eðit=ℏÞĤ0e−ði2t=ℏÞĤeðit=ℏÞĤ0 exists and satisfies
energy conservation ½Ŝ; Ĥ0� ¼ 0 [1,2]. Considering the
initial state of the system ρ̂S and particle ρ̂P to be
uncorrelated before the collision, the state of the system
after the collision is

Φðρ̂SÞ ¼ TrP½Ŝðρ̂S ⊗ ρ̂PÞŜ†�; ð1Þ

where TrP is the partial trace over the particle and Φ is a
completely positive and trace preserving map [45–48,50].
The explicit evaluation of Eq. (1) can be performed in the

following kinetic energy eigenstates, jEα
pi≡

ffiffiffiffiffiffiffiffiffiffiffiffi
m=jpjp jpi,

where α ¼ sgnðpÞ accounts for the initial direction of
the incoming particle, which can be traveling to the left
(α ¼ þ) or right (α ¼ −). First, we need the representation
of the scattering operator in this basis which reads
hEα0

p0 jŜjEα
pi ¼

P
j0;j jj0ihjjhEα0

p0 ; j0jŜjEα
p; ji, where jEα

p; ji
is the eigenbasis of Ĥ0 and hEα0

p0 ; j0jŜjEα
p; ji ¼

δðEp0 þ ej0 − Ep − ejÞsα0αj0j ðEp þ ejÞ. In the last expression,
the δ function ensures energy conservation for the
collision and sα

0α
j0j ðEÞ is the scattering matrix encoding

the transition amplitudes from jEα
p; ji → jEα0

p0 ; j0i at total
energy E ¼ Ep þ ej [1,2]. Rewriting the sum over j0; j as a
sum over energy differences Δ then yields simply
hEα0

p0 jŜjEα
pi ¼

P
Δ δðEp0 − Ep þ ΔÞŜα0αΔ ðEpÞ, where

Ŝα
0α

Δ ðEpÞ ¼
X
j0;j∶

ej0−ej¼Δ

sα
0α

j0j ðEp þ ejÞjj0ihjj ð2Þ

are eigenoperators of ĤS and thus obey ½ĤS; Ŝ
α0α
Δ ðEpÞ� ¼

ΔŜα
0α

Δ ðEpÞ. Second, we need the representation of the

particle’s state in the same basis ραβP ðEp; EqÞ≡
hEα

pjρ̂PjEβ
qi and we can carry out the trace in

Eq. (1). After integrating the δ functions, we find that
the particle’s state becomes dependent on the energy
differences as ραβP ðEp; Ep − Δþ Δ0Þ [60]. However, as
shown in Ref. [20], if the particle has a well-defined
direction before the collision and is sufficiently narrow
in kinetic energy with respect to the energy differences,
then we can write

ραβP ðEp; Ep − Δþ Δ0Þ ≃ δαβδΔΔ0ραPðEpÞ; ð3Þ
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where ραPðEpÞ≡ ρααP ðEp; EpÞ is the kinetic energy distri-
bution for a particle traveling with direction α. In this case,
Eq. (1) can be written as

Φðρ̂SÞ ¼
Z

dEp

X
α¼�

ραPðEpÞΦαðEpÞðρ̂SÞ; ð4Þ

whereΦαðEpÞ is a completely positive and trace preserving
map conditioned on the particle’s kinetic energy Ep and
direction α given by

ΦαðEpÞð·Þ ¼
Z

dWΦαðEp;WÞð·Þ; ð5Þ

ΦαðEp;WÞð·Þ¼
X
Δ
δðW−ΔÞ

X
α0
Ŝα

0α
Δ ðEpÞ · Ŝα0αΔ ðEpÞ†: ð6Þ

Equations (4)–(6) define the dynamical map (see Fig. 1).
Note that the Kraus operators in Eq. (6) are system

eigenoperators due to condition (3), inducing a transition
with energy change Δ. Indeed, assuming that ĤS has a
nondegenerate spectrum, it is easy to see that the quantum
operation in Eq. (6) defines a probability distribution for the
energy changes through

PαðEp;WÞ ¼ TrS½ΦαðEp;WÞðρ̂SÞ�
¼

X
j0;j

δðW − ej0 þ ejÞPα
j0jðEp þ ejÞpj; ð7Þ

where pj ≡ hjjρ̂Sjji and Pα
j0jðEp þ ejÞ ¼

P
α0 jsα0αj0j ðEp þ

ejÞj2 is the transition probability. Note that Eq. (7) has the
same form as the distribution for energy changes induced
by a unitary operator U on the system in a two-point
measurement scheme [29,30,33,34,36], with two crucial
differences. First, there is no need for a two-point meas-
urement scheme as a consequence of condition (3): a
particle with a well-defined kinetic energy effectively
measures the energy changes in the system [24]. Second,
the transition probabilities are dictated by Pα

j0jðEp þ ejÞ

instead of jhjj0jUjjij2, thus becoming dependent on both
the system and the particle’s energy. The normalizationR
PαðEp;WÞdW ¼ P

j0;j P
α
j0jðEp þ ejÞpj ¼ 1 holds since

the map in Eq. (5) is trace preserving by construction.
Indeed, the property

P
j0 P

α
j0jðEp þ ejÞ ¼ 1 can be proven

independently from the unitarity of the scattering operator
and holds for any fixed total energy E [20,60].
Main result—We now take our system to be in a thermal

state ρ̂S ¼ e−βĤS=Z, where Z ¼ TrS½e−βĤS � is the partition
function [61]. Using the property of the eigenoperators
Ŝα

0α
Δ ðEpÞe−βĤS ¼ eβΔe−βĤS Ŝα

0α
Δ ðEpÞ, it is easy to see that

the quantum operation satisfies e−βWΦαðEp;WÞðρ̂SÞ ¼
ρ̂SΦαðEp;WÞðÎSÞ, and thus the distribution in Eq. (7) obeys

e−βWPαðEp;WÞ ¼ PαðEp;−WÞ; ð8Þ

where PαðEp;−WÞ is dual probability distribution given by

PαðEp;−WÞ¼TrS½ΦαðEp;WÞ†ðρ̂SÞ�
¼
X
j0;j

δð−W−ejþej0 Þpj0Pα
j0jðEpþejÞ; ð9Þ

with the dual operation defined by TrS½ρ̂SΦαðEp;WÞðÎSÞ�¼
TrS½ΦαðEp;WÞ†ðρ̂SÞ�. Equation (9) has the same form as
the distribution for energy changes induced by a time-
reversed unitary operator U† ¼ ΘUΘ† on the system in a
two-point measurement scheme, where Θ is the (antiuni-
tary) time-reversal operator [29,30,33,34,36]. In this sense,
the dual operation ΦαðEp;WÞ† reverses the energy change
induced byΦαðEp;WÞ [62]. However, a crucial point is that
the dual distribution in Eq. (9) is generally not normalized,
γαðEpÞ≡ R

PαðEp;−WÞdW ¼ P
j0;j pj0Pα

j0jðEp þ ejÞ ≠ 1.
This reflects the fact that the map in Eq. (5) is nonunital, or
equivalently that its dual is not trace preserving [51–53,55];
unitality would require

P
j P

α
j0jðEp þ ejÞ ¼ 1 which is

generally not obeyed in quantum scattering theory.
Below, we show that both nonunitality and unitality are
general features of the scattering process and discuss the
physical conditions where each arises.
From our main result in Eq. (8) we can obtain an integral

fluctuation relation
R
e−βWPαðEp;WÞdW ¼ γαðEpÞ. Using

the fact that ½ĤS;ΦαðEpÞðÎSÞ� ¼ 0 (which follows from the
properties of the eigenoperators [60]), we can recast
the normalization of the dual distribution as γαðEpÞ¼R
PαðEp;−WÞdW¼Z−1TrS½e−βĤSΦαðEpÞðÎSÞ�¼ZαðEpÞ=Z,

where ZαðEpÞ ¼ Tr½e−βĤα
SðEpÞ� is the partition function

associated with a new system Hamiltonian Ĥα
SðEpÞ≡ ĤS −

β−1 logΦαðEpÞðÎSÞ which depends on the dynamical map
itself. The integral fluctuation relation then readsR
e−βWPαðEp;WÞdW ¼ e−βΔF

αðEpÞ, where ΔFαðEpÞ ¼
−β−1 log½ZαðEpÞ=Z� with ZαðEpÞ=Z ¼ γαðEpÞ describes

FIG. 1. A particle with kinetic energy Ep travels in space with
direction α and scatters with the system initially in state ρ̂S. The
mapΦαðEpÞ encodes the evolution and energy fluctuations of the
system as defined in Eqs. (5) and (6). The direction of the particle
is to the left α ¼ þ in this schematic for illustrative purposes.
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the free energy available from the nonunitality of the
process; by its definition, it evidently vanishes for unital
maps. Through Jensen’s inequality, we obtain the following
lower bound for the average energy change,

hWiαðEpÞ ≥ ΔFαðEpÞ; ð10Þ

where hWiαðEpÞ≡
R
WPαðEp;WÞdW. The sign of the

lower bound is determined by the sign of the quantity
ηαðEpÞ≡ γαðEpÞ − 1. When ηαðEpÞ > 0 the lower bound
in Eq. (10) becomes negative and an initially thermal
system can release energy in the collision, while when
ηαðEpÞ ≤ 0 it is impossible to extract energy from the
system, with the equality holding for unital dynamics. It
can be shown that ηαðEpÞ has the exact form [60]

ηαðEpÞ ¼
X
Δ>0

tanh

�
βΔ
2

� X
j0;j∶

ej0−ej¼Δ

�
Zj0j

Z

�

× ½Pα
jj0 ðEp þ ej0 Þ − Pα

j0jðEp þ ejÞ�: ð11Þ

The first sum in the last expression is over all the energy
gaps of the system. For a given energy gap Δ > 0,
the second sum is over all pairs of energy levels whose
difference is Δ, and Zj0j ¼ e−βej0 þ e−βej is the partition
function of one of these pairs. The last term describes the
imbalance between relaxation and excitation probabilities
of the pair, being positive (negative) when the former are
higher (lower) than the latter.
Discussion and example—In general, it is difficult to

predict the behavior of hWiαðEpÞ and ηαðEpÞ, since they
depend strongly on the scattering matrix, which in turn
depends on the system Hamiltonian ĤS and scattering
potential V̂ðx̂Þ. Whenever there is access to the multichan-
nel scattering matrix (or collision cross section), such as in
ultracold atom experiments (see, e.g., Refs. [14,15]), these
quantities can be determined. However, we can study their
behavior more generally based on universal scattering fea-
tures in two regimes:when the kinetic energy is comparable to
the minimum energy gap of the system or when it is much
larger than the maximum energy gap. As an example,
consider a particle colliding with a two-level system with
energy gap Δ > 0. For simplicity, we consider a spatially
symmetric potential V̂ðx̂Þ ¼ Vð−x̂Þ in which case the scat-
tering process is independent of the initial direction of the
particleα [2,20] andweomit this label.The relevant quantities
in Eq. (10) then read exactly hWiðEpÞ ¼ ðΔ=2Þcosh−1
ðβΔ=2Þ½P10ðEp þ e0ÞeβΔ=2 − P01ðEp þ e1Þe−βΔ=2� and
ηðEpÞ ¼ tanhðβΔ=2Þ½P01ðEp þ e1Þ−P10ðEp þ e0Þ�, where
j1i and j0i are the excited and ground state.
At low kinetic energies 0 ≤ Ep < Δ we see that Eq. (10)

allows for energy extraction from the system (Fig. 2, upper
panel). This is because system excitation is forbidden when

the particle has an initial kinetic energy lower than the gap:
the excitation channel is closed, i.e., P10ðEp þ e0Þ ¼ 0 for
0 ≤ Ep < Δ. In contrast, a system initially at finite temper-
ature has a nonzero probability to be excited and then
relax in the collision: the relaxation channel is always open,

FIG. 2. Average system energy change and lower bound in
Eq. (10) at low and high kinetic energies (upper and lower
panel, respectively). The explicit dependence of these quan-
tities on Ep was removed in the labels for simplicity. We
consider a two-level (N ¼ 2) system ĤS ¼ ðΔ=2Þσ̂z and scat-
tering potential V̂ðx̂Þ ¼ ðV0π=2Þσ̂x ⊗ cosðπx̂=aÞ, where Δ is
the energy gap, σ̂z;x are Pauli matrices, and V0; a are the energy
and length of the potential. The insets show the results when we
add one and two more levels (N ¼ 3 and N ¼ 4), where the
energies of the new levels are chosen such that the set of gaps
for an N-level system is fΔ; 2Δ;…; ðN − 1ÞΔg; the interaction
in the insets is V̂ðx̂Þ ¼ ðV0π=2ÞV̂ ⊗ cosðπx̂=aÞ with V̂ having
0’s in the diagonal and 1’s everywhere else. The scattering
matrix is found by solving numerically the multichannel
scattering equations [20,63]. The parameters shown are
Δ ¼ m ¼ a ¼ 1, β ¼ 0.1, V0 ¼ 100 and the vertical dashed
line in the upper panel indicates Ep ¼ Δ; 2Δ;…; ðN − 1ÞΔ.
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i.e., P01ðEp þ e1Þ ≥ 0 for Ep ≥ 0. In this regime, we can
then write hWiðEpÞ ¼ −ΔfðβΔÞP01ðEp þ e1Þ ≤ 0, where
fðxÞ ¼ ð1þ exÞ−1 is the Fermi function and ηðEpÞ ¼
tanhðβΔ=2ÞP01ðEp þ e1Þ ≥ 0. Thus, the maximum energy
that can be extracted from a two-level system in any
scattering process is hWimax

ext ¼ ΔfðβΔÞ. Note when
both channels are open, energy can still be extracted in
the range Δ ≤ Ep ≤ Emax

p where Emax
p is implicitly defined

by hWiðEmax
p Þ ¼ 0. Similar conclusions can be drawn for

an N-level system at low kinetic energies, with different
expressions for hWiðEpÞ and ηðEpÞ, provided that we
consider the minimum energy gap of the system. These
were confirmed numerically (see inset in upper panel of
Fig. 2), where it is evident that a larger number of levels
allows for more energy extraction at low energies.
A systematic study of energy extraction for larger
(many-body) systems is left for future work.
At high kinetic energies Ep ≫ Δ energy extraction

becomes impossible and we recover unital dynamics
(Fig. 2, lower panel). Since in this regime ηðEpÞ → 0, the
signature of unital dynamics is P01ðEpþe1Þ¼P10ðEpþe0Þ
and we can write hWiðEpÞ¼ΔtanhðβΔ=2ÞP10ðEpþe0Þ≥0.
The maximum energy consumed by the two-level system in
any scattering process can never exceed hWimax

cons ¼
Δ tanhðβΔ=2Þ. In fact, the convergence toward unitality at
high kinetic energies is a universal feature of the scattering
process, where the behavior of the scattering matrix is
mainly determined by the kinetic energy and depends
weakly on the system energy gaps P10ðEp þ e0Þ ¼
P10ðEp þ e1 − ΔÞ ≃ P10ðEp þ e1Þ ¼ P01ðEp þ e1Þ, where
the last equality follows from the time-reversal symmetry
of the scattering matrix [2,20,24,60]. Similar conclusions
hold for an N-level system, with a different expression for
hWiðEpÞ, provided that kinetic energy is much larger than
the maximum energy gap. These conclusions also hold for
nonsymmetric potentials, since at sufficiently high kinetic
energies the precise shape of the potential V̂ðx̂Þ is not
captured by the scattering matrix [23]. We confirmed
numerically these predictions for larger system sizes (see
inset in lower panel of Fig. 2) and nonsymmetric potentials
(not shown).
Note that for a two-level system, the maximum energy

that can be extracted hWimax
ext ¼ ΔfðβΔÞ is maximal Δ=2 at

β ¼ 0 (infinite temperature) and decreases monotonically
to zero as β → ∞ (zero temperature), while the maximum
energy consumed hWimax

cons ¼ Δ tanhðβΔ=2Þ is zero at β ¼ 0
and increases monotonically to Δ at β → ∞. Curiously,
there is a temperature above which extraction supersedes
consumption 0 ≤ β ≤ β0, where β0 ¼ Δ−1 logð2Þ is deter-
mined by the intersection of both functions. At this
threshold temperature we have hWimax

ext ¼ hWimax
cons ¼ Δ=3.

Conclusions—We have shown how energy fluctuations
of a quantum system can be studied within scattering theory
beyond the macroscopic source limit. When a collision

with a particle pushes the system away from thermal
equilibrium, the probability distribution for the energy
changes obeys a universal fluctuation relation (8) which
allows for energy releasing processes as dictated by
nonunital dynamics. Such processes are particularly impor-
tant if the kinetic energy of the particle is of the order of
the energy fluctuations, highlighting the importance of
nonunital maps in describing interactions with microscopic
sources. At high kinetic energies, unitality is recovered,
together with the standard fluctuation theorems for unital
dynamics.
Our results may surprise readers familiar with the second

law of thermodynamics. As stated by Thomson and Planck,
“There is no physical process whose sole effect is energy
extraction from a thermal bath.” However, we have to note
that the state of the particle—generally described by a wave
packet—will be distorted in the scattering process [20,24].
In this regard, we show elsewhere that the entropy
production, defined as the average log ratio of the prob-
ability for the forward process and the backward process, is
always positive—even at low kinetic energies, where
energy extraction from a thermal system is possible [60].
In addition, we prove that heat fluctuation theorems also
follow from (8) when the kinetic energy of the particle is
thermally distributed [60]. Our Letter provides a unifying
perspective on thermodynamics of quantum systems within
a realistic scattering setup.
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