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The kinetic uncertainty relation (KUR) bounds the signal-to-noise ratio of stochastic currents in terms of
the number of transitions per unit time, known as the dynamical activity. This bound was derived in a
classical context and can be violated in the quantum regime due to coherent effects. However, the precise
connection between KUR violations and quantum coherence has so far remained elusive, despite
significant investigation. In this Letter, we solve this problem by deriving a modified bound that exactly
pinpoints how, and when, coherence might lead to KUR violations. Our bound is sensitive to the specific
kind of unraveling of the quantum master equation. It, therefore, allows one to compare quantum jumps and
quantum diffusion, and understand, in each case, how quantum coherence affects fluctuations. We illustrate
our result on a double quantum dot, where the electron current is monitored either by electron jump
detection or with continuous diffusive charge measurement.
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Introduction—Superposition is one of the key features of
quantum mechanics that distinguishes it from classical
physics. While the most prominent consequences of
quantum coherence are entanglement and nonlocality [1–
3], it also has a profound effect on dynamical properties,
such as the fluctuations of currents in open quantum
systems [4–6], and thermodynamic quantities such as heat
and work [7–21]. Crucially, since these fluctuations depend
on two-time correlations [22], this effect is not necessarily
related to the amount of coherence present in a quantum
state, but rather to the dynamical generation and consump-
tion of coherence in a process. However, the precise way in
which this takes place remains poorly understood.
In classical systems, current fluctuations are constrained

by a set of bounds, discovered over the last decade, and
collectively known as thermokinetic uncertainty relations
[23–36]. They provide lower bounds on the noise-to-signal
ratio D=J2, where J is the average current, and D (called
the noise, scaled variance, or diffusion coefficient) quan-
tifies its fluctuations. Two prominent classes of bounds are
the thermodynamic uncertainty relation (TUR) [25,26] and
the kinetic uncertainty relation (KUR) [23,24]. This Letter
will focus on the latter, which reads

D
J2

≥
1

A
; ð1Þ

where A is the average dynamical activity (“freneticity”)
[37] and measures the average number of transitions per
unit time in a stochastic system. The fact that the right-hand

side depends on 1=A means that high dynamical activities
are required in order to decrease fluctuations. The bound,
therefore, has a very practical implication in establishing
the minimum activity required to achieve a certain pre-
cision. The TUR has an analogous form to the KUR, but the
bound is given in terms of the average entropy production
rate in place of the dynamical activity, which is a measure
of irreversibility.
In the quantum domain, however, Eq. (1) can be violated.

Several authors have worked to pinpoint the precise
mechanisms responsible for these violations [4–6,38–47].
While TUR violations received a considerable amount of
attention, results for the KUR were first explored recently
in [4]. It is noteworthy that quantum effects are not always
beneficial for reducing fluctuations, and there are cases
where it can actually be deleterious [40].
This, therefore, begs the question of when, and how, can

coherence be used to improve the precision of stochastic
currents? This led several authors to derive quantum
extensions of the TUR and KUR [48–57]. These bounds
are very useful in providing practical constraints. And they
have also helped shed light on what new ingredients come
into play when we move to the quantum domain.
Unfortunately, they do not shed much light on the precise
roles of coherence.
In this Letter we derive a new bound that holds for

Markovian open quantum systems, in the presence of
arbitrary quantum coherent effects. It replaces Eq. (1) with

D
J2

≥
ð1þ ψÞ2

A
; ð2Þ

where ψ ∝ ½Ĥ; ρ̂ss� [c.f. Eq. (6)] is directly proportional to
how much the steady-state density matrix ρ̂ss fails to*Contact author: kacper.prech@unibas.ch
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commute with the system Hamiltonian Ĥ (i.e., to the
amount of energetic coherence present in the steady state).
We refer to Eq. (2) as the ψ-KUR. A nearly identical bound
also holds for the diffusive unraveling, with ð1þ ψÞ →
ð1=2þ ψÞ. In diffusive measurements, instead of directly
detecting each monitored transition, their outputs are
combined with strong reference currents, and their devia-
tions are observed [58,59]. For incoherent processes ψ ¼ 0,
and our result reduces to the classical KUR [Eq. (1)].
Conversely, for coherent processes, violations of Eq. (1)
become possible when ψ ∈ ½−2; 0�, while outside this
interval violations are strictly not allowed. This, therefore,
unambiguously pinpoints energetic coherence as the
fundamental ingredient required for KUR violations. The
inequality in Eq. (2) also uncovers the special case ψ ¼ −2,
in which the original KUR holds, even though the
system has coherence. To illustrate the significance of this
special point, as well as the intuition behind Eq. (2), we
carry out a detailed analysis of a double quantum dot
(DQD) model [60].
The ψ-KUR—We consider an open quantum system with

a density matrix ρ̂t that evolves in time according to the
Lindblad master equation [61–64] (ℏ ¼ 1)

d
dt

ρ̂t ¼ −i½Ĥ; ρ̂t� þ
X
k

D½L̂k�ρ̂t≕Lρ̂t; ð3Þ

where Ĥ is the Hamiltonian of the system, L̂k are Lindblad
jump operators, and D½Ô�ρ̂t ≔ Ôρ̂tÔ

† − 1
2
fÔ†Ô; ρ̂tg. We

assume the system has a unique steady state Lρ̂ss ¼ 0.
The derivation of Eq. (2) is done in the Appendix. Here

we only make explicit the main quantities involved. Our
bound concerns generic stochastic counting observables
and integrated currents NðτÞ, whose definition depends on
the unraveling in question (specified below). The average
and scaled variance (noise) of the stochastic current IðτÞ ¼
dNðτÞ=dτ are given by

J ¼ E½NðτÞ�
τ

; D ¼ Var½NðτÞ�
τ

; ð4Þ

where E½·� denotes the expectation value and Var½·� the
variance. The dynamical activity reads [48,49]

A ¼
X
k

TrfL̂kρ̂ssL̂
†
kg ð5Þ

and represents the average number of jumps per unit time in
the steady state. In turn, the factor ψ in Eq. (2) is given by
the expression

ψ ¼ TrfJLþHρ̂ssg
J

; ð6Þ

where Hρ̂ ≔ −i½Ĥ; ρ̂�, Lþ is the Drazin inverse [65] of L
(see Supplemental Material [66] for details), and J is the

current superoperator, i.e., J ¼ TrfJ ρ̂g. We note that the
superoperator H describes the amount of steady-state
energetic coherence, whereas the Drazin inverse depends
on the relaxation rates, highlighting that ψ depends on the
dynamics.
Crucially, since ψ depends on J , our bound is sensitive

to both the particular current measurement and the type of
unraveling. For the jump, unraveling the current super-
operator is given by

J ρ̂ ¼
X
k

νkL̂kρ̂L̂
†
k; ð7Þ

where νk denotes the weight with which a jump L̂k changes
the integrated current NðtÞ [22,58]. Conversely, for the
diffusive unravelling [22,58]

J dρ̂ ¼
X
k

νk
�
e−iϕk L̂kρ̂þ ρ̂L̂†

ke
iϕk

�
; ð8Þ

where ϕk are arbitrary angles. In this case the bound
Eq. (2) holds with the replacements ð1þ ψÞ → ð1=2þ ψÞ,
J → J d, and J → Jd.
Having introduced the quantum ψ-KUR [Eq. (2)], we

compare it with a different, previously obtained bound [48]:

D
J2

≥
1

Aþ χ
; ð9Þ

which also applies in the steady state for the quantum jump
unraveling of the Lindblad master equation [Eq. (3)]. For
the diffusive unraveling, 1 is replaced by 1=4 in the
numerator. Here χ is a different coherence-dependent factor
(see Supplemental Material [66] for the expression).
However, as opposed to ψ , it does not concisely capture
how much ρ̂ fails to commute with Ĥ. Moreover, for a
given system, the factor χ is the same for all unravelings
and current measurements, because it does not depend on
the current superoperator J , forfeiting a tailoring of the
noise-to-signal bound to a particular current measurement.
This is in contrast to ψ .
Double quantum dot—We illustrate the ψ-KUR [Eq. (2)]

on a DQD model [60], where we find that ψ ∈ ½−2; 0�
allows for considerable violations of the classical KUR due
to coherence when the noise D cannot be faithfully
described by a classical model. The system consists of
left (L) and right (R) spinless quantum dots, which are
weakly coupled to their respective fermionic reservoirs.
The Hamiltonian is

Ĥ ¼
X
l¼L;R

ϵĉ†lĉl þ g
�
ĉ†LĉR þ ĉ†RĉL

�
; ð10Þ

where ĉl (ĉ†l) are annihilation (creation) operators of an
electron in dot l ¼ L, R, ϵ is the occupation energy of each

PHYSICAL REVIEW LETTERS 134, 020401 (2025)

020401-2



quantumdot, andg the coherent tunnel strength. The chemical
potential, inverse temperature, and coupling strength to
reservoir l are denoted by μl, βl, and γl, respectively.
The Lindblad master equation governing the time

evolution of the system is given by

Lρ̂ ¼ −i½Ĥ; ρ̂� þ
X
l

Llρ̂þ
Γ
2
D½ĉ†LĉL − ĉ†RĉR�ρ̂; ð11Þ

where the last term denotes a dephasing in the local basis,
with strength Γ, while

Llρ̂ ¼ γl
�
flD½ĉ†l� þ ð1 − flÞD½ĉl�

�
ρ̂ ð12Þ

describes the coupling to reservoir l, with Fermi–Dirac
occupation fl ≔ fexp ½βlðϵ − μlÞ� þ 1g−1.
For the quantum jump unraveling, we consider a net flow

of electrons from the left reservoir through the system,
which has the average current J ¼ γLTr½fLĉ†Lρ̂ĉL−
ð1 − fLÞĉLρ̂ĉ†L�. The analytical expression for ψ in this
case reads

ψ ¼ −2γLγRðγL þ γR þ 2ΓÞ
4g2ðγL þ γRÞ þ γLγRðγL þ γR þ 2ΓÞ < 0; ð13Þ

which ranges between ψ ¼ −2 when g → 0 and ψ ¼ 0

when g → ∞. It is, thus, always in the range ð1þ ψÞ2 < 1
such that, for this model, the DQD coherence always allows
for a reduced minimal activity to sustain a fixed noise-to-
signal ratio. Figure 1(a) compares DA=J2 with ð1þ ψÞ2 as
a function of g=γ. The bound is found to be tighter for large
g=γ. Moreover, it is tighter than Eq. (9) for the majority of
values g=γ, but not always.
The steady-state coherence, quantified by the l1

norm [67] in the occupation basis, is (see Supplemental
Material [66])

C ¼ 2gjfL − fRj
γL þ γR þ Γ

jψ j: ð14Þ

Thus, the range of coherent tunnel strength g where ψ
predicts a significant contribution of coherence to the KUR
violation corresponds to the peak of coherence.
Dephasing (Γ) is found to be detrimental to loosening the

KUR bound, and we find ð1þ ψÞ2 → 1 in the strong Γ
limit consistently with our expectations for incoherent
dynamics. A similar, anticipated effect of dephasing, which
features in the inset of Fig. 1(a), is thatDA=J2 obeys Eq. (1)
in a much wider range of g=γ.
Breakdown of the classical description—To gain addi-

tional insights we ask whether the noise D can be captured
by an effective classical model, where transport is described
by a Markovian rate equation

d
dt

p⃗ ¼ Wp⃗; ð15Þ

where W is a matrix of transition rates and p⃗ ¼ ½p0; pL;
pR; pD� is a vector of probabilities that the system is
empty, occupied on the left, occupied on the right, or
doubly occupied. The rates arising from the coupling to
the environment are obtained from Eq. (12)—for instance,
WL0 ¼ γLfL. Conversely, the coherent tunneling is
replaced by the rate

WLR ¼ WRL ¼ 4g2

γL þ γR þ 2Γ
; ð16Þ

which can be obtained from perturbation theory [4,5,68] or
by imposing that the two models should have the same
average current.
Figure 1(b) compares the noise in the classical and

quantum models. While the classical model describes the
average current in the entire range of g=γ, there is a

FIG. 1. ψ -KUR in the DQD. (a) Current fluctuations in the quantum jump unraveling as a function of g=γ, with γ ¼ γL ¼ γR and no
dephasing (Γ ¼ 0): (black)DA=J2; (red) ð1þ ψÞ2 [computed from Eq. (13)], which bounds the black curve according to Eq. (2); (green)
A=ðAþ χÞ from Eq. (9); (dashed gray) A=Acl; (dotted gray) A=Aad. Parameters: βLμL ¼ −βRμR ¼ 7 and ϵ ¼ 0. The inset shows the
same plots with dephasing rate Γ=γ ¼ 0.3. (b) The noiseD as a function of g=γ for the quantum (black) and classical (orange) models, as
well as the l1 norm of coherence C (gray) obtained with Eq. (14). Solid lines correspond to the parameters of (a) (without dephasing) and
dashed lines to those of the inset of (a) (with dephasing). (c) Same as (a) but for the diffusive measurement of the charge difference
between the quantum dots. Parameters are the same as in (a), except Γ=γ ¼ 1.
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discrepancy in the noise D, which appears precisely where
the coherence in Eq. (14) has a peak. In this regime, the
classical model fails to reproduce the reduction of the noise
predicted by the quantum master equation. This coincides
with the range where ð1þ ψÞ2 < 1, i.e., where the ψ-KUR
in Eq. (2) differs from the KUR in Eq. (1).
While the classical model reproduces the noise for both

small and large g=γ, these limits are quite different in nature.
For large g, the Lindblad jumps provide the bottleneck for
transport and, thus, determine the average current and the
noise. Indeed, in this regimepL − pR ≃ 0 canbe adiabatically
eliminated, and the classical model reduces to a three-state
model p⃗ ¼ ½p0; pL þ pR; pD� (see Supplemental Material
[66] for details). In this limit, coherence is suppressed and
ψ ¼ 0. In the limit of small g=γ, transport is dominated by the
coherent tunneling, which now provides the bottleneck, but
this tunneling can be captured by the perturbative rateWLR. In
this case, we obtain ψ → −2, which also constitutes a
classical limit where the ψ-KUR reduces to Eq. (1). As
shown in the Appendix, since the current can be expressed as
a series of conductances containing both perturbative rates
and Lindblad jump rates, we find ψ ∈ ½−2; 0�.
It is important to point out that the dynamical activity of

the classical model differs from that of the quantum model
given in Eq. (5). Indeed, the classical model implies the
bound D=J2 ≥ 1=Acl with the dynamical activity Acl ¼
Aþ ðWLR − Γ=2ÞðpL þ pRÞ [see Fig. 1(a)]. The term
proportional to Γ is subtracted, because dephasing jumps
contribute to the dynamical activity of the quantum model
but not in the classical rate equation. Nonetheless, for small
Γ, in the regimes where the DQD behaves classically, the
quantity A is the relevant quantity that bounds the signal-to-
noise ratio according to Eq. (1). For small g=γ the
contribution from WLR is negligible, and Acl ≃ A. For large
g=γ, interdot transitions are very rapid but do not influence
the noise. As mentioned above, the relevant classical
dynamics may be described by a coarse-grained three-state
model. The dynamical activity of this model, Aad, tends to A
for large g=γ [see Fig. 1(a)]. Therefore, in the regimes where
D is captured by the classical model, the ψ-KUR in Eq. (2)
provides the relevant bound for the signal-to-noise ratio. We
note that, in contrast to the ψ -KUR, the KUR in Eq. (9)
becomes very loose as g=γ becomes large as the denom-
inator on the right-hand side approaches Acl. We note that
Eqs. (2) and (9) can be combined to obtain a tighter bound.
Diffusive charge measurement—We consider next the

diffusive measurements of the charge difference between
the dots, which can be implemented using a quantum point
contact [22,45,69,70]. The resulting diffusive current is
Jd ¼

ffiffiffiffiffiffi
2Γ

p
Tr½ðĉ†LĉL − ĉ†RĉRÞρ̂�, where we assumed that all

dephasing in Eq. (11) is due to the measurement. The ψ-
KUR is illustrated in Fig. 1(c), where now

ψ ¼ 8g2ðγL þ γRÞ
4g2ðγL þ γRÞ þ γLγRðγL þ γR þ 2ΓÞ : ð17Þ

In this case ψ > 0 always, resulting in a tighter bound than
the KUR [i.e., no violations of Eq. (1) are allowed]. One of
the key features of the ψ-KUR is that it is unraveling
dependent. For instance, we can contrast our result with the
quantum bound in Eq. (9) (green line), which exhibits
opposite behavior when compared to Eq. (2), thus repre-
senting a looser constraint on the noise-to-signal ratio.
Interestingly, diffusive charge measurement is not the only
example where we find ψ > 0. It happens also for the jump
current, where we count only electrons entering the system
from the left reservoir, which corresponds to the current
J ¼ γLfLTrfĉ†Lρ̂ĉLg (see Supplemental Material [66]).
Random network of states—To illustrate the ψ-KUR in

more general settings, we numerically investigate a five-
level system, where each transition jni ↔ jki between the
computational basis states is realized either by a coherent
interaction gnkjnihkj or jump operators

ffiffiffiffiffiffi
γnk

p jnihkj andffiffiffiffiffiffi
γkn

p jkihnj. Values of gnk ¼ gkn and γnk are randomly
sampled from a uniform distribution U½0; 3�, whereas
γkn ¼ γnke−σnk , with σnk sampled form U½3; 5� to ensure
a strong bias. We consider an antisymmetric current for a
single transition j0i ↔ j1i, meaning that

ffiffiffiffiffiffi
γ10

p j1ih0j andffiffiffiffiffiffi
γ01

p j0ih1j haveweights 1 and −1, respectively, whereas all
other jumps are not counted toward the current.
The red circles in Fig. 2 show DA=J2 vs ð1þ ψÞ2 for

1000 randomly sampled networks. These points illustrate
that the factor ψ may be both positive and negative, and that
the ψ -KUR provides a relevant bound also for more
complex systems. The green circles show DA=J2 vs
A=ðAþ χÞ for the same network. It is noteworthy that
many green circles fall close to x ¼ 0, where Eq. (9)
reduces to the trivial bound DA=J2 ≥ 0.

FIG. 2. A scatter plot of DA=J2 against ð1þ ψÞ2 (red circles)
and A=ðAþ χÞ (green circles) for 1000 random networks of a
five-level quantum system. Each transition jni ↔ jki is either
coherently or dissipatively connected. Coherent tunneling
strength gnk ¼ gkn and jumping rates γnk are sampled from a
uniform U½0; 3�, whereas γkn ¼ γnke−σnk , with σnk sampled from
U½3; 5�. The current is defined along a single edge with
antisymmetric weights �1. The gray dashed line represents x,
i.e., the ψ -KUR bound in Eq. (2) for red circles and the bound in
Eq. (9) for green circles. The blue dashed line is 1, i.e., the
classical KUR bound in Eq. (1).
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Conclusions and outlook—We derived an unraveling-
dependent quantum KUR that holds for Markovian open
quantum systems in the steady state, and includes a factor
(ψ ) that captures the effect of energetic coherence in the
density matrix. This bound pinpoints precisely how coher-
ence may or may not allow for violations of the classical
KUR. The physical significance of our results is substan-
tiated by illustrating the KUR and the meaning of ψ on the
DQD with with two different unravelings corresponding to
different measurements. Interesting future questions
include deriving thermokinetic uncertainty relations under
strong system-environment couplings or for a unitary
description of system and environment, investigating the
transient regime [49,71,72], extending the results to the first
passage times [49,73], exploring the implications of our
findings on the precision of clocks [52,74,75], and general-
izing a newly established clock uncertainty relation [76,77],
which constitutes a generally tighter bound than the
classical KUR with the average residual time in place of
the dynamical activity, to the quantum regime. Since there
is a growing interest in current fluctuations in non-
Markovian settings [78,79], with a potential development
of a theory of unravelings in non-Markovian master
equations [80], our methods could be useful to find similar
bounds on the signal-to-noise ratio.

Acknowledgments—P. P. P. and K. P. acknowledge fund-
ing from the Swiss National Science Foundation
(Eccellenza Professorial Fellowship PCEFP2_194268).

[1] A. Streltsov, G. Adesso, and M. B. Plenio, Colloquium:
Quantum coherence as a resource, Rev. Mod. Phys. 89,
041003 (2017).

[2] R. Horodecki, P. Horodecki, M. Horodecki, and K.
Horodecki, Quantum entanglement, Rev. Mod. Phys. 81,
865 (2009).

[3] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S.
Wehner, Bell nonlocality, Rev. Mod. Phys. 86, 419 (2014).

[4] K. Prech, P. Johansson, E. Nyholm, G. T. Landi, C.
Verdozzi, P. Samuelsson, and P. P. Potts, Entanglement
and thermokinetic uncertainty relations in coherent meso-
scopic transport, Phys. Rev. Res. 5, 023155 (2023).

[5] G. Kießlich, P. Samuelsson, A. Wacker, and E. Schöll,
Counting statistics and decoherence in coupled quantum
dots, Phys. Rev. B 73, 033312 (2006).

[6] K. Ptaszyński, Coherence-enhanced constancy of a quantum
thermoelectric generator, Phys. Rev. B 98, 085425 (2018).

[7] C. L. Latune, I. Sinayskiy, and F. Petruccione, Negative
contributions to entropy production induced by quantum
coherences, Phys. Rev. A 102, 042220 (2020).

[8] M. Scandi, H. J. D. Miller, J. Anders, and M. Perarnau-
Llobet, Quantum work statistics close to equilibrium, Phys.
Rev. Res. 2, 023377 (2020).

[9] H. Tajima and K. Funo, Superconducting-like heat current:
Effective cancellation of current-dissipation trade-off by
quantum coherence, Phys. Rev. Lett. 127, 190604 (2021).

[10] G. Francica, J. Goold, and F. Plastina, Role of coherence in
the nonequilibrium thermodynamics of quantum systems,
Phys. Rev. E 99, 042105 (2019).
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End Matter

Appendix: Derivation of Eq. (2)—To derive the ψ-KUR
given in Eq. (2), we consider the following deformation
of the jump operators in the Lindblad master equation
[Eq. (3)]: L̂k → L̂k;θ ≔

ffiffiffiffiffiffiffiffiffiffiffi
1þ θ

p
L̂k. This results in the

modified Lindblad master equation

d
dt

ρ̂t ¼ −i½Ĥ; ρ̂t� þ ð1þ θÞ
X
k

D½L̂k�ρ̂≕Lθρ̂t; ðA1Þ

such that we recover the original master equation when
θ → 0. Contrary to the method used to derive Eq. (9),
here the deformation is only in the jump operators. It,
therefore, does not amount to a homogeneous scaling
of time. We use a generalized quantum Cramér–Rao
bound [81,82]

Varθ½NðτÞ�θ¼0 ⩾
f∂θEθ½NðτÞ�θ¼0g2

Iðθ → 0Þ ; ðA2Þ

where Eθ½NðτÞ� and Varθ½NðτÞ� denote the expectation
value and the variance of NðτÞ corresponding to the
distorted dynamics [Eq. (A1)], and IðθÞ is the quantum
Fisher information (QFI) of the parameter θ. In Eq. (A2),
NðτÞ plays the role of an estimator for the parameter θ.
While it may not be a good estimator (it is generally
biased), it nevertheless is a possible estimator and, thus,

obeys the Cramér–Rao bound. While Eq. (A2) holds
universally, analytically computing all expressions therein
is often not straightforward, as evidenced by this Letter.
Similarly, finding measurements that saturate it is highly
nontrivial.
Using the formalism of Ref. [83] to compute the QFI of

continuously monitored open quantum systems, we find

Iðθ → 0Þ ¼ τA: ðA3Þ

The expectation value of the time-integrated current is
given by

Eθ½NðτÞ� ¼
�ð1þθÞR τ

0 dtTrfJ eLθτρ̂g ðjump currentÞffiffiffiffiffiffiffiffiffiffi
1þθ

p R
τ
0 dtTrfJ eLθτρ̂g ðdiffusive currentÞ:

ðA4Þ

Due to a different prefactor, we obtain two expressions for
its partial derivative with respect to θ:

∂θEθ½NðτÞ�θ¼0 ¼
� Jτð1þ ψÞ ðjump currentÞ
Jτ
�
1
2
þ ψ

�
ðdiffusive currentÞ :

ðA5Þ
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Using the relation Varθ½NðτÞ�θ¼0 ¼ Dτ and inserting
Eqs. (A3) and (A5) into the quantum Cramér–Rao bound
[Eq. (A2)] leads to our ψ-KUR [Eq. (2)]. See Supplemental
Material [66] for a derivation of Eqs. (A3) and (A5).
The classical KUR [Eq. (1)] can be recovered in the limit

of incoherent dynamics as a result of ½Ĥ; ρ̂� ¼ 0, implying
ψ ¼ 0. For the DQD, this is what happens in the limit
g → ∞. As discussed in the main text, we may also recover
ð1þ ψÞ2 ¼ 1 when ψ ¼ −2, which happens for the DQD
in the limit g → 0 where both ½Ĥ; ρ̂� as well as J tend to
zero, c.f. Eq. (13). This observation may be understood by
considering the rates in the classical model. In the limit
of large g, the couplings to the bath become the bottleneck
that dominates transport, and the current reduces to
J ¼ γLγRðfL − fRÞ=ðγL þ γRÞ. Under the rescaling in
Eq. (A1), Eθ½NðτÞ� ¼ Jτð1þ θÞ, which results in ψ ¼ 0
from Eq. (A5). In contrast, in the limit of small g, interdot
tunneling with rate WLR provides the bottleneck and the
current reduces to J ¼ WLRðfL − fRÞ. Since WLR is
inversely proportional to the Lindblad jump rates, the
rescaled integrated current reduces to Eθ½NðτÞ� ¼ Jτ=ð1þ
θÞ ≃ Jτð1 − θÞ for small θ, which results in ψ ¼ −2. For
arbitrary interdot couplings, the current can be written as a
series of conductances

J ¼ ðγ−1L þ γ−1R þW−1
LRÞ−1ðfL − fRÞ: ðA6Þ

The rescaled current then reads, for small θ,

Eθ½NðτÞ� ¼ Jτ

�
1þ θ

WLRðγL þ γRÞ − γLγR
WLRðγL þ γRÞ þ γLγR

�
; ðA7Þ

which imposes in −2 ≤ ψ ≤ 0. As we detail in
Supplemental Material [66], the same restrictions for ψ
hold whenever the current can be written as a series of
conductances including both perturbative rates as well as
Lindblad jump rates.
It is interesting to examine Eqs. (2) and (9) as a

quantum Cramér–Rao bound, c.f. Eq. (A2). In Eq. (2),
the quantum correction ψ arises from the numerator,
i.e., the bias of the estimator. The bound becomes trivial
(i.e., the right-hand side vanishes) when the estimator does
not depend on θ, which happens for ψ ¼ −1 [c.f.
Eq. (A5)]. In this regime, where coherence plays a strong
role, we can, thus, not expect our bound to be tight, as the
fluctuations generally remain finite even when they do not
contain information on θ. In contrast, the quantum
correction χ in Eq. (9) arises from the quantum Fisher
information, i.e., the denominator in Eq. (A2) [48]. The
bound becomes loose when there is a large amount of
information on θ in the output of the system. This
generally happens when the system hosts fast processes,
which allow for estimating time precisely, since in
Ref. [48], θ corresponds to a rescaling of time. This
explains why Eq. (9) becomes loose for large g in Fig. 1.
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