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The quench dynamics of many-body quantum systems may exhibit nonanalyticities in the Loschmidt echo,
a phenomenon known as dynamical phase transition (DPT). Despite considerable research into the underlying
mechanisms behind this phenomenon, several open questions still remain. Motivated by this, we put forth a
detailed study of DPTs from the perspective of quantum phase space and entropy production, a key concept in
thermodynamics. We focus on the Lipkin-Meshkov-Glick model and use spin-coherent states to construct the
corresponding Husimi-Q quasiprobability distribution. The entropy of the Q function, known as Wehrl entropy,
provides a measure of the coarse-grained dynamics of the system and, therefore, evolves nontrivially even
for closed systems. We show that critical quenches lead to a quasimonotonic growth of the Wehrl entropy in
time, combined with small oscillations. The former reflects the information scrambling characteristic of these
transitions and serves as a measure of entropy production. On the other hand, the small oscillations imply
negative entropy production rates and therefore signal the recurrences of the Loschmidt echo. Finally, we also
study a Gaussification of the model based on a modified Holstein-Primakoff approximation. This allows us to
identify the relative contribution of the low-energy sector to the emergence of DPTs. The results presented in
this article are relevant not only from the dynamical quantum phase transition perspective but also for the field
of quantum thermodynamics, since they point out that the Wehrl entropy can be used as a viable measure of
entropy production.
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I. INTRODUCTION

The dynamics of closed quantum many-body systems has
been the subject of considerable interest since the early 2010s.
After a sudden quench, for instance, the support of a local
operator will in general spread through all of Hilbert space.
The precise way through which this takes place reveals im-
portant information about the basic mechanisms underlying
the dynamics. A particularly interesting example is the so-
called dynamical phase transition (DPT), first discovered in
Ref. [1], as far as we know, and subsequently explored in
distinct situations. In Ref. [2] it was shown that DPTs have
no connection with standard equilibrium phase transitions.
The case of long-range interacting system was considered in
Ref. [3], while Ref. [4] treated the case of nonintegrable sys-
tems. An attempt to classify DPTs, leading to the definition of
first-order DPT, was introduced in Ref. [5], as far as we know.
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Finally, we can mention a very interesting connection between
these DPTs and quantum speed limits, developed in Ref. [6].
On the experimental side, we can mention the observation of
DPTs in the Ising model in an ion trap [7], in the topological
phase in the Haldane model using optical lattices [8], and in
a simulation of the Ising model in a quantum computer [9].
We refer the reader to the recent reviews [10–12] for further
details about this field.

The central quantity in the theory of DPTs, which usually
occur in a quenched quantum system, is the Loschmidt echo.
The basic scenario consists of initially preparing a system in
the ground state |ψ0〉 of some Hamiltonian H0. At t = 0 the
system is then quenched to evolve according to a different
Hamiltonian H . The Loschmidt echo is defined as

L(t ) = |〈ψ0|ψt 〉|2 = |〈ψ0|e−iHt |ψ0〉|2, (1)

and therefore quantifies the overlap between the initial state
and the evolved state at any given time. In other words,
it measures how the support of the wave function spreads
through the many-body Hilbert space.

In quantum critical systems, the Loschmidt echo in Eq. (1)
is characterized by sharp recurrences [see Fig. 1(a) for an
example]. The nature of these recurrences is more clearly
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FIG. 1. Dynamical phase transition. The top panel shows the
Loschmidt echo (1) while the bottom one displays the dynamical
behavior of the rate function (2) for a quench in the LMG model,
from h0 = 0 to h = 0.8. The curves correspond to different values
of j. The plateaus that occur in r(t ) at short times is a numerical
artifact. They happen because L(t ) becomes exponentially small in
these regions (even though this could be fixed with increasing the
precision, this is not viable in practice because of the exponential
dependence).

expressed in terms of the rate function,

r(t ) = − 1

N
logL(t ), (2)

where N is the system size. In the thermodynamic limit (N →
∞), the rate r(t ) presents nonanalyticities (kinks) at certain
instants of time [cf. Fig. 1(b)], which are the hallmark of
DPTs. The Loschmidt echo in Eq. (1) shows a formal relation
with a thermal partition function at imaginary time, which
allows one to link these nonanalyticities to the Lee-Yang–
Fisher [13,14] zeros of L(t ) (see Ref. [10] for more details).

Despite considerable progress in our understanding of
DPTs, several open questions still remain, for instance, re-
garding their universality and if they can be captured from
macroscopic properties [10–12]. In this article we focus on
two deeply related questions. The first one concerns the
transition from quantum to classical, i.e., which aspects of the
problem are genuinely coherent and which could be under-
stood from purely classical equations of motion. Defining this
transition is not trivial for the great majority of models, such
as spin chains. The second issue concerns which sectors of
the Hamiltonian contribute to the transition. Indeed, quantum

phase transitions depend only on the low-energy sector
(ground state plus the first few excited states). DPTs, on the
other hand, should in principle depend on the entire spectrum.

The interpretation of L(t ) as a measure of how the support
of the system spreads in time brings a clear thermodynamic
flavour to DPTs. In the language of classical thermodynamics,
an expanding gas fills all of available space, causing the
entropy to grow monotonically in time. In closed quantum
systems, however, the von Neumann entropy is a constant of
motion, despite possible information scrambling. This idea
has been explored with certain detail in the context of fluc-
tuation theorems and nonequilibrium lag [15].

One way to reconcile these two views is to move to
quantum phase space. In Ref. [16], the authors studied the
dynamics of the Dicke model in terms of the Husimi-Q
quasiprobability function. The Husimi function contains the
same amount of information as the system’s density matrix
but offers an alternative description that better captures the
transition from quantum to classical. The authors of Ref. [16]
showed that the closed (unitary) evolution yields, notwith-
standing, a diffusive-type Fokker-Planck equation in phase
space. It is, of course, a special type of diffusion in order to
comply with the fact that the system is closed, and thus energy
must be conserved. The Husimi function can be viewed as a
convolution of the system’s state with a heterodyne measure-
ment. Consequently, it provides a coarse-grained description
of the dynamics and thus naturally accounts for the scrambling
of information.

The entropy associated with the Q function is known as
Wehrl’s entropy [17,18] and it can be attributed an operational
meaning in terms of sampling through heterodyne measure-
ments [19]. That is, the Wehrl entropy is the Shannon entropy
associated with the probability distribution of heterodyne
measurements. For this reason, it upper bounds the von Neu-
mann entropy, since it encompasses also the extra Heisenberg
uncertainty related to spin-coherent states. Moreover, for the
same reason, the Wehrl entropy also evolves nontrivially even
in closed system, unlike the von Neumann entropy, which is
constant. It consequently captures the scrambling of informa-
tion, very much like the Loschmidt echo in Eq. (1), but from
the phase-space perspective. For these reasons, the Wehrl
entropy serves as a useful quantifier of quantum dynamics and
several nontrivial features associated with the transition from
quantum to classical.

Motivated by this, we put forth in this article a detailed
study of DPTs from the optics of quantum phase space. We
focus on the Lipkin-Meshkov-Glick (LMG) model, describing
the dynamics of a single macrospin [20–35] (Sec. II). This
model allows for a well-defined classical limit, which takes
place when the spin j → ∞. In this case, the model reduces
to the classical dynamics of a spinning top [29]. In addition, it
allows for a neat construction in terms of quantum phase space
by using the idea of spin-coherent states: The corresponding
Husimi function describes a quasiprobability distribution in
the unit sphere. Moreover, the LMG model has been employed
in the study of DPT. Reference [36] builds a connection be-
tween two distinct definitions of dynamical critical behavior,
a change in the order parameter and the singular behavior
of the Loschmidt echo. Considering the finite-temperature
case, a dynamical phase diagram was built in Ref. [37]. A

033419-2



WEHRL ENTROPY PRODUCTION RATE ACROSS A … PHYSICAL REVIEW RESEARCH 2, 033419 (2020)

semiclassical approach was employed in Ref. [38] in order to
study the anomalous DPT. Finally, we mention the geometric
perspective on DPT presented in Ref. [39].

As we show in Sec. III, the dynamics of the Wehrl entropy
offers valuable insight about the nature of DPTs. After a
critical quench, it grows quasimonotonically, combined with
small oscillations. The growth reflects the information scram-
bling characteristic of DPTs. The oscillations, on the other
hand, mimic the nonanalytic behavior of the Loschmidt echo
and reflect information backflow to the initial Hilbert space
sector. Finally, in Sec. IV, we also carry out an analysis
using a generalized Holstein-Primakoff transformation that is
known to faithfully capture the entire low-energy sector in the
thermodynamic limit. This allows us to address which parts
of the spectrum are essential for the description of DPTs. As
we show, this procedure yields accurate predictions for small
quenches but fails for the strong quenches required to observe
DPTs.

II. DYNAMICAL PHASE TRANSITION IN THE
LIPKIN-MESHKOV-GLICK MODEL

Let us consider the LMG model [20–22], described by the
Hamiltonian

H = −hJz − 1

2 j
γxJ2

x , (3)

where j is the total angular momentum, h � 0 is the magnetic
field, and γx > 0 (critical field hc = γx). This model can
be viewed as the fully connected version of a system of
N = 2 j spin-1/2 particles (it therefore presents mean-field
exponents). Since it is analytically tractable, it has been the
subject of several studies over the past decades [23–35].

A. Brief review of the quantum phase transition

Before describing the dynamical phase transition, let us
firstly discuss the regular quantum phase transition for this
model, which occurs in the thermodynamic limit, j → ∞.
In order to do this, it is convenient to define the so-called
spin-coherent state,

|�〉 = e−iφJz e−iθJy | j〉, (4)

where | j〉 is the eigenstate of Jz with eigenvalue j and θ ∈
[0, π ] and φ ∈ [0, 2π ] are polar coordinates. These states
represent the closest quantum analog of a classical angular-
momentum vector of fixed length j, in the sense that the
expectation values of the spin operators in the state of Eq. (4)
take the form

(〈Jx〉, 〈Jy〉, 〈Jz〉) = j(sin θ cos φ, sin θ sin φ, cos θ ).

Moreover, expectation values of higher powers, such as 〈J2
x 〉,

differ from 〈Jx〉2 only by terms which become negligible in
the limit of large j. As a consequence, it can be shown that
the leading order of the ground state of the LMG model in the
thermodynamic limit is a spin-coherent state for certain values
of θ and φ [29]. The energy in this limit can be computed as
E = 〈�|H |�〉, resulting in [40]

E

j
= −h cos θ − γx

2
sin2 θ cos2 φ. (5)

The corrections to this behavior will be computed explicitly
in Sec. IV.

The ground-state energy is then found by minimizing
Eq. (5) over θ and φ, leading to the set of equations

sin θ (h − γx cos θ cos2 φ) = 0,

γx sin2 θ cos φ sin φ = 0.

For h > γx the only solution is θ = 0, in which case φ is
arbitrary. For h < γx, however, two new solutions appear,
corresponding to

cos θ = h

γx
, (6)

and φ = 0 or φ = π . The magnetization m = sin θ cos φ

therefore serves as the order parameter of the model. This is
identically zero for h > γx and m = √

h2
c − h2/γx otherwise.

The emergence of these new solutions identifies the critical
field hc = γx.

B. Dynamical phase transition

Let us now consider the introduction of quenches in the
field h. The system is prepared in the ground state |ψ0〉 of
H0 = H (h0), and at t = 0, it evolved under the final Hamilto-
nian H = H (h). To quantify the DPT, we use the Loschmidt
echo defined in Eq. (1) and the corresponding rate in Eq. (2),
with N = 2 j. In this model, a subtlety arises because the
ground state is twofold degenerate. As discussed in Appendix
B, however, this introduces effects which become negligible in
the thermodynamic limit. For this reason, we henceforth focus
only on the analysis starting from one of the ground states.

For the sake of concreteness, we focus on quenches from
h0 = 0 to h < γx. Results for the Loschmidt echo and the
rate function are shown in Fig. 1 for several values of j. The
echo (top panel in Fig. 1) vanishes for certain periods of time
but presents sharp periodic revivals at certain instants. This
is convoluted with a damping, causing the time decay of the
magnitude of L(t ). The presence of a DPT becomes visible
in the rate function (bottom panel in Fig. 1), which presents
kinks at certain instants of time, called critical times tc.

III. ENTROPIC DYNAMICS IN QUANTUM PHASE SPACE

Let us now address the core part of our article, in which we
put forth an analysis of the DPT in Fig. 1 from the perspective
of quantum phase space. The spin Husimi-Q function associ-
ated with an arbitrary density matrix ρ is defined as

Q(�) = 〈�|ρ|�〉, (7)

where |�〉 are the spin-coherent states given in Eq. (4).
This quantity is always nonnegative and normalized to
unity according to (2 j + 1)/4π

∫
d�Q(�) = 1, where d� =

sin θdθdφ. It therefore represents a quasiprobability distri-
bution in the unit sphere, offering the perfect platform to
understand the quantum to classical transition [41]. In our
case, ρ = |ψt 〉〈ψt | so the Husimi function simplifies to Q =
|〈�|ψt 〉|2.
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The entropy associated with Q(�) is known as Wehrl’s
entropy [17,18], defined as

SQ = −2 j + 1

4π

∫
d� Q(�) ln Q(�). (8)

An operational interpretation of this quantity in terms of
sampling through heterodyne measurements was given in
Ref. [19]. It has also been applied in different contexts,
like entanglement theory [42], uncertainty relations [43], and
quantum phase transitions [44], just to name a few. In the
context of thermodynamics, our interest here, a theory of
entropy production for spin systems was put forth in Ref. [45]
and the corresponding bosonic analog in Ref. [46].

In classical thermodynamics, the entropy of a closed sys-
tem should be monotonically increasing with time. The quan-
tity

dSQ

dt
:= 	Q (9)

is interpreted as the entropy production rate, since it reflects
the entropy that is irreversibly produced in the system. The
second law then states that 	Q � 0. In open systems, on the
other hand, one has instead

dSQ

dt
= 	Q − 
Q, (10)

where 
Q is the entropy flux rate from the system to the
environment. In open systems, dSQ/dt does not have a well-
defined sign, since the flux 
Q can be arbitrary. However, one
still has 	Q � 0. In the present case there is no associated
flux (
Q = 0), since the dynamics of the system is closed.
Moreover, it is not guaranteed that dSQ/dt � 0 for all times,
since our system is not in the thermodynamic limit. Notwith-
standing, one still expects that strong information scrambling,
as happens in critical systems, should lead to a 	Q which is
most of the time nonnegative.

Numerical results for the Wehrl entropy in Eq. (8) and the
entropy production rate in Eq. (9) are shown in Fig. 2 for the
same quench protocol used in Fig. 1, which are remarkable.
As j increases, the Wehrl entropy presents small oscillations
enveloping a monotonically increasing behavior. This increase
clearly reflects the information scrambling characteristic of
the DPT. It shows that, as time passes, the coarse-grained
nature of Q(�) causes the available information about the
system’s state to be degraded as a function of time. For long
times and j sufficiently large, SQ has a tendency to saturate
at a constant value. As anticipated, 	Q oscillates in time,
being predominantly positive, but also becoming negative at
certain times. These negativities represent the backflow of
information, which is characteristic of the recurrences in L(t )
(see Fig. 1).

Figure 3 shows the entropy production rate 	Q along
with the rate function r(t ) for j = 300. As we can see, their
behaviors are clearly linked. In order to make such relation
clearer, we present in Fig. 4 the relation between the critical
times tc where the dynamical quantum phase transitions occur,
i.e., the nonanalytical points of r(t ), and the times tm at which
	Q present local maxima. From this result it becomes clear
that, for large j, one approaches tc ≈ tm, showing how the
maxima of 	Q perfectly correlate with the critical times. This

FIG. 2. Entropy dynamics. The top panel shows the dynamics of
the Wehrl entropy (8) while the entropy production rate, Eq. (9), is
displayed in the bottom panel, for the same quench protocol used in
Fig. 1.

corroborates the idea that the oscillations in 	Q indeed
reflect the DPT. A more detailed analysis is presented in
Appendix B.

FIG. 3. Rate function r(t ), along with the entropy production rate
	Q, for j = 300. Other parameters are the same as in Fig. 1.
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FIG. 4. Critical times tc, associated with the nonanalytical behav-
ior of r(t ) and the times tm corresponding to local maxima of 	Q.
Other parameters are the same as in Fig. 1.

Finding a closed-form expression for the entropy produc-
tion rate (9) is in general not possible. Notwithstanding, we
were able to identify which parts of the dynamics, in terms of
the associated Fokker-Planck equation, contribute to 	Q. This
analysis, however, is cumbersome and it is thus postponed to
Appendix A.

We have performed several numerical studies regarding the
role of different quenches and we were unable to observe any
effect on the connection between the Wehrl entropy and the
DPT. By changing the value of h the quantitative values of
the considered physical quantities change, as shown in the
Appendix, but the qualitative behavior is the same. Therefore,
the linear behavior observed in Fig. 4 still holds. We start with
h0 = 0 due to the fact that we need a degenerate ground state
in order to observe the DPT, which is clearly achieved for this
value of the field.

IV. CONTRIBUTION FROM THE LOW-ENERGY SECTOR

A. Holstein-Primakoff approximation for the LMG model

Equilibrium quantum phase transitions are almost entirely
described by the low-energy sector, i.e., ground state plus the
first few excited states. This is not true for DPTs which, in
principle, depend on the entire spectrum. In this section we
ask which aspects of DPTs can nonetheless be captured by the
low-energy sector. We do this by introducing a Gaussification
procedure based on a generalized Holstein-Primakoff (HP)
representation [47]. Finally, we then compare the predictions
of this HP model with the full numerics studied in the previous
section.

The HP method represents spin operators in terms of a
single bosonic mode by means of the nonlinear transformation
[47],

Jz = j − a†a, (11a)

J+ =
√

2 j − a†a a, (11b)

where a is a bosonic operator satisfying [a, a†] = 1. Equation
(11a) shows that the excitations of a†a are mapped onto

excitations of Jz, starting from the state | j〉, downwards. This
is reasonable when h > hc. But when h < hc, the ground state
will not be close to | j〉 at all. To take this into account, we
first rotate the Hamiltonian (3) by an angle θ around the y
axis, before applying the HP transformation. That is, we first
consider the rotated Hamiltonian

HR = eiθSy He−iθSy

= −h(Jz cos θ − Jx sin θ )

− γx

2 j
(Jz sin θ + Jx cos θ )2, (12)

where the value of θ will be fixed below. We now introduce the
HP transformation on HR instead of H . Expanding for large j
and keeping only terms which are at most quadratic in a and
a†, one finds

HR = E −
√

2 j

2
sin θ (γx cos θ − h)(a + a†)

+ a†a(γx sin2 θ + h cos θ )

− γx

4
cos2 θ (a + a†)2, (13)

where E is the classical energy given in Eq. (5) with φ = 0.
The role of φ is trivial, it is not necessary to rotate around the
z axis as well.

We can now choose θ to eliminate the linear term propor-
tional to a + a†. This leads to the same choice that minimized
the classical energy in Eq. (6), i.e.,

θh =
{

arccos(h/γx ), if h < hc = γx

0 otherwise . (14)

With this choice, Eq. (13) reduces to

HR(h) = E + γxa†a − h2

4γx
(a + a†)2, h < hc, (15)

and

HR(h) = E + ha†a − γx

4
(a + a†)2, h > hc. (16)

Therefore, the HP method leads to the same classical energy
landscape as using spin-coherent states [Eq. (5)]. However,
it is important to remark that it yields an operator-based
representation of the fluctuations around the ground state.
Note how E ∼ j is extensive, whereas the fluctuations in
Eqs. (15) and (16) are independent of j. Notwithstanding, as
we will find below, this does not mean the fluctuations are
negligible when they become significantly close to criticality.

We now use the above results to determine the ground state
and the energy gap between the ground state and the first
excited state. To do this, we introduce the squeeze operator
Sξ = e

ξ

2 (a2−(a† )2 ), where for our purposes it suffices to take
ξ > 0. This allows us to write Eqs. (15) and (16), to constants,
as

HR(h) = E + ωhS†
ha†aSh, (17)

where

ωh =
{√

γ 2
x − h2, if h < hc,√

h(h − γx ), otherwise,
(18)
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and Sh = S(ξh) with

ξh =
{

− 1
4 ln(1 − h2/γ 2

x ), if h < hc,

− 1
4 ln(1 − γx/h), otherwise.

(19)

The Hamiltonian (17) is now diagonal, so that ωh describes
precisely the energy level spacing of the first few excited lev-
els. Whence, we conclude that, at low energies, the excitations
are equally spaced with energy gap ωh. As a feature of quan-
tum phase transitions, the gap closes at h = hc. Moreover, it
does so from both directions and in a manner which is not
symmetric in h.

Finally, to compute the ground state, we must first go
back to the original Hamiltonian by undoing the rotation in
Eq. (12). In the language of the HP transformation (11b),
a rotation around y becomes a displacement of the bosonic
mode a,

eiθJy = D(αh) = eαha†−α∗
h a, (20)

where αh = −√
2 j θh/2 and θh is given in Eq. (14). By

combining Eqs. (12) and (17), then it yields the original
Hamiltonian in the form

H = D†
hS†

h[ωha†a]ShDh, (21)

where Dh = D(αh). The ground state is now readily found to
be

|ψgs(h)〉 = D†
hS†

h |0〉, (22)

where |0〉 is the vacuum defined by a. The ground state is
consequently a displaced squeezed state. The amount of dis-
placement, αh = −√

2 jθh/2 is zero when h > hc and nonzero
otherwise. Moreover, the displacement scales as

√
j and thus

become extremely large in the thermodynamic limit. This
displacement is precisely the prediction using spin-coherent
states but written in a bosonic language. In addition, the state
is also squeezed by the amount ξh given in Eq. (19). This
therefore represents a correction on top of the spin-coherent
state predictions. The squeezing is j independent but diverges
at criticality. Thus, very close to the critical point, the state
should differ significantly from a spin-coherent state.

B. Loschmidt echo

Armed with the aforementioned results, we can now read-
ily compute both the Loschmidt echo and the rate function
within the HP approximation. The system is initially prepared
in the ground state |ψgs(h0)〉 corresponding to a field h0. After
the quench, the field changes to h. Since Sh and Dh are unitary,
the time-evolution operator can be written as

e−iHt = D†
hS†

he−iωhta†aShDh. (23)

The evolved state at time t will then be

|ψt 〉 = e−iHt |ψ0〉 = D†
hS†

he−iωhta†aShDhD†
h0

S†
h0

|0〉. (24)

The Loschmidt echo L(t ) = |〈ψ0|ψt 〉|2 becomes

L(t ) = ∣∣〈0|Sh0 Dh0 D†
hS†

he−iωhta†aShDhD†
h0

S†
h0

|0〉∣∣2
.

This can be simplified by exploiting the algebra of dis-
placement and squeeze operators, which in this case is fa-
cilitated by the fact that the arguments αh and ξh are all

FIG. 5. Comparison of the rate function r(t ) between the full
numerics (black points) and the Holstein-Primakoff approximation
[Eq. (27)] for j = 200. Each curve describes a quench from h0 = 0
to (a) h/γx = 0.1, (b) h/γx = 0.3, (c) h/γx = 0.4, and (d) h/γx = 0.8
[cf. Fig. 1(b)].

real. First, one has DhD†
h0

= D(δα), where δα = −√
2 j(θh −

θh0 )/2. Second, D(δα)S†
h0

= S†
h0

D(δα̃), where δα̃ = δαe−ξh0 .

Finally, we combine the two squeezing operations as ShS†
h0

=
S(δξ ), where δξ = ξh − ξh0 . This leads to

L(t ) = |〈0|D†(δα̃)S†(δξ )e−iωhta†aS(δξ )D(δα̃)|0〉|2. (25)

This expression can now be evaluated by noting that it repre-
sents the vacuum expectation of a thermal squeezed displaced
Gaussian state at imaginary temperature β = −iωh. The result
is therefore

L(t ) =
exp

{
− 2 j(θh−θh0 )e

−2ξh0

1+4eδξ cot2(ωht/2)

}
√

cos2(ωht ) + cosh2(2δξ ) sin2(ωht )
, (26)

an expression which depends only on the HP parameters θh,
ξh, and ωh, given by Eqs. (14), (18), and (19), respectively.

Note also how the exponent in (26) is extensive in j. As a
consequence, the rate function (2) with N = 2 j becomes, in
the thermodynamic limit,

r(t ) =
(
θh − θh0

)
e−2ξh0

1 + 4eδξ cot2(ωht/2)
. (27)

We can now finally address the main question posed in the
beginning of this section. Namely, what is the contribution of
the low-energy sector to DPTs. To do this, we simply compare
Eq. (27) with the full numerics. The results are presented in
Fig. 5. They clearly that DPTs cannot be explained making
use only of the low-energy sector. In Fig. 5(a), for instance,
we compare quenches from h0 = 0 to h/γx = 0.1. In this case,
Eq. (27) (in red) faithfully captures the physics of the full
numerical solution (black points). However, for these small
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quenches, the nonanalyticities of r(t ) are not yet present.
Conversely, as the value of h increases, the signature kinks of
the DPTs start to appear, whereas Eq. (27) remains perfectly
analytical. In fact, Eq. (27) can only become nonanalytic
when h = γx = 1, in which case ωh → 0 and the cotangent
diverges. At this point, the high-energy sector becomes so
important that, albeit nonanalytic, Eq. (27) cannot capture at
all the physics of the problem.

V. CONCLUSION

In summary, we studied the dynamical behavior of the
entropy production in a closed system that undergoes a dy-
namical quantum phase transition. Specifically, we considered
sudden quenches in the Lipkin-Meshkov-Glick model under
the perspective of the Husimi-Q quasiprobability distribution.
Such an approach allowed us to define the entropy associated
with the Q function, known as Wehrl entropy, which is a
measure of the coarse-grained dynamics of the system.

From such phase-space approach, we were able to show
that critical quenches lead to a quasimonotonic growth of
the Wehrl entropy in time, thus demonstrating the scrambling
of quantum information, a characteristic feature of these
transitions. Moreover, the entropy rate also presents small
oscillations, implying negative entropy production rates at cer-
tain instants, which signals the recurrences of the Loschmidt
echo. These results are relevant not only from the dynamical
quantum phase transition perspective but also for the field
of quantum thermodynamics, since they point out that the
Wehrl entropy can be used as a viable measure of entropy
production.

Note that since both features observed here—the tendency
for the entropy to monotonically increase and the small os-
cillations in its time evolution—are consequences of the in-
formation degradation due to scrambling and the recurrences
presented in the Loschmidt echo, respectively. Since these
features directly reflects the dynamics of the Loschmidt echo
in any system presenting DPT, we expect that our conclusions

FIG. 6. Loschmidt echo for the first ground state. From top to
bottom and from left to right we consider quenches from h0 = 0 to
h = 0.1, 0.8, 1.0, and 1.6.

FIG. 7. Loschmidt echo for the second ground state. From top to
bottom and from left to right we consider quenches from h0 = 0 to
h = 0.1, 0.8, 1.0, and 1.6.

apply to the DPT itself, not reflecting any particular charac-
teristic of the considered model.

The dynamical behavior of the entanglement entropy was
experimentally addressed in Ref. [7] for the LMG model using
an ion trap setup. It is interesting to observe that production
of entanglement, as measured by the von Neuman entropy
of the reduced state (half of the chain in the present case)
resembles the one observed here for the Wehrl entropy. The
von Neumann entropy cannot be identified with the thermo-
dynamic entropy for systems out of equilibrium, as in the
present case and, due to its coarse-grained nature, we claim
that the Wehrl entropy is the natural candidate for developing a
thermodynamic theory for DPT. However, an interesting con-
nection between entanglement monotones and Wehrl entropy
was discovered in Ref. [42] and further studies on these lines
could lead to a deeper connection between thermodynamics
and entanglement.

FIG. 8. Comparison between r (solid lines) and rm (dashed
lines). From top to bottom and from left to right we consider
quenches from h0 = 0 to h = 0.1, 0.8, 1.0, and 1.6.
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FIG. 9. Entropy for the first ground state. From top to bottom and
from left to right we consider quenches from h0 = 0 to h = 0.1, 0.8,
1.0, and 1.6.

Finally, based on a modified Holstein-Primakoff approx-
imation, a type of Gaussification method, we addressed the
contribution of the low-energy sector to the dynamical quan-
tum phase transition. This procedure, which is known to
faithfully capture the entire low-energy sector in the thermo-
dynamic limit, fails to accurately predict the behavior of the
system under dynamical quantum phase transitions.

Despite considerable research into the underlying mecha-
nisms behind this phenomenon, several open questions still
remain and we believe that the phase-space perspective that
we put forth here may contribute to deepen our understanding,
specially regarding the thermodynamics of such phase transi-
tions, as indicated by the strong connection between critical
times, characterizing the critical transition, and the entropy
production rate, a key concept in thermodynamics.

FIG. 10. Entropy for the second ground state. From top to bottom
and from left to right we consider quenches from h0 = 0 to h = 0.1,
0.8, 1.0, and 1.6.

FIG. 11. Entropy production rate for the first ground state. From
top to bottom and from left to right we consider quenches from h0 =
0 to h = 0.1, 0.8, 1.0, and 1.6.
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APPENDIX A: ENTROPY PRODUCTION
FOR LMG MODEL

In this Appendix we analytically compute the entropy pro-
duction rate for the LMG model, Eq. (3). To accomplish this
task, we use the Schwinger map to transform spin operators
into bosonic operators [45,48]. This map employs two sets of
bosonic operators, a and b, such that

Jz = 1
2 (a†a − b†b)

J+ = J†
− = a†b. (A1)

To simplify notation we will employ the bosonic coherent
state representation for the Husimi function. In this way, we
define α and β as the complex amplitudes associated with
operators a and b, respectively. The correspondence table
between bosonic operator acting on a state ρ and a differential
operator acting on the Husimi Q function Q(α, β ) is

oiρ → (
μi + ∂μ̄i

)
Q(μi, μ̄i )

o†
i ρ → μ̄iQ(μi, μ̄i ) (A2)

ρoi → μiQ(μi, μ̄i )

ρo†
i → (

μ̄i + ∂μi

)
Q(μi, μ̄i ),

where oi stands for a or b and μi represents either α or β, μ̄i

denotes complex conjugation. Using Eqs. (A1) and (A2) one
finds

[Jz, ρ] → Jz = 1
2 [(α∂αQ − ᾱ∂ᾱQ) − (β∂βQ − β̄∂β̄Q)],

(A3)

and, since 2Jx = J+ + J−, it follows that

4
[
J2

x , ρ
] → 4Jx2

= (2|α|2 + 1)(β̄∂β̄Q − β∂βQ)

+ (2|β|2 + 1)(ᾱ∂ᾱQ − α∂αQ)

+ 2[(ᾱ2β∂β̄Q − α2β̄∂βQ)

+ (αβ̄2∂ᾱQ − ᾱβ2∂αQ)]

+ 2(ᾱβ̄∂ᾱ∂β̄Q − αβ∂α∂βQ)

+ [(
ᾱ2∂2

β̄
Q − α2∂2

βQ
) + (

β̄2∂2
ᾱQ − β2∂2

αQ
)]

= 4
[
J (1)

x2 +J (2)
x2 +J (3)

x2 +J (4)
x2

]
. (A4)

where we introduced the notationJ (i)
x2 representing the ith line

of Eq. (A4). The dynamics of our system is governed by the
von Neumann equation,

∂tρ = −i[Hx2 + Hz, ρ] = ih[Jz, ρ] + iγx

2 j

[
J2

x , ρ
]
,

which is mapped into a quantum Fokker-Planck equation for
the Husimi Q function of the bosonic operators introduced by
the Schwinger map (A1),

∂t Q(μ) = Ux2 +Uz,

whereUz = ihJz andUx2 = (iγx/8 j)Jx2 .
We are interested in the entropy rate, which in the

Schwinger representation is given by

dSQ

dt
= −

∫
d4μ U(Q) ln Q = −(�x2 + �z ), (A5)

where d4μ = d2αd2β and �a = ∫
d4μ Ua ln Q with a =

z, x2. From Eqs. (A3) and (A4) one can compute the terms of
Eq. (A5). We note that the Schwinger transformation Eq. (A1)
maps a bounded set of spin operators into, what is in principle,
an unbounded set of bosonic operators. However, the map
introduces a restriction on the set of bosonic operators, which
makes the Husimi Q function and its derivatives vanish for
α, β → ±∞ once they are restricted, i.e., nonzero only to
a specific region of phase space. Using this fact along with
integration by parts, we find that �z = 0 and the only terms
that contribute to the entropy rate are those related to diffu-
sion, i.e., the terms with second derivatives in Jx2 . �x2 can be
independently computed for each term appearing in Eq. (A4).
For the first contribution we have

�
(1)
x2 ∝

∫
d4μ (2|α|2 + 1) ln Q(β̄∂β̄Q − β∂βQ)

= [(2|α|2 + 1)β̄Q ln Q − c.c.]∞−∞ −
∫

d4μ (2|α|2 + 1)

(
ln Q + β̄

∂β̄Q

Q
− ln Q − β

∂βQ

Q

)
Q

= −
∫

d4μ (2|α|2 + 1)(β̄∂β̄Q − β∂βQ)

= −[(2|α|2 + 1)β̄Q − c.c.]∞−∞ +
∫

d4μ (2|α|2 + 1)(Q − Q) = 0,

(A6)

the last term in the first line of Eq. (A4) is structurally the same as the one above and hence it vanishes. The second contribution
is given by

�
(2)
x2 ∝

∫
d4μ (ᾱ2β∂β̄Q − α2β̄∂βQ) ln Q = [Q ln Qᾱ2β − c.c.]∞−∞ −

∫
d4μ ᾱ2β∂β̄Q − α2β̄∂βQ

= −[ᾱ2βQ − c.c.]∞−∞ +
∫

d4μ (∂β̄[ᾱ2β] − ∂β[α2β])Q = 0,

(A7)
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and the same result holds for the last contribution of the second line of Eq. (A4). The first nonvanishing contribution comes from
the third line,

�
(3)
x2 ∝

∫
d4μ ln Q(ᾱβ̄∂ᾱ∂β̄Q − αβ∂α∂βQ) = −

∫
d4μ

(
ᾱ

∂ᾱQ

Q
β̄

∂β̄Q

Q
− c.c.

)
Q, (A8)

and, finally,

�
(4)
x2 ∝

∫
d4μ ln Q

(
ᾱ2∂2

β̄
Q − α2∂2

βQ
) = [ᾱ ln Q∂β̄Q − c.c.]∞−∞ −

∫
d4μ ᾱ2 (∂β̄Q)2

Q
− c.c.

= −
∫

d4μ

(
ᾱ

∂β̄Q

Q

)2

Q − c.c.,

(A9)

the second term of J (4)
x2 is structurally the same as the first, it suffices to substitute α → β in Eq. (A9). Hence, we obtain that the

nonvanishing contribution to �x2 is

�x2 = − iγx

8 j

∫
d4μ

[(
ᾱ

∂β̄Q

Q

)2

+ 2ᾱβ̄
∂ᾱQ

Q

∂β̄Q

Q
+

(
β̄

∂ᾱQ

Q

)2

− c.c.

]
Q = − iγx

8 j

∫
d4μ

[(
ᾱ

∂β̄Q

Q
+ β̄

∂ᾱQ

Q

)2

− c.c.

]
Q.

(A10)

The contribution due to �z vanishes because it has exactly the same structure as �(1)
x in Eq. (A6). Now Eq. (A10) can be written

as

�x2 = γx

4 j
�
〈(

ᾱ
∂β̄Q

Q
+ β̄

∂ᾱQ

Q

)2
〉

= − γx

4 j
�
〈(

α
∂βQ

Q
+ β

∂αQ

Q

)2
〉
, (A11)

thus leading us to the following expression for the entropy rate:

dSQ

dt
= −�x2 = γx

4 j
�
〈(

α
∂βQ

Q
+ β

∂αQ

Q

)2
〉
. (A12)

In this equation, 〈...〉 means an average over the phase space.
For a fixed the value of j, we can go back to the polar representation (θ, φ) using the following relations [48]:

α∂β = e−iφ cos2 θ

2

[
2 j tan

θ

2
+ ∂θ − i

∂φ

sin θ

]
, (A13)

β∂α = eiφ sin2 θ

2

[
2 j cot

θ

2
− ∂θ + i

∂φ

sin θ

]
, (A14)

since SQ(μ) = − ∫
d4μ ln Q(μ)Q(μ) → SQ(�) = −(2 j + 1)/4π

∫
d� ln Q(�)Q(�) which gives us the following expression

for the entropy production in polar coordinates:

dS�

dt
= 2 j + 1

16π j
γx�

∫
d�

1

Q(�)

(
e−iφ cos2 θ

2

[
2 j tan

θ

2
+ ∂θ − i

∂φ

sin θ

]
Q(�) + eiφ sin2 θ

2

[
2 j cot

θ

2
− ∂θ + i

∂φ

sin θ

]
Q(�)

)2

.

(A15)

APPENDIX B: NUMERICAL STUDIES ON
THE LMG MODEL

In studying the DPT of the LMG model, care must be
taken with the fact that the ground state is twofold degenerate.
We therefore define an echo for each ground state, Lα =
|〈ψα

0 |ψα
t 〉|2, and consider only the net rate,

rs(t ) = − 1

N
log

[
g∑

α=1

Lα

]
, (B1)

which therefore captures the total return probability. However,
as shown [10], in the thermodynamic limit this converges to

the minimum among all the contributions,

rm ≡ lim
N→∞

r(t ) = − 1

N
log

[
min

α
Lα

]
. (B2)

It is for this reason that in the main text it sufficed to consider
only the rate starting from a single ground state.

In this Appendix we describe several numerical studies
of the LMG model. Specifically, we consider four distinct
quench processes, from h0 = 0 to h = 0.1, 0.8, 1.0, and 1.6.
Note that the first two quenches occur before the quantum
critical point while the last one occurs after.
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FIG. 13. Comparison between r and rm. From top to bottom and
from left to right we consider quenches from h0 = 0 to h = 0.1, 0.8,
1.0, and 1.6.

1. The dynamical quantum phase transition

We start by showing the Loschmidt echo for the two ground
states of the system in Figs. 6 and 7. As we can see from these
figures, the behavior of L regarding the dynamical quantum
phase transition is independent of the considered initial state.
However, it does depend on the quench amplitude and show
no sensible difference at the quantum critical point h = 1.

To make this point more clear investigate the rate functions
r and rm, depicted in Fig. 8. We can see that rs converges to
rm when we approach the thermodynamic limit.

2. Entropy production

Figures 9 and 10 show the dynamical behavior of the
entropy for the two ground states. We can observe the same
qualitative behavior for all the considered quenches, except
for the smaller one. The entropy approaches a maximum as
we approach the thermodynamic limit. The oscillation pattern
presented in these plots signal the dynamical quantum phase
transitions.

In order to show this fact, we consider the entropy produc-
tion rate, given by the time derivative of SQ. This is shown in

FIG. 14. Comparison between the maximums of the entropy
production rate and the nonanalytical points of the rate function for
the quench h0 = 0 to h = 0.8.

Figs. 11 and 12 for the same states addressed in the case of the
entropy. Again, except for the small quench, the qualitative
behavior of this quantity presents several maximums and
we show in the main text and in the next subsection that
such maximums are related to the dynamical quantum phase
transitions.

3. Entropy production rate and the rate function

Finally, we address here the main message of the present
article. Figure 13 shows the comparison between the entropy
production rate and the rate function rm for a fixed value
of the angular momentum ( j = 500). Except for the case of
small quench, where we actually do not have a quantum phase
transition since rm is analytical in time, the other considered
quenches clearly shows that the entropy production rate is able
to sign the dynamical quantum phase transition, as discussed
in the main text.

This relation can be deeply stated if we consider the
times at which entropy production rate shows a maximum
and the critical times, where we have a dynamical quantum
phase transition. This is done in Fig. 14, where a clear linear
behavior emerges, thus supporting our claims in the main text.
The points highlighted in this figure are the ones shown in
Fig. 4 of the main text.
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