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Stochastic metrology and the empirical distribution
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We study the problem of parameter estimation in time series stemming from general stochastic processes,
where the outcomes may exhibit arbitrary temporal correlations. In particular, we address the question of how
much Fisher information is lost if the stochastic process is compressed into a single histogram, known as the
empirical distribution. As we show, the answer is nontrivial due to the correlations between outcomes. We derive
practical formulas for the resulting Fisher information for various scenarios, from generic stationary processes
to discrete-time Markov chains to continuous-time classical master equations. The results are illustrated with
several examples.
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I. INTRODUCTION

In the standard scenario of parameter estimation [1–5],
data are produced from a source that depends on an unknown
parameter θ . The aim is to estimate θ from the data. An
experimenter will repeat the experiment N times and collect
data points X = (X1, . . . , XN ) which can be visualized in a
histogram (Fig. 1). From this, one then builds an estimator
θ̂ (X ), which provides a guess as to the real value of θ . The
precision of this estimation is fundamentally limited by the
Cramér-Rao bound [6–8]

var(θ̂ (X )) �
[∂θE[θ̂ (X )]]2

FN
, (1)

where FN is the Fisher information (FI) contained in the dis-
tribution Pθ (X ) = Pθ (X1, . . . , XN ):

FN =
∑

X

[∂θPθ (X )]2

Pθ (X )
. (2)

The FI is a fundamental object in statistics and information
theory, describing the ultimate precision achievable in esti-
mating the parameter θ from the data at hand. The simplest
scenario is when the outcomes are independent and identically
distributed (iid) so that Pθ (X ) = Pθ (X1) · · · Pθ (XN ). The FI in
this case simplifies to being linear in N :

F (iid)
N = N

∑
X

[∂θPθ (X )]2

Pθ (X )
. (3)
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In this paper we consider a different paradigm, in which the
data are not iid, but instead obtained as the outcomes of a
stochastic process that exhibits temporal correlations between
measurements. This represents the continuous monitoring of
a system, as it undergoes stochastic transitions between dif-
ferent states. Examples include Brownian motion or classical
master equations [9–11], as well as continuous measure-
ment of a quantum system in terms of quantum trajectories
[1,2,12–14]. Since each outcome now depends on the previous
ones, the data are not iid and, as a consequence, the FI is no
longer given by Eq. (3). Our goal is to determine what it is.
As we will show, this crucially depends on what aspects of
the dataset X = (X1, . . . , XN ) one uses in the estimator.

Maximum precision is achieved with estimators θ̂ (X )
exploiting every possible aspect of the stochastic process,
generally resulting in complicated functions. For example,
one might use estimators based on the likelihood of specific
transition chains x → y or x → y → z and so on. The FI of
the full dataset F (all)

N provides a limit to the precision achiev-
able from such an estimator. Oftentimes, however, one might
simply make a histogram of the outcomes. This defines the
empirical distribution, which is illustrated in Fig. 1: suppose
that each Xi can take values within a certain alphabet x ∈ A
(which may not be labeled by numbers). Then the empirical
distribution (ED) is defined as

qx = 1

N

N∑
i=1

δXi,x. (4)

That is, it describes the proportion of observations for each
possible outcome x. The FI F (emp)

N associated with an estima-
tor θ̂ (q) that uses only the empirical distribution can at best
be as large as F (all)

N as one cannot gain additional information
about θ when deriving the former from the latter. Unlike the
case of iid outcomes, in a correlated stochastic process the
order in which the data appear is of crucial importance. That
is, while the ED contains information on how often states
were measured, it does not contain information on the order
of the measurements, which can be relevant when θ affects
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FIG. 1. Basic paradigm in stochastic metrology. Data are generated from a stochastic process described by the probability Pθ (X1, . . . , XN ),
which depends on a unknown parameter θ . This can be easily extended to the limit of continuous monitoring in time. A histogram of
measurements can be derived, defining the empirical distribution [Eq. (4)], or compressed further in terms of the sample mean [Eq. (5)].
The corresponding FI for the derived quantities, which determines the ultimate precision of the estimation [Eq. (1)], will depend on which
aspects of the data the estimator θ̂ utilizes and is bounded according to Eq. (6).

correlations between measurements. One can also analo-
gously define empirical distributions counting higher order
statistics, such as the number of transitions from x → y, or
from x → y → z and so on. This extension of the empirical
distribution to finite sequences potentially provides additional
information, having FI bounded (inclusively) between F (emp)

N

and F (all)
N .

One could compress the data even more and consider the
sample mean

X̄ = JX1 + · · · + JXN

N
=

∑
x

Jxqx, (5)

where Jx is some mapping of the state labels x to numeric
values. Since the sample mean can be constructed from the
empirical distribution, its FI F (avg)

N in turn cannot exceed
F (emp)

N . A natural hierarchy arises then among these parameter
estimation strategies:

F (avg)
N � F (emp)

N � F (all)
N . (6)

These three quantities will generally differ from F (iid)
N [Eq. (3)]

computed on the single-symbol marginals, which could in
principle be larger or smaller than F (all)

N [15].

A. Summary of the main results

In this paper we provide fundamental new results on how
to compute the above-mentioned FI quantities and how to in-
terpret them for a wide variety of stochastic processes. These
results are relevant because building estimators exploiting the
full information in the stochastic process may be very com-
plicated when temporal correlations are present. The quantity
F (emp)

N provides the actual accessible information about the
parameter if only the ED is taken into account.

The paper starts in Sec. II with a review of the FI in the
full dataset. In Sec. III the FI in the empirical distribution is
calculated, followed by the calculation of the FI in the sample
mean in Sec. IV. Finally, in Sec. V we extend the results for
a higher order ED, accounting for transitions between states.
The results are illustrated through examples in Sec. VI, and
conclusions are given in Sec VII. A summary of our main re-
sults is shown in Table I, which covers the various FI measures
for different classes of stochastic processes, starting with very
general stationary stochastic processes, then specializing to
Markov chains and finally to continuous-time (Pauli) master
equations.

To motivate the following sections, we briefly present here
the results for the particular case of master equations, in light
of their importance in physics. Such systems exhibit correla-
tions that propagate in time while still being simple enough
that their dynamics can often be well understood. Consider
a system evolving according to the continuous time classical
(Pauli) master equation [11]

d px

dt
=

∑
y

(Wxy py − Wyx px ) :=
∑

y

Wxy py, (7)

where Wxy is the transition rate from y → x and W is a matrix
with off-diagonal elements Wxy and diagonal elements given
by the escape rates Wxx = −∑

y Wxy. The parameter θ is
encoded in the transition rates Wxy.

Here and henceforth we denote the steady state of Eq. (7)
by p (i.e., W p = 0). Throughout, it will be assumed that this
solution exists (i.e., the process is aperiodic) and is unique
(i.e., the model is irreducible). The FI for the full stochastic
trajectory of duration τ is given by (Sec. II B)

F (all)
τ = τ

∑
y

py

∑
x �=y

[∂θWxy]2

Wxy
. (8)

Our main contribution is the FI of the empirical distribution.
In the case of systems satisfying detailed balance, the formula
becomes particularly simple and reads

F (emp)
τ = −τ

2

∑
x,y

(∂θ px )
Wxy

px
(∂θ py). (9)

This result shows noteworthy similarities with the the iid case
in Eq. (3). The fundamental difference, however, is now the
role played by the transition matrix. Although not evident,
Eqs. (8) and (9) are bounded by the inequality (6). The dif-
ference between them, therefore, summarizes the amount of
information that is not present in the steady-state distribution
p but is encoded in the transition rates Wxy.

II. FISHER INFORMATION OF STATIONARY
STOCHASTIC PROCESSES

We start by computing the full FI F (all)
N for a station-

ary stochastic process X1, . . . , XN described by a distribution
P(X1 = x1, . . . , XN = xn) ≡ P(x1, . . . , xN ) encoding the pa-
rameter θ we wish to estimate; i.e., P(X ) = Pθ (X ). For
the sake of simplicity, we will consider single-parameter
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TABLE I. FI of a stationary stochastic process and its compression in terms of the empirical distribution and the sample mean. The first
column F (all) is the full FI in the process; the second F (emp) is the FI if we compress the full dataset in terms only of the empirical distribution,
Eq. (4); and the third is the information contained in the sample mean, Eq. (5). The results refer to a stochastic process with N outcomes in the
case of discrete time, or a total time τ in the case of continuous time. The first row, “general process” refers to a generic stationary stochastic
process. It assumes finite Markov order-M Markov for F (all) and, for F (emp) and F (avg) that the statistics of the observed empirical distribution
follow a normal distribution. The quantity FM+1|1...M is the FI given the previous M measurements (see [15]). The matrix �, defined in Eq. (25),
encodes the correlation between measurements. The transition matrix is Q, while the rate matrix is W . The steady state is p and P = diag p.
The vector J contains numeric values for the states while μ is the expected sample mean using these numeric values.

F (all) F (emp) F (avg)

General process (16) NFM+1|1...M (26) N (∂θ p)T(P + �P + P�T)−1(∂θ p) (37) N (∂θ μ)2

JT(P+�P+P�T )J

Markov (M = 1) (18) N
∑

y py
∑

x
[∂θ Qxy]

2

Qxy
(30)

N (∂θ p)T(P + Q(1 − Q)+P

+P (1 − QT)+QT)−1(∂θ p)
(38) N (∂θ μ)2

JT(P+Q(1−Q)+P+P (1−QT )+QT )J

Time-continuous (21) τ
∑

y py
∑

x �=y
[∂θWxy]

2

Wxy
(32) −τ (∂θ p)T(W +P + P (W +)T)

+

(∂θ p) (39) −τ
(∂θ μ)2

JT(W +P+P (W + )T )+J

+ detailed balance — (34) − τ

2 (∂θ p)TP−1W (∂θ p) (40) − τ

2
(∂θ μ)2

JT(W +P )+J

estimation in what follows. However, the extension to the mul-
tiparameter case is straightforward. In a stationary processes,
for any block of size r < N ,

P(X1, . . . , Xr ) = P(X1+k, . . . , Xr+k ). (10)

We assume each Xi can take values within a certain alphabet
A, and we denote the reduced distribution of a single outcome
as px = P(Xi = x) (which is independent of i for stationary
processes).

A. General Markov process

We first consider the case of a process with a finite Markov
order M: a process with M = 0 has iid outcomes, a process
with M = 1 (a Markov chain) is decomposed as

P(x1, . . . , xN ) = P(xN |xN−1) · · · P(x2|x1)P(x1), (11)

a process with M = 2 is decomposed as

P(x1, . . . , xN ) = P(xN |xN−1, xN−2) · · · P(x3|x2, x1)P(x2, x1),

(12)

and so on. Further generalizing such processes, one can con-
sider a Hidden Markov Model (HMM) [16,17], which builds
on a finite-order Markov process, but whose outcomes follow
a random distribution parameterized by the state of the under-
lying Markov process. HMM can have infinite Markov order
because information in recent outcomes of the underlying
process is lost; meaning that subsequent states in the HMM
cannot be perfectly modeled based only on finitely many past
states. Even in the case of infinite Markov order, a finite HMM
representation may suffice. Memory-minimal HMMs for sta-
tionary processes are known as ε-machines [18]. In practice,
infinite Markov order cannot be determined from output data
alone. However, one can often assign a sufficiently large, but
finite, effective Markov order Meff , beyond which correlations
can be neglected.

The full FI of P(x1, . . . , xN ) is given by the usual definition

F (all)
N =

∑
x1,...,xN

[∂θPθ (x1, . . . , xN )]2

Pθ (x1, . . . , xN )
. (13)

For finite Markov order M < N , we may use the result re-
cently derived in Ref. [15]:

F (all)
N = FM + (N − M )FM+1|1...M . (14)

The first term is the FI of P(x1, . . . , xM ), while the second is a
conditional FI, given by

FM+1|1...M =
∑

x1,...,xM

P(x1, . . . , xM )

×
∑
xM+1

[∂θP(xM+1|x1, . . . , xM )]2

P(xM+1|x1, . . . , xM )
. (15)

Equation (14) shows that for N � M the FI will asymptoti-
cally behave as

F (all)
N � NFM+1|1...M . (16)

This linear scaling with N stems solely from the assumption
of exponential decay of correlations and allows us to define a
FI rate

f (all) = F (all)
N

N
� FM+1|1...M . (17)

One may interpret f (all) as the rate of information obtained
in each outcome of the experiment. A high information rate
means that the estimation precision will increase faster with
the number of data points N . This type of linear scaling
appears often in the literature, for example, in the case of
continuously measured quantum systems [2].

B. Discrete- and continuous-time Markov processes

A system with Markov order M = 1 [Eq. (11)] is fully
characterized by a transition matrix Qxy := P(x|y). The sta-
tionary distribution, px, is the solution of p = Qp. In this case
Eq. (16) simplifies to

F (all)
N = N

∑
y

py

∑
x

[∂θQxy]2

Qxy
. (18)

We can specialize this to continuous-time cases where the
system evolves according to the master equation (7). This can
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be viewed as a discrete-time process with transition matrix
Q = 1 + W dt , where dt is an infinitesimal time step. For
x �= y we then have

[∂θQxy]2

Qxy
= dt

[∂θWxy]2

Wxy
, (19)

while for x = y we have

[∂θQxx]2

Qxx
= dt2(∂θWxx )2. (20)

This contribution is of order dt2, however, hence negligible
compared to (19). Equation (18) therefore reduces to

F (all)
τ = τ

∑
y

py

∑
x �=y

[∂θWxy]2

Wxy
, (21)

which is precisely Eq. (8), with τ = Ndt . This expression
has appeared in the literature before, e.g., in [19], although
we are unaware of any papers discussing its derivation and
consequences in any detail.

III. FISHER INFORMATION OF THE EMPIRICAL
DISTRIBUTION

We now turn to the ED, as defined by Eq. (4). It records the
proportion of instances in which outcomes Xi take each of the
variates x ∈ A of the alphabet. In addition to being stationary,
we assume the process is ergodic [11] and hence has a unique
stationary solution.

A. General process

Given a single chain of N outcomes (X1, X2, . . . , XN ) the
ED (4) is a vector of random variables q, with q ∈ [0, 1]d

where d = |A| is the (possibly infinite) cardinality of A,
and with the additional restriction that

∑
x qx = 1. We then

consider the statistics of measuring q. The ED is an unbiased
estimator of the steady-state (single-outcome) distribution
px = P(Xi = x):

E[qx] =
∑

x1,...,xN

P(x1, . . . , xN )
1

N

N∑
i=1

δxi,x = px. (22)

Here E[•] represents the average over multiple realizations
of the same experiment. Since qx is obtained from a finite
number N of outcomes in a single experiment, it will in
general fluctuate. To compute the corresponding FI, we will
assume that for large N the random vector q is approximately
distributed as a multivariate Gaussian. While we expect this to
be true for most stationary processes, we are unaware of any
theorems explicitly proving it [20].

We may define a covariance matrix �xy = Cov(qx, qy), of
dimensions d × d . The covariance will depend on the condi-
tional probability of two outcomes,

px←y(k) = P(Xi+k = x|Xi = y), (23)

where the right-hand-side is independent of i for a stationary
process. For Markov processes, px←y(k) is fully described by
a product of transition matrices. As shown in Appendix A, the

covariance matrix of q can be written as

�xy = 1

N
(px(δxy − py) + �xy py + �yx px ), (24)

where

�xy =
N−1∑
k=1

(
1 − k

N

)
[px←y(k) − px]. (25)

The matrix � encodes correlations between measurements,
with � ≡ 0 for iid processes.

With this at hand, we show in Appendices B and C our
main result, namely, that the FI contained in the ED reads

F (emp)
N = N (∂θ p)T(P + �P + P�T)−1(∂θ p), (26)

where P = diag(px ) is a matrix with the steady-state distribu-
tion in its diagonals. As a sanity check, for iid outcomes � = 0
and we recover F (iid)

N in Eq. (3). Therefore, Eq. (26) shows how
the correlations in the stochastic process, characterized by the
matrix �, modify the rate at which we acquire information
about a process. Compared to Eq. (16), it is always true that
F (emp)

N � F (all)
N , but in general there are no bounds relating

F (emp)
N and F (iid)

N , so correlations can be both beneficial or
deleterious for the acquisition of information [15].

B. Discrete-time Markov processes

As before, we now specialize this to the case of Markov or-
der M = 1, where the system is characterized by the transition
matrix Qxy. The transition probabilities px←y(k) appearing in
Eq. (25) are px←y(k) = (Qk )xy, and

� =
N−1∑
k=1

(
1 − k

N

)
[Qk − puT], (27)

where u = (1, . . . , 1) is a column vector with all entries equal
to 1. To carry out the remaining sum, we assume that Q is
diagonalizable as [21]

Q = puT +
∑

j

λ jx jyT
j , (28)

where |λ j | < 1 are the eigenvalues and x j, y j the correspond-
ing right and left eigenvectors. Observe that (puT)k = puT by
the normalization of p and uTx j = y j

T p by the decomposi-
tion, so only the λ j terms in Qk − puT remain in the sum. For
|α| < 1,

N−1∑
k=1

(
1 − k

N

)
αk = α

1 − α

(
1 − 1

N

1 − αN

1 − α

)
N�1≈ α

1 − α
.

It then follows that

� =
∑

j

λ j

1 − λ j
x jyT

j := Q(1 − Q)+. (29)

Here (1 − Q)+ is the Drazin pseudo-inverse of 1 − Q, which
corresponds to inverting all eigenvalues which are not zero.
For more details on the Drazin inverse, see Appendix K in
Ref. [22]. Finally, plugging Eq. (29) into Eq. (26) we obtain

F (emp)
N = N (∂θ p)T(P + Q(1 − Q)+P

+ P (1 − QT)+QT)−1(∂θ p), (30)
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which is the final form of F (emp)
N for Markov order-1 processes.

The expression is formally equivalent to (26), but with the
additional structure (29) for the matrix �.

C. Continuous-time Markov processes

Last, we consider the continuous-time case with Q = 1 +
W dt . For large-N ,

Q(1 − Q)+ � − 1

dt
W +. (31)

Notice that W is not invertible, so the Drazin inverse is needed
once again. In the limit of small dt Eq. (30) then reduces to

F (emp)
τ = −τ (∂θ p)T(W +P + P (W +)T)+(∂θ p), (32)

where, again, τ = Ndt . This formula simplifies in the partic-
ular case where the system satisfies detailed balance:

Wxy py = Wyx px or WP = PW T. (33)

This is a common condition whenever the underlying system
is described by a Hamiltonian that is an even function of
momentum, and the observable states are also even func-
tions of momentum [11]. Taking the Drazin inverse of both
sides shows that P (W +)T = W +P . Finally, we use the fact
that when acting between vectors which sum to zero [see
Eq. (D12) in Appendix D], as is the case with ∂θ p in Eq. (32),
it follows that (W +P )+ = P−1W . Hence Eq. (32) reduces to

F (emp)
τ = −τ

2
(∂θ p)TP−1W (∂θ p), (34)

which is Eq. (9), written in matrix form. When detailed bal-
ance fails to hold, one must instead use Eq. (32).

IV. FISHER INFORMATION OF THE SAMPLE MEAN

The sample mean, Eq. (5), corresponds to a simple
metrological protocol: given a stochastic process one simply
computes the average of the quantity in question and uses that
to build an estimator. Over multiple experiments, the sample
mean will yield the correct average

μ := E[X̄ ] =
∑

x

Jx px = JT p, (35)

wherein J contains numeric labels for the corresponding
states. The variance of the sample mean for a stationary
stochastic process follows from propagation of uncertainty for
a linear transformation,

σ 2
X̄ = JT�J, (36)

where � is the covariance matrix of the empirical distribution,
Eq. (24).

By an argument similar to that used for the ED, in the limit
of large N the sample mean will be approximately Gaussian
so that we may once again employ Eq. (B1) to calculate the FI
with the uncertainty derived from the empirical distribution.
For the general process,

F (avg)
N = N

(∂θμ)2

JT(P + �P + P�T)J
. (37)

Restricting to order-1 Markov processes,

F (avg)
N = N

(∂θμ)2

JT(P + Q(1 − Q)+P + P (1 − QT)+QT)J
. (38)

For master equations,

F (avg)
τ = −τ

(∂θμ)2

JT[W −1P + P (W −1)T]J
, (39)

which can be simplified when detailed balance is satisfied,
similar to Eq. (34),

F (avg)
τ = −τ

2

(∂θμ)2

JT(W +P )+J
. (40)

V. EMPIRICAL DISTRIBUTION OF A FINITE SEQUENCE

The results of this paper can directly be extended to con-
sider the empirical distribution describing how often a given
finite sequence of measurements appears in a process. That is,
for a length-L sequence x = {x1, . . . , xL}, one can define the
empirical distribution

q(x) = 1

N + 1 − L

N+1−L∑
k=1

δx1Xk · · · δxLXk+L−1 . (41)

The mean value of q(x) is

E[q(x)] = P(x1, . . . , xL ) := P(x), (42)

as one may expect. It therefore provides a unbiased estimator
of a length-L sequence distribution. For L = 1 we recover
Eq. (4). For L = 2 we would be sampling the joint probabili-
ties P(x1, x2) and so on.

We continue to interpret q(x) as a vector, but now with
dimension dL. To compute the corresponding FI we will as-
sume, as before, that in the large N limit the vector q(x)
is jointly Gaussian. Some care must be taken when L > 1,
however, as ergodicity is insufficient to guarantee that every
sequence of measurement outcomes may occur in a given
process. This can be avoided if we consider only entries of
q(x) over those states for which the transition probability is
not identically zero. To find the covariance of q(x), one first
extends the conditional probability from before,

px←y(k)

= P(Xk+1 = x1, . . . , Xk+L = xL|X1 = y1, . . . , XL = yL ).
(43)

Observe that, for k < L, there will be some overlap between
x and y, thus such terms would include the delta func-
tions [23]δyL+1−kx1 · · · δyLxL−k . Then, as in Eq (25), we define the
following matrix to encode the correlation:

�xy =
N−L∑
k=1

(
1 − k

N + 1 − L

)
[px←y(k) − P(x)]. (44)

Finally, the covariance �xy = Cov(q(x), q(y)) is

�xy = 1

N + 1 − L
[P(x)(δxy − P(x)) + �xyP(y) + P(x)�yx].

(45)
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(a) (b) (c)

FIG. 2. Diagrams of models considered. (a) The three-level toy model. Using β = 0.75 and n = −0.3, the circles representing the states
are darkened according to the steady-state solution. The thickness of the arrows between the states represents their respective transition rates.
(b) A harmonic oscillator coupled to a thermal bath. (c) A three-level maser driven by a hot and cold thermal bath.

Defining the sequence-indexed vector and matrix,

px = P(x) and P = diag(p). (46)

the FI then has the same form as Eq. (26):

F (emp,L)
N = N (∂θ p)T(P + �P + P�T)−1(∂θ p). (47)

Our results therefore readily generalize to the ED of arbitrary
length-L sequences.

VI. EXAMPLES

We now illustrate our results with several examples. In
Secs. VI A–VI D we consider examples stemming from con-
tinuous time master equations; the latter three examples are
illustrated in Fig. 2. Then in Sec. VI E we discuss an example
of a discrete-step stochastic process. While these examples are
all (semi-)classical, one can apply the techniques of quantum
measurements to frame inherently quantum experiments as a
sequence of observations and apply the methods described in
the previous sections. In all the examples, the outcome of the
measurement reflects the state of the system, e.g., an energy
eigenstate. In practice, there may be additional constraints and
complications in these and similar models.

The means by which the systems are measured can vary.
For example, one could monitor the state of the system by
observing its transitions. In some cases, the transitions them-
selves reveal the internal state (as may be the case in the
maser described in Sec. VI D), while other cases may require
separate knowledge of the initial state. As the specific details
of how the system is measured can vary, this section is am-
bivalent to the physical nature of the measurements.

A. Two-level systems

The simplest example is a system containing two states in
the alphabet and evolving according to a master equation with
transition matrix

W =
[−aθ bθ

aθ −bθ

]
, (48)

with nonnegative transition rates aθ and bθ that encode the
parameter θ in question. The functional dependence of the
encoding is left arbitrary. For simplicity, we omit the θ depen-
dence below and write them only as a and b. The steady state

is p = ( b
a+b ,

a
a+b ), and this system always satisfies detailed

balance [Eq. (33)].
The total FI is given by Eq. (21) and reads

F (all)
τ = τ

(b∂θa)2 + (a∂θb)2

ab(a + b)
. (49)

Conversely, the FI of the ED [Eq. (34)] is given by

F (emp)
τ = τ

(b∂θa − a∂θb)2

2ab(a + b)
. (50)

The two are equal only in the special case where a∂θb =
−b∂θa. Otherwise, we have

F (all)
τ = 2F (emp)

τ + 2τ
(∂θa)(∂θb)

a + b
. (51)

Thus, if the encoding is in only one of the parameters—that is,
∂θa = 0 or ∂θb = 0—we get F (all)

τ = 2F (emp)
τ ; The ED there-

fore contains only half of the full information available in the
stochastic process. Finally, we mention that in this case of
a two-level system the ED has the same information as the
sample mean; that is, F (emp)

τ = F (avg)
τ .

B. Toy three-level system

To properly see a difference between F (all)
τ , F (emp)

τ , and
F (avg)

τ we must go to a system with at least three levels. The
formulas, however, become much more complicated in this
case. We therefore study here a simple toy model where we
parametrize the transition rates, which allows us to gain some
physical insights into what is happening.

We consider a three-level system with states labeled by −1,
0, and +1. We assume transitions are only between neighbor-
ing states and described by the following transition matrix:

W = κ

1 + ξn

⎡
⎢⎢⎣

− 1−ξ

1−n
1
2

1−ξ

1+n 0
1−ξ

1−n − 1+ξn
1−n2

1+ξ

1+n

0 1
2

1+ξ

1−n − 1+ξ

1+n

⎤
⎥⎥⎦, (52)

with parameters n ∈ (−1, 1), ξ ∈ (−1, 1), and κ > 0, and
n and ξ being unitless and κ having units of frequency. A
diagram of this model is shown in Fig. 2(a). The meaning of
these parameters follows as below.

First, κ is an overall rate governing the timescale of
the process, namely, the dynamical activity which is the
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(a)

(b) (c)

FIG. 3. Numeric simulations of the three-level toy model with n = −0.3 and ξ = 0.75. (a) A single stochastic trajectory. A histogram of
the states is shown on the right along with the expected distribution (black points/lines) on the right. (b) The sample mean for many simulations
and different simulation times τ . A dashed line is drawn at n. (c) The mean-squared error in the sample mean (gray) as well as with an estimator
that uses the empirical distribution (orange): n̂emp = 2

√
q+ − 1. This is compared to the lower bound from FI in the average state [Eq. (57),

dot-dashed], empirical distribution [Eq. (55), dashed], and in the full chain [Eq. (56), dotted]. Note that the estimator n̂emp using the empirical
distribution may not be optimal, particularly with negative values of ξ .

time-averaged rate at which transitions occur. Next, the steady
state is

p =

⎡
⎢⎢⎣

(
1−n

2

)2

1
2 (1 − n2)(

1+n
2

)2

⎤
⎥⎥⎦, (53)

which depends only on n. In fact, the average of x is

μ =
∑

x=−1,0,1

xpx = n. (54)

Finally, ξ reflects the coupling between the states ±1 and the
state 0. A simulation of the toy model is shown in Fig. 3(a)
using the Gillespie algorithm (see Appendix E).

Because the steady state [Eq. (53)] is independent of ξ

and κ , only n can be sensed with the empirical distribution.
Using Eq. (34), the FI for θ = n contained in the empirical
distribution is

F (emp)
τ (n) = κτ

(1 − n2)2 . (55)

Conversely, the FI in the full sequence is, from Eq. (21),

F (all)
τ (n) =

[
1 +

(
n − ξ + 2n2ξ

1 + nξ

)2
]

F (emp)
τ (n). (56)

This satisfies F (all)
τ (n) � F (emp)

τ (n) with equality for n =
−1+

√
1+8ξ 2

4ξ
. Finally, the FI from the average state follows from

Eq. (39):

F (avg)
τ (n) =

(
1 − ξ 2

1 + n2ξ 2

)
F (emp)

τ (n), (57)

which is smaller than F (emp)
τ (n) and coincides with it only

when ξ = 0.
We illustrate the role played by these different quantities

in in Fig. 3. In Fig. 3(b) we illustrate an estimation protocol
using the sample mean (5) as estimator. As can be seen, at
the level of individual trajectories the simulations converge
with increasing τ to the true value of n. In Fig. 3(c) we plot
the mean-squared error (MSE) from this estimation, averaged
over many trajectories, as a function of τ . We also include
the corresponding bounds on the MSE from Eqs. (55)–(57).
As can be seen, the sample mean (blue curve) is asymptoti-
cally bounded by 1/F (avg)

τ (n). To go below this threshold one
must employ estimators that use additional information. The
orange curve in Fig. 3(c) is one example, where the estima-
tor n̂emp = 2

√
q+ − 1 includes information in the empirical

distribution that is not contained in the sample mean. The
form of estimator is derived from the third entry of Eq. (53).
The MSE with n̂emp is shown to asymptotically converge to a
value slightly above 1/F (emp)

τ . If we want to further go below
the 1/F (emp)

τ bound, then we would have to use an estimator
that employs also the transition rates. The three quantities in
Eqs. (55)–(57) are also compared in Fig. 4, as a function of
n. As can be seen, the difference might be quite significant in
some parameter regimes.

C. Thermally coupled harmonic oscillator

Next we consider a quantum harmonic oscillator coupled to
a heat bath at a fixed temperature T . The system is described
by discrete energy levels given by the Fock states |n〉, for
n = 0, 1, 2, . . ., with energies En = h̄ω(n + 1/2) [Fig. 2(b)].
If the initial state is diagonal in the Fock basis, the dynamics
in contact with the bath can be described by a classical Pauli
master equation of the form (7), where transitions occur only
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FIG. 4. Comparing the FI from different measurements derived
from the three-level toy model described by Eq. (52) with ξ = 0.75.
The FI from the full chain [Eq. (56), blue], the empirical distribution
[Eq. (55), orange], and the average state [Eq. (57), gray].

between neighboring energy states:

d pn

dt
= Wn,n+1 pn+1 + Wn,n−1 pn−1 − (Wn+1,n + Wn−1,n)pn.

(58)
The form of the transition rates can be determined from the
corresponding Lindblad master equation for the quantum evo-
lution [24] and reads

Wn,n+1 = γ (N̄ + 1)(n + 1), (59a)

Wn+1,n = γ N̄ (n + 1), (59b)

for n = 0, 1, . . .. Here γ > 0 is the coupling strength to the
bath and N̄ = (eh̄ω/T − 1)−1 is the Bose-Einstein distribution.
The steady state is the thermal distribution

pn =
(

1 − N̄

N̄ + 1

)(
N̄

N̄ + 1

)n

= (1 − e−h̄ωβ )e−h̄ωβn,

(60)

and one can verify that it satisfies detailed balance [Eq. (33)].
A stochastic trajectory of this process is shown in Fig. 5(a).

The steady state [Eq. (60)] is insensitive to γ . Hence, the
only parameter we can do estimation on is N̄ . The FI of N̄ in
the empirical distribution follows from Eq. (34),

F (emp)
τ (N̄ ) = γ τ

2N̄ (N̄ + 1)
. (61)

The FI in the full sequence follows from Eq. (21):

F (all)
τ (N̄ ) = γ τ

(
N̄ + 1

N̄
+ N̄

N̄ + 1

)
= 2γ τ cosh (h̄ωβ ).

(62)
Heuristically, higher temperatures result in the system spread-
ing out over a wider set of states, thus reducing the FI as
the measurements are less sensitive to the temperature. We
therefore see that the FI rates (in units of γ ) f̄ (all) = F (all)

τ /γ τ

and f̄ (emp) = F (emp)
τ /γ τ satisfy

f̄ (all) = 2 f̄ (emp) + 2. (63)

The empirical distribution always loses at least half of the
information. A plot of the two quantities is shown in Fig. 6.

In Fig. 5(b) we show an example of how to estimate N̄
from the outcomes. An obvious choice of estimator in this
case is the sample mean [Eq. (5)], which, from Eq. (60),
should yield precisely N̄ . The mean-squared error between the

(a)

(b) (c)

FIG. 5. Stochastic dynamics of a quantum harmonic oscillator coupled to a thermal bath via Eqs. (7) and (59), with N̄ = 1.5. (a) A single
simulated trajectory and the corresponding empirical distribution qn. For sufficiently large times qn will converge to the steady-state distribution
pn in Eq. (60) (black points/lines). (b) Sample mean as a function of τ , which can be used as a simple estimator in this case. The dashed line
denotes N̄ = 1.5. (c) In gray we show the mean-squared error of the sample mean as a function of τ . For long times this tends asymptotically
to 1/F (emp)

τ (dashed). The full precision 1/F (all)
τ (dotted) can be reached only with estimators making use of higher order statistics, beyond the

empirical distribution. For example, in blue, the number of jumps NJ = 2γ τ N̄ (N̄ + 1), information not contained in the empirical distribution,
provides an improved estimator.
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FIG. 6. FI rates f (all) = F (all)
τ /τ and f (emp) = F (emp)

τ /τ as a func-
tion of N̄ , for the quantum harmonic oscillator example, Eqs. (61)
and (62).

sample mean and the true N̄ is shown in Fig. 5(c). As can be
seen, the error saturates to 1/F (emp)

τ . It turns out that in this
case F (avg)

τ [computed numerically using Eq. (39)] is the same
as F (emp)

τ . We attribute this to a special coincidence of this
model, as it is something which is clearly violated in others,
such as the three-level maser discussed in Sec. VI D. To build
an estimator that can improve upon the 1/F (emp)

τ MSE bound
we must use information related to the transition rates. One
example of such an estimator is the dynamical activity

R̄ =
∑
j �=n

Wn j p j = 2γ N̄ (N̄ + 1), (64)

which uses both the empirical distribution and the transition
rates. An example of the mean-squared error in this case
is shown in Fig. 5(c) in green. The error lies between the
1/F (emp)

τ and 1/F (all)
τ bounds. A more complicated estimator

that incorporates additional information, e.g., between which
states transitions are occurring, is expected to push the error
closer to the 1/F (all)

τ bound.

D. Three-level maser

A maser can be modeled as a three-level system with states
{|1〉, |2〉, |3〉} and corresponding distinct energies (in ascend-
ing order): E1, E2, and E3. The transitions permitted in this
simple model of a maser are shown in Fig. 2(c). We consider
here the incoherent implementation of the three-level maser:
a hot thermal bath, with coupling γh and Bose-Einstein distri-
bution ∼N̄h, acting between states |1〉 and |3〉; a cold thermal
bath with coupling γc and Bose-Einstein distribution ∼N̄c,
acting between |3〉 and |2〉; and an incoherent spontaneous
emission of a photon into an optical mode with rate γw. The
rate matrix reads

W =

⎡
⎢⎣ γw γh(N̄h + 1)

0 γc(N̄c + 1)
γhN̄h γcN̄c

⎤
⎥⎦. (65)

FIG. 7. Comparing the FI from different measurements derived
from the three-level maser described by Eq. (66) with γh = γc = 2γw

and N̄c → 0. The FI is shown from the full chain [blue, Eq. (68)] and
the empirical distribution [orange, Eq. (69)].

The steady state is then

p = 1

γcγh(3N̄cN̄h+ N̄c+ N̄h)+ γw[γc(N̄c+ 1)+ γh(2N̄h+ 1)]

×

⎡
⎢⎣γcγhN̄c(N̄h + 1) + γw[γc(N̄c + 1) + γh(N̄h + 1)]

γcγh(N̄c + 1)N̄h

γcγhN̄cN̄h + γwγhN̄h

⎤
⎥⎦.

(66)

Detailed balance [Eq. (33)] is violated whenever γw �= 0.
To simplify the number of free parameters we define γh

γw
=

γc

γw
= γ . We also set N̄c → 0. A key feature of the three-level

maser is population inversion between |2〉 and |1〉. It occurs
when

N̄h >
2

γ − 1
+ γ + 1

γ − 1
N̄c, (67)

provided γ > 1. No population inversion occurs for γ < 1.
As with the previous examples, the FI can be calculated

with respect to the parameters of the theory as before using
Eq. (21), Eq. (32), and Eq. (39). Because detailed balance does
not hold, one cannot use Eq. (34) for the ED. For concreteness,
we focus here on the FI of N̄h; that is, we frame this as a
thermometry problem for the temperature of the hot bath. The
results are

F (all)
τ (N̄h) = γ τ

�

2N̄2
h + 3N̄h + 2

N̄h + 1
, (68)

F (emp)
τ (N̄h) = γ τ

�

8

4N̄h + 7
, (69)

where � = N̄h((γ + 2)N̄h + 2). We compare them Fig. 7. For
large N̄h, we have the asymptotic scalings

F (all)
τ ∝ 1

N̄h
, F (emp)

τ ∝ 1

N̄3
h

, (70)
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FIG. 8. Heatmap of χ = F (emp)
N /F (all)

N on a spin-one chain, for
different values of T and J . Note the difference in the behavior
between ferromagnetic and antiferromagnetic regimes, for external
magnetic field B = 0.5.

so that the discrepancy with F (all)
τ becomes significant. Con-

versely, for small N̄h we get

F (all)
τ � 2γ τ, F (emp)

τ � 8γ τ

7
. (71)

E. Spin-one chain thermometry

We now turn to an example that is not a continuous-time
master equation. A spin-one classical chain can be modeled
as a sequence of N discrete random variables s j (spins), each
taking values in {−1, 0, 1}. The spins interact with each other
and with an external magnetic field B according to the classi-
cal Hamiltonian

H (s1:N ) = −B
∑

j

s j − J
∑

j

s js j+1, (72)

where J is the coupling parameter, and the summation im-
plicitly yields periodic boundary conditions. In particular, a
thermal state of the chain has probability distribution

P(s1:N ) = e−H (s1:N )/T

Z
, (73)

where the Boltzmann constant has been set to 1, T is the tem-
perature, and Z the partition function. In the thermodynamic
limit N → ∞, the model can be studied by exploiting the
transfer matrix formalism [25–27]. For details see Ref. [15].

Let us consider a sequential access to the spin chain; the
spins are measured one by one, in sequence, from left to
right. The obtained information can be either kept in full, or
compressed in terms of the empirical distribution (the count
of 0,±1 spins) or even further via the sample mean. The
compression is, as expected, associated to a reduction of the
FI, and consequently to an increase of the estimation error.

While the inequality (6) fixes a clear hierarchy of decreas-
ing precision for increasing compression, different regimes of
the spin chain system can yield vastly different behaviors. In
Fig. 8 we represent the ratio χ between F (emp)

N and F (all)
N for

different values of T and J [given (6) and the positivity of
the FI, 0 � χ � 1]. By definition, the empirical distribution
is able to collect only information contained in the stationary

distribution, while the full statistic also harvests information
from the correlations. In the ferromagnetic regime J � 0,
where the information about the temperature is mostly en-
coded in the stationary distribution [15], the loss of precision
due to the empirical distribution compression is negligible
(χ ∼ 1). On the contrary, in the antiferromagnetic case the
information is mostly contained in the correlations, hence
the empirical distribution turns out to be highly ineffective
(χ ∼ 0).

VII. CONCLUSIONS

In this paper we study parameter estimation with stochastic
processes. Unlike standard settings, we focus specifically on
data that are obtained from processes which are not iid but
depend on previous outcomes. These temporal correlations
can affect the rate at which we acquire information about
the parameter being estimated. We derive several expres-
sions quantifying the information that remains in different
relevant functions (estimators) computed from the full data.
In particular, we consider the FI contained in the empirical
distribution. Intuitively, this is the distribution one obtains by
making a histogram for the data obtained from a stochastic
process. Our main results are summarized in Table I. Each
column represents a level of “compression,” from the full
process to the empirical distribution to the sample mean, and
each row represents a class of stochastic processes: from a
general stationary process to discrete-time Markov chains to
continuous-time master equations.

Throughout this work, we consider scenarios in which one
makes a sequence of measurements—ambivalent to whether
those measurements are the result of a system described by
quantum or classical physics—and wants a bound on how
well those measurements and quantities derived from those
measurements can be used to estimate a parameter of the
theory, i.e., the FI. One avenue for future work would be to
consider, e.g., quantum limits on this bound resulting from
considering all possible measurement schemes of a given
system, i.e., the quantum FI. In the most general sense, a
non-Markovian quantum process is described by a quantum
comb [28,29], and it is possible to extend quantum metrology
to this description [30,31].

In realistic settings, it may be impractical to build esti-
mators for a desired parameter that make use of all possible
aspects of the data. Instead, what is usually done in practice
is to compress the outcome, e.g., either as the empirical distri-
bution (a histogram) or the sample mean. Our results provide
the fundamental loss of information that is incurred in this
process by describing a new lower bound on the parameter’s
uncertainty when less information is available. We therefore
believe our results will be useful for researchers exploring the
metrological power of stationary stochastic processes.
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APPENDIX A: COVARIANCE MATRIX
OF THE EMPIRICAL DISTRIBUTION

In this Appendix we prove Eq. (24) for the covariance
matrix of the empirical distribution (4). From the definition
of the covariance matrix we have

�xy = Cov(qx, qy)

= 1

N2

∑
i, j

Cov(δXi,x, δXj ,y)

= 1

N2

∑
i

Cov(δXi,x, δXi,y) + 1

N2

∑
i

∑
j>i

Cov(δXi,x, δXj ,y)

+ 1

N2

∑
i

∑
j<i

Cov(δXi,x, δXj ,y). (A1)

We now use the fact that the stochastic process is stationary. In
the first sum, all N terms will be equal. In the second and third
terms, Cov(δXi,x, δXj ,y) depends only on the distance i − j. We
may then use an identity from combinatorics

N−1∑
i=1

N∑
j=i+1

Cj−i =
N−1∑
k=1

(N − k)Ck, (A2)

valid for any function Ck . This then yields

�xy = 1

N
Cov(δX1,x, δX1,y)

+ 1

N

N−1∑
k=1

(1 − k/N )Cov(δX1,x, δXk+1,y)

+ 1

N

N−1∑
k=1

(1 − k/N )Cov(δXk+1,x, δX1,y). (A3)

We can next compute all terms explicitly. First,

Cov
(
δX1,x, δX1,y

) = E[δX1,xδX1,y] − E[δX1,x]E[δX1,y]

= pxδx,y − px py. (A4)

And second:

Cov(δX1,x, δXk+1,y) = P(X1 = x, Xk+1 = y) − px py

= [P(Xk+1 = y|X1 = x) − py]px

= [py←x(k) − py]px, (A5)

where

px←y(k) := P(Xi+k = x|Xi = y). (A6)

With this expression in mind, one can define a matrix that
encodes the correlations between measurements,

�xy =
N−1∑
k=1

(
1 − k

N

)
[px←y(k) − px]. (A7)

Plugging these results in Eq. (A3) then yields the final formula
for � in Eq. (24):

�xy = 1

N
(px(δxy − py) + �xy py + �yx px ). (A8)

APPENDIX B: FISHER INFORMATION
OF THE EMPIRICAL DISTRIBUTION

In this Appendix we prove the first main result of our paper,
Eq. (26), for the FI of the empirical distribution q. The result
holds for large N and follows from the fact that, in this limit,
the components of the empirical distribution qx are essentially
random variables sampled from a joint multivariate Gaussian
distribution with mean px (the steady-state distribution) and
covariance matrix �xy [Eq. (24) and Eq. (A8) in Appendix A]
under the appropriate conditions and approximations. The FI
of a multivariate Gaussian with mean vector μ and covariance
matrix � is

F (Gauss) = (∂θμ)T�−1(∂θμ) + 1

2
tr{�−1(∂θ�)�−1(∂θ�)}.

(B1)

In our case the covariance matrix (24) scales as � = �̃/N .
Hence, the first term will be O(N ) while the second will be
O(1). The leading term in F (emp)

N will therefore be

F (emp)
N = N (∂θ p)T�̃−1(∂θ p). (B2)

The covariance matrix (24) can be written in matrix form
as

�̃ = P + U − ppT, U := �P + P�T, (B3)

where P = diag(px ) and �, defined in Eq. (A7), encodes
correlations between measurements. The last term is the outer
product with elements (ppT)xy = px py. When trying to in-
sert Eq. (B3) into Eq. (B2), however, a complication arises.
Namely, because

∑
x qx = 1, the d random variables qx are

not all statistically independent, causing the matrix � (or �̃)
to be singular. This can be avoided by working with d − 1 el-
ements of qx. However, the manipulations become somewhat
cumbersome. A simpler approach is to add an infinitesimal
amount of noise in the qx by defining a new empirical distribu-
tion qx + εx/

√
N , where εx are arbitrary independent random

variables satisfying E [εx] = 0 and Var(εx ) �= 0. This changes
the covariance matrix to �̃ + E, where E is a diagonal matrix
with Exx = Var(εx ). We may then use (�̃ + E)−1 in Eq. (B2)
and, in the end, take the limit E→ 0 (by which we mean the
limit where all entries of E tend to zero).

As we show below in Appendix C, for small E the follow-
ing expansion holds:

(�̃ + E)−1 = (P + U )−1

− (P + U )−1EuuT + uuTE(P + U )−1

uTEu

+ uuT

uTEu
+ O(E), (B4)

where u = [1, . . . , 1]T is a column vector with all entries
equal to 1. The third term in Eq. (B4) diverges in the limit
E→ 0, while the first two terms are both of order O(1) in
E. However, the diverging terms vanish when “sandwiched”
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between vectors whose components add up to zero, i.e., that
are perpendicular to u. The normalization of the probabilities∑

x px = 1 implies
∑

x ∂θ px = 0. Therefore, inserting (B4) in
Eq. (B2) causes both the second and third terms to vanish,
leading to

F (emp)
N = N (∂θ p)T(P + U )−1(∂θ p) + O(E). (B5)

In the limit E→ 0 we therefore recover our first main result,
Eq. (26). Notice how this result is independent of the nature
or structure of the noise matrix E. Any infinitesimal noise will
therefore work.

APPENDIX C: PROOF OF EQ. (B4)

The proof relies on two matrix identities: the series
expansion

(A + B)−1 = A−1 − A−1BA−1

+ · · · + (−1)kA−1(BA−1)k + · · · (C1)

and the Sherman-Morrison formula

(X − wvT)−1 = X −1 + X −1wvTX −1

1 − vTX −1w
. (C2)

We first use these two relations to establish the following
identity. Let X = A + E, with A invertible. We will also be in-
terested in the case that vTA−1w = 1. First, applying Eq. (C2)
yields

(A + E− wvT)−1 = (A + E)−1 + (A + E)−1wvT(A + E)−1

1 − vT(A + E)−1w
.

(C3)
The next step would be to use Eq. (C1) to expand the above
equation and omit O(E) terms that will vanish when taking
E→ 0. One must be careful when omitting terms from the
fraction because the assumption that vTA−1w = 1 implies that
the denominator is O(E), so one must retain the same order
terms in the numerator. Then a series expansion in powers of
E yields, to leading order,

(A + E− wvT)−1

= A−1 − A−1EA−1wvTA−1 + A−1wvTA−1EA−1

vTA−1EA−1w

+ A−1wvTA−1

vTA−1EA−1w
+ O(E). (C4)

We now apply our case to Eq. (C4), where A = P + U
and w = v = p is the steady-state distribution. One can verify
from the definition of � in Eq. (A7) that uT� = �Tu = 0 and
�p = p�T = 0. This, together with the fact that Pu = p, im-
plies that Uu = uTU = 0. Finally, since P−1 p = u, Eq. (C1)
yields

A−1w ≡ (P + U )−1 p = (P−1 − P−1UP−1 + · · · )p

= u − PUu + P−1UP−1Uu + · · ·
= u. (C5)

It immediately follows that vTA−1w = 1, satisfying the as-
sumptions. Likewise, A is symmetric, so pTA−1 = uT, so one

finds

(P + U − ppT + E)−1

= (P + U )−1 − (P + U )−1EuuT + uuTE(P + U )−1

uTEu

+ uuT

uTEu
+ O(E). (C6)

Recalling �̃ = P + U − ppT yields Eq. (B4).

APPENDIX D: PROPERTIES OF THE DRAZIN INVERSE

Here we consider some useful properties of a generaliza-
tion of the matrix inverse used for diagonalizable matrices:
the Drazin inverse. The idea behind this inverse is that a
diagonalizable matrix can be written in the form

A =
∑

i

λiPi, (D1)

where {λi} are the eigenvalues associated with the right eigen-
vectors xi and left eigenvectors yi

T, and {Pi} are projective
matrices with the properties

Pi = xiyi
T, (D2a)

PiPj = Piδi j, (D2b)∑
i

Pi = 1. (D2c)

When writing the matrix in the form of Eq. (D1), the inverse
is obtained by simply replacing λi with λ−1

i . However, this
fails when λ j = 0 for some values of j; this is precisely the
case for singular matrices. Of course, terms with λ j = 0 do
not appear in the sum in Eq. (D1), so one may be tempted to
simply ignore these terms, resulting in the Drazin inverse:

A+ =
∑

i,λi �=0

1

λi
Pi. (D3)

This is not a proper matrix inverse because it does not act
properly on the nullspace of A; i.e., A+Av �= v when v has
some component in the kernel of A.

Some properties of the Drazin inverse immediately follow
from the definition:

(A+)+ = A, (D4)

(A+)T = (
AT

)+
, (D5)

for A invertible, A−1 = A+. (D6)

Additionally, the Drazin inverse of A conjugated with an in-
vertible matrix B is

BA+B−1 = (BAB−1)+, (D7)

which will be proven as follows. Writing out the conjugation
with Eq. (D1), one finds

BAB−1 =
∑

i

λiBPiB
−1.

It is straightforward to show that BPiB−1 preserves all the
properties of projective matrices described by Eq. (D2). It
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follows that the Drazin inverse of BAB−1 is

(BAB−1)+ =
∑

i,λi �=0

1

λi
BPiB

−1 = B

⎛
⎝ ∑

i,λi �=0

1

λi
Pi

⎞
⎠B−1 = BA+B−1.

Before deriving a few more properties of the Drazin in-
verse, it will help to define a projection operator into the
(co)kernel of a matrix. Using the same decomposition from
Eq. (D1), one can define the null projection operator for some
matrix A by

NA =
∑

j,λ j=0

Pj . (D8)

A few immediate properties arise:

NANA = NA, (D9a)

NAA = ANA, (D9b)

N+
A = NA+ = NA, (D9c)

(A + NA)−1 = A+ + NA, (D9d)

A+A = AA+ = 1 − NA. (D9e)

If follows from Eq. (D9a) that NA is a projection operator
and from Eq. (D9b) that it annihilates vectors and covectors
in the image and coimage of A; i.e., it projects vectors and
covectors into the kernel and cokernel [32] of A, respectively.
To see this, let v be a vector in the image of A and uT a vector
in the coimage of A. Thus, there exists a vector x such that
v = Ax and a covector yT such that uT = yTA. Now NAv =
NAAx = 0 and uTNA = yTANA = 0. Likewise, NAv = 0 and
uTNA = 0 imply that v and uT are in the image and coimage
of A, respectively.

There are a few useful properties of (co)vectors in the
(co)image of A and how they interact with NA. Let B be a
nonsingular matrix and v = Ax ∈ im A so NAv = 0. One can
then define x′ = B−1x so NABv = NABABx′ = 0. Similarly,
if NABv = 0 so v = ABx′ ∈ im AB, then NAv = NAABx′ = 0.
The analogous identity for the covector uT = yTA ∈ coim A
follows similarly. Thus,

NABv = 0 ⇐⇒ NAv = 0, (D10a)

uTNBA = 0 ⇐⇒ uTNA = 0. (D10b)

Further, the ⇒ direction holds when B is singular. Simi-
larly for NBAv = 0, there is some x such that v = BAx. Then
NAB−1v = NAAx = 0. In the other direction, if NAB−1v =
0, then there is some x such that Ax = B−1v, and NBAv =
NABABx = 0. Again, the analogous identity for the covector
uT follows similarly. Thus,

NBAv = 0 ⇐⇒ NAB−1v = 0, (D11a)

uTNAB = 0 ⇐⇒ uTB−1NA = 0. (D11b)

Under certain conditions, the Drazin inverse can adopt
some useful properties from the matrix inverse. For a ma-
trix A and an invertible matrix B, let v ∈ im(A+B) and uT ∈
coim(A+B). One finds that

uT(A+B)+
v = uTB−1Av, (D12)

similar to the inverse of the product of invertible matrices.
This identity can be proven by considering

(A+B)+(A+B)B−1A = (A+B)+(1 − NA) = (1 − NA+B)B−1A.

By equating the two right-hand equalities above,

uT(A+B)+
v − uT(A+B)+NAv = uTB−1Av − uTNA+BB−1Av

uT(A+B)+
v = uTB−1Av,

using the fact that uTNA+B and NAv = NA+Bv = 0.
One may want to consider whether something similar to

Eq. (D12) holds when B is singular. For this, consider the
special case in which ker B ⊆ ker A and coker B ⊆ coker A;
i.e., if one were to ignore the nullspace of A, then B would
appear nonsingular as well. Thus, NANB = NBNA = NB and
NBA = ANB = 0 because NB projects onto a more restrictive
subspace. For v ∈ im A+B ⊆ im A+ = im A+(B + NB) because
(B + NB) is invertible. For uT ∈ coim A+B, there exists some
yT such that

uT = yTA+B = yT(A+B + A+NANB) = yTA+(B + NB),

so uT ∈ coim A+(B + NB); further, following this calcula-
tion backwards shows that coim A+(B + NB) = coim A+B for
ker B ⊆ ker A. Now, for v ∈ im A+B and uT ∈ coim A+B, one
can use Eq. (D12) with B → (B + NB), which is invertible:

uT(A+(B + NB))+
v = uT(B + NB)−1Av,

uT(A+B + A+NB)+
v = uT(B+A + NBA)v,

but A+NB = NBA = 0, thus

uT(A+B)+
v = uTB+Av (D13)

holds when the (co)kernel of B is a subset of the (co)kernel of
A, v ∈ im A+B, and uT ∈ coim A+B.

APPENDIX E: GILLESPIE ALGORITHM

The Gillespie algorithm is a simple yet powerful tool to
simulate continuous-time Markov processes [33,34] and has
recently been extended to describe open quantum system dy-
namics [35]. This algorithm is used to produce a set of random
transitions and their respective times for a given process. This
algorithm was used to generate the data shown in Figs. 3
and 5.

The time-continuous Markov model is characterized by the
rate matrix W , wherein (for x �= y) Wyx is the rate at which
state x transitions to state y and −Wxx is the escape rate for
state x (i.e., the total rate at which the system transitions out of
state x). Starting in state x, a step in the algorithm follows from
generating two random numbers. First, from an exponential
distribution characterized by Wxx, a time is generated for
the transition. Second, a random state y �= x is selected with
probability Wyx

−Wxx
. Repeating this step many times can be used

to simulate the Markov process.
The histograms shown in Figs. 3 and 5 can be generated by

integrating over the results of the simulated process. That is,
qx is calculated by adding up the time intervals that start with
a transition to state x (normalized to the total time simulated).
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