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Two-point measurement energy statistics from particle scattering
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We show that the energy statistics resulting from a two-point measurement of an isolated quantum system
subject to a time-dependent driving protocol can be probed by subjecting the same system to a collision with
a suitably prepared incoming particle. This means that the particle acts both as an external drive and as an
energy measurement device for the quantum system and that energy fluctuations can be defined within a fully
autonomous setting.
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Introduction. Fluctuations are ubiquitous at the microscale
[1,2], but properly defining quantum fluctuations is not al-
ways an easy task. This is particularly true out of equilibrium
when considering fluctuations of quantities which character-
ize flows across a system, for instance, work and particle
currents. The most widely adopted method resorts to a two-
point measurement (TPM) which consists in projectively
measuring the observable of interest at two different times
[3–5]. The resulting probability distribution for changes in
outcomes can then be used to recover, for instance, the cel-
ebrated work and current fluctuation relations [3–9].

However, these projective measurements are challenging
from an experimental point of view. To our knowledge, a
direct implementation in a quantum system has only been
realized in Ref. [10]. This has led to a flurry of research to find
alternative ways of measuring energy statistics. One famous
approach is to perform Ramsey interferometry on the system
[11,12] and has been successfully implemented in nuclear
magnetic resonance experiments [13]. Alternatively, one can
use generalized quantum measurements, in which case the
energy statistics can be inferred from a single measurement on
an auxiliary system [14–16]. A different approach is based on
dynamic Bayesian networks, used to study energy exchanges
between two quantum systems that are initially correlated
and locally thermal [17,18]. Yet another approach exploits
entanglement between a system and an ancilla, in such a way
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that the first of the two measurements is translated into a
measurement of the entangled ancilla instead [19,20].

In this paper, we show that the energy statistics of a quan-
tum system can be inferred from its collision with a particle
prepared in a suitable initial state. Contrary to TPM and the
alternatives mentioned above, our scattering setup is fully
autonomous so that the colliding particle acts effectively both
as an external driving and as an energy measurement device.
Previous studies using a scattering approach have focused on
identifying the conditions on the initial state of the incoming
colliding particle that are needed to interpret the average en-
ergy exchanges in the system as heat or work [21–23]. In this
study, we identify the conditions for the state of the particle
after the collision to encode the energy fluctuations that would
be obtained from a two-point projective measurement of the
system energy (often interpreted as fluctuating work when
the system is initially in a canonical state). We find that this
happens when the incoming colliding particle is semiclassical
and narrow in energy compared to the system’s energies and
we provide the relation between the time-dependent driving
energy and the spatial potential energy of the scattering pro-
cess. We also show that, when its energy uncertainty is large,
the change in kinetic energy due to the collision encodes the
untouched work, i.e., the average energy change that would
result from a nonautonomous driving without performing any
projective measurement [9].

Scattering theory is used from high energy to condensed
matter physics to link quantum theory with experiments
[24–27]. It is also widely used to study open quantum systems
[28–34], quantum transport [35–37], quantum thermodynam-
ics [21–23,38,39], and quantum metrology [40–42]. Our
results should therefore contribute to a better understanding
of quantum fluctuations in a broad class of realistic systems.
As we shall see, since scattering maps are energy-preserving
operations, our results can be used to provide realistic ways
to implement otherwise highly idealized quantum resource
theory operations [43–45].
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Two-point measurement scheme. We consider a closed
quantum system S, of dimension N , undergoing a time-
dependent dynamics according to the Hamiltonian HS (t ) =
HS + V (t )ν, where HS is the bare Hamiltonian, V (t ) is a
nonvanishing function only in the interval t ∈ (0, τ ), and ν is
a time-independent operator. The bare energies of the system
are defined by HS | j〉 = e j | j〉, where {| j〉}N

j=1 is the basis of
eigenvectors associated to its energy spectrum {e j}N

j=1. We
denote the energy gap (or Bohr transition frequency) between
eigenstates | j〉 and | j′〉 by � j′ j ≡ e j′ − e j .

In the interaction picture, the time-dependent protocol is
implemented by a unitary operator UI (τ ) which obeys the
Schrödinger equation in the interaction picture

d

dt
UI (t ) = − i

h̄
VI (t )UI (t ), (1)

with UI (0) = IS and VI (t ) = V (t )eiHSt/h̄ν e−iHSt/h̄. According
to the two-point measurement scheme, we perform two pro-
jective measurements in the eigenbasis of HS , one before
and one after the interaction takes place [3–5,9]. The energy
distribution associated to this scheme is then

PTPM(W ) =
∑
j′, j

δ(W + � j′ j )| 〈 j′|UI (τ )| j〉 |2 〈 j|ρS| j〉 , (2)

where ρS ≡ ρS (0) is the state of the system before the
projective measurements are performed. Although the last
expression is valid for arbitrary energy spectrum, we consider
without loss of generality that the spectrum is nondegenerate,
i.e., we assume that � j′ j = 0 implies j′ = j. This is war-
ranted since no energy statistics can be inferred within an
energy-degenerate subspace, although the spectrum can be
still have degenerate energy gaps. The average energy is the
first moment of the distribution

〈W 〉TPM =
∫

dW PTPM(W )W

= TrS[HSρS] − TrS
[
HSρ

TPM
S (τ )

]
. (3)

The second line expresses the average energy in a basis-
independent fashion, where

ρTPM
S (τ ) =

∑
j′, j

� j′UI (τ )� jρS� jU
†
I (τ )� j′ (4)

is the state of the system after the nonselective, two-point
measurement scheme is performed and � j ≡ | j〉 〈 j|.

If the time-dependent protocol is implemented without
measurements, then the probability distribution in Eq. (2)
cannot be defined. However, we can still define the average
energy change in the system before and after the protocol

〈W 〉0 = TrS[HSρS] − TrS[HSUI (τ )ρSU †
I (τ )], (5)

which is the so-called untouched work [9]. Note that Eqs. (5)
and (3) coincide if the initial state is diagonal in the energy
eigenbasis [9].

Scattering setup. We consider now a time-independent
scattering process involving the same quantum system S with
bare Hamiltonian HS . In addition, we also include the mo-
tional degrees of freedom X of a particle of mass m with
kinetic energy operator ( p̂2/2m) |p〉 = Ep |p〉. Here {|p〉} are

improper (non-normalizable) eigenstates whose position rep-
resentation are plane waves 〈x|p〉 = exp(ipx/h̄)/

√
2π h̄ and

Ep = p2/2m � 0 is the kinetic energy. The total Hamiltonian
reads

H = H0 +V(x) = HS ⊗ IX + IS ⊗ p̂2/2m +V(x), (6)

where IS and IX are the identity operators on the Hilbert space
of S and X . The interaction operator is given by V(x) = ν ⊗
λ(x), where λ(x) is nonvanishing only inside the interval x ∈
(0, a). In this scattering process, we picture the system S as
being at rest in the region x ∈ (0, a), thus playing the role of
a scatterer for the incoming particle.

We take the full system to be initially in a factorized state
ρS ⊗ ρX , with ρX describing the initial state of the motion
of the particle before the collision. According to scattering
theory, the final state of the full system after a single collision

ρ ′ = S(ρS ⊗ ρX )S†, (7)

where S is the unitary scattering operator. Crucially, it is
possible to show that S is also energy-preserving [S, H0] = 0
[21,25,26]. From Eq. (7), we can obtain the final state of
motion of the particle

ρ ′
X = TrS[S(ρS ⊗ ρX )S†]. (8)

In the same way, we can obtain the final state of the system ρ ′
S

by performing the partial trace over X .
We are now interested in obtaining the final kinetic energy

distribution from Eq. (8). It can be formally expressed in
terms of the final momentum distribution ρ ′

X (p) ≡ 〈p|ρ ′
X |p〉

as follows:

ρ ′
X (Ep) = m

p(Ep)

∑
α=±

ρ ′
X [αp(Ep)], (9)

where p(Ep) = √
2mEp and the sum is over positive and neg-

ative momenta of the final distribution (see discussion below).
We obtain an explicit expression for ρ ′

X (p) from Eq. (8)
by expressing the scattering operator in the eigenbasis of H0,
denoted by |p, j〉 ≡ |p〉 ⊗ | j〉,

〈p′, j′|S|p, j〉 =
√|pp′|

m
δ(Ep − Ep′ − � j′ j )s

(αβ )
j′ j (E ). (10)

This expression follows from energy conservation [S, H0] = 0
[21,25,26]. In Eq. (10) s(αβ )

j′ j (E ) is the scattering matrix
at total energy E = Ep + e j and α = sgn(p′) and β =
sgn(p) accounts for the final and initial direction of the
momenta, which can be positive or negative. The pairs
(++), (+−), (−+), (−−) correspond to transmission from
the left, reflection from the left, reflection from the right, and
transmission from the right probability amplitudes, which can
be obtained from the solutions of the stationary Schrödinger
equation [46,47]. Using Eq. (10) it can be shown that the
unitarity of S implies the unitarity of the scattering matrix∑

j′,α s(αβ )
j′ j (E )[s(αβ ′ )

j′k (E )]∗ = δ jkδββ ′ [21]. We add that, strictly

speaking, Eq. (10) implies that s(αβ )
j′ j (E ) is only defined if

E � max {e j′ , e j}, in which case we say that the channel
| j〉 → | j′〉 is open [21]. However, we can extend the scattering
matrix to closed channels by defining s(αβ )

j′ j (E ) = δ j′ jδαβ if
E < max {e j′ , e j} so that unitarity holds for both closed and
open channels.
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In this study, we consider that the initial state of motion
ρX is traveling to the right so that ρX (p, p′) ≡ 〈p|ρX |p′〉 has
support only in p, p′ � 0 (a similar analysis holds for states
traveling to the left). In practice, this happens if p0 � σp,
where p0 = TrX [ p̂ρX ] is the average momentum of the ini-
tial state and σ 2

p = TrX [( p̂2 − p2
0)ρX ] is its variance. We then

obtain an explicit form for Eq. (9):

ρ ′
X (Ep) =

∑
j′, j,k

〈 j|ρS|k〉 ρX (Ep + � j′ j, Ep + � j′k )

×
∑
α=±

s(α+)
j′ j (Ep + e j′ )

[
s(α+)

j′k (Ep + e j′ )
]∗

. (11)

In the last expression, the initial state of the particle is defined
in terms of the kinetic energy

ρX (Ep, Ep′ ) = m√
p(Ep)p(Ep′ )

ρX (p(Ep), p(Ep′ )). (12)

Note that the diagonal elements ρX (Ep) ≡ ρX (Ep, Ep) yield
the initial kinetic energy distribution. The change in average
kinetic energy due to the collision can now be retrieved from

�EX =
∫ ∞

0
dEp Ep [ρ ′

X (Ep) − ρX (Ep)]

= TrS[HSρS] −
∑
j′, j,k

e j′ 〈 j|ρS|k〉

×
∫ ∞

e j′
dE ρX (E − e j, E − ek )

×
∑
α=±

s(α+)
j′ j (E )

[
s(α+)

j′k (E )
]∗

. (13)

The last expression follows from substituting Eq. (11) in
the first line of Eq. (13) after some algebraic manipulation.
Throughout the rest of the paper, we show how to connect
Eqs. (11) and (13) of scattering theory to Eqs. (2) and (3)
of the two-point measurement scheme. We then show how to
recover the notion of untouched work and finally connect our
results with quantum resource theories.

Connection to the two-point measurement scheme. Under
certain conditions, to be discussed below, Eq. (11) can be
written as

ρ ′
X (Ep) =

∫
dW P(Ep,W )ρX (Ep − W ), (14)

where

P(Ep,W ) ≡
∑
j′, j

δ(W + � j′ j )Pj′ j (Ep + e j′ ) 〈 j|ρS| j〉 , (15)

and Pj′ j (E ) ≡ ∑
α |s(α+)

j′ j (E )|2 is the probability for a tran-
sition | j〉 → | j′〉 at total energy E = Ep + e j′ due to the
collision. The result in Eq. (14) follows from Eq. (11) when
the state of the particle is narrow in energy with respect to the
system [48], meaning

|� j′ j − �k′k|
v0

� σp, (16)

for all nondegenerate energy gaps � j′ j = �k′k , with v0 =
p0/m being the particle’s average velocity. As studied in
Refs. [21,22], when condition (16) is obeyed, the initial state

appearing in Eq. (11) can be written as ρX (Ep + � j′ j, Ep +
� j′k ) � δe j ,ek ρX (Ep + � j′ j ). Thus initial system coherences
between nondegenerate states do not contribute to Eqs. (11)
and (14) follows directly.

The function P(Ep,W ) defined in Eq. (15) differs from
PTPM(W ) in Eq. (2) in the transition probabilities. In the
former, the transition probability Pj′ j (Ep + e j′ ) is independent
of time but dependent on the energy of the system S, while in
the latter 〈 j′|UI (τ )| j〉 |2 is dependent on time but independent
of the system’s energy. However, as shown in Ref. [23], it
is possible to simplify the scattering matrix when the kinetic
energy—or, equivalently, the mass—is the largest parameter
involved, so that it depends only on the kinetic energy

s(α+)
j′ j (Ep + e j′ ) � δα,+ 〈 j′|s(Ep)| j〉 , (17)

where s(Ep) acts only on S. This implies that Ep � λ(x)
and pamin � h̄, where amin is the minimum length scale over
which the potential varies significantly. This ensures that the
particle travels undisturbed through a given potential λ(x)
which can otherwise be arbitrary. Second, it implies that Ep �
�S , so the kinetic energy is much larger than the maximum
energy gaps of the system �S ≡ max(� j′ j ) ∀ j′, j.

The unitary operator s(Ep), acting only on S, can be found
by solving the Schrödinger equation

∂UI (Ep, t )

∂t
= − i

h̄
VI (Ep, t )UI (Ep, t ), (18)

with U (Ep,−∞) = IS , U (Ep,+∞) = s(Ep), and VI (Ep, t ) ≡
λ[p(Ep)t/m]eiHSt/h̄ν e−iHSt/h̄. In other words, in the semi-
classical limit a particle with kinetic energy Ep induces an
effective time-dependent interaction on the system S equiv-
alent to Eq. (1), provided we identify V (t ) ≡ λ[p(Ep)t/m].
Such a time t is related to the position x at a fixed kinetic
energy Ep through the relation t = mx/p(Ep), which can be
used to write Eq. (18) as an equivalent position-dependent
equation. Note that, since in our study λ(x) is only nonzero
inside an interval of length a, the previous relation automati-
cally defines an interaction time ma/p(Ep) at a fixed kinetic
energy Ep.

Finally, the condition p0 � σp, already fulfilled for the
states of motion considered, guarantees that s(Ep) can be
well approximated at Ep0 [23]. This means that UI (τ ) =
s(Ep0 ), provided we identify τ ≡ a/v0 as the time of the col-
lision. Therefore, in this regime Eq. (15) implies P(Ep,W ) �
PTPM(W ). Substituting in Eq. (14) we obtain our main result

ρ ′
X (Ep) =

∫
dW PTPM(W )ρX (Ep − W ). (19)

The last expression shows that the final kinetic energy is the
convolution of the two-point measurement distribution with
the initial kinetic energy distribution. Moreover, applying the
semiclassical regime to the integral in Eq. (13) and taking
initially diagonal states or narrow states obeying (16), we find
�EX = 〈W 〉TPM.

Connection to untouched work. We now inquire what hap-
pens when the coherences are initially present and cannot be
ignored, so that condition (16) no longer holds. In particular,
we look at states of motion which are broad in energy and
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narrow in position

σp �
h̄

2σx
� |� j′ j − �k′k|

v0
, (20)

where σx = TrX [(x̂2 − x2
0 )ρX ] and x0 = TrX [x̂ρX ] is the av-

erage position. As studied in Refs. [21], the semiclassical
regime together with conditions (20) and τ � h̄/�S imply
that ρX (Ep + � j′ j, Ep + � j′k ) � ρX (Ep). In this case, we find
from Eq. (11) that ρ ′

X (Ep) � ρX (Ep), so that the final kinetic
energy distribution is approximately unaffected by the colli-
sion with the system, carrying no information about its energy
statistics. However, the second line of Eq. (13) now yields
�EX = 〈W 〉0 and we recover the untouched work [49]. We
can thus interpolate between the notion of touched 〈W 〉TPM

and untouched 〈W 〉0 by varying the energy width of the parti-
cle scattering with the system.

Numerics. We illustrate our results with a 1/2-spin
system with Hamiltonian HS = (�S/2)σz and system in-
teraction ν = Jσx, where �S is the energy gap and J ∈
R. We consider two different initial states for the system:
a thermal state ρ

β
S = exp(−βHS )/TrS[exp(−βHS )] and a

pure state with thermal populations ρcoh
S = ρ

β
S + C, where

C is only nonzero in the off-diagonal elements. The
state of motion of the particle is modeled by a Gaus-
sian wave packet ρX (p, p′) = φ(p)φ∗(p′), where φ(p) =
(2πσp)−1/4 exp[−(p − p0)2/(4σ 2

p )] exp(−ipx0/h̄) and the
potential in space is given by a barrier λ(x) = V0 for x ∈ (0, a)
and zero otherwise. The exact scattering matrix s(αβ )

j′ j (E ) is
computed by solving the coupled and nonlinear equations of
multichannel scattering theory [24]. We compare our results
in the semiclassical regime with TPM by solving Eq. (1) with
a time-dependent potential V (t ) = V0 for t ∈ (0, τ ) and zero
otherwise, where τ = a/v0.

In Fig. 1, we show the final kinetic energy distribution
in Eq. (11) and the initial distribution for different values
of normalized momentum uncertainty σ̄p ≡ σpv0/�S in the
semiclassical regime. For narrow wave packets (first panel),
we see that the final distribution yields well-defined and
nonoverlapping peaks corresponding to the different energy
gaps of the system, independently of initial coherences. Ac-
cordingly, as we show in the third panel the average change
in kinetic energy is equivalent to 〈W 〉TPM. As we increase
σp, the wave packet becomes broad in energy and the final
kinetic energy distribution presents overlapping peaks whose
amplitude depends on initial coherences (second panel). In the
limit of very broad wave packets, the kinetic energy change
approaches the untouched work 〈W 〉0.

Connection to quantum resource theories. We now con-
nect our results to quantum resource theories [43–45,50]. In
Ref. [43], the system S interacts with another quantum system
A whose Hamiltonian is HA = γ p̂, where γ has units of ve-
locity. The unitary U describes the evolution of S and A after
they interacted:

ρ ′
SA = U (ρS ⊗ ρA)U †. (21)

It is assumed to satisfy energy conservation [U, HS + HA] = 0
and [U, x̂] = 0, implying that U can be written as

U = e−iHS⊗x̂/(h̄γ )(VS ⊗ IA)eiHS⊗x̂/(h̄γ ), (22)

FIG. 1. First and second panels: initial and final kinetic en-
ergy distribution for different values of normalized momentum
uncertainty σ̄p ≡ σpv0/�S [computed from Eqs. (12) and (11), re-
spectively]. Third panel: average change in kinetic energy as a
function of σ̄p, along with the average energy from the TPM and un-
touched work [computed from Eqs. (13), (3), and (5), respectively].
Parameters: �S = β = V0 = J = 1, a = 1, v0 = 1, and m = 1000.

where VS is an arbitrary unitary operator that acts on the
system. A connection with the scattering setup is made by
computing the final momentum distribution of A given by
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ρ ′
A(p) = 〈p|ρ ′

A|p〉, which is obtained by tracing over S in
Eq. (21) and using Eq. (22), yielding

ρ ′
A(p) =

∑
j′, j,k

〈 j|ρS|k〉 ρA(p + � j′ j/γ , p + � j′k/γ )

× 〈 j′|VS| j〉 〈 j′|VS|k〉∗ , (23)

where ρA(p, p′) = (2π h̄)−1
∫

dx′ ∫ dx e−ipx/h̄eip′x′/h̄ 〈x|ρA|x′〉
is the Fourier transform of system A in position space
〈x|ρA|x′〉. Performing a change of variables from momentum
to energy EA ≡ γ p in Eq. (23), we see that the resulting fi-
nal energy distribution ρA(EA) ≡ γ −1ρA(EA/γ ) has the same
form as Eq. (11) in the semiclassical regime [see condition
(17) and accompanying discussion]. It follows that Eq. (23)
can be interpreted as the final kinetic energy distribution of a
very massive particle A after it collides with system S. Indeed,
such an interpretation is corroborated by the fact that the
Hamiltonian HA = γ p̂ has been used before to model very
massive particles whose position in space can be used as a
clock [see discussion after Eq. (18) and Refs. [51–53]]. As
we have shown in this study, the energy statistics of S can
then be directly retrieved from Eq. (23) when the system is
initially diagonal or when the particle is narrow in energy, thus
bypassing the need for a direct implementation of TPM.

Discussion and conclusion. Inferring the energy statistics
through semiclassical scattering with narrow energy states
is an example of a “which-path” experiment [54–57]. The
colliding particle plays the dual role of inducing an energy
jump in the system and carrying away “which-jump” infor-

mation in its kinetic energy distribution. However, acquiring
which-jump information automatically precludes the acqui-
sition of information about coherences initially present in
the system—in this sense, information about which-jump and
information about superpositions are complementary [54,55].
On the opposite extreme, an incoming particle which is very
broad in energy drives the system without carrying away in-
formation about it in its energy distribution. Accordingly, the
average kinetic energy change corresponds to the untouched
work, which depends on initial coherences in the system. We
illustrated the transition between average work in the TPM
scheme and the untouched work by changing the energy width
of the incoming particle.

In summary, we have shown that retrieving the energy
statistics for a driven time-dependent isolated quantum system
is possible by devising an appropriate scattering setup. In
contrast to previous approaches, we provide a method to probe
the energy statistics directly which can be experimentally
realized in controlled scattering experiments, e.g., in cavity
quantum electrodynamics [58,59] or ultracold atoms’ setups
[39,40,42]. In this way, scattering emerges as a versatile tool
to study open quantum systems and quantum thermodynamics
if one can control the state of the incoming particle.
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