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Entropy of the quantum work distribution
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The statistics of work done on a quantum system can be quantified by the two-point measurement scheme. We
show how the Shannon entropy of the work distribution admits a general upper bound depending on the initial
diagonal entropy, and a purely quantum term associated to the relative entropy of coherence. We demonstrate that
this approach captures strong signatures of the underlying physics in a diverse range of settings. In particular, we
carry out a detailed study of the Aubry-André-Harper model and show that the entropy of the work distribution
conveys very clearly the physics of the localization transition, which is not apparent from the statistical moments.
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Introduction. Work in a quantum mechanical setting has
proven to be a difficult concept to define [1], with sev-
eral approaches developed [2–7]. Among them the two-point
measurement (TPM) approach [8] has received significant
attention: it recovers important results from stochastic ther-
modynamics [9,10], can be measured experimentally [11,12],
and naturally connects with other areas, such as out-of-
time-order correlators [13], information scrambling [14,15],
Kibble-Zurek scaling [16,17], and many-body physics [18].
Often the focus is on cumulants of work (in particular, the
mean and variance) rather than the full distribution. While
in several contexts this is warranted, particularly when the
underlying distribution tends to a Gaussian [19], several recent
works have highlighted that studying the full distribution can
reveal nontrivial features of the dynamics that, while perhaps
present in the statistical cumulants, are nevertheless obfus-
cated [19,20].

Recently, it has been shown that coherence plays a sub-
tle role in establishing a proper thermodynamic framework
[21–24]. Indeed, quantum coherences present a viable source
of useful work [25] and, as such, there is an intrinsic thermo-
dynamic cost associated with their creation [26,27]. However,
while potentially useful, the presence or creation of coher-
ence when a system is driven out of equilibrium can lead
to significant fluctuations [28]. A more careful analysis of
such nonequilibrium dynamics reveals that one can identify
uniquely quantum aspects in the thermodynamics of quantum
systems, in particular, by splitting the irreversible work into
distinct coherent and incoherent contributions [29,30]. While
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these, and related studies [18], have focused on the moments,
it is intuitive that the full distribution should encapsulate and
extend these insights.

We rigorously demonstrate the veracity of this intuition
through the entropy HW of the work distribution, which serves
as a measure of its underlying complexity. This measure has
been applied to the distribution of entropy production [31].
We derive a general and saturable bound on HW that consists
of two distinct contributions: one which stems from the di-
agonal ensemble and, in suitable limits, corresponds simply
to the Gibbs equilibrium entropy, and a second term which is
purely quantum in nature, related to the coherence established
by the driving protocol and given by the relative entropy of
coherence (REC). We first illustrate the utility of our results
in the Landau-Zener model, which reveals that the entropy
of the distribution succinctly captures the salient features
of the model around the avoided crossing, features which
are completely absent in the moments. We then carry out a
detailed analysis of work fluctuations in the Aubry-André-
Harper (AAH) model, a paradigmatic model for studying
localization. We show that HW is related to a modified inverse
participation ratio (IPR) and provides a remarkably sensitive
indicator of the localization transition.

Entropy of the work distribution. We consider a system,
prepared in a generic state ρ and with initial Hamiltonian
Hi = ∑

n E i
n|ni〉〈ni|, that is driven according to a work pro-

tocol, which changes the state to ρ ′ = UρU †. The unitary
U depends on the details of the protocol and its dura-
tion. The Hamiltonian at the end of the process is H f =∑

m E f
m|m f 〉〈m f |. The TPM consists of measuring in the bases

ofHi andH f before and after the unitary [8]. The probability
that a certain amount of work, W , is injected or extracted is
given by

P(W ) =
∑

n,m

pn pm|nδW,E f
m−Ei

n
, (1)
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where pn = 〈ni|ρ|ni〉 is the initial state distribution and pm|n =
|〈m f |U |ni〉|2 are the transition probabilities. The support of
P(W ) corresponds to all possible Bohr (transition) frequen-
cies E f

m − Ei
n between the initial and final energy levels. We

assume these form a discrete (possibly infinite) set. Note how
in Eq. (1) they are collected in different pairs (n, m) which
give rise to the same value of W .

The work distribution can be very complex, so one often
focuses on summary statistics, such as the moments 〈W n〉 =∑

W W nP(W ) or cumulants. Here, we shift focus to another
summary statistic, namely, the entropy of P(W ) [32],

HW = −
∑

W

P(W ) ln P(W ), (2)

which characterizes the complexity of P(W ). It is zero when
the work is deterministic and can range up to ln N2 when
P(W ) is uniform.

HW is in general different from

Hu = −
∑

n,m

pn pm|n ln pn pm|n, (3)

which is the entropy of the uncollected distribution pn pm|n.
We first quantify the relation between HW and Hu. Let γmax de-
note the maximal degeneracy of the Bohr frequencies (γmax �
gig f , where gi( f ) are the degeneracies ofHi( f )). Then [33]

Hu − ln γmax � HW � Hu, (4)

with equality if the values of work are all nondegenerate. We
now show that Hu directly quantifies the degree of quantum
coherence generated in the process. The REC [34] of a state σ

in the basis |m′
f 〉 = U †|m f 〉 is

C(σ ) = S(D f (σ )) − S(σ ) � 0, (5)

where S(σ ) = −tr σ ln σ is the von-Neumann entropy and
D f (σ ) = ∑

m〈m′
f |σ |m′

f 〉|m′
f 〉〈m′

f | is the full dephasing oper-
ation in the basis |m′

f 〉. It follows that −∑
m pm|n ln pm|n =

C(|ni〉〈ni|), so Eq. (3) can be written as

Hu = S(ρ̄) +
∑

n

pnC(|ni〉〈ni|), (6)

where ρ̄ = ∑
n〈ni|ρ|ni〉|ni〉〈ni| is the initial state dephased in

the basis ofHi.
Equation (6) summarizes the rich physics behind the en-

tropy of the work distribution. The first term is the entropy
of the initial outcomes pn of the TPM, i.e., the entropy of
the so-called diagonal ensemble [35–39]. If [ρ,Hi] = 0, it
reduces to the von Neumann entropy of ρ and if ρ = e−βHi/Zi

is a thermal state, it reduces to the Gibbs thermal entropy. If
ρ = |ki〉〈ki| is any eigenstate ofHi, S(ρ̄) vanishes and Eq. (6)
reduces to Hu = C(|ki〉〈ki|). The second term in Eq. (6) es-
tablishes that the relevant coherences are those of each |ni〉 in
the eigenbasis |m′

f 〉. Therefore, this term contains information
on both the dynamics (work protocol) and of how H f differs
from Hi. The process is incoherent if pm|n = |〈m f |U |ni〉|2 =
δm,n, which occurs when [Hi,U †H f U ] = 0. In this case,
Eq. (6) reduces to Hu = S(ρ̄ ).

We can take this a step further. Using the concavity of
the von Neumann entropy, we can write

∑
n pnC(|ni〉〈ni|) �
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FIG. 1. Work fluctuations in the Landau-Zener model under a
sudden quench. (a) First four moments 〈W n〉 of P(W ) as a func-
tion of ω f /� (normalized by their maximum value, at ω f = �).
(b) Entropy of the work distribution, Eq. (2) (red, solid), and the
corresponding bound (7) (blue, dashed). Parameters: β = 0.1(h̄�)−1

and ωi = −20�.

S(D f (ρ̄)) = C(ρ̄ ) + S(ρ̄ ), which leads to

Hu � 2S(ρ̄ ) + C(ρ̄ ). (7)

The tightness of this bound is related to the purity of ρ̄, being
saturated when ρ is an eigenstate of Hi or for thermal states
in the zero temperature limit.

Combining Eqs. (4), (6), and (7), we arrive at our main
result: the entropy of the work distribution is bounded as

HW � S(ρ̄ ) +
∑

n

pnC(|ni〉〈ni|) � 2S(ρ̄) + C(ρ̄). (8)

The first inequality is often quite tight and relates HW to
the coherences of each individual transition C(|ni〉〈ni|). The
second inequality bounds HW to the full REC of ρ̄ and its
tightness is related to the purity of ρ̄. Eq. (8) also allows us
to estimate the dependence of HW with temperature T , in the
case of an initial thermal state. Both S(ρ̄ ) and the pn depend
on T . However, by convexity,

HW � S(ρ̄) + Cmax, (9)

where Cmax = max
n
C(|ni〉〈ni|). The last term is now T inde-

pendent, pushing the temperature dependence solely to the
Gibbs thermal entropy. We next turn to the study of HW in
different models and show that it conveys crucial information
about the work statistics.

Landau-Zener model. Consider a qubit with HLZ(ω) =
h̄�σx + h̄ωσz, where σi are the Pauli matrices. This model
has an avoided crossing at ωc ≡ 0, with minimal energy gap
� > 0. The eigenenergies are E0 = −√

ω2 + �2h̄ and E1 =√
ω2 + �2h̄. We assume the system starts in a thermal state at

inverse temperature β and consider a sudden quench (U = 1)
from Hi = HLZ(ωi), with ωi < 0, to H f = HLZ(ω f ). There
are four allowed values of W , given by E0(1)(ω f ) − E0(1)(ωi ).
For ω f �= ±ωi and fixed �, these will always be nondegener-
ate and thus HW ≡ Hu.

Figure 1(a) shows the first four moments 〈W n〉 of P(W ),
as a function of ω f /�, while Fig. 1(b) shows HW . Clearly the
moments show no obvious evidence of the avoided crossing
at ω f = ωc (the same is true for the cumulants). The entropy
HW , on the other hand, portrays an entirely different picture.
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FIG. 2. Work statistics of the AAH model Eq. (10). (a) P(W ) for the � → 0 protocol, for �/J = 1.5, 2, 2.5, and 3. (b) Similar, but for
0 → �. (c), (d) Corresponding mean and variance versus �/J , for the two protocols. In (d), 〈W 〉 ≡ 0 [33]. (e), (f) HW vs �/J [Eq. (2)] for
the two protocols along with the upper and lower bounds derived in Eq. (6). Inset: dHW /d�|�=2J as a function of a Fibonacci number N ,
showing that in the thermodynamic limit HW will change discontinuously at �/J = 2. In all simulations, the system starts in the ground state,
N = F16 = 987 and η = 1.2, except in the insets of (e), (f), which were averaged over 50 values of η.

The first term in Eq. (6) yields a constant base value, as it
depends only on the initial condition. The second term, on
the other hand, presents a peak at ω f = ωc. By probing HW

we can therefore highlight the avoided crossing, which is the
most important feature of the Landau-Zener model, and which
is masked in the moments. In Fig. 1(b), we also plot the bound
Eq. (7), which becomes tightest around ω f = 0. This reflects
the coherence, which is largest at the avoided crossing.

AAH model. We next turn to a highly nontrivial application
of our results. We consider a single particle in a lattice with N
sites, labeled by states |i〉. The Hamiltonian is [40–42]

HAAH(�) = h̄
N∑

i=1

[� cos (2πγ i + η)|i〉〈i|

− J (|i〉〈i + 1| + |i + 1〉〈i|)], (10)

with periodic boundary conditions. The first term denotes the
on-site potentials, with overall magnitude �, phase η, and
modulation γ . Following Refs. [42–44], we choose the lattice
size N to be a Fibonacci number, Fn, and γ = Fn−1/Fn to be a
rational approximation to the inverse golden ratio [45].

The AAH model undergoes a localization transition at
� = 2J . For � < 2J all eigenvectors are delocalized in space,
while for � > 2J , they become localized around specific sites
in the lattice. We focus on the work distribution associated
with turning the quasiperiodic potential off/on, i.e., in going
fromHAAH(�) → HAAH(0), and vice versa. We refer to these
as � → 0 and 0 → �, respectively, and in what follows we
focus on sudden quenches (U = 1).

Figures 2(a) and 2(b) shows the work distribution Eq. (1)
for the two protocols, assuming the system starts in the
ground state. The bandwidth of the distribution is discussed
in Ref. [33]. For � → 0, W > 0, while for 0 → �, W ≶ 0.
Thus, work can be extracted by turning the potential on but

not by turning it off. The overall behavior of P(W ) clearly
reflects the localization transition at � = 2J . For both proto-
cols, quenches that keep the system in the delocalized phase,
i.e., � < 2J [corresponding to the first two upper panels of
Figs. 2(a) and 2(b)], result in a P(W ) with small support, and
mostly concentrated around a minimum work value. In this
regime, the work cost of turning the potentials on or off is
overall small and fluctuates very little. This is also evidenced
in Figs. 2(c) and 2(d), which plots the mean and variance of
W , for the two protocols. Conversely, when �/J > 2 the sup-
port of P(W ) increases significantly. For � → 0 [Fig. 2(a)],
the distribution reflects the smooth energy spectrum, while for
0 → � [Fig. 2(b)] it is very irregular due to the fractal nature
of the localized spectrum.

HW is plotted in Figs. 2(e) and 2(f). It shows a jump at
�/J = 2, the sharpness of which depends on the lattice size
N . To illustrate this, the insets of Figs. 2(e) and 2(f) show the
slope H ′

W (2) := dHW /d�, evaluated at � = 2J , for different
sizes N . A fit of the data reveals the relation, H ′

W (2) ∝ √
N ,

which implies that, in the thermodynamic limit, HW will
change discontinuously at the localization transition. The en-
tropy therefore succinctly captures the criticality of the AAH
model. The two bounds in Eq. (4) are also shown in Figs. 2(e)
and 2(f). For any � �= 0, the spectrum of the AAH model
is nondegenerate. This explains why for � → 0 [Fig. 2(e)]
the curves differ from HW , but for 0 → � [Fig. 2(f)] they
coincide: the former depends on the degeneracies ofHAAH(0),
leading to γmax = 2, while the latter does not since we start in
the (nondegenerate) ground state.

Hu can be connected to a modified IPR, a widely used mea-
sure to characterize disordered systems. The conventional IPR
of a state |ψ〉 is defined as

∑
i |〈i|ψ〉|4, where |i〉 are the po-

sition states. Instead, consider the quantity I := ∑
m p2

m|0 =∑
m |〈m f |0〉|4, where 0 indexes the ground state. This is
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FIG. 3. The entropy of P(W ) for (a) initial thermal states with
temperatures Jβ = {10−2, 100, 102, 104} (red [top], blue, green,
black [bottom]) and (b) every eigenstate of the initial Hamiltonian,
HAAH(0). These are all for the 0 → � case but the � → 0 case is
very similar. The choice of phase and system size are as in Fig. 2.

known as the inverse of the “effective dimension” [46,47],
and represents a type of IPR where |m f 〉 replaces the position
states |i〉 (they coincide if � f → ∞). Noticing that − lnI is
the Rényi-2 entropy of pm|0, it then follows that Hu � − lnI.
Hence, the physics of HW will reflect that of the modified
IPR (the argument can also be extended to arbitrary initial
states).

While Fig. 2 was concerned with the ground state, in the
AAH model HW shows a qualitatively similar behavior at
finite temperatures [Fig. 3(a)]. As the temperature increases,
HW tends to grow but maintains the same overall shape as a
function of �, and still exhibits strong signatures of the transi-
tion. This is due to the fact that in a localization transition all
eigenvectors undergo a sudden change. As a consequence, all
terms C(|ni〉〈ni|) in Eq. (6) will behave similarly, causing the
bound Eq. (9) to be fairly tight. We confirm this numerically
in Fig. 3(b), where we plot C(|ni〉〈ni|) for all eigenvectors.
We thus reach the conclusion that the monotonic vertical
shift in HW , observed in Fig. 3(a), is essentially due to the

Gibbs entropy S(ρ̄ ). Our bounds therefore allow us to pinpoint
different physical origins for different effects, namely, thermal
fluctuations and the localization transition.

Conclusions. We have demonstrated that the entropy of the
quantum work distribution provides a useful tool in character-
izing the nonequilibrium response of a quantum system. The
entropy captures the complexity of the full distribution and we
have shown that it is acutely sensitive to sudden changes in the
system, such as avoided crossings and localization transitions.
Our main result, Eq. (8), shows that HW can be understood
as stemming from two distinct contributions, one given by
the entropy of the initial state, dephased by the TPM, and a
second term related to the coherences created by the work
protocol. More specifically, what matters are the coherences
of the initial eigenstates |ni〉 in the basis |m′

f 〉 = U |m f 〉. It
therefore accounts not only for the change in Hamiltonian,
fromHi → H f , but also for the entire work protocol, summa-
rized by U . The contribution of quantum coherence to work
has been explored in the past [30,48,49] but only for initial
thermal states, and with a focus on the average or the first few
moments. Our results hold for any initial state and also focus
on a different quantity, thus being complementary. By means
of examples, we have shown that the entropy is capable of
conveying a richness of information that is not immediately
visible in the moments. We therefore believe that it could
serve as a powerful tool for characterizing work statistics
away from equilibrium.
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