

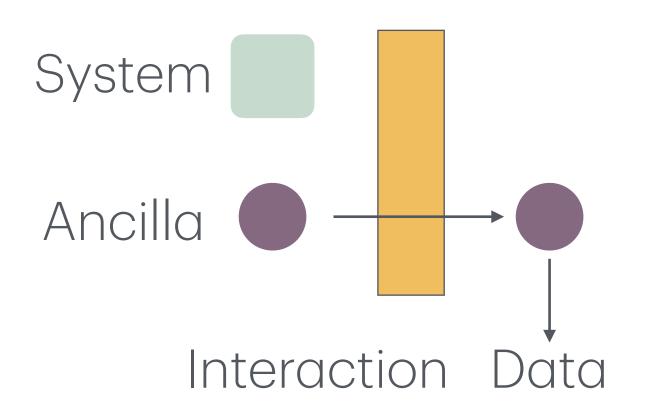
Sequential quantum measurements and the stochastic operation of thermal machines

Prof. Gabriel T. Landi University of Rochester We cannot see quantum systems...

All we see is data ...11100001000100111100111011101...

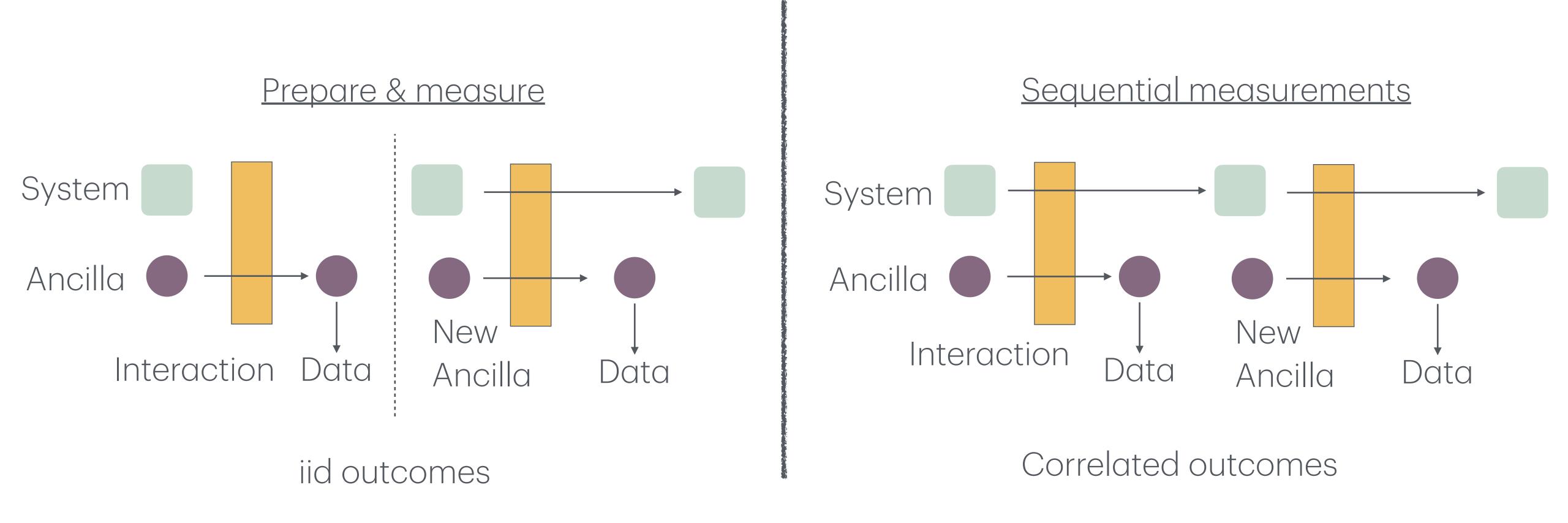
• To measure a system we must send in a **probe** (or **ancilla**).

- S+A interaction encodes information about S on A.
- Extract information by measuring A.
- Information-back action trade-off: the more information we want, the more we disturb the system.



• To measure a system we must send in a probe (or ancilla).

- S+A interaction encodes information about S on A.
- Extract information by measuring A.
- Information-back action trade-off: the more information we want, the more we disturb the system.



A simple example

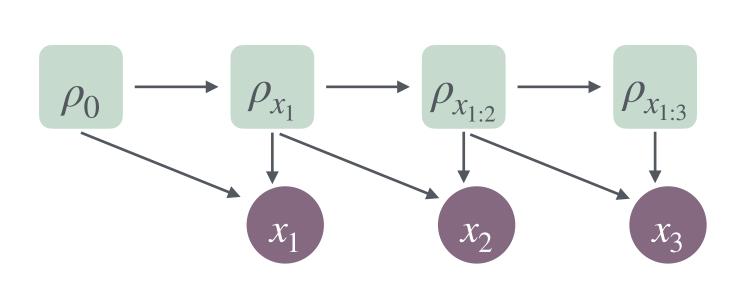
- Qubit: apply unitary U then measure in the computational basis $P_x = |x\rangle\langle x|$ where x = 0,1.
- Start in $|\psi_0\rangle$.
 - 1. Sample first outcome x_1 from $p(x_1) = |\langle x_1 | U | \psi_0 \rangle|^2$. Update state to $|\psi_1\rangle = |x_1\rangle$.
 - 2. Sample second outcome x_2 from $p(x_2 | x_1) = |\langle x_2 | U | x_1 \rangle|^2$. Update state to $|\psi_2\rangle = |x_2\rangle$.
- Generates a bitstring of emitted symbols $x_{1:n} = (x_1, ..., x_n)$.
- Probability of a sequence forms a Markov chain: $P(x_1, ..., x_n) = p(x_n \mid x_{n-1})...p(x_2 \mid x_1)p(x_1)$.

Non-projective measurements lead to long memory

- . Apply a set of Kraus operators $\sum_{x}F_{x}^{\dagger}F_{x}=1$. Starting at ρ_{0} :
 - 1. Sample first outcome x_1 from $p(x_1) = \operatorname{tr}\{F_{x_1}\rho_0F_{x_1}^{\dagger}\}$. Update state to $\rho_{x_1} = \frac{F_{x_1}\rho_0F_{x_1}^{\dagger}}{p(x_1)}$.
 - 2. Sample second outcome x_2 from $p(x_2 | x_1) = \text{tr}\{F_{x_2}\rho_{x_1}F_{x_2}^{\dagger}\}$. Update state to $\rho_{x_{1:2}} = \frac{F_{x_2}\rho_{x_1}F_{x_2}^{\dagger}}{p(x_2 | x_1)}$.

$$p(x_{n+1} | x_{1:n}) = \operatorname{tr} \left\{ F_{x_{n+1}} \rho_{x_{1:n}} F_{x_{n+1}}^{\dagger} \right\} \quad \text{and} \quad \rho_{x_{1:n+1}} = \frac{F_{x_{n+1}} \rho_{x_{1:n}} F_{x_{n+1}}^{\dagger}}{p(x_{n+1} | x_{1:n})}$$

- String probability is now $P(x_{1:n}) = p(x_n | x_{1:n-1})p(x_{n-1} | x_{1:n-2})...p(x_2 | x_1)p(x_1)$ which is highly non-Markovian.
 - Evolution of the system is Markovian. But output data is not.
- Looks like a Hidden Markov Model (HMM):
 - Quantum system is hidden.
 - Measurement outcomes (what we see) = emitted symbols



Instruments: simplify and generalize

• Instruments = superoperators:

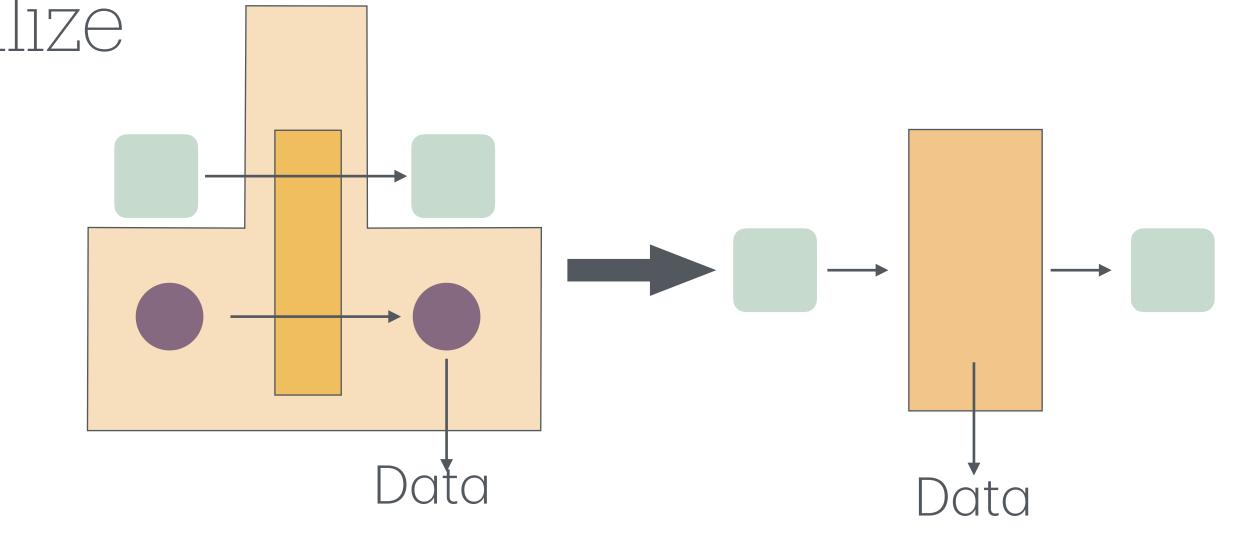
$$M_{x}\rho = F_{x}\rho F_{x}^{\dagger}$$

• Update rules become:

$$p(x_{n+1} | x_{1:n}) = \text{tr}\{M_{x_{n+1}} \rho_{x_{1:n}}\}$$

and

$$\rho_{x_{1:n+1}} = \frac{M_{x_{n+1}} \rho_{x_{1:n}}}{p(x_{n+1} | x_{1:n})}$$



Prob. of a string:

$$P(x_{1:n}) = \text{tr}\{M_{x_N}...M_{x_1}\rho_0\}$$

Conditional state

$$\rho_{x_{1:n}} = M_{x_N} ... M_{x_1} \rho_0 / P(x_{1:n})$$

Instruments represent the most general kind of measurement possible.

Also encompass inefficient measurements

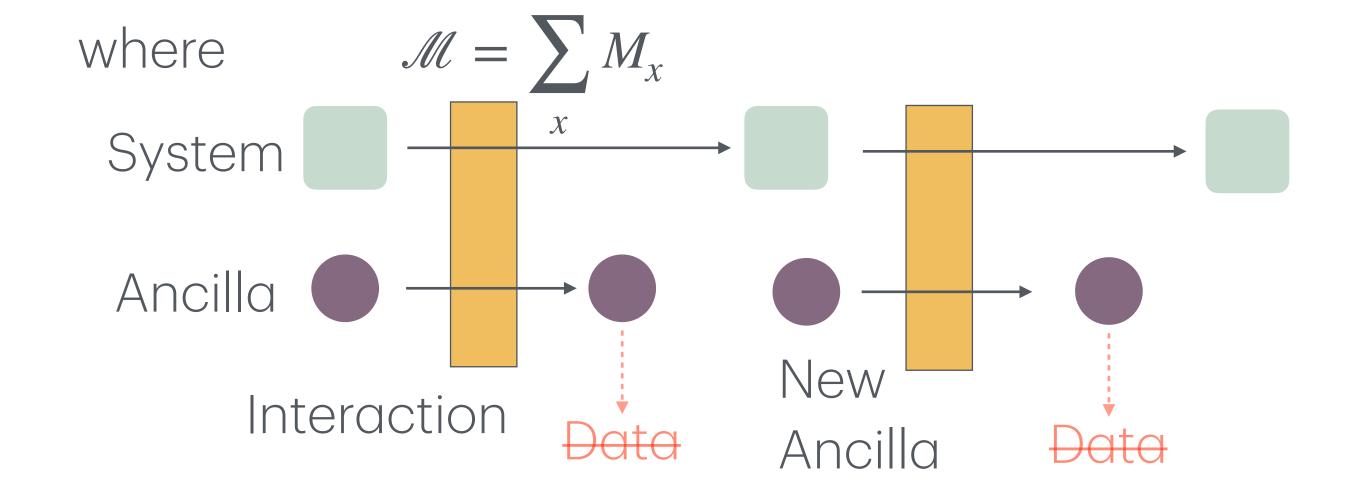
$$M_{x}\rho = \sum_{k \in x} F_{k}\rho F_{k}^{\dagger}$$

Unconditional dynamics

- If we measure but don't record the outcome the state of the system still changes (measurement back action)
- Ex: collision model or master equation.

$$\rho' = \sum_{x} p_{x} \rho_{x}' = \sum_{x} M_{x} \rho = \mathcal{M} \rho$$

- *M* is a quantum channel.
- After *n* steps: $\rho_n = \mathcal{M}^n \rho_0$.
- Describes the average impact that the interaction with the ancilla causes in the system.



Connection to Hidden Markov Models

- $P(x, \sigma | \sigma')$ = prob. that system goes from $\sigma' \to \sigma$ while emitting a symbol x.
 - If HMM state is $\pi(\sigma')$ the prob. that we observe symbol x is

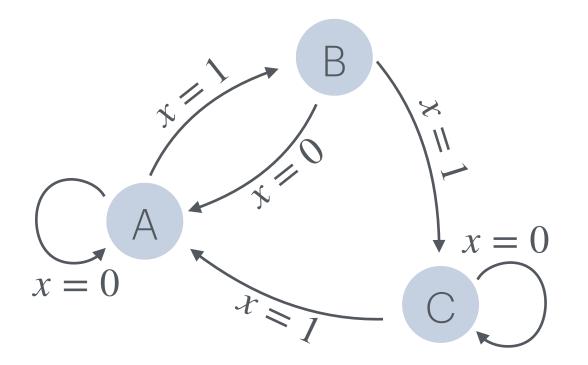
$$p(x) = \sum_{\sigma, \sigma'} P(x, \sigma \mid \sigma') \pi(\sigma')$$

• If outcome was x, bayesian update the state of the hidden layer:

$$\pi(\sigma | x) = \frac{P(x, \sigma)}{p(x)} = \frac{\sum_{\sigma'} P(x, \sigma | \sigma') \pi(\sigma')}{p(x)}$$

• Define substochastic matrices: $(M_x)_{\sigma,\sigma'} = P(x,\sigma\,|\,\sigma')$ and $\langle 1\,|\,=(1,\ldots,1)$. Then

$$p(x) = \langle 1 \, | \, M_{\chi} \, | \, \pi \rangle$$
 and $| \, \pi_{\chi} \rangle = \frac{M_{\chi} \, | \, \pi \rangle}{p(x)}$



Compare with

$$p(x) = \operatorname{tr}\{M_x \rho\}$$

and

$$\rho_{x} = \frac{M_{x}\rho}{p(x)}$$

Milz, S. & Modi, K. "Quantum Stochastic Processes and Quantum non-Markovian Phenomena". PRX Quantum 2, 030201 (2021)

Prediction

- Mixed state representation & unifilar models: if we know $\rho_{x_{1:n}}$ and we observe x_{n+1} we know with certainty that the system evolved to $\rho_{x_{1:n+1}}$.
- Usefulness: data compression

$$p(x_{n+1} | x_{1:n}) = p(x_{n+1} | \rho_{x_{1:n}})$$

If we can know the internal state, we can make statistical predictions of future outcomes.

• Example: figuring out the internal state of a large language model.

Quantum jumps

Michael Kewming

Patrick Potts

GTL, Michael J. Kewming, Mark T. Mitchison, Patrick P. Potts "Current fluctuations in open quantum systems: Bridging the gap between quantum continuous measurements and full counting statistics," PRX Quantum 5, 020201 (2024)

GTL "Patterns in the jump-channel statistics of open quantum systems," arXiv 2305.07957

• Consider a quantum master equation

$$\frac{d\rho}{dt} = \mathcal{L}\rho = -i[H,\rho] + \sum_{x=1}^{r} L_x \rho L_x^{\dagger} - \frac{1}{2} \{L_x^{\dagger} L_x, \rho\}$$

• The infinitesimal evolution can be written as a set of instruments:

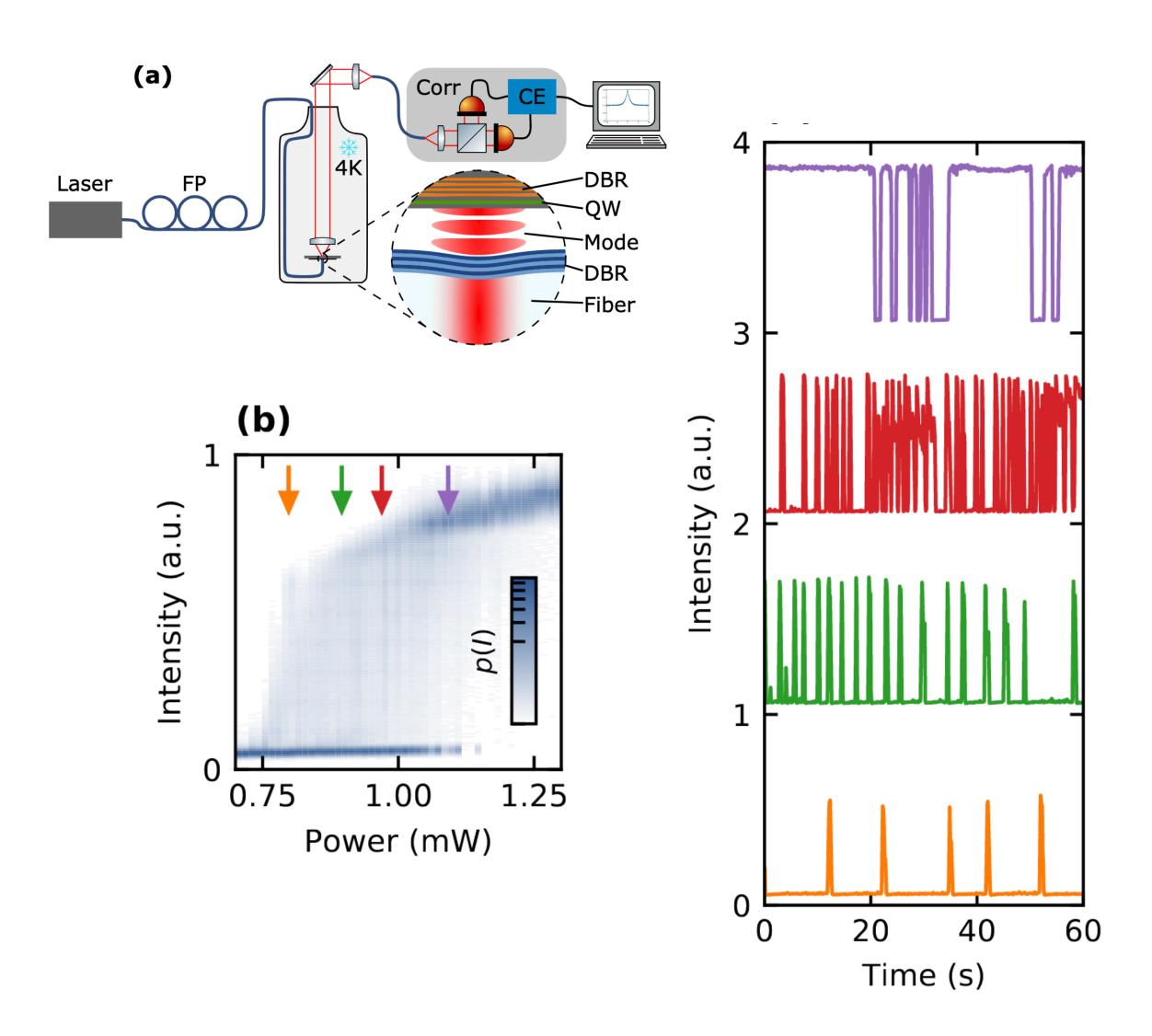
$$\rho_{t+dt} = e^{\mathcal{L}dt} \rho_t = \sum_{x} M_x \rho_t$$

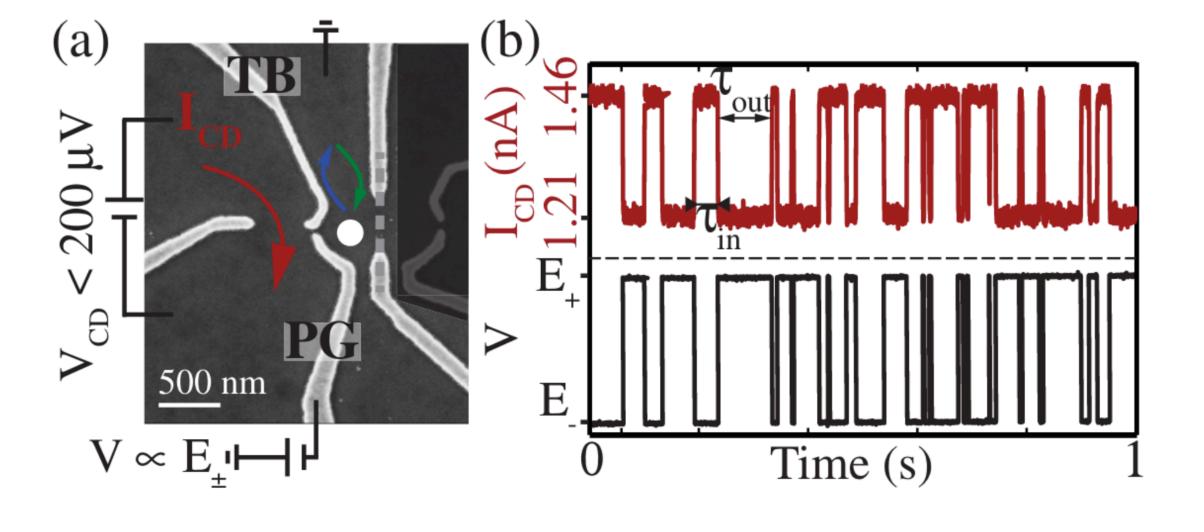
(jump)
$$M_{x}\rho=dt\;L_{x}\rho L_{x}^{\dagger}=dt\;\mathcal{J}_{x}\rho\qquad\text{for}\qquad x=1,2,\ldots,r$$

(no jump)
$$M_0\rho=\rho+dt\mathcal{L}_0\rho \qquad \qquad \text{where} \qquad \mathcal{L}_0\rho=-i[H,\rho]-\frac{1}{2}\sum_{x=1}^r\left\{L_x^\dagger L_x,\rho\right\}$$

• $p_x = \text{tr}\{M_x \rho\} = dt \text{tr}\{L_x^{\dagger} L_x \rho\}$ is infinitesimal: most of the time the system evolves with no jump.

GTL, Michael J. Kewming, Mark T. Mitchison, Patrick P. Potts "Current fluctuations in open quantum systems: Bridging the gap between quantum continuous measurements and full counting statistics," PRX Quantum 5, 020201 (2024)





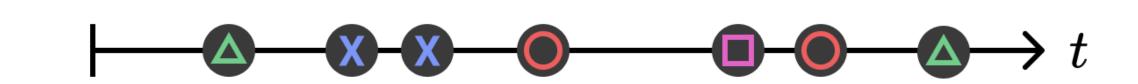
Fink et. al., "Signatures of a dissipative phase transition in photon correlation measurements"

Nature Physics **14** 365-369 (2018)

Hofmann, et. al. "Measuring the Degeneracy of Discrete Energy Levels Using a GaAs / AlGaAs Quantum Dot,"

Phys Rev. Lett 117, 206803 (2016)

Jumps with multiple channels



• Each jump operator $L_{\!\scriptscriptstyle \chi}$ is a "channel"

$$\frac{d\rho}{dt} = \mathcal{L}\rho = -i[H,\rho] + \sum_{x=1}^{r} L_x \rho L_x^{\dagger} - \frac{1}{2} \{L_x^{\dagger} L_x, \rho\}$$

- Jumps occur over random times and over random channels.
- Quantum trajectory = list of channels and their corresponding time-tags:

$$(x_1, \tau_1), (x_2, \tau_2), \dots, (x_N, \tau_N)$$
 $\tau_i = t_i - t_{i-1}$

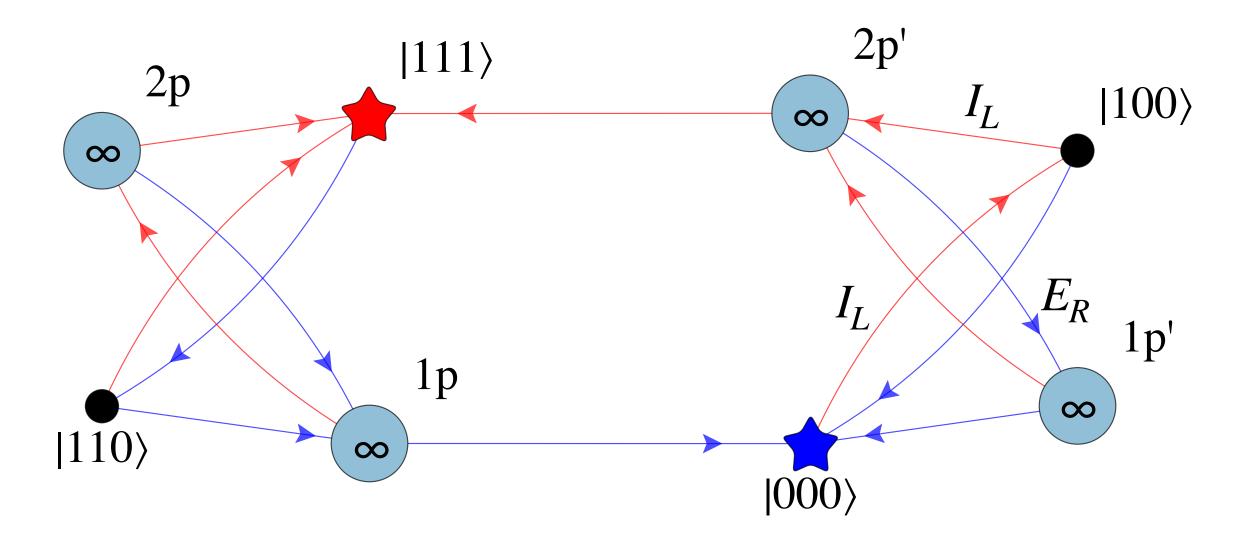
- * *t*-ensemble: final time is fixed, total number of jumps is a random variable.
- * N-ensemble: total number of jumps is fixed, final time is a random variable.

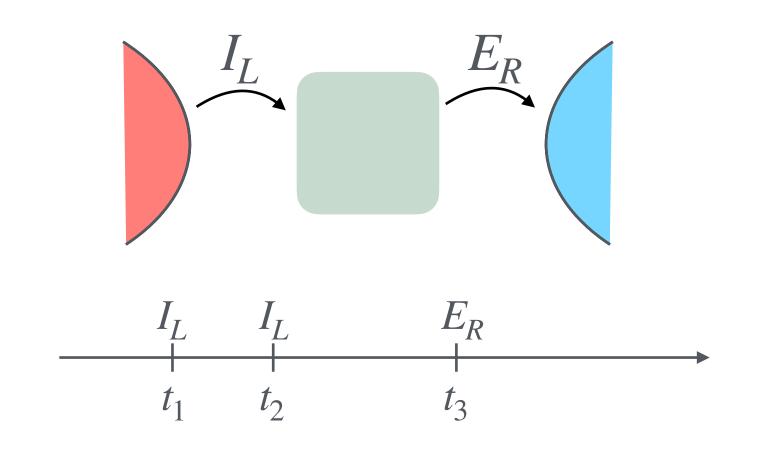
Quantum jumps without time-tags:

$$M_{x} = -\mathcal{J}_{x}\mathcal{L}_{0}^{-}$$

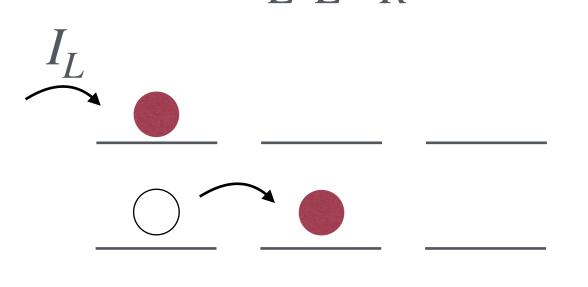
Injection/extraction on a lattice

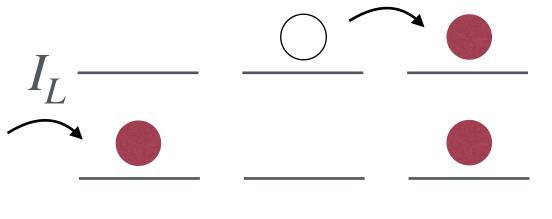
- Lattice with L sites, each of which can have 0 or 1 particles.
 - excitations can be injected on the left (I_L)
 - or extracted on the right (E_R) .
 - And they can tunnel back and forth through the chain: not monitorable.





All we observe are symbols $I_LI_LE_R$





Stochastic operation of thermal machines

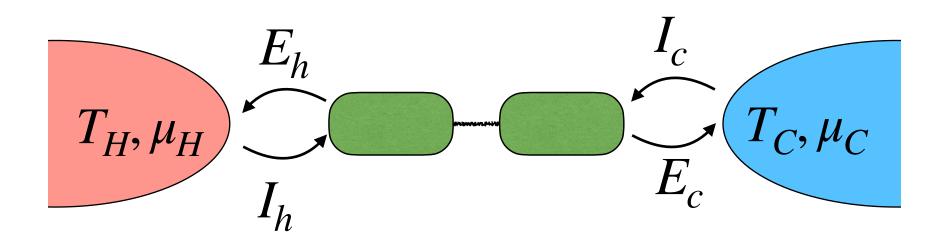
Abhaya Hegde

- Double quantum dot
 - Engine process: uses thermal gradient to extract chemical work . $) \stackrel{I_h}{\frown} \stackrel{E_c}{\frown} ($

$$I_h$$
 E_c

• Refrigerator process: uses chemical work to make heat flow from $\sum_{n=1}^{E_h} \frac{I_c}{n}$ cold to hot.

$$E_h$$
 I_c



- There can also be "idle cycles"
 - "Idle hot") (
 - "Idle cold") — (

Can we identify the thermodynamics from a bitstring?

Impossible in general, if excitations are indistinguishable

$$I_cI_hE_hE_c$$

$$I_cI_hE_hE_c$$

$$I_cI_hE_hE_c$$

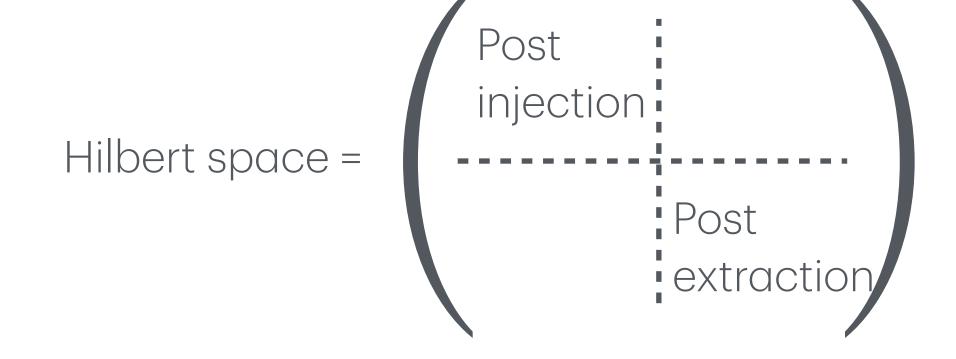
Manzano, Gonzalo, and Roberta Zambrini "Quantum Thermodynamics under Continuous Monitoring: A General Framework," AVS Quantum Science 4 (2): 025302 (2022).

Single excitation assumption

$$\frac{d\rho}{dt} = -i[H,\rho] + \sum_{n} D[K_{n}]\rho + \sum_{\alpha \in \{h,c\}} \sum_{j} \gamma_{\alpha j}^{-} D[L_{\alpha j}]\rho + \gamma_{\alpha j}^{+} D[L_{\alpha j}^{\dagger}]\rho$$
Unitary
Work
Extraction
work
reservoirs
to bath α
from bath α

• Result: for cycles to be identifiable the string must always have injections followed by extractions.

- Condition: Hilbert space must be split in 2.
 - . $L_{\alpha i}^{\dagger}$ injects \rightarrow post-injection subspace.
 - $L_{\alpha i}$ extracts \rightarrow post-extraction subspace.



Bitstrings of jumps \rightarrow bitstrings of cycles

$$\dots I_{\bullet}E_{\bullet}I_{\bullet}E_{\bullet}I_{\bullet}E_{\bullet}\dots = \dots X_{\bullet}X_{\bullet}X_{\bullet}X_{\bullet}\dots$$

- We can use this to answer the following questions:
 - What is the probability that the next cycle is of type X and takes a time τ ?
 - How are cycles correlated with each other?
 - What is the average time required to complete each cycle?
 - How many idle cycles happen between two useful cycles?
- Define instruments

$$M_{X au} = \int\limits_0^ au dt \; {\mathcal J}_{E_X} e^{{\mathscr L}_0(au-t)} {\mathcal J}_{I_X} e^{{\mathscr L}_0 t}$$
 wi

$$\begin{array}{cccc}
I_L & E_R \\
E_L & I_R \\
X = 1
\end{array}$$

$$\begin{array}{cccc}
X = 1
\end{array}$$

$$\begin{array}{cccc}
X_L & X_R \\
X = 2
\end{array}$$

$$\begin{array}{cccc}
I_L & X_R \\
X = 3
\end{array}$$

$$\begin{array}{cccc}
I_R & X = 4
\end{array}$$

with 2 emitted symbols: X=1,2,3,4 and cycle duration au

Cycle probabilities

 π_E = Jump Steady-State

Correct state to get long-time statistics

- Then prob. a cycle is of type X and takes a time τ : $p_{X,\tau}=\operatorname{tr}\{M_{X\tau}\pi_E\}$.
- If we don't care about how long a cycle takes, we just need to marginalize the instrument:

$$M_X = \int_0^\infty d\tau \ M_{X\tau}$$

Prob. of obtaining each cycle type

$$p_X = \operatorname{tr}\{M_X \pi_E\}$$

• Conditional cycle times: if cycle is of type X, how long it takes?

$$E(\tau \mid X) = \int_{0}^{\infty} d\tau \ \tau \frac{p_{X,\tau}}{p_X}$$

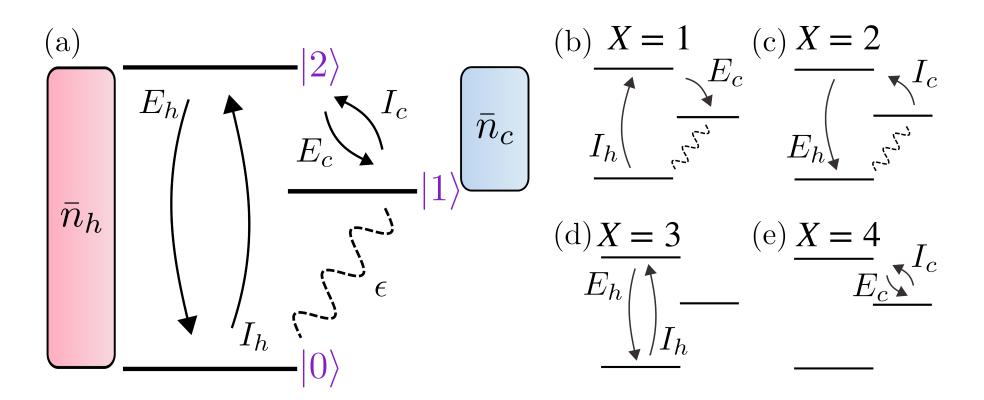
Relation to steady-state currents:

$$I = \frac{p_1 - p_2}{E(\tau)}$$

Correlations between cycles:

$$P(X_1, \tau_1, ..., X_n, \tau_n) = \text{tr}\{M_{X_n\tau_n}...M_{X_1\tau_1}\pi_E\}$$

Results for the 3-level maser



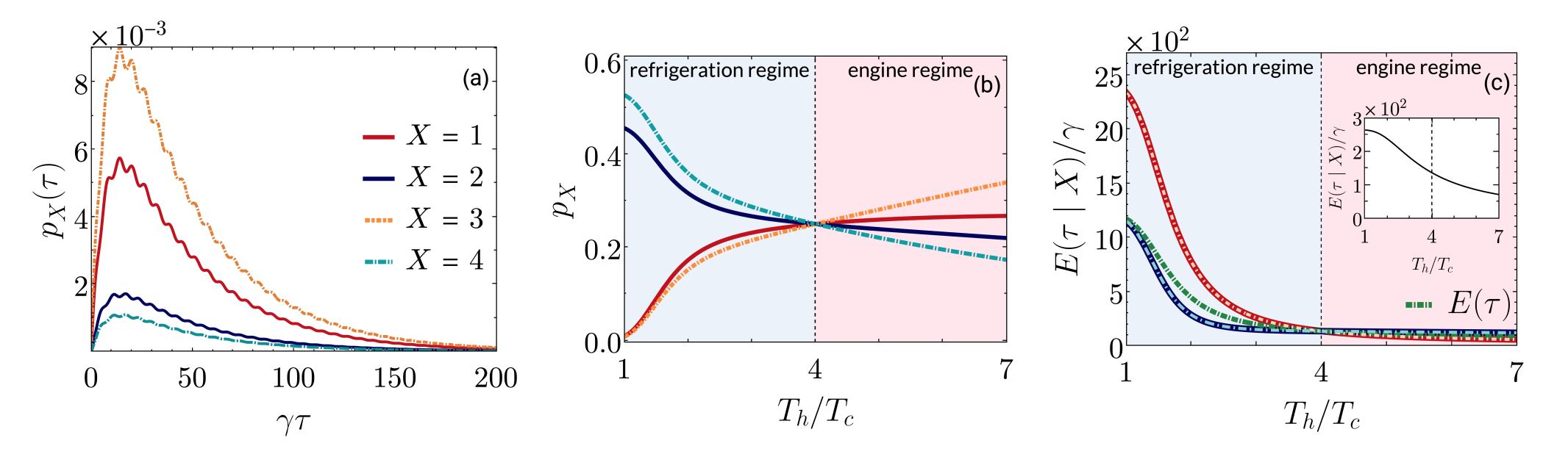
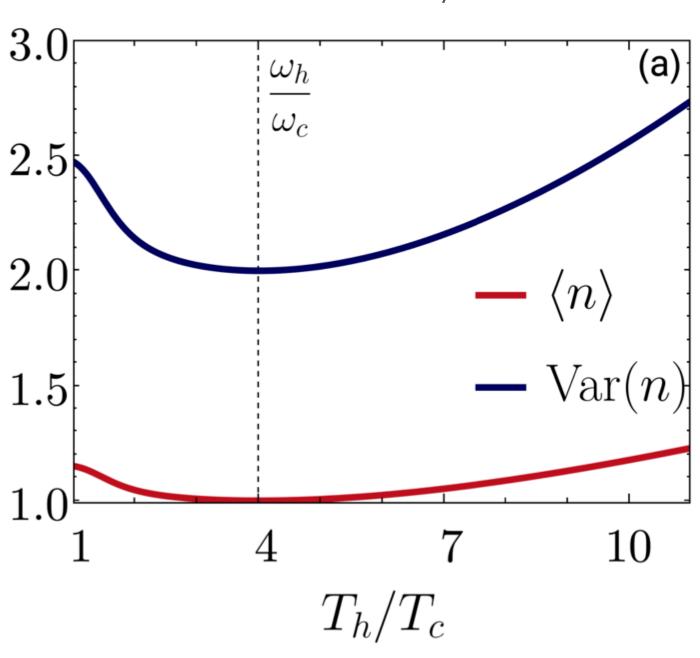


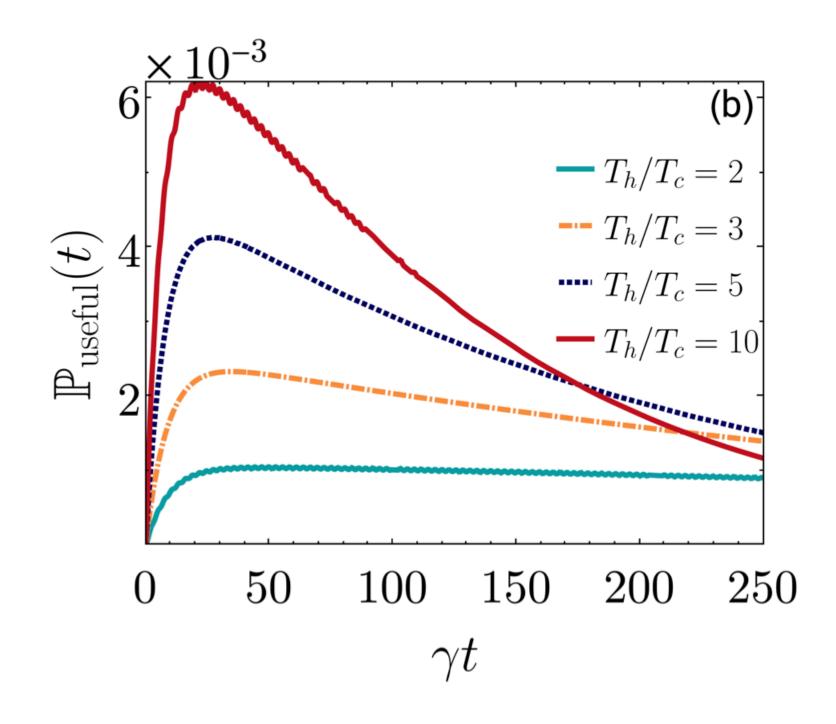
FIG. 3. (a) Probability of observing a cycle X within a duration τ [Eq. (9)] at resonance $\Delta = 0$ and $T_h/T_c = 10$. (b) Total probability of observing a cycle X [Eq. (10)] and (c) expectation values for cycle duration [Eqs. (11), (12)] as a function of the ratio of bath temperatures. A vertical line at $T_h/T_c = \omega_h/\omega_c$ separates the refrigerator and engine regimes. The inset shows all expectation values nearly converge at resonance. The parameters are fixed (in units of $T_c = 1$) at $\gamma_h = \gamma_c \equiv \gamma = 0.05$, $\omega_h = 8$, $\omega_c = 2$, $\omega_d = 4$, $\epsilon = 0.5$ unless mentioned otherwise.

Machine intermittency

Number of idle cycles between two useful cycles



Time between two useful cycles



$$M_u = M_{X=1} + M_{X=2}$$
 and $M_{\text{id}} = M_{X=3} + M_{X=4}$

$$\mathbb{P}_{u}(n) = \frac{\operatorname{tr}\{M_{u}M_{\operatorname{id}}^{n}M_{u}\pi_{E}\}}{\operatorname{tr}\{M_{u}\pi_{E}\}}$$

 $\mathbb{P}_{u}(t)$ = similar, but a bit more complicated.

Conclusions

- Sequential quantum measurements → time-series of correlated stochastic outcomes.
 - Bayesian inference of the quantum state, given outcomes.
 - Unveiling the thermodynamics from measurement data.
 - Stochastic operation of a thermal machine.
- Open question: machine intermittency vs. current fluctuations?

GTL, Michael J. Kewming, Mark T. Mitchison, Patrick P. Potts "Current fluctuations in open quantum systems: Bridging the gap between quantum continuous measurements and full counting statistics," PRX Quantum 5, 020201 (2024)

GTL "Patterns in the jump-channel statistics of open quantum systems," arXiv 2305.07957

Abhaya S. Hegde, Patrick P. Potts, GTL, "Time-resolved Stochastic Dynamics of Quantum Thermal Machines," arXiv:2408.00694

Conclusions

- Sequential quantum measurements → time-series of correlated stochastic outcomes.
 - Bayesian inference of the quantum state, given outcomes.
 - Unveiling the thermodynamics from measurement data.
 - Stochastic operation of a thermal machine.
- Open question: machine intermittency vs. current fluctuations?

$$\begin{array}{cccc}
I_L & E_R \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\$$

GTL, Michael J. Kewming, Mark T. Mitchison, Patrick P. Potts "Current fluctuations in open quantum systems: Bridging the gap between quantum continuous measurements and full counting statistics," PRX Quantum 5, 020201 (2024)

GTL "Patterns in the jump-channel statistics of open quantum systems," arXiv 2305.07957