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Overview
• Thermodynamics deals with processes, not states.


• In quantum systems that can be an issue: 


• Measurement invasiveness.


Processes become extrinsic.

1. “Reversing the direction of heat flow using quantum correlations”, Nature Communications 10, 2456 (2019). 

2. “Quantum fluctuation theorems beyond two-point measurements”, Phys. Rev. Lett. 124, 090602 (2020).


3. “Experimental validation of fully quantum fluctuation theorems”, arXiv:2012.06294. 


4. “Extracting Bayesian networks from multiple copies of a quantum system”, arXiv:2103.14570. 


5. “Quantum mean-square predictors of work”, arXiv:2104.07132. 
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Reversing the direction of heat flow using quantum correlations
Two qubits: locally thermal but globally correlated. 


              


where 


               ,                   


Strictly energy preserving unitary interaction: 


                   


Ensures standard thermodynamic behavior in the uncorrelated case.


Modified 2nd law: .

ρAB = ρth
A ⊗ ρth

B + α |01⟩⟨10 | + α* |10⟩⟨01 |

ρth
i =

e−βiHi

Zi
Hi = − νσz

i /2

[U, HA + HB] = 0

(βA − βB)Q ⩾ ΔI(A :B)

Partovi, M. H., Phys. Rev. E, 77, 021110 (2008) 
Jennings, D. & Rudolph, T., Phys. Rev. E, 81, 061130 (2010)

Horodecki, M. & Oppenheim, J.,  Nat. Comm., 4, 2059 (2013).

Brandão, F., et. al., Phys. Rev. Lett., 111, 250404 (2013).



Issue
• How to actually measure the heat?


• We did it using full tomography.


• Not very satisfactory. 


• Heat refers to the process, not the state:  
 
        


• Standard protocol: two-point measurement (TPM).


• Measure in the energy basis before and after the unitary. 


• Problem: 1st measurement destroys coherences. 

Q = Ea′￼
− Ea = − (Eb′￼

− Eb)

Talkner, P., Lutz, E., & Hänggi, P. Phys. Rev. E, 75, 050102 (2007)

ρAB =

(1 − pa)(1 − pb) 0 0 0
0 (1 − pa)pb α 0
0 α* pa(1 − pb) 0
0 0 0 papb

⇓

ρAB =

(1 − pa)(1 − pb) 0 0 0
0 (1 − pa)pb 0 0
0 0 pa(1 − pb) 0
0 0 0 papb

Alternatives:

• Operator of work. 

• Quasiprobabilities.

• Quantum Bayesian Networks.



Quantum Bayesian Networks
• Basic idea: global system evolves unitarily. 

 
 


• For a given set of instants  we build the conditional probability  
 
               for arbitrary basis sets  

• The Bayesian Network distribution for a path  is then  
 
       

ρ = ∑
s

Ps |s⟩⟨s | → ρ(t) = UtρU†
t = ∑

s

PsUt |s⟩⟨s |U†
t

t0 = 0, t1, t2, …

p(xt |st) = |⟨xt |Ut |s⟩ |2 { |xt⟩}

|x0⟩ → |x1⟩ → |x2⟩ → …

P(x0, x1, x2, …) = ∑
s

Psp(x0 |s0)p(x1 |s1)p(x2 |s2)…



Interpretation
• Always produces a valid (strictly non-negative) distribution.


• Marginalizing leads to non-back-acted distributions. 


• Corresponds to the outcomes of an actual experiment (involving multiple copies).


• Choice of path  is absolutely general: 


• e.g. global vs. local.


• Heat is defined as before: 


• But now the heat distribution can be computed as  
 
 




• Avoids any measurement backaction.

|x0⟩ → |x1⟩ → |x2⟩ → …

Q = Ea1
− Ea0

= − (Eb1
− Eb0)

P(Q) = ∑
a0,b0,a1,b1

δ(Q − (Ea1
− Ea0

))P(a0, b0, a1, b1)



Comparison with TPM
• Heat-exchange QBN (2-step process):  

 
 

 
                           


• Marginalizing over : 
 

     (no backaction)


• In contrast, the distribution from performing a TPM reads 
 




• Marginalizing over : 
 

           where         

P(a0, b0, a1, b1) = ∑
s

Psp(a0, b0 |s0)p(a1, b1 |s1)

= ∑
s

Ps |⟨a1, b1 |Ut |s⟩ |2 |⟨a0, b0 |s⟩ |2

a0, b0

P(a1, b1) = ∑
s

Ps |⟨a1, b1 |Ut |s⟩ |2 = ⟨a1, b1 |UtρU†
t |a1, b1⟩

PTPM(a0, b0, a1, b1) = ∑
s

Ps |⟨a1, b1 |Ut |a0, b0⟩ |2 |⟨a0, b0 |s⟩ |2

a0, b0

PTPM(a1, b1) = ∑
s

Ps⟨a1, b1 |Ut𝔻(ρ)U†
t |a1, b1⟩ 𝔻(ρ) = ∑

a0,b0

|a0, b0⟩⟨a0, b0 |ρ |a0, b0⟩⟨a0, b0 |



Fluctuation theorems
Fundamental symmetries about thermodynamic trajectories

• Heat-exchange QBN (2-step process):  
 

 

• Reverse trajectory:  
 

 
 
where  involve  instead of .


•  Their ratio satisfy the detailed fluctuation theorem: 
 

Pf(s, a0, b0, a1, b1) = Psp(a0, b0 |s0)p(a1, b1 |s1)

Pr(s*, a0, b0, a1, b1) = Ps*p̄(a1, b1 |s*0 )p̄(a0, b0 |s*1 )

p̄ U† U

Pf

Pr
= exp{Δβ Q + I0 − I1 − ΣA − ΣB + γ}

Here: 














I0 = ln Ps/Pa0
Pb0

I1 = ln Ps*/𝒫(a1)𝒫(b1)

ΣA = ln 𝒫(a1)/Pa1

ΣB = ln 𝒫(b1)/Pb1

γ = ln p(a0, b0 |s0)p(a1, b1 |s1)/p̄(a1, b1 |s*0 )p(a0, b0 |s*1 )



• Detailed FT implies Integral FT: 
 
    


• But, in addition, some quantities also individually satisfy integral FTs: 
 
    


• We can also further split    where    
 

  = stochastic classical information 
 
and 
 

  = stochastic discord. 


• These quantities also satisfy integral FTs: 
 

⟨eΔβQ+I0−I1−ΣA−ΣB+γ⟩ = 1

⟨e−Ii⟩ = ⟨e−Σi⟩ = ⟨e−γ⟩ = 1

Ii = Ji + Ci

Ji = ln Pai,bi
/Pai

Pbi

Ci = ln Ps/Pai,bi

⟨e−Ji⟩ = ⟨e−Ci⟩ = 1
arXiv 2012.06294



   where  when the systems are correlated.
Pf(Q)

Pr(−Q)
=

eΔβ Q

Ψ(Q)
Ψ(Q) ≠ 1

Jarzynski, C., & Wójcik, D. K. Physical Review Letters, 92, 230602 (2004)



Extracting Bayesian Networks from multiple copies
• QBNs have nice properties.


• But in our experiment, we had to reconstruct them from full tomography data. 


• Can QBNs be associated with the actual outcomes of an experiment?


• Using a single system, this is impossible, because any measurement would cause backaction (this is 
the whole point of QBNs). 


• But this can be done using identical copies of a quantum system. 



Post-selection

• To illustrate the procedure, consider the 2-point QBN: 
 




• Start with 2 copies  and apply the projective measurement .


• Post-select only those systems with outcomes .


• On these, apply the (product) POVM .


• Outcomes occur with prob. .

P(x0, x1) = ∑
s

Psp(x1 |s1)p(x0 |s0) = ∑
s

Ps |⟨x1 |U |s⟩ |2 |⟨x0 |s⟩ |2

ρ ⊗ ρ |s⟩⟨s | ⊗ |s′￼⟩⟨s′￼|

s′￼ = s

Mx = |x0⟩⟨x0 | ⊗ Ut |x1⟩⟨x1 |U†
t

P(x0, x1)



Work distribution in coherent processes
• Consider an isolated system undergoing a unitary protocol: .


• The unitary may involve work:  
 

 


• The average work is .


• Requires measuring the system before and after .


• This is a problem if the system is initially coherent: 


• TPM changes the process:   

 
            

ρ′￼ = UρU†

HS = ∑
n

Ei
n |ni⟩⟨ni | → H′￼S = ∑

m

Ef
m |mf⟩⟨mf |

⟨W⟩ = tr{H′￼Sρ′￼− HSρ}
U

ρ = ∑
s

Ps |s⟩⟨s |

PTPM = ∑
s

Ps |⟨mf |U |ni⟩ |2 |⟨ni |s⟩ |2

→ ⟨W⟩ = tr{H′￼sU𝔻(ρ)U† − HSρ}



• QBNs preserve them: 
 
   


• Yields .


• NO-GO: impossible to devise a POVM  such that the resulting distribution  satisfies


(i) 


(ii) Reduces  when .


• With QBNs we can construct this:  
 

 

• Caveat: what may  depend on?

PQBN(ni, mf) = ∑
s

Ps |⟨mf |U |s⟩ |2 |⟨ni |s⟩ |2 → P(w) = ∑
ni,mf

δ(w − (Ef
m − Ei

n)) PQBN(ni, mf)

⟨W⟩ = tr{H′￼Sρ′￼− HSρ}
Jw P(w) = tr(Jwρ)

∫ dw w P(w) = tr{H′￼Sρ′￼− HSρ}

PTPM(w) [ρ, HS] = 0

Jw = ∑
ni,mf ,s

δ(w − (Ef
m − Ei

n)) 1
Ps

Mx |ss⟩⟨ss |

Jw

M. Perarnau-Llobet, et. al., Phys. Rev. Lett. 118, 070601 (2017)



Predictors of work
• : college admission exam. 


• : physics 1 grades. 


• How to cook up a function  which best predicts  given ?


• Minimize mean-squared error 

X

Y

g(X) Y X

Δ2 = ⟨(Y − g(X))2⟩

• Consider a system interacting with a bath. 


• Bath is incoherent: we can do TPM. 


• System is coherent: we never measure it. 


• Given outcomes for the heat, what is the best possible prediction we can make about work?

S

E



• Distribution 
 




• where  are the eigenstates of the bath, and  are the initial (thermal) probabilities. 


• Question: create a function  which minimizes the MSE 
 

     


• Measuring the bath yields a specific set of Kraus operators for the system 
 




• Each trajectory occurs with probability 


• Optimal mean-squared predictor:  
 

P(n, m, μ, μ′￼) = ∑
s

Psqμ |⟨ni |s⟩ |2 |⟨mf , μ′￼|U |s, μ⟩ |2

|μ⟩, |μ′￼⟩ qμ

𝒲(μ, μ′￼)

Δ2 = ⟨(𝒲(μ, μ′￼) − (Ef
m + ℰμ′￼

− Ei
n − ℰμ))

2⟩

ρ′￼S = ∑
μ,μ′￼

Mμμ′￼
ρSM†

μμ′￼
, Mμμ′￼

= qμ⟨μ′￼|U |μ⟩

P(μ, μ′￼) = tr{Mμμ′￼
ρSM†

μμ′￼}

𝒲(μ, μ′￼) = ℰμ′￼
− ℰμ +

1
P(μ, μ′￼) ⟨M†

μμ′￼
H′￼SMμμ′￼

−
1
2 {M†

μμ′￼
Mμμ′￼

, 𝒟ρS
(HS)}⟩

ρS

TPM@E + QBN@S



Minimal qubit model

• Simplification: : first we do work, then we interact with the bath.


• Consider a qubit with .


• Perform work with 


• Interact with bath: also a qubit, with  and .


•  = SWAP.


• Initial state:  
 

U = Uh(IS ⊗ Uw)

HS = H′￼S = ω |1⟩⟨1 |

Uw = σx

HE = ω |1⟩⟨1 | ρE = (1 − f ) |0⟩⟨0 | + f |1⟩⟨1 |

Uh

ρS =
1
2 (1 + s cos θ s sin θ

s sin θ 1 − s cos θ)
J. P. Pekola, P. Solinas, A. Shnirman, and D. V. Averin, NJP, 15, 115006 (2013)





Conclusions and outlook
• Quantum Bayesian Networks: statistics of multi-time quantities without measurement backaction. 


• Relevant for coherent systems and processes. 


• Can be obtained directly from experiments in multiple copies of a system. 


• Meaningful in quantum thermodynamics: 


• Satisfy fluctuation theorems.


• Can be used to construct experimentally relevant estimation schemes. 

• Potential applications:


• Continuous-time heat engines & Quantum transport.


• Beyond thermo: metrology, others (?)
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