Quantum Bayesian Networks **Experimental determination and applications in quantum** thermodynamics

Gabriel T. Landi **Quantum Chaos and Quantum Information, Jagiellonian University.** April 26, 2021

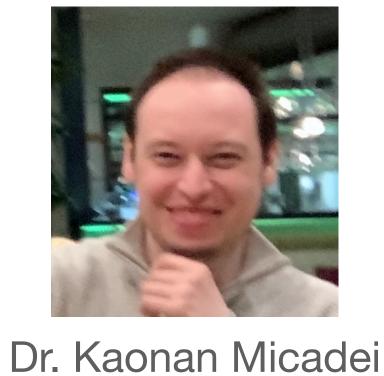
www.fmt.if.usp.br/~gtlandi

Overview

- Thermodynamics deals with processes, not states.
- In quantum systems that can be an issue:
 - Measurement invasiveness. \bullet

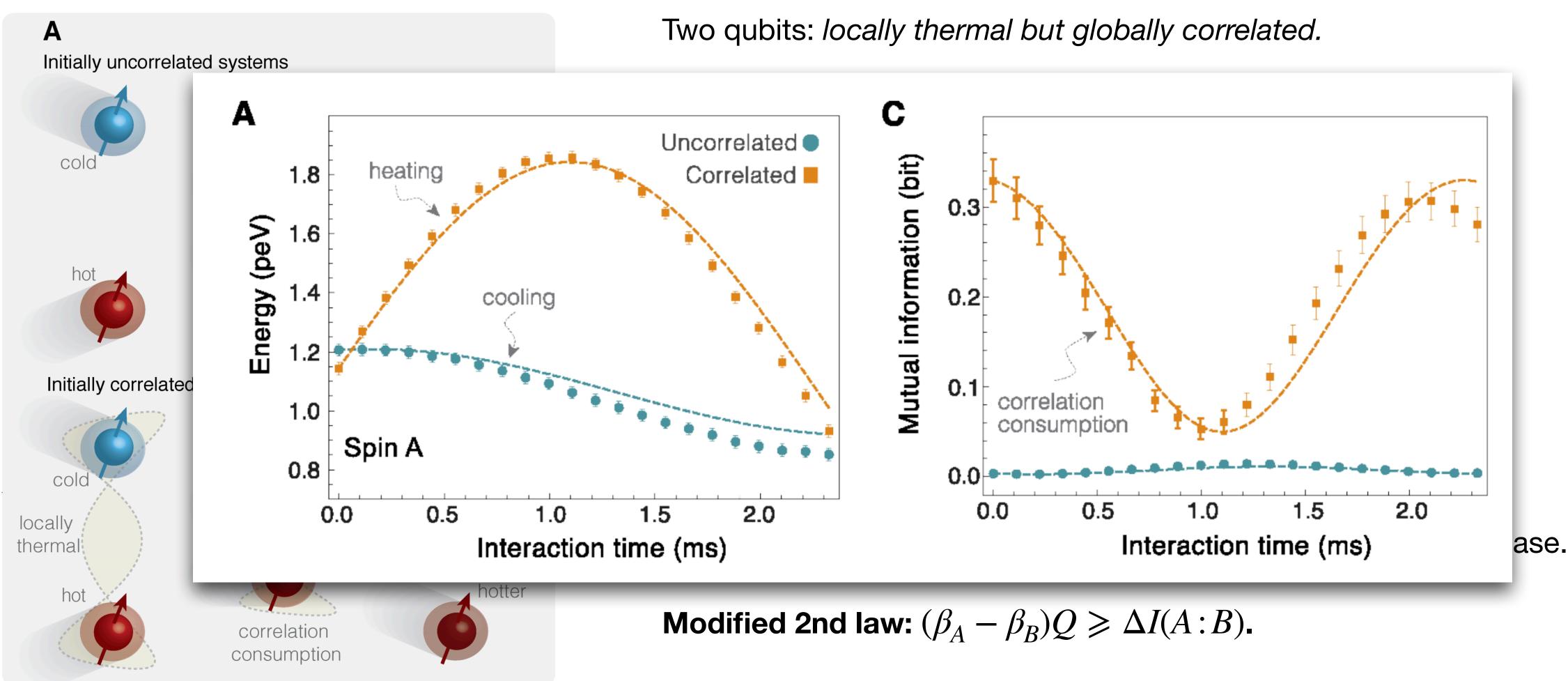
Quantum Bayesian Networks (QBNs)

- "Reversing the direction of heat flow using quantum correlations", Nature Communications 10, 2456 (2019).
- "Quantum fluctuation theorems beyond two-point measurements", Phys. Rev. Lett. 124, 090602 (2020).
- "Experimental validation of fully quantum fluctuation theorems", arXiv:2012.06294. 3.
- "Extracting Bayesian networks from multiple copies of a quantum system", arXiv:2103.14570. 4.
- "Quantum mean-square predictors of work", arXiv:2104.07132. 5.



Prof. Eric Lutz

Reversing the direction of heat flow using quantum correlations



Partovi, M. H., *Phys. Rev. E*, **77**, 021110 (2008) Jennings, D. & Rudolph, T., *Phys. Rev. E*, **81**, 061130 (2010)

Horodecki, M. & Oppenheim, J., *Nat. Comm.*, **4**, 2059 (2013). Brandão, F., et. al., *Phys. Rev. Lett.*, **111**, 250404 (2013).

SSUE

- How to actually measure the heat? lacksquare
 - We did it using full tomography. \bullet
 - Not very satisfactory. lacksquare
- Heat refers to the process, not the state:

$$Q = E_{a'} - E_a = -(E_{b'} - E_b)$$

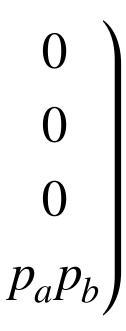
- Standard protocol: two-point measurement (TPM). \bullet
 - Measure in the energy basis before and after the unitary. lacksquare
- Problem: 1st measurement destroys coherences. ullet

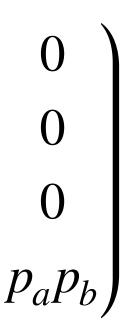
Talkner, P., Lutz, E., & Hänggi, P. Phys. Rev. E, 75, 050102 (2007)

$$\rho_{AB} = \begin{pmatrix} (1-p_a)(1-p_b) & 0 & 0 \\ 0 & (1-p_a)p_b & \alpha \\ 0 & \alpha^* & p_a(1-p_b) \\ 0 & 0 & 0 \end{pmatrix}$$
$$\bigvee$$
$$\rho_{AB} = \begin{pmatrix} (1-p_a)(1-p_b) & 0 & 0 \\ 0 & (1-p_a)p_b & 0 \\ 0 & 0 & p_a(1-p_b) \\ 0 & 0 & 0 \end{pmatrix}$$

Alternatives:

- Operator of work.
- Quasiprobabilities.
- Quantum Bayesian Networks.





Quantum Bayesian Networks

Basic idea: global system evolves unitarily.

$$\rho = \sum_{s} P_{s} |s\rangle \langle s| \quad \rightarrow \quad \rho(t) = U_{t} \rho U_{t}^{\dagger} = \sum_{s} P_{s} U_{t} |s\rangle \langle s| U_{t}^{\dagger}$$

For a given set of instants $t_0 = 0, t_1, t_2, \dots$ we build the **conditional probability** •

$$p(x_t | s_t) = |\langle x_t | U_t | s \rangle|^2$$
 for arbitrary

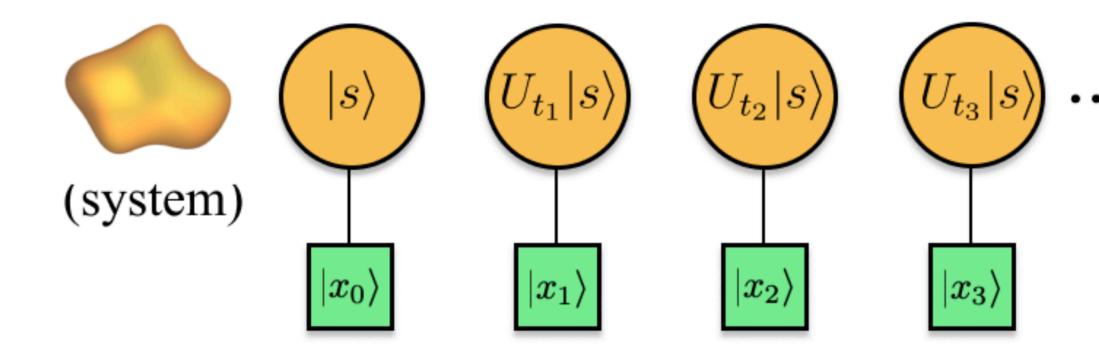
The Bayesian Network distribution for a path

$$P(x_0, x_1, x_2, \dots) = \sum_{s} P_s p(x_0 | s_0) p(x_1 | s_1)$$

basis sets $\{ |x_t\rangle \}$

$$|x_0\rangle \rightarrow |x_1\rangle \rightarrow |x_2\rangle \rightarrow \dots$$
 is then

 $p(x_2 | s_2).$



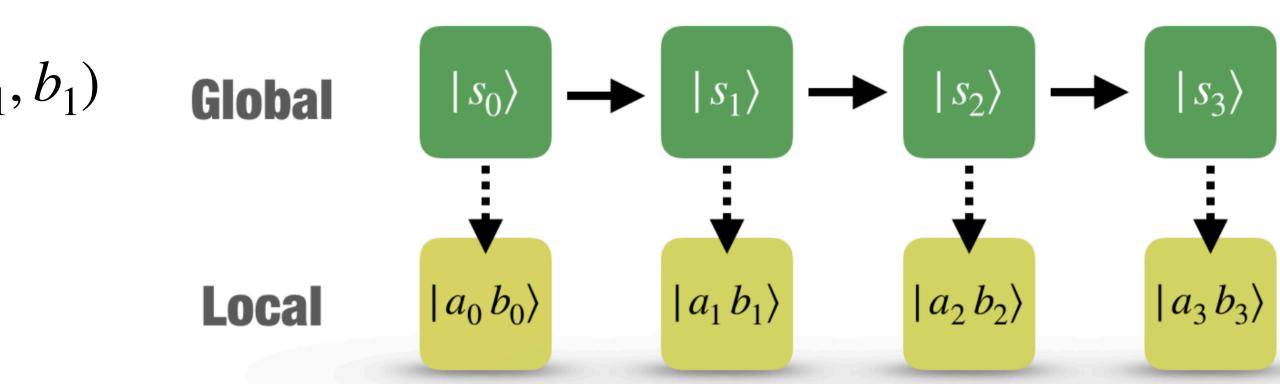
Interpretation

- Always produces a valid (strictly non-negative) distribution. \bullet
- Marginalizing leads to non-back-acted distributions. \bullet
- Corresponds to the outcomes of an actual experiment (involving multiple copies). lacksquare
- Choice of path $|x_0\rangle \rightarrow |x_1\rangle \rightarrow |x_2\rangle \rightarrow \dots$ is absolutely general:
 - e.g. global vs. local.
 - Heat is defined as before: $Q = E_{a_1} E_{a_0}$
- But now the heat distribution can be computed as \bullet

$$P(Q) = \sum_{a_0, b_0, a_1, b_1} \delta(Q - (E_{a_1} - E_{a_0}))P(a_0, b_0, a_1)$$

Avoids any measurement backaction. \bullet

$$= -\left(E_{b_1} - E_{b_0}\right)$$



Comparison with TPM

Heat-exchange QBN (2-step process): •

$$P(a_0, b_0, a_1, b_1) = \sum_{s} P_s p(a_0, b_0 | s_0) p(a_1, b_1 | s_1)$$
$$= \sum_{s} P_s |\langle a_1, b_1 | U_t | s \rangle|^2 |\langle a_0, b_0 | s_0 \rangle|^2$$

Marginalizing over a_0, b_0 : ullet

$$P(a_1, b_1) = \sum_{s} P_s |\langle a_1, b_1 | U_t | s \rangle|^2 = \langle a_1, b_1 | U_t \rho U_t^{\dagger} | a_1, b_1 \rangle \quad \text{(no backaction)}$$

In contrast, the distribution from performing a TPM reads •

$$P_{\text{TPM}}(a_0, b_0, a_1, b_1) = \sum_{s} P_s |\langle a_1, b_1 | U_t | a_0, b_0 \rangle|^2 |\langle a_0, b_0 | s \rangle|^2$$

Marginalizing over a_0, b_0 : ullet

$$P_{\text{TPM}}(a_1, b_1) = \sum_{s} P_s \langle a_1, b_1 | U_t \mathbb{D}(\rho) U_t^{\dagger} | a_1, b_1 \rangle$$

 $|b_0|s\rangle|^2$

where
$$\mathbb{D}(\rho) = \sum_{a_0,b_0} |a_0,b_0\rangle \langle a_0,b_0|\rho |a_0,b_0\rangle \langle a_0,b_0$$

Fluctuation theorems Fundamental symmetries about thermodynamic trajectories

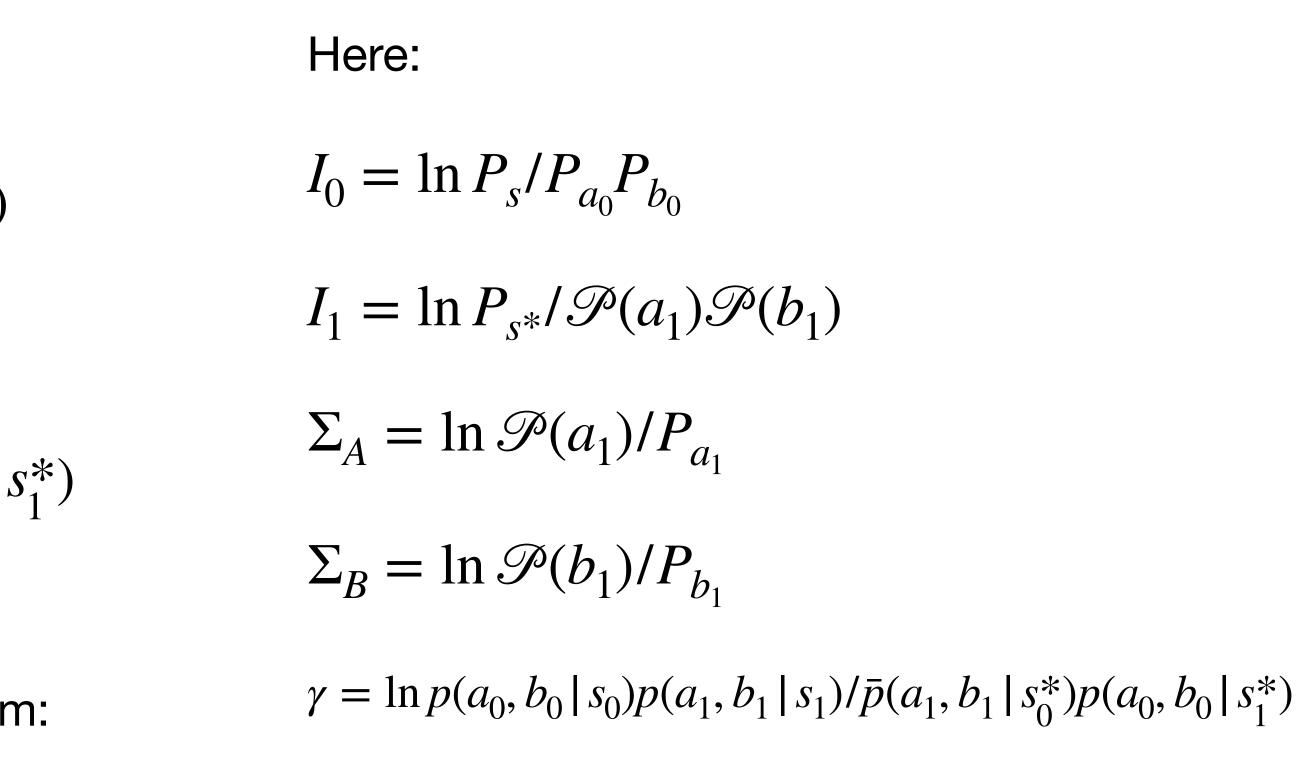
Heat-exchange QBN (2-step process):

 $P_f(s, a_0, b_0, a_1, b_1) = P_s p(a_0, b_0 | s_0) p(a_1, b_1 | s_1)$

Reverse trajectory:

 $P_r(s^*, a_0, b_0, a_1, b_1) = P_{s^*}\bar{p}(a_1, b_1 | s_0^*)\bar{p}(a_0, b_0 | s_1^*)$ where \bar{p} involve U^{\dagger} instead of U.

Their ratio satisfy the detailed fluctuation theorem: $\frac{P_f}{P_r} = \exp\{\Delta\beta \ Q + I_0 - I_1 - \Sigma_A - \Sigma_B + \gamma\}$



Detailed FT implies Integral FT: \bullet

$$\langle e^{\Delta\beta Q + I_0 - I_1 - \Sigma_A - \Sigma_B + \gamma} \rangle = 1$$

But, in addition, some quantities also individually satisfy integral FTs: \bullet

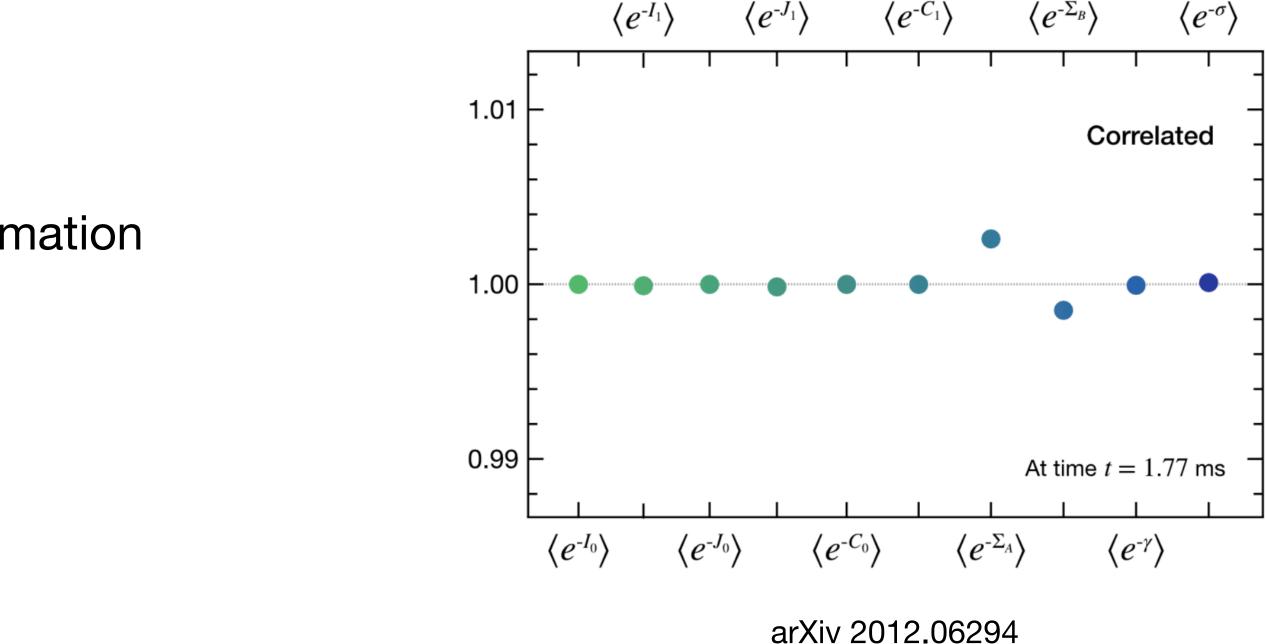
$$\langle e^{-I_i} \rangle = \langle e^{-\Sigma_i} \rangle = \langle e^{-\gamma} \rangle = 1$$

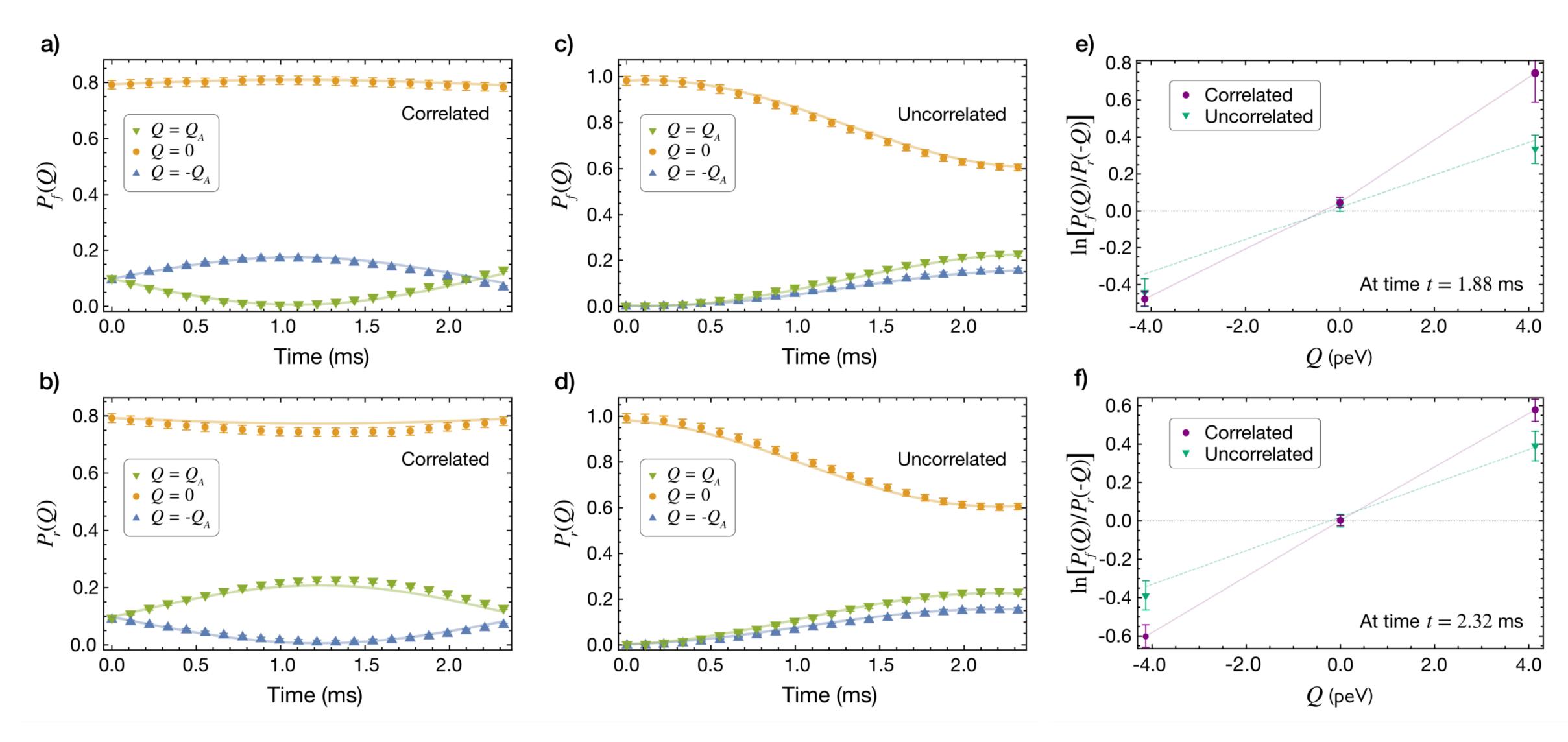
We can also further split $I_i = J_i + C_i$ where •

 $J_i = \ln P_{a_i,b_i} / P_{a_i} P_{b_i}$ = stochastic classical information and

 $C_i = \ln P_s / P_{a_i, b_i}$ = stochastic discord.

These quantities also satisfy integral FTs: lacksquare $\langle e^{-J_i} \rangle = \langle e^{-C_i} \rangle = 1$





 $e^{\Delta\beta Q}$ $P_f(Q)$ where $\Psi(Q) \neq 1$ when the systems are correlated. $\frac{1}{P_r(-Q)} = \frac{1}{\Psi(Q)}$

Jarzynski, C., & Wójcik, D. K. Physical Review Letters, 92, 230602 (2004)

Extracting Bayesian Networks from multiple copies

- QBNs have nice properties.
- But in our experiment, we had to reconstruct them from full tomography data. \bullet
 - Can QBNs be associated with the actual outcomes of an experiment? \bullet
- Using a single system, this is impossible, because any measurement would cause backaction (this is the whole point of QBNs).
 - But this can be done using identical copies of a quantum system. \bullet

Post-selection

• To illustrate the procedure, consider the 2-point QBN:

$$P(x_0, x_1) = \sum_{s} P_s p(x_1 | s_1) p(x_0 | s_0) = \sum_{s} P_s |\langle x_1 | U | s \rangle|^2 |\langle x_0 | s \rangle|^2$$

- Start with 2 copies $\rho \otimes \rho$ and apply the projective measurement $|s\rangle\langle s| \otimes |s'\rangle\langle s'|$.
 - Post-select only those systems with outcomes s' = s.
 - On these, apply the (product) POVM M_{χ} =
 - Outcomes occur with prob. $P(x_0, x_1)$.

$$= |x_0\rangle\langle x_0| \otimes U_t |x_1\rangle\langle x_1| U_t^{\dagger}.$$

Work distribution in coherent processes

- Consider an isolated system undergoing a unitary protocol: $\rho' = U \rho U^{\dagger}$. ullet
 - The unitary may involve work: lacksquare

$$H_{S} = \sum_{n} E_{n}^{i} |n_{i}\rangle\langle n_{i}| \qquad \rightarrow \qquad H_{S}^{\prime} = \sum_{m} E_{m}^{f} |m_{f}\rangle\langle m_{f}|$$

- The average work is $\langle W \rangle = \text{tr} \{ H'_S \rho' H_S \rho \}.$ •
 - Requires measuring the system before and after U. \bullet

This is a problem if the system is initially of

TPM changes the process:
$$P_{\text{TPM}} = \sum_{s}$$

$$\rightarrow \langle W \rangle = \operatorname{tr} \{ H'_{s} U \mathbb{D}(\rho) U^{\dagger} - H_{s} U \mathbb$$

coherent:
$$\rho = \sum_{s} P_{s} |s\rangle \langle s|$$

 $P_{s} |\langle m_{f} | U | n_{i} \rangle|^{2} |\langle n_{i} | s \rangle|^{2}$

QBNs preserve them:

$$P_{\text{QBN}}(n_i, m_f) = \sum_{s} P_s |\langle m_f | U | s \rangle|^2 |\langle n_i | s \rangle|^2$$

- Yields $\langle W \rangle = \operatorname{tr} \{ H'_S \rho' H_S \rho \}.$
- ullet

(i)
$$\int dw \ w \ P(w) = \operatorname{tr}\left\{H'_{S}\rho' - H_{S}\rho\right\}$$

(ii) Reduces $P_{\text{TPM}}(w)$ when $[\rho, H_S] = 0$.

With QBNs we can construct this:

$$J_{w} = \sum_{n_{i}, m_{f}, s} \delta \left(w - (E_{m}^{f} - E_{n}^{i}) \right) \frac{1}{P_{s}} M_{x} | ss \rangle \langle ss |$$

• Caveat: what may J_w depend on?

M. Perarnau-Llobet, et. al., Phys. Rev. Lett. 118, 070601 (2017)

$$\rightarrow P(w) = \sum_{n_i, m_f} \delta\left(w - (E_m^f - E_n^i)\right) P_{\text{QBN}}(n_i, m_f)$$

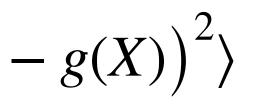
NO-GO: impossible to devise a POVM J_w such that the resulting distribution $P(w) = tr(J_w \rho)$ satisfies

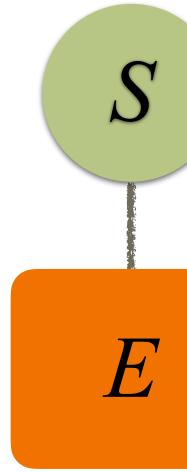
		Fluctuation	Cohe
	Measurable	theorems	proc
Projective measurements	✓	\checkmark	7
Operators of work	\checkmark	×	v
Quasiprobabilities	×	\checkmark	v
Bayesian networks	\checkmark	\checkmark	v

Predictors of work

- X: college admission exam.
- Y: physics 1 grades.
 - How to cook up a function g(X) which best predicts Y given X?
 - Minimize mean-squared error $\Delta^2 = \langle (Y g(X))^2 \rangle$

- Consider a system interacting with a bath.
 - Bath is incoherent: we can do TPM.
 - System is coherent: we never measure it.
 - \bullet





Given outcomes for the heat, what is the best possible *prediction* we can make about work?

TPM@E + QBN@S

Distribution \bullet

$$P(n, m, \mu, \mu') = \sum_{s} P_{s} q_{\mu} |\langle n_{i} | s \rangle|^{2} |\langle m_{f}, \mu' | U | s, \mu \rangle$$

- where $|\mu\rangle$, $|\mu'\rangle$ are the eigenstates of the bath, and q_{μ} are the initial (thermal) probabilities.
- Question: create a function $\mathscr{W}(\mu, \mu')$ which minimizes the MSE ullet

$$\Delta^2 = \left\langle \left(\mathcal{W}(\mu, \mu') - \left(E_m^f + \mathcal{E}_{\mu'} - E_n^i - \mathcal{E}_{\mu} \right) \right)^2 \right\rangle$$

Measuring the bath yields a specific set of Kraus operators for the system

$$\rho_{S}' = \sum_{\mu,\mu'} M_{\mu\mu'} \rho_{S} M_{\mu\mu'}^{\dagger}, \qquad M_{\mu\mu'} = q_{\mu} \langle \mu' | U | \mu \rangle$$

- Each trajectory occurs with probability $P(\mu, \mu') = tr\{M_{\mu\mu'}\rho_S M^{\dagger}_{\mu\mu'}\}$ •
- Optimal mean-squared predictor:

$$\mathcal{W}(\mu,\mu') = \mathcal{E}_{\mu'} - \mathcal{E}_{\mu} + \frac{1}{P(\mu,\mu')} \left\langle M^{\dagger}_{\mu\mu'} H'_{S} M_{\mu\mu'} - \frac{1}{2} \right\rangle$$

|2

 $\left\{M_{\mu\mu'}^{\dagger}M_{\mu\mu'}, \mathcal{D}_{\rho_{S}}(H_{S})\right\}\right\}_{\rho_{S}}$

Minimal qubit model

- Simplification: $U = U_h(I_S \otimes U_w)$: first we do work, then we interact with the bath. •
- Consider a qubit with $H_S = H'_S = \omega |1\rangle \langle 1|$. •
 - Perform work with $U_w = \sigma_x$
- Interact with bath: also a qubit, with $H_E = \omega |1\rangle \langle 1|$ and $\rho_E = (1 f) |0\rangle \langle 0| + f |1\rangle \langle 1|$. ullet

•
$$U_h = SWAP$$
.

Initial state:

$$\rho_{S} = \frac{1}{2} \begin{pmatrix} 1 + s \cos \theta & s \sin \theta \\ s \sin \theta & 1 - s \cos \theta \end{pmatrix}$$

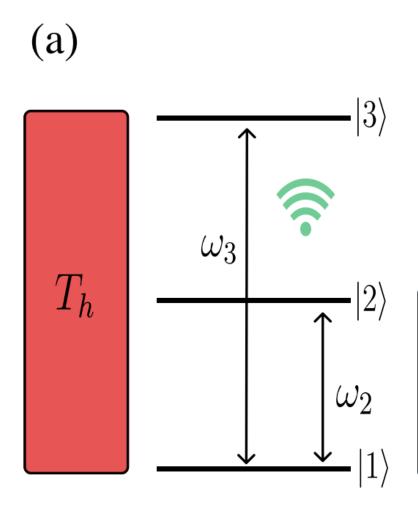
J. P. Pekola, P. Solinas, A. Shnirman, and D. V. Averin, *NJP*, **15**, 115006 (2013)

$\mu ightarrow \mu'$	$n \to m' \to n'$	$P[\gamma]$	$Q[\gamma]$	$\mathcal{W}_{\text{opt}}[\gamma](\theta=0)$	$\mathcal{W}_{\mathrm{opt}}[\gamma]$	$W[\gamma, n, n']$
$0 \rightarrow 0$	$1 \rightarrow 0 \rightarrow 0$	$(1-f)(1-s\cos\theta)/2$	0	$-\omega\left(\frac{1+s}{1-s}\right)$	$-\frac{\omega}{4}\left(\frac{3+4s\cos\theta+\cos(2\theta)}{4(1-s\cos\theta)}\right)$	$-\omega$
$0 \rightarrow 1$	$0 \rightarrow 1 \rightarrow 0$	$\left (1-f)(1+s\cos\theta)/2\right $	ω	ω	$\omega \left(1 - \frac{\sin^2 \theta}{2(1+s\cos \theta)}\right)$	ω
$1 \rightarrow 0$	$1 \rightarrow 0 \rightarrow 1$	$f(1-s\cos\theta)/2$	$-\omega$	$-\omega$	$-\omega\left(1-\frac{\sin^2\theta}{2(1-s\cos\theta)}\right)$	$-\omega$
$1 \rightarrow 1$	$0 \rightarrow 1 \rightarrow 1$	$f(1+s\cos\theta)/2$	0	$\omega\left(\frac{1-s}{1+s}\right)$	$\frac{\omega}{4} \left(\frac{3 - 4s \cos \theta + \cos(2\theta)}{4(1 + s \cos \theta)} \right)$	ω

Conclusions and outlook

- - Relevant for **coherent** systems and processes. \bullet
- Can be obtained directly from experiments in multiple **copies** of a system.
- Meaningful in quantum thermodynamics:
 - Satisfy **fluctuation theorems**. \bullet
- Can be used to construct experimentally relevant estimation schemes.
- Potential applications:
 - Continuous-time heat engines & Quantum transport.
 - Beyond thermo: metrology, others (?)

Quantum Bayesian Networks: statistics of multi-time quantities without measurement backaction.



Quantum Bayesian Networks (QBNs)

- (2020).
- K. Micadei, et. al., "Experimental validation of fully quantum fluctuation theorems", arXiv:2012.06294. 3.
- 4.
- M. Janovitch and GTL, "Quantum mean-square predictors of work", arXiv:2104.07132. 5.

THANK YOU!

K. Micadei, et. al., "Reversing the direction of heat flow using quantum correlations", Nature Communications 10, 2456 (2019). 2. K. Micadei, GTL and Eric Lutz, "Quantum fluctuation theorems beyond two-point measurements", Phys. Rev. Lett. 124, 090602

K. Micadei, GTL and Eric Lutz, "Extracting Bayesian networks from multiple copies of a quantum system", arXiv:2103.14570.

www.fmt.if.usp.br/~gtlandi