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Precise thermometry for quantum systems is important to the development of new technology, and
understanding the ultimate limits to precision presents a fundamental challenge. It is well known that
optimal thermometry requires projective measurements of the total energy of the sample. However, this is
infeasible in even moderately sized systems, where realistic energy measurements will necessarily involve
some coarse-graining. Here we explore the precision limits for temperature estimation when only coarse-
grained measurements are available. Using tools from signal processing, we derive the structure of optimal
coarse-grained measurements and find that good temperature estimates can generally be attained even with
a small number of outcomes. We apply our results to many-body systems and nonequilibrium thermom-
etry. For the former, we focus on interacting spin lattices, both at and away from criticality, and find that
the Fisher-information scaling with system size is unchanged after coarse-graining. For the latter, we con-
sider a probe of given dimension interacting with the sample, followed by a measurement of the probe.
We derive an upper bound on arbitrary, nonequilibrium strategies for such probe-based thermometry and
illustrate it for thermometry on a Bose-Einstein condensate using an atomic quantum-dot probe.

DOI: 10.1103/PRXQuantum.2.020322

I. INTRODUCTION

Thermometry is a basic metrological task that is vital
throughout science and technology. Estimating temper-
ature is important on all scales, ranging from astro-
nomical bodies with temperatures in the millions of
kelvins to atomic systems near absolute zero. In particu-
lar, applications of thermometry in nanoscale or microscale
devices are becoming increasingly relevant as technology
advances [1–4]. Examples include accurate temperature
estimation of ultracold gases [5–9], electrons in super-
conductors [10–12], and the use of atomic-size devices,
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such as color centers in diamond or quantum dots, as
probes to be used in a variety of systems [13–16]. At
these scales, quantum effects have a significant influence
on the achievable precision. It is therefore important to
understand what the fundamental limits for temperature
estimation in quantum systems are.

Quantum features offer both advantages and challenges
to thermometry [3,17]. The advantages range from mea-
surement enhancements due to strong coupling [8,18,19],
correlated probes [20,21], or nonequilibrium probes [22–
29]. The challenges are related to the inherent difficulty
of accessing information in quantum systems, due, for
instance, to measurement backaction or natural limitations
in performing high-resolution measurements [30,31].

When the measurement resolution is unlimited, the ulti-
mate precision of temperature estimation allowed by quan-
tum mechanics is obtained by performing projective mea-
surements of energy [32–34]. However, for large (or even
moderately sized) many-body systems, one seldom has
access to measurements that distinguish individual energy
levels. Instead, one usually measures only a local subsys-
tem of the sample [19,35,36] or performs a global mea-
surement with only finite resolution [30,31] [see Fig. 1(a)];
alternatively, one addresses the sample indirectly, by
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FIG. 1. (a) Thermometry with coarse-grained energy measure-
ments. The measurement can be understood as resulting from
postprocessing of a fine-grained, projective energy measurement.
Energies are grouped into bins, and a single outcome is assigned
to each bin. (b) Thermometry with probe-based measurements.
A probe interacts unitarily with a target system. A measure-
ment is then performed on the probe alone and used to infer the
temperature of the target.

measuring a probe that has interacted with it
[18,19,27,29,37] [see Fig. 1(b)]. All of these cases are
examples of a coarse-grained measurement, which from an
abstract point of view can be described by a d-outcome
generalized quantum measurement of a D-dimensional
system, with d < D. The fact that d � D in most physi-
cally relevant cases may reduce the precision significantly.
It is hence natural to ask what the optimal measure-
ment strategy and the associated precision of temperature
estimation are under such limitations.

In this paper, we develop a framework for addressing
this question in detail. The framework is based on ideas
from signal processing and parameter-estimation theory,
and provides a simple, easy-to-use toolbox for studying
coarse-grained thermometry of both few-body and many-
body systems. We illustrate the framework by applying it
to paradigmatic many-body models of spin lattices, both
close to and far from criticality.

In the second part of the article, these abstract ideas are
applied to probe-based temperature measurements. Here,
the temperature of a sample is estimated by letting it inter-
act with a probe (and possibly some auxiliary system) and
then measuring the probe, as illustrated in Fig. 1(b). This
type of measurements are particularly appealing since they
provide a natural way to overcome one of the main chal-
lenges in thermometry: the design of noninvasive measure-
ments , for example, for ultracold atomic gases [9,38–42].
In such probe-based measurements, a natural strategy is to
let the probe reach thermal equilibrium with the sample
[32]. However, it has been shown that the precision can
be considerably enhanced by nonequilibrium strategies,
where the probe interacts with the sample for a finite time
[9,22–28,43,44], couples strongly to the sample [18,19],
or uses an ancillary catalytic system [29]. Here we use
our framework to obtain a fundamental bound on any such
nonequilibrium strategy. We map the problem of probe-
based thermometry to that of coarse-grained thermometry,
and determine the maximal sensitivity that can be obtained
with a probe of dimension d. We construct a specific fine-
tuned sample-probe interaction that always saturates the
bound, and notably show that it can also be reached in
relevant experimental situations. In particular, when the
sample and the probe are described by a harmonic oscil-
lator and a qubit, respectively, the optimal nonequilibrium
estimation scheme in the low-temperature regime can be
obtained via the Jaynes-Cummings Hamiltonian. This is
of direct relevance to temperature measurements of Bose-
Einstein condensates [45] or micromechanical resonators
[22,23] via qubit probes.

II. FRAMEWORK

To be specific, we consider a system S with a D-
dimensional Hilbert space, described by a Hamiltonian H ,
and initially in a canonical thermal state

τ = 1
Z

e−βH , (1)

where β = 1/T is the inverse temperature (we adopt units
such that kB = 1) and Z = Tr e−βH is the partition func-
tion. This is a family of states parameterized by the
temperature, and the smallest variance in estimating this
parameter, based on any measurement, is hence lower
bounded by the quantum Cramér-Rao bound [46] (see also
Refs. [47,48])

�T2 ≥ 1
nF(τ )

, (2)

where n is the number of repetitions of the measurement
and F is the quantum Fisher information with respect to T,
which we refer to as the “thermal Fisher information.” It is
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given by

F(τ ) = β4 var(H) = β2C, (3)

with var(H) := 〈H 2〉τ − 〈H 〉2
τ , where the angle brack-

ets denote averaging over the quantum state [〈Ô〉τ :=
Tr (Ôτ)], and where C is the heat capacity of the system
(C := d〈H 〉/dT). The optimal measurement, attaining the
thermal Fisher information, is a projective measurement
onto the eigenbasis of H (i.e., a projective measurement
of the system energy). In this optimal scenario, the more
the energy fluctuates, the more precise the measurement
can be in principle. The optimal measurement saturates
the inequality (2) for arbitrary n when the temperature
estimator is unbiased. When an unbisaed estimator is not
available, a large class of generic biased estimators will
still asymptotically saturate the inequality (2) in the limit
of many repetitions (n → ∞) [49]. Moreover, in the spe-
cific case of temperature estimation in many-body systems
consisting of N 	 1 particles, one can go even further and
explicitly construct an estimator that, despite being biased
for any finite N , will saturate the Cramér-Rao bound (2) as
N → ∞, even for n = 1 [50].

However, when fine-grained measurements of energy
are not available, while remaining valid, the bound (2) will
in general become too loose. We formalize the problem as
follows. Suppose the resolution of the experiment is lim-
ited to d < D measurement outcomes. What is then the
maximal precision for estimating the temperature of S and
which is the optimal d-outcome measurement achieving it?
Below, we provide a systematic way to identify the optimal
measurement.

Moreover, in Sec. V, we prove that the highest Fisher
information achievable by a d < D dimensional probe
undergoing an arbitrary interaction with the sample is
equal to the optimal d-outcome coarse-grained Fisher
information in the above sense. We thus provide a fun-
damental benchmark for any conceivable protocol of
probe-based thermometry. In particular, this includes any
standard thermometric technique in current experimental
setups.

III. OPTIMAL COARSE-GRAINING

We consider coarse-grained thermometry on a D-
dimensional system. We take coarse-graining to mean that
only generalized measurements, that is, positive operator-
valued measures (POVMs) with at most d < D outcomes,
are available. We then construct a framework for identify-
ing the optimal POVM for thermometry in two steps.

First, we show that the optimal POVM is a projec-
tion onto energy subspaces of the system. This means
that we can split the system spectrum into d subsets and
study measurements that project onto the corresponding
eigensubspaces.

Second, we show that the optimal choice of subsets
consists of consecutive “bins” (i.e., the sets are not inter-
spersed). We then provide a method for constructing the
optimal choice of bins for any given system spectrum. This
is done by casting the problem in the language of an anal-
ogous signal-processing problem, known as Lloyd-Max
quantization [51].

A. Optimal POVM

We take a d-outcome POVM M = {Mα}d
α=1 and a sys-

tem in the thermal state τ of Eq. (1). Each outcome α then
occurs with probability

pα = Tr (Mατ ). (4)

This distribution contains information about the tempera-
ture T, as quantified by the Fisher information [52]

C =
d∑

α=1

1
pα

(
∂pα
∂T

)2

, (5)

which for a thermal state becomes [30]

C = β4
∑

α

1
pα

{
Tr

[
τMα(H − 〈H 〉τ )

]}2. (6)

Note that, after coarse-graining, pα is no longer in the so-
called exponential family with respect to T [53], which
means that no temperature estimator can satisfy the
Cramér-Rao bound for any finite number of repetitions n
[49]. However, the Fisher information (C) is still a key pre-
cision quantifier, due to the fact that, for all unbiased and
certain generic biased estimators, such as the maximum
likelihood estimator, the Cramér-Rao bound is saturated
asymptotically in the n → ∞ limit. Moreover, in the same
limit, the Fisher information retains its key role even in the
Bayesian estimation approach [54].

We thus set as our goal to determine the optimal d-
outcome POVM that maximizes the Fisher information C.

We first observe that the POVM elements Mα can be
taken to be diagonal in the energy eigenbasis. Because τ

is diagonal in this basis, only diagonal elements of Mα

contribute to the probability pα in Eq. (4). Dropping all off-
diagonal elements from each Mα results in a valid POVM
since the operators remain positive and still sum to identity.
Hence, for every POVM there exists a diagonal POVM that
achieves the same pα and thus the same Fisher information.
It is therefore sufficient to consider diagonal POVMs when
one is looking for an optimal POVM maximizing C.

Next, we note that C is convex with respect to the
POVM. That is, denoting by CM the Fisher information
corresponding to a particular POVM and considering two
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POVMs M and N and a mixing parameter 0 ≤ λ ≤ 1, we
have

CλM+λN ≤ λCM + λCN , (7)

where λ = 1 − λ. This can be seen by rewriting Eq. (6) as

C = β4
∑

α

1
pα

W2
α , (8)

where Wα = Tr
[
τMα(H − 〈H 〉τ )

]
. Both pα and Wα are

linear in the POVM operators. Hence, when mixing
POVMs, W(λM+λN )

α = λW(M)
α + λW(N )

α and p (λM+λN )
α =

λp (M)
α + λp (N )

α . Equation (7) is then an immediate conse-
quence of the fact that (1/p)W2 is a jointly convex function
of p and W (see, e.g., Ref. [55]).

Finally, we show that the optimal POVM is necessarily
a collection of nonoverlapping projectors onto eigensub-
spaces of H . Indeed, take a POVM M such that for some
eigenstate |k〉 of H there are at least two POVM elements
for which 〈k|Mα|k〉 > 0. Define

ςα = 〈k|Mα|k〉. (9)

Now construct d new POVMs N (γ ), with elements

N (γ )
α = Mα + (δαγ − ςα)|k〉〈k|. (10)

Each N (γ ) has the property that only N (γ )
γ has a nonzero

kth diagonal; namely, 〈k|N (γ )
γ |k〉 = 1 while 〈k|N (γ )

α �=γ |k〉 =
0. Furthermore, we note that

∑

γ

ςγN (γ ) = M. (11)

Since the Mα form a POVM, we have ςα ≥ 0 and
∑

α ςα =
1. By the convexity (7) of the Fisher information,

CM ≤
∑

γ

ςγCN (γ ) , (12)

and it follows that there must be at least one γ for which
CN (γ ) (T) ≥ CM(T). This means that the optimal POVM
will have to be one that consists of nonoverlapping projec-
tors on eigensubspaces of H . Given a (possibly degenerate)
Hamiltonian H = ∑

i Ei|i〉〈i| the optimal POVM will thus
be of the form

�α =
∑

Ei∈Iα

|i〉〈i|, (13)

where the Iα define a partition of the set of all eigenenergies
into nonoverlapping subsets (“bins”).

To summarize, optimal, coarse-grained thermometry
can always be achieved by considering projective measure-
ments onto nonoverlapping eigenenergy subspaces.

B. Optimal binning

We now construct a method for determining the optimal
eigenenergy subsets defining the optimal POVM.

For convenience, we choose the basis of H such that

E1 ≤ E2 ≤ · · · ≤ ED, (14)

and write the probability of finding the system in bin Iα as
[cf. Eq. (4)]

pα = Tr (�ατ) =
∑

Ei∈Iα

qi, (15)

where qi = exp(−βEi)/Z. Next we introduce the “bin
energies” (normalized average energy within each bin),

εα = 1
pα

∑

Ei∈Iα

qiEi. (16)

With these definitions, we re-express the Fisher infor-
mation in Eq. (6) for the corresponding measurement
as

C = β4
d∑

α=1

pα(εα − 〈H 〉)2. (17)

We henceforth refer to this as the “coarse-grained Fisher
information.” Compared with Eq. (3), the expression for C
describes how each of the energies εα fluctuates away from
the average.

As a first step toward finding the optimal sets Iα , in
Appendix A, applying a result from Ref. [56], we prove
that the best choice of Iα is given by a binning into con-
secutive intervals: Iα = {Eiα−1 , Eiα−1+1, . . . , Eiα−1+|Iα |−1},
where 1 ≤ iα−1 ≤ D and the iteration rule is iα = iα−1 +
|Iα|. Introducing the “boundaries” bα := Eiα , we can con-
veniently write Iα = [bα−1, bα), with the proviso that b0 =
E1 and bd = ED+1 = ED (the extra level ED+1 will not
enter into any physical quantity; it is introduced just so
that ED enters Id despite [bd−1, bd) having an open end).
Note that, for discrete spectra, the boundaries bα need not
be exactly at energy eigenvalues. Positioning a boundary
anywhere between neighboring eigenvalues results in the
same POVM in Eq. (13).

The remaining task is then to find the optimal inter-
vals Iα = [bα−1, bα) that maximize C. This will give the
best strategy for temperature estimation using a d-outcome
POVM.

Before carrying out this optimization, it is useful to
recast the problem in terms of the density of states (DOS)

(E) =
∑

i

δ(E − Ei), (18)

where δ denotes the Dirac δ function (note that this
definition does not assume a continuous spectrum). Expec-
tation values of any function g(H) of the Hamiltonian may
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then be written as

〈g(H)〉 =
∑

i

g(Ei)qi =
∫

dEg(E)(E)
e−βE

Z
. (19)

This means that we can define the distribution of energy as

q(E) = (E)
e−βE

Z
, (20)

so expectation values can be computed simply in terms of
integrals over q(E). This way, the probabilities pα in Eq.
(15) and the bin energies in Eq. (16) can be conveniently
written as

pα =
∫ bα

bα−1

dEq(E) and εα = 1
pα

∫ bα

bα−1

dEq(E)E.

(21)

These quantities are therefore all expressed explicitly as
functions of the boundaries bα .

The advantage of introducing the DOS is twofold. First,
it allows for a unified treatment of Hamiltonians with dis-
crete and quasicontinuous spectra (as one would expect
in quantum many-body systems). Second, it allows us
to frame the problem in the language of signal process-
ing. A common task in signal processing is to transmit a
continuous function q(E) through a channel. This is usu-
ally done by discretizing the function into a finite set of
bins Iα = [bα−1, bα). The question is then which choice
of bins leads to the optimal transmission. This problem is
solved by using the scheme known as Lloyd-Max quan-
tization (see Chap. 3 in Ref. [51]). If one uses the mean
squared variations of energy as a figure of merit, one sees
that the maximization of the Fisher information [see Eq.
(17)] becomes entirely analogous to this signal-processing
problem.

To proceed, we introduce the quantity

D = β4
d∑

α=1

∫ bα

bα−1

dEq(E)(E − εα)
2. (22)

It can be directly verified that the thermal Fisher informa-
tion given by Eq. (3) can be decomposed as

F = C + D, (23)

which means that the task of maximizing C, for a fixed F ,
is tantamount to that of minimizing D.

The minimization can be done in the usual way, by
equating to zero the derivatives of D with respect to bα .
A straightforward calculation shows that the minima of

D occur when the intervals bα satisfy the implicit (and
generally nonlinear) equations [57]

bα = εα+1 + εα

2
, α = 1, . . . , d − 1. (24)

These equations are implicit because εα itself is a func-
tion of the {bα} [Eq. (16)]. This summarizes the core of
our framework. Equation (24) provides a recipe for how to
optimize the energy bins in a d-outcome POVM in order
to maximize the thermometric precision.

C. Illustrative examples

We now present two examples using our framework for
optimal coarse-grained thermometry.

1. Noninteracting qubits

A simple but illustrative example is a system of N iden-
tical, noninteracting qubits. The system is in a thermal
state, and we take the ground-state and excited-state ener-
gies to be 0 and 1, respectively. The energy levels of the
system will thus range from 0 to N in integer steps. The
probability of finding the system in a state with energy j is
then

qj =
(

N
j

)
sj rN−j , (25)

where we have defined the excited-state population s =
1/(eβ + 1) and r = 1 − s. For a d-outcome measurement,
the probabilities and bin energies take the forms

pα =
bα−1∑

j =bα−1

(
N
j

)
sj rN−j ,

εα = 1
pα

bα−1∑

j =bα−1

(
N
j

)
jsj rN−j ,

(26)

where the bin positions bα , which are integers in this case,
are determined from Eq. (24) (with b0 = 0). For this sys-
tem, the average energy is simply 〈H 〉 = Ns, while the
thermal Fisher information (3) is F = β4Nrs. In Fig. 2,
we show the ratio C/F as a function of the bin positions
bα for the cases d = 2, 3. The bins bα that maximize C/F
are precisely the solutions of Eq. (24).

According to the de Moivre–Laplace theorem, in the
N 	 1 limit, the distribution qj becomes Gaussian. Using
this, we show in Appendix B that for binary measurements
(d = 2) and N 	 1, the optimal binning strategy leads to

C = 2
π
F (27)

and is achieved when the boundary is inserted at b =
〈H 〉 = Ns. This result is noteworthy; it shows that irre-
spective of the number of qubits N , it is always possible to
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(a)

(b)

FIG. 2. Ratio C/F between the coarse-grained Fisher infor-
mation and the thermal Fisher information at β = 0.6. (a) The
case of d = 2, plotted as a function of the partition (b1 − 〈H 〉)/N
and the number of qubits N . The ratio reaches a maximal value
of approximately 0.64 in the large-N limit. The inset shows the
cross section at N = 170. (b) The case of d = 3 for N = 170,
plotted as a function of the lower partition (b1 − 〈H 〉)/N and the
upper partition (b2 − 〈H 〉)/N . The ratio has a maximal value of
approximately 0.82. The dashed lines gives the optimal partitions
as predicted by a symmetric partition around the mean energy.

construct a dichotomic measurement strategy that captures
2/π ≈ 0.63 of the full thermal Fisher information.

2. Linear density of states

As a contrast with the N -qubit case, we now consider an
example of a system with a continuous spectrum. Namely,
we assume the system has a linear density of states:
(E) ∝ E. Such a DOS is met, for instance, in a non-
interacting, ultrarelativistic gas in two dimensions. If the
system is in a thermal state [Eq. (1)], the average energy
is simply 〈H 〉 = 2/β and the variance is var(H) = 2/β2.
Thus, the thermal Fisher information given in Eq. (3) is
F = 2β2.

We first consider the case of binary measurements, d =
2, defined by a single boundary b. The probabilities p1 and
p2 [Eq. (21)] are then given by

p1 = 1 − p2, p2 =
∫ ∞

b
dEq(E) = (1 + βb)e−βb,

and the corresponding bin energies become

ε1 = 2
β

+ βb2

1 + bβ − ebβ , ε2 = 2
β

+ βb2

1 + βb
.

Thus, the Fisher information for the measurement, Eq.
(17), is

C = β6b4

(1 + βb)(eβb − 1 − βb)
. (28)

To find the optimal partition, we solve Eq. (24) for b; that
is, b = (ε1 + ε2)/2. This is a nonlinear equation that can
be solved numerically. A plot of C/F is shown in the inset
in Fig. 3(a). It attains a maximum at βb ≈ 2.589. At this
point C ≈ 0.643F ; that is, the binary measurement reaches
approximately 64% of the maximal Fisher information for
any possible measurement [this is slightly higher than in
Eq. (27)].

The dependence of C on the number of outcomes d, for
optimal binnings, is shown in Fig. 3(a). Quite remarkably,
even with as few as eight bins, one can already reach a
precision of approximately 97% of F—the maximal pos-
sible precision. An illustration of the probabilities pk and
the corresponding bins bk is given in Fig. 3(b) for d = 8.

D. General remarks and extension to imperfect
measurements

The two examples in Sec. III C carry an important gen-
eral message: even measurements so coarse-grained as
to have only two outcomes can estimate the temperature
of a generic system with precision (as quantified by the
Fisher information) that is proportional to the ultimate
precision—the thermal Fisher information [Eq. (3)]. In
Appendix C, we show that this is not a coincidence by
proving that any system for which the energy distribution
is unimodal and has sufficiently fast decaying tails displays
a proportionality C ∝ F . More specifically, we prove that
there exists a finite number � ∈ [0, 1] such that C ≥ �F .

As will be discussed in Sec. IV, the relevance of these
results lies in the fact that unimodal energy distributions
with quickly decaying tails are a generic behavior expected
in finite-temperature many-body systems with short-range
interactions, both at and away from criticality. In fact, we
will show that � = 2/π , as in Eq. (27), actually happens
for a large variety of interacting lattice models. It is of
course possible to conceive nonunimodal energy distribu-
tions for which the proportionality C ∝ F breaks down.
We illustrate this in Appendix D, where we construct an
example for which C/F → 0 when N → ∞.

Our framework can also be adapted to scenarios where
the ideal energy binning cannot be implemented and
imprecisions are present. In the simplest case, one could
have some imprecision in determining the optimal bins
through Eq. (24), which would lead to a decrease in C. For
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(a)

(b)

FIG. 3. Optimal thermometry binning for a system described
by a linear density of states: (E) ∝ E. (a) Optimal binned
Fisher information, Eq. (17), as a function of d. The curves are
normalized by the full Fisher information, which in this case
reads F = 2β2. The inset shows the ratio C/F as a function
of the binning position b for d = 2. The optimal bin occurs at
βb = 2.589 75. The points in the main plot are already optimized
over the binning positions. (b) The corresponding probabilities pk
and average bins bk for d = 8.

the case d = 2, this is illustrated in the inset in Fig. 3(a),
which shows how C/F decreases as the bin position
deviates from its optimal value.

Another way in which imprecisions can enter our frame-
work is when the POVMs (4) are noisy. For instance,
experimental errors may cause energies close to a bin edge
to sometimes result in outcomes corresponding to neigh-
boring bins. Such effects can be accounted for within our
framework by modifying Eq. (21). To see that, we first
rewrite Eq. (21) as

pα =
∫ ∞

−∞
dEq(E)Bα(E), (29)

and similarly for εα . Here Bα(E) is a boxcar function, with
value 1 when E ∈ Iα = [bα−1, bα) and 0 otherwise. A simi-
lar analysis can also be done for the discrete representation
of Eq. (15). In this case, we would have pα = ∑

i Bα,iqi,
where Bα,i is a matrix with entries 1 when Ei ∈ Iα and 0

(a)

(b)

FIG. 4. The role of imperfect measurements in optimal ther-
mometry. (a) Example of smoothed boxcars, Eq. (30), for σ =
0.2. (b) Worsening of the coarse-grained Fisher information C
for the linear DOS example studied in Sec. III C 2. The red curve
is the same as in Fig. 3(a), while the other curves are computed
using the smoothed boxcars (30) with σ = 0.2, 0.3, and 0.4 (in
the unit of β = 1).

otherwise. However, it is more convenient to work with
the continuous-energy representation (29).

It is now straightforward to generalize Eq. (29) to
include the effects of noise by replacing Bα(E) by a differ-
ent function; for instance, a smoothed boxcar as depicted
in Fig. 4(a). Since

∑
α pα = 1 for any initial distribution

q(E), it follows that
∑

α Bα(E) = 1 for all E. This can
be viewed as a normalization condition for Bα(E). Bα(E)
is actually a combination of a stochastic matrix (whose
columns add up to 1) and an isometry, which reduces the
dimension from a continuous energy E to a discrete set of
outcomes α. The precise form of Bα(E) will depend on the
details of the experiment.

Measurement errors can cause not only a loss of preci-
sion but also systematic shifts in energy by, for example,
falsely displacing the energies εα by a certain amount. For
simplicity, we study these kinds of imprecision separately.
We defer the discussion of robustness to energy shifts to
Secs. IV A and IV B, while here we choose Bα(E) to be
symmetric in the interval [bα−1, bα) and centered at the
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midpoint (bα−1 + bα)/2 so that the bin energies εα are not
displaced.

The remaining feature to be described is errors associ-
ated with imperfect binning. This can again be done with
the smoothed boxcar of Fig. 4(a):

Bα(E) = 1
2

erf
(

bα − E

σ
√

2

)
− 1

2
erf

(
bα−1 − E

σ
√

2

)
, (30)

where erf x is the error function and σ is a parameter
measuring the degree of imprecision (a sharp boxcar is
recovered when σ → 0). A function of this form defines
a certain energy window 2σ , where measurements associ-
ated to one bin can be recorded in another bin. For this
reason, wider bins tend to be less affected than thinner
ones, which is physically reasonable.

We illustrate the above ideas with the linear DOS exam-
ple from Sec. III C 2. In Fig. 4(b) we present C/F as a
function of d for binning strategies computed with the
smoothed boxcars (30), with different values of σ . This is
contrasted with the ideal case, shown in red, which coin-
cides with the red curve in Fig. 3(a). As can be seen,
unsharp bin edges necessarily decrease the coarse-grained
Fisher information. That said, C/F is surprisingly robust:
even when the smearing occurs over a large part of the
bin width (e.g., 30%), C/F does not decrease much (only
about 7%).

IV. MANY-BODY LATTICE MODELS

We now proceed to analyze quantum systems on a
lattice, which is one of the most physically relevant set-
tings where coarse-grained measurements could be useful.
We start with general considerations and a tight-binding
chain as an illustrative example. Then we show a general
result for all noncritical spin models, and conclude with an
analysis of a system undergoing a thermal phase transition.

A. Gaussian density of states

In many-body lattice models, the energy distribution
(20) often displays an approximate Gaussian form in the
thermodynamic limit [58–60] (see also the detailed dis-
cussion in Sec. IV B and Appendix E). As a simple,
illustrative example of this principle, consider a fermionic
one-dimensional (1D) tight-binding chain with N sites
under periodic boundary conditions:

H =
N∑

k=1

εĉ†
k ĉk − t

N∑

k=1

(ĉ†
k+1ĉk + ĉ†

k ĉk+1), (31)

where ĉk is the fermionic annihilation operator at site
k, ε is the on-site energy, t is the hopping (tunneling)
strength, and ĉk+N = ĉk ensures periodic boundary condi-
tions. When diagonalized, the Hamiltonian of this model

(a)

(b) (c)

Numerical results

Gaussian

FIG. 5. (a) Energy distribution for a fermionic tight-binding
chain with 20 sites. The hopping strength is t = 0.3 and the tem-
perature is T/ε = 2. The numerical results are compared with the
Gaussian distribution [Eq. (33)]. (b) Optimal binned Fisher infor-
mation for the general Gaussian distribution as a function of d.
The curves are normalized by the thermal Fisher information [Eq.
(3)]. (c) Optimal binning and the corresponding probabilities for
the general Gaussian distribution with d = 8.

takes the form [30,61]

H =
N∑

a=1

εaĈ†
aĈa, (32)

with the (linearly) transformed Ĉa’s satisfying standard
fermionic anticommutation relations, and with eigenener-
gies given by εa = ε − t cos(2πa/N ).

We numerically compute the energy distribution (20)
of this model and in Fig. 5(a) compare the results with a
continuous Gaussian distribution with average energy 〈H 〉
and variance μ2 ≡ var(H) = −∂〈H 〉/∂β (both of which
depend implicitly on T); that is,

q(E) = 1√
2πμ2

e−(E−〈H 〉)2/(2μ2). (33)

We observe that the Gaussian distribution is a good
approximation already with a modest number of sites and
a modest hopping strength. The approximation improves
with the number of sites and becomes exact in the thermo-
dynamic limit (see Refs. [59,60]).

We now take a Gaussian distribution as a given and com-
pute the Fisher information for different coarse-grainings
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of the continuous distribution (33). In this case, the proba-
bilities and bin energies in Eq. (21) become

pα = 1
2
(

erf b̃α − erf b̃α−1
)
,

εα = 〈H 〉 − μ

pα
√

2π

(
e−b̃2

α − e−b̃2
α−1

)
,

(34)

where b̃α := (bα − 〈H 〉)/(μ√
2) (with b0 = −∞ and bd =

∞) are the shifted and rescaled bin positions. The full
Fisher information is simply F = β4μ2. For a d-outcome
measurement, one can then numerically perform the opti-
mization according to Eq. (24) to find the best such
measurement and the corresponding coarse-grained Fisher
information (17). The results for C/F for different num-
bers of bins d are shown in Fig. 5(b). As in the linear
density of states case, one sees a quick growth of C with
d toward the maximal value F .

The particular case of d = 2 can be obtained by setting
b0 = −∞, b2 = ∞, and b1 = b. We then get

p1,2 = 1 ± erf b̃
2

, ε1,2 = 〈H 〉 ∓ μ√
2πp1,2

e−b̃2
,

so the coarse-grained Fisher information [Eq. (17)]
becomes

C = 2F
π

e−2b̃2

1 − (erf b̃)2
. (35)

The result is expressed solely in terms of the shifted
bin position b̃; therefore, the minimization procedure is
independent of 〈H 〉 or μ. As one may readily verify,
the function in Eq. (35) is maximized at b̃ = 0. That is,
the bin should be placed symmetrically, at b = 〈H 〉. The
corresponding maximum is

C = 2
π
F . (36)

This relation is robust with respect to imprecise identifica-
tion of the optimal boundary (which can be understood as a
systematic error in the energy measurement, as mentioned
in Sec. III D). Indeed, Taylor-expanding the right-hand
side of Eq. (35) with respect to small b̃ around its opti-
mal value, b̃ = 0, we find that C/F = (2/π)[1 − 2b̃2(1 −
2/π) + O(b̃4)]. Even for a significant deviation of |b −
〈H 〉| = 0.3μ, C/F degrades by only approximately 3.3%.

Not coincidentally, the relation in Eq. (36) also appears
in the case of noninteracting qubits in the limit of large N
(Sec. III C 1). This is because the energy distribution in that
case also becomes Gaussian in the N 	 1 limit, due to the
central limit theorem.

In Fig. 5(c), we illustrate the optimal bins and the corre-
sponding probabilities for the distribution (33) in the case

of d = 8. In this case, the optimal bins have to be located
numerically. Unsurprisingly, it is found that the optimum
is symmetric around the average energy.

B. Noncritical, interacting systems on lattices

We will now show how some of the conclusions of
Sec. IV A actually hold universally in the thermodynamic
limit. Intuitively speaking, the idea is that generic lattice
models with finite-range interactions, when away from
criticality, tend to have a Gaussian energy distribution due
to the many-body Berry-Esseen theorem [58–60]. There-
fore, the same behavior as in Fig. 5 is expected to occur
when coarse-graining to different partitions in such lattice
models.

In Appendix E, we prove that the maximal C/F
achievable by two-outcome measurements (d = 2) is 2

π
+

O(ln−1 N ), and the boundary of the optimal partition I1 =
[E0, b] and I2 = (b, ED] is near the average energy: b −
〈H 〉 = O(ln−1/2 N )

√
var(H). Moreover, when b = 〈H 〉

exactly, one still has C
F = 2

π
+ O(ln−1 N ). In the ther-

modynamic limit, this coincides with the results for the
exact Gaussian distribution (Sec. IV A) and for indepen-
dent qubits (Sec. III C 1). We expect that for d ≥ 3 par-
titions, one should be able to prove results identical to
those obtained for the exact Gaussian energy distribution
in Sec. IV A by using arguments along the lines of those in
Appendix E.

To prove Eq. (36), we need to assume that the ther-
mal state of the lattice satisfies the following two generic
conditions:

(i) Exponential decay of correlations: For arbitrary
regions X ,Y separated by a distance l on the lattice,
and some constant ξ ,

max
X ∈X ,Y∈Y

∣∣∣∣
〈X ⊗ Y〉 − 〈X 〉〈Y〉

||X || ||Y||
∣∣∣∣ ≤ e−l/ξ . (37)

(ii) The variance in energy scales linearly with the num-
ber of lattice sites: var(H) = 〈H 2〉 − 〈H 〉2 = s2N .

Assumption (i) is expected to hold for a very large class
of systems away from criticality. Indeed, it has been rig-
orously proven for 1D translation-invariant thermal states
[62], finite-range fermionic lattice systems of arbitrary spa-
tial dimension at nonzero temperatures [63], and all finite-
range lattice systems above a threshold lattice-dependent
temperature [64]. Assumption (ii) is expected to hold for
most systems at a high enough temperature. Note that
assumption (i) already implies that var(H) = O(N ) [65].

The detailed proof of Eq. (36) in Appendix E is based
on the Berry-Esseen theorem for local Hamiltonians that
relies on the two assumptions above and is proven in Refs.
[59,60] (see also Appendix F 1). This result can be seen as
a strengthening of the central limit theorem, which gives
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a precise notion of how the energy distribution of lattice
models converges to a Gaussian in the thermodynamic
limit. It allows us to estimate functions of the form of Eq.
(19), in this case, the bin energies εk.

Lastly, the Gaussian behavior of noncritical many-body
lattice systems also extends to the problem of how robust
C/F = 2/π is with respect to imprecise identification of
the optimal binning boundary. Indeed, as we show in
Appendix E, for small b̃ = (b − 〈H 〉)/√2 var(H),

C
F = 2

π
[1 − 2b̃2(1 − 2/π) + O(ln−1 N ) + O(b̃3)],

so, as in Sec. IV A, for, e.g., |b − 〈H 〉| = 0.3
√

var(H) (and
N 	 1), C/F will degrade by only approximately 3.3%.

C. Critical systems

The thermal Fisher information (3) is proportional to the
heat capacity of the system, which scales as C = Nc(β),
where c(β) is the specific heat. For noncritical systems,
c(β) is intensive. However, at a finite-temperature phase
transition, it diverges as the temperature of the system
approaches the critical temperature Tc > 0, according to
c(β) ∝ |t|−α , where t := (β − βc)/βc and α ≥ 0 is the
so-called critical exponent [66]. When α = 0, the diver-
gence is logarithmic: c(β) ∝ ln |t|−1 [66]. In large but
finite systems, there are of course no infinities, and at
the phase transition point, cN (βc) ∝ Nα/(2−α) when α > 0
[67] and cN (βc) ∝ ln N when α = 0 [67,68]. Since cN =
(β2 var(H))/N [Eq. (3)], the divergence of cN (βc) with
N implies that critical systems do not satisfy condition
(ii) in Sec. IV B. In general, critical systems also feature
diverging correlation lengths [66], thereby violating con-
dition (i) in Sec. IV B as well. Therefore, the many-body
Berry-Esseen theorem becomes inapplicable for critical
systems.

In Appendix F, building on several rigorous results on
translation-invariant lattices with finite-range interactions
in Refs. [61,69,70], we develop an alternative approach
toward determining the energy distribution of such lattices
in arbitrary spatial dimensions. First of all, for noncritical
lattices, we show that the energy distribution approximates
a Gaussian in a way that complements the many-body
Berry-Esseen theorem [59,60]. Moreover, for this wide but
specific class of lattices, our approach allows us to access
the energy distribution even at criticality.

For critical lattices with α = 0, we show in Appendix
F 2 a that the energy distribution still tends to a Gaussian
in the N → ∞ limit; however, the convergence does not
include the tails of the distribution, which are O(

√
N ) stan-

dard deviations away from 〈H 〉. In a sense, for translation-
invariant lattices, this result suggests that the Gaussianity
of the distribution holds beyond assumptions (i) and (ii)
above [59,60]. Thus, Eq. (36) applies in the thermody-
namic limit, both at criticality (with α = 0) and away from

it. We illustrate these ideas in Sec. IV C1 with a detailed
study on the classical 2D Ising model on a square lattice, a
paradigmatic model with α = 0.

The case 1 > α > 0 is treated in Appendix F 2 b. We
show that the energy distribution is Gaussian only in a
neighborhood of the peak that is much smaller than the
standard deviation. Hence, it is not Gaussian as a whole.
Notwithstanding, we show that it is unimodal with expo-
nentially decaying tails, which means that the consider-
ations in Appendix C are applicable; that is, a two-bin
measurements with the boundary placed at 〈H 〉 will yield
C that scales proportionally to F . In other words, since
F = β2NcN , we will have C ∝ β2N 2/(2−α).

1. Two-dimensional Ising model

The square-lattice two-dimensional (2D) Ising model is
defined on an L × L square lattice where each site i is char-
acterized by a Pauli matrix σ i

z , with i = 1, . . . , N (N = L2).
The spins interact according to the Hamiltonian

H = −J
∑

〈i,j 〉
σ i

zσ
j
z , (38)

where the sum is over all nearest neighbors. Since the
interactions involve only σz operators, the Hamiltonian is
already diagonal in the computational basis, with energy
eigenvalues

E(σ ) = −J
∑

〈i,j 〉
σiσj , (39)

where σ = (σ1, . . . , σN ) and σi = ±1 are the eigenvalues
of σ i

z . Here we impose periodic boundary conditions. The
model presents a phase transition at Tc/J = 2/ ln(1 + √

2)
[71,73,74]. This can be seen, for instance, in terms of the
magnetization m = (1/N )

∑
i〈σi〉, as plotted in Fig. 6(a).

For not very large N , the full energy distribution q(E)
can be computed exactly with use of a method developed
in Ref. [72]. Results for L = 8, 16, 32, and 64 are shown
in Figs. 6(b)–6(e). Although the distribution is irregular
for small sizes, it can be seen that the distribution visually
appears to approach a Gaussian as the lattice size increases.

To rigorously prove that this is indeed the case, one
needs to show that the higher-order (≥ 3) cumulants of the
energy distribution, κk, become irrelevant as N becomes
large. As discussed in Appendix F 3, the cumulants of the
energy distribution can be found from the free energy FN
through the simple relation

κk = (−1)k−1 ∂
k(βFN )

∂βk . (40)

Moreover, for the 2D Ising model, an exact expression for
FN , for finite N , is available [75]. Using these facts, we
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(a) (b) (c)

(d) (e)

(f)

(g)

(h)

–2.0 –1.5 –0.5–1.0 –2.0 –1.5 –1.0

FIG. 6. Classical two-dimensional Ising model [Eq. (39)]. (a) Magnetization as a function of temperature for different lattice sizes,
showing the phase transition at Tc/J = 2.269 19. The dashed curve corresponds to the thermodynamic limit (where the exact solution
is m = [

1 − sinh−4(2J/T)
]1/8 [71]). (b)–(e) Exact energy distributions q(E) for T = Tc computed using the method in Ref. [72]. Each

curve corresponds to a different lattice size, L = 8, 16, 32, and 64 [same color code as in (a)]. (f)–(h) Cumulants κ2, κ3, and κ4 of
q(E) as a function of temperature for different lattice sizes. The third and fourth cumulants scale, respectively, as N 3/2 and N 2, where
N = L2 is the number of sites. The second cumulant, on the other hand, scales as N ln N .

show in Appendix F 3 that κ2 ∝ N ln N [66,68], while κk ∝
N k/2 for k ≥ 3 [these results are also illustrated in Figs.
6(f)–6(h)]. As a consequence, we therefore have

κ
1/k
k

κ
1/2
2

∝ ln−1/2 N , (41)

showing that the higher-order cumulants do indeed become
negligible as compared with κ2 = var(H); that is, the
distribution tends to a Gaussian as N → ∞.

The previous discussion refers to the scaling in the vicin-
ity of the critical point. Away from it, because of the
extensivity and analyticity of FN in the limit of N → ∞,
we simply have from Eq. (40) that κk ∝ N for k ≥ 1.
Hence, κ1/k

k /κ
1/2
2 ∝ N−(k−2)/(2k); that is, away from crit-

icality, q(E) approaches its Gaussian limit polynomially,
as compared with the slow logarithmic convergence at
criticality.

V. PROBE-BASED MEASUREMENTS

In contrast to the previous section, where we allowed
for arbitrary global measurements, in this section, we will
look at measurement schemes (both idealized and more
realistic) that can be realized by the interaction of a probe
with the system, possibly some auxiliary system of arbi-
trary size, and the subsequent measurement of the probe
alone. We compare the performance of such probe-based
measurements with the upper bounds obtained in Sec.
III B.

First of all, we observe that the maximal thermometric
precision achievable by measuring a d-dimensional probe

P that has unitarily interacted with the system S in a ther-
mal state τ , and an auxiliary system A in some state
ρA, is the same as the maximal precision of a d-outcome
measurement on S. Here we assume that d < D, because
otherwise one can simply transfer all of the state of S—and
the (Fisher) information on β, F , along with it—to P;
however, when d < D, even the best possible strategy of
encoding the state of S into that of P will result in losses.
Indeed, if the initial state of P is some σ , then, whatever
the optimal unitary U, standard quantum metrology tells us
[76] that the optimal POVM on

σ ′ = TrSA
{
U(σ ⊗ τ ⊗ ρA)U†} (42)

will have to have d outcomes. On the other hand, the prob-
ability distribution generated by any d-outcome POVM on
σ ′ can also be generated by a d-outcome POVM on S.
Thus, denoting the quantum Fisher information of σ ′ on
β by C(P), we have C(P) ≤ C.

To show that C(P) = C, we note that C is delivered
by a projective measurement on the system correspond-
ing to some binning I1 ∪ · · · ∪ Id that yields measurement
statistics pα = ∑

qj ∈Iα qj . We choose σ = |1〉〈1| so that,

in the {|α〉 ⊗ |Ej 〉} basis, σ ⊗ τ = diag
(�q, �0, . . . , �0). Here

�q = (q1, . . . , qD) and �0 is made of D zeroes. Then the per-
mutation unitary acting on σ ⊗ τ that permutes all the qj ’s
in I2 from �q with some of the zeroes from the �0 next to �q, all
the qj ’s in I3 with zeroes from the second �0, etc., will ren-
der σ ′ = diag(p1, . . . , pd). This distribution will produce a
C(P) that is equal to C. Note that, to show that C(P) can be
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made equal to C, there was no need to involve any auxiliary
systems.

For the case of d = 2, where the optimal POVM on S
is defined by the bins I1 = {Ej : Ej < b} and I2 = {Ej :
Ej ≥ b}, with b being the boundary, we now show that such
a permutation can be generated by the quantum-optics-
inspired Hamiltonian

H =
D∑

k=1

Ek|Ek〉〈Ek| + b|⇑〉〈⇑|

+ λ
∑

Ek≤ED−b

(|⇓〉〈⇑| ⊗ |Ek + b〉〈Ek| + H.c.) , (43)

where |⇓〉 and |⇑〉 are the eigenstates of the probe spin,
with the corresponding eigenvalues E⇓ = 0 and E⇑ = b.
This Hamiltonian may not be easily realizable in practice.
However, the point is that, as we show, it is guaranteed to
provide the best possible precision using a two-level probe.
This can then be used as a benchmark to compare against
when other interactions are used. Furthermore, we take the
system’s ground state to be at energy E1 = 0, and since
ultimately we are going to be interested in the case where
the system’s energy spectrum is effectively continuous, we
also assume that |Ek + b〉 is a valid eigenstate.

We initialize the system and the probe in the joint state
ρ(0) = |⇓〉〈⇓| ⊗ τ . The simplest way to characterize its
evolution under H is to describe how the pure states con-
stituting it, |�j (0)〉 = |⇓〉 ⊗ |Ej 〉, evolve under H . It is
easy to show that, in the interaction picture (labeled by the
superscript I), |� I

j (t)〉 = |⇓〉 ⊗ |Ej 〉 for Ej < b, and

|� I
j (t)〉 = cos(λt)|⇓〉 ⊗ |Ej 〉 − i sin(λt)|⇑〉 ⊗ |Ej − b〉

for Ej ≥ b. Thus, transitioning back to the Schrödinger
picture, from ρ(t) = ∑

j
1
Z e−βEj |�j (t)〉〈�j (t)|, we find the

probability of finding the probe qubit in the spin-up state,
P⇑, when measuring it at time t to be

P⇑(t) = sin2(λt)
∑

Ej ≥b

e−βEj

Z
. (44)

Hence, for tmeas = π/(2λ), the ideal projective measure-
ment of the probe qubit’s spin produces a probability
distribution identical to that produced by the ideal binary
measurement of the system corresponding to the binning
I1 ∪ I2.

Note that realizing this idealized scheme experimen-
tally is far from being straightforward. Therefore, in the
next subsection, we study a specific model realization, and
describe both its capabilities and its limitations.

A. Jaynes-Cummings model

As a specific illustration of quantum probe-based ther-
mometry, we consider an experimentally relevant system

consisting of a superfluid Bose-Einstein condensate reser-
voir in a shallow confining trap interacting with an atomic
quantum dot [45]. Generally, the physics of this system is
well captured by a spin-boson model, in which the atomic
quantum dot interacts with the phononic excitations of the
Bose-Einstein condensate superfluid. Given suitably engi-
neered boundary conditions, the spectral density will be
such that a quantum dot with frequency ωd will in effect
couple only to the phonon modes that come closest to
being resonant with the quantum dot frequency (for sim-
plicity we suppose all relevant phonon modes have the
same frequency ωa).

We can then ask the question of how well one can esti-
mate the Bose-Einstein condensate temperature by mea-
surements on the quantum dot probe. In Fig. 7(a) we
plot the ratio of coarse-grained Fisher information and the
thermal Fisher information for the optimal binary measure-
ment within the effectively resonant subspace. The ratio is
given as a function of the number of effectively resonant
modes, which would be expected to increase in proportion
to the width of the spectral density. From Fig. 7(a) we see
that the ratio approaches a value of 0.64 as the number of
modes increases. This provides an optimal value against
which to compare specific binary measurement strategies.

(a)

(b) (c)

ww

FIG. 7. (a) Optimal binary-outcome thermometry on a collec-
tion of bosonic modes of frequency ωa as a function of the
number of oscillators. The top line corresponds to βωa = 0.7,
the bottom line corresponds to βωa = 0.1, and intermediate
temperatures are contained within the shaded area. (b) Compar-
ison between the optimal binary measurement strategy and the
two-level Jaynes-Cummings model probe, optimized over the
measurement time gt, in the single oscillator case. The shaded
area represents the range δ/g = [0, 1.2] of the detuning. (c) Opti-
mal measurement time (gtopt) as a function of temperature for the
Jaynes-Cummings model.
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We see that the obtained ratio agrees with the optimal ratio
found for a binary measurement on a system described by
a Gaussian density of states.

If we now consider the specific case where the effec-
tively resonant subspace consists of a single phononic
mode, and furthermore make a rotating wave approxima-
tion, the resulting system is modeled by the paradigmatic
Jaynes-Cummings Hamiltonian [77]:

H = ωdσ
†σ + ωaa†a + g

(
σ †a + σa†) , (45)

where a and a† are the creation and annihilation operators
of the bosonic cavity mode, g is the coupling strength,
and σ = |g〉〈e|, where the excited and ground states of
the quantum dot are denoted by |e〉 and |g〉, respectively.
Experimental work has shown how such models arise for
specific thermometry protocols [6], and our results makes
it possible to evaluate how close such a strategy is to being
optimal.

Consider a measurement protocol in which the quan-
tum dot is initialized in its ground state. The quantum dot
then evolves jointly with the Bose-Einstein condensate for
a time t, after which the probability of finding the quantum
dot in its excited state is given by

Pe(t) =
∞∑

n=0

e−βωa(n+1)

Zβ

g2(n + 1)
λ2

n
sin2(λnt), (46)

where we have defined λn =
√
δ2/4 + g2(n + 1) in terms

of the detuning δ = ωd − ωa. From this probability we can
compute the coarse-grained Fisher information; see also
Ref. [22]. In Fig. 7(b) we show the ratio of the coarse-
grained Fisher information computed from Eq. (46) and
optimized over the measurement time at each temperature
and the thermal Fisher information of the phononic mode
itself. Inspection of the results shows that the probe-based
measurement gives a Fisher information that never falls
below 45% of the optimal binary measurement strategy. In
Fig. 7(c) we plot the optimal measurement time as a func-
tion of temperature, and we observe an inverse relationship
between the optimal measurement time and the tempera-
ture. Notice that as the temperature approaches absolute
zero, the optimal measurement time for zero detuning
approaches π/(2g), in agreement with previous results
[22].

It is interesting to note that similar considerations for
the Fisher information were obtained for temperature
measurements of micromechanical resonators via a qubit
probe, whose interaction can also be described by the
Jaynes-Cummings Hamiltonian (45) [22]; and more gen-
eral interaction Hamiltonians, either dropping the rotating
wave approximation or considering interactions far off res-
onance, have also been considered [13,23]. In all such
cases, our considerations provide upper bounds on the

maximal precision estimation with a qubit probe, as shown
in Fig. 7. Indeed, the strength of our bounds is that they
apply to arbitrary nonequilibrium strategies.

VI. CONCLUSIONS

We have considered the precision limits on temperature
estimation when having access to coarse-grained measure-
ments that have at most d outcomes. Using tools from
signal processing, we derived the structure of the optimal
POVM measurement. We applied these abstract consid-
erations to two physically relevant scenarios: temperature
measurements of many-body systems and nonequilibrium
thermometry.

For many-body systems, we considered spin lattices,
both away from and at criticality, and found that the Fisher
information C can grow extensively with the system size
even when d does not. In particular, for d = 2, we found
that it is in principle possible that C/F ≈ 2/π in the ther-
modynamic limit N → ∞ even for systems at criticality.
While this will decrease for realistic strategies where the
POVM are smoothed out (see the discussion in Sec. III D
and Fig. 4 specifically), we expect that the extensive scal-
ing will be preserved as long as the binary measurement
can distinguish system energies that are O(

√
var(H)) apart

(see the discussion on displaced boundary in Secs. IV A
and IV B).

Along the way, we also derived new results for the
energy distribution of many-body systems in the regime
of criticality, which might be of independent interest.
These generic considerations were illustrated on the 2D
Ising model, the energy distribution of which becomes
well approximated by a Gaussian distribution except in
the tails of the distribution. We expect more pronounced
non-Gaussian features in the energy distribution of other
critical models, which we leave as interesting future
research.

For nonequilibrium thermometry, we used our results
to devise the optimal probe-system interaction and inter-
rogation time, thus providing general guidelines for the
design of optimal nonequilibrium thermometry strategies.
This result also provides an upper bound on specific exper-
imentally motivated protocols. We illustrated this for a
temperature measurement of a Bose-Einstein condensate
through a quantum dot via a Jaynes-Cummings interac-
tion [22,23]. It remains an exciting open question to find
a realistic implementation of the optimal probe-sample
interaction (43).

Lastly, in this work, we focused on asymptotic metrol-
ogy, where one has access to full measurement statistics
and can possibly run the experiment many times. This
may not always be feasible in practice, and the Fisher
information may then no longer be an adequate preci-
sion quantifier. In such cases, alternative approaches are
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needed, such as global Bayesian estimation [78]. Ana-
lyzing the effect of coarse-graining in such situations is
another interesting research direction.
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APPENDIX A: OPTIMALITY OF CONSECUTIVE
BINNING

In this appendix, we apply Theorem 1 in Ref. [56] to
prove that the sets Iα maximizing the coarse-grained Fisher
information C can be chosen to be consecutive. First, we
state the theorem mentioned and then we show how it
applies to our problem.

Theorem 1 (Theorem 1 in Ref. [56]). Let a1,. . . , aD and
b1,. . . , bD be real numbers such that either ai ≥ 0 ∀i or
bi ≥ 0 ∀i and

a1

b1
≤ · · · ≤ aD

bD
. (A1)

If some bi = 0, then ai/bi is defined as sgn ai × ∞ when
ai �= 0. When ai is also 0, ai/bi is defined arbitrarily to sat-
isfy Eq. (A1). Next, for a partitioning of the set {i}D

i=1 into
d nonoverlapping subsets {Iα}d

α=1,
⋃d

α=1Iα = {i}D
i=1, define

aIα := ∑
i∈Iα ai and bIα := ∑

i∈Iα bi. Then the maximum of
an objective function

h(aI1 , bI1 , . . . , aId , bId) (A2)

over all possible partitionings {Iα}d
α=1 is delivered by a

partitioning into consecutive subsets if h is a jointly con-
vex function of all of its 2d arguments. (A subset of {i}D

i=1
is called “consecutive” if its elements are consecutive
numbers.)

Returning to our problem, we assign ai = qi(Ei − 〈H 〉)
and bi = qi. Now we immediately see that bi > 0 for all i’s
and ai/bi = Ei − 〈H 〉 satisfies the condition (A1) in view

of Eq. (14). In terms of aIα and bIα , our objective function,
C (corresponding to h in the theorem), as defined by Eq.
(17), reads

C(aI1 , bI1 , . . . , aId , bId) =
d∑

α=1

a2
Iα

bIα
. (A3)

In view of the joint convexity of the function a2/b [55],
we immediately see that C(aI1 , bI1 , . . . , aId , bId) is a jointly
convex function of all of its 2d arguments.

So, having shown that all the conditions of Theorem
1 are met for our problem, we have thus proven that the
maximum of C over all partitions (equivalent to nonover-
lapping bins) {Iα}d

α=1 is delivered by a consecutive parti-
tioning.

Lastly, we note that the optimality of consecutive parti-
tioning does not preclude the possibility that some other,
nonconsecutive partitioning delivers the same maximum.
Direct numerical checks show that for our particular case
such coincidences do indeed happen.

APPENDIX B: NONINTERACTING QUBITS IN
THE LARGE-N LIMIT

In the limit of a large number of qubits, we can
approximate the sums in Eq. (26) by integrals (using the
de Moivre–Laplace theorem) and obtain the approximate
probabilities and bin energies

pα = 1
2

[
erf

(
Ns − bα−1√

2Nrs

)
− erf

(
Ns − bα√

2Nrs

)]
,

εα = 〈H 〉 −
√

Nrs√
2πpα

[
exp

(
− (bα − Ns)2

2Nrs

)

− exp
(

− (bα−1 − Ns)2

2Nrs

)]
.

(B1)

The case of binary measurements, d = 2, is defined by a
single bin boundary b = b1. Assuming the system to be at
a temperature such that Ns/r 	 1, substituting pα and εα
into Eq. (17), we find

C
F ≈ 2

π

exp
(
− (Ns−b)2

Nrs

)

1 − erf
(

Ns−b√
2Nrs

)2 . (B2)

The ratio takes its maximal value for b = Ns, which is
also a solution to Eq. (24). In this case we therefore
arrive at Eq. (27). This is consistent with Eq. (36) in
view of the de Moivre–Laplace theorem, which almost
straightforwardly states that the energy distribution of
N 	 1 thermally identical noninteracting qubits is a dis-
crete Gaussian. Thus, we find that in the large-N limit for
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a binary measurement, the optimal partition is at the aver-
age energy, and a very appealing feature is that such a
measurement provides Fisher information that is already
2/π ≈ 64% of the maximal possible value, independently
of the system size N .

APPENDIX C: PROPORTIONALITY C ∝ F FOR
TWO-BIN MEASUREMENTS ON SHORT TAIL

DISTRIBUTIONS

In this appendix we show that a proportionality of the
form C ∝ F is generically true for two-bin measurement,
in which the separation of the bins is at the average
energy 〈H 〉, for any distribution that decays sufficiently
quickly [see Eq. (C4)]. By “energy distribution” we under-
stand q(E) = (E)(e−βE/Z) [Eq. (20)], and not just e−βE .
Indeed, since β > 0, e−βE must decay monotonically with
energy. But (E) may concentrate energy in different sec-
tors, which can cause the overall distribution q(E) to have
arbitrary shapes. Indeed, as discussed in Sec. IV, quite
often q(E) will have a Gaussian shape or, more generally,
a short tail distribution.

For a dichotomic measurement, with bin position at
b = 〈H 〉, the coarse-grained Fisher information (17) can
be written, with some rearrangements, as

C = β4 E2

p+(1 − p+)
, (C1)

where

p+ =
∫ ∞

〈H 〉
dEq(E), (C2)

E =
∫ ∞

〈H 〉
dE(E − 〈H 〉)q(E) =

∫ ∞

0
dEEq̂(E). (C3)

Here, to simplify notation, we also introduced q̂(E) =
q(E + 〈H 〉).

Now we require—and this is the only requirement we
impose—that there exists a fixed (i.e., independent of N )
number λ > 1 such that

∫

I3

dEE2q̂(E) ≤ A var(H), (C4)

where

0 ≤ A <
1
2

(C5)

and

I3 = {E : |E| > λ
√

var(H)}. (C6)

These conditions are generically expected to be satisfied
by unimodal distributions with fast decaying tails; how-
ever, unimodality is not a requirement as long as the above
requirement is met.

We further pick

0 < λ0 <
1
2

(C7)

and define

I1 = {E : |E| ≤ λ0

√
var(H)}. (C8)

We designate the remaining interval as

I2 = {E : λ0

√
var(H) < |E| ≤ λ

√
var(H)}, (C9)

and we further define

pk =
∫

Ik

dEq̂(E), k = 1, 2, 3. (C10)

Now, by Eq. (C8),
∫

I1

dEE2q̂(E) ≤ λ2
0 var (H)p1 = λ2

0 var (H)(1 − p2 − p3).

(C11)

Then, again, by the definition of Eq. (C9),

λ2 var (H)p2 ≥
∫

I2

dEE2q̂(E) = var(H) −
∫

I1∪I3

dEE2q̂(E).

(C12)

Invoking Eqs. (C4) and (C11), we rewrite Eq. (C12) as

λ2 var (H)p2 ≥ (1 − A − λ2
0) var(H) + λ2

0 var (H)p2,
(C13)

which gives

p2 ≥ 1 − A − λ2
0

λ2 − λ2
0

. (C14)

With this, we immediately find that

E =
∫ ∞

0
dEEq̂(E) ≥

∫

I2

dEEq̂(E) ≥ λ0

√
var(H)p2,

(C15)

and thus

E ≥ λ0
1 − A − λ2

0

λ2 − λ2
0

√
var(H). (C16)
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Since p+(1 − p+) ≤ 1/4, from Eq. (C1), we have

C ≥ �β4 var(H), (C17)

where

� = 4λ2
0

(
1 − A − λ2

0

λ2 − λ2
0

)2

, 0 < � < 1. (C18)

Keeping in mind Eq. (3), we thus have

�F ≤ C ≤ F . (C19)

The bound above, the purpose of which is solely to prove
the scaling of C, may be rather loose, and it is of course
desirable to find tighter bounds. We leave this task for
future work.

APPENDIX D: EXAMPLE OF SMALL FISHER
INFORMATION

In this appendix we construct an example for which the
scaling C ∝ F , found in several examples throughout the
main text, breaks down. Albeit rather artificial, the goal
of this construction is to illustrate that, although occurring
generically, the relation C ∝ F is not universal.

To construct our example, we take N two-level systems,
the total Hamiltonian of which is such that the density of
states has four sharp peaks, approaching

N (E) = ϑN ,εδ(E − ε) + ϑN ,−εδ(E + ε)

+ ϑN ,tN δ(E − tN ) + ϑN ,−tN δ(E + tN ) (D1)

as N → ∞, where t > 0 and ε > 0 are some fixed val-
ues of energy and the quantities ϑN ,±ε and ϑN ,±tN are also
positive. By definition,

∫
dEN (E) = 2N , so

ϑN ,ε + ϑN ,−ε + ϑN ,tN + ϑN ,−tN = 2N . (D2)

We emphasize that the distributions are discrete and
become continuous in the N → ∞ limit, and the δ func-
tions above are also to be understood as sharp peaks that
approach the δ function in the N → ∞ limit.

Finally, we require that the effectively discrete energy
distribution qN (E) = (1/Z)e−βEN (E) [cf. Eq. (20)] is

qN ,E =

⎧
⎪⎨

⎪⎩

1
2

− 1
N

, E = ±ε,

1
N

, E = ±tN ,
(D3)

which corresponds to the following choice of the quantities
ϑN ,E:

ϑN ,±ε =
(

1
2

− 1
N

)
e±βεZ, (D4)

ϑN ,±tN = 1
N

e±βtN Z, (D5)

where, according to Eq. (D2), Z should be

Z = 2N

(2/N ) cosh(βtN ) + (1 − 2/N ) cosh(βε)
. (D6)

Now, it is straightforward to see that the average energy
corresponding to qN ,E is zero. Thus, the thermal Fisher
information will be

F = β4
∑

E=±ε,±tN

qN ,EE2 = β4
[

2t2N +
(

1 − 2
N

)
ε2
]

.

(D7)

Furthermore, considering two-outcome measurements
with the optimal boundary being at the average energy (in
this case 0), the bin probabilities will be p1 = p2 = 1/2 [cf.
Eq. (15)] and the bin energies [cf. Eq. (16)] will be

ε1 = −ε2 = 2
[

t + ε

(
1
2

− 1
N

)]
; (D8)

hence, according to Eq. (17),

C = 4β4
[

t + ε

(
1
2

− 1
N

)]2

. (D9)

Thus,

C
F = 4

[
t + ε

( 1
2 − 1

N

)]2

2t2N + (
1 − 2

N

)
ε2

, (D10)

which for fixed ε and t scales proportionally to 1/N , which
strongly breaks the C ∝ F relation.

APPENDIX E: PROOF OF Eq. (36)

To prove Eq. (36), we first state the quantum Berry-
Esseen theorem proven in Refs. [59,60] for lattices with
finite-range interactions. The theorem requires the fol-
lowing two assumptions about the state of the system
ρ:

(i) The state has exponentially decaying correlations:
for arbitrary regions X ,Y separated by a distance l
in the lattice and some constant ξ

max
X ∈X ,Y∈Y

∣∣∣∣
〈X ⊗ Y〉 − 〈X 〉〈Y〉

||X || ||Y||
∣∣∣∣ ≤ e−l/ξ . (E1)

(ii) The variance in energy scales with the number of
sites as var(H) = 〈H 2〉 − 〈H 〉2 = s2N .
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The system is an N -vertex lattice LN (the vertices of which
correspond to “particles”) and is described by a locally
bounded, finite-range interacting Hamiltonian:

H =
∑

v∈LN

Hv . (E2)

Each Hv acts only on vertices the Manhattan distance of
which from v is ≤ z, where z is some fixed natural num-
ber that sets the (finite) range of the interactions within the
lattice. Lastly, the theorem requires the Hamiltonian to be
locally bounded: there exists a constant h > 0 such that

‖Hv‖ ≤ h ∀ v ∈ LN , (E3)

where ‖ · ‖ can be chosen to be, for example, the spectral
norm (h will of course depend on the norm we choose).

Theorem 2 (Lemma 8 of Ref. [59]). Let ρ be a state
such that assumptions (i) and (ii) hold, and with a local
Hamiltonian with uniformly bounded local terms, of a sys-
tem of N particles on a d-dimensional lattice. Given the
cumulative function

J (x) =
∑

Ei≤x

〈Ei|ρ|Ei〉 (E4)

and the Gaussian cumulative function

G(x) =
∫ x

−∞

dt√
2π var(H)

exp
(

− (t − 〈H 〉)2

2var(H)

)
, (E5)

then

sup
x

|J (x) − G(x)| ≤ C0
ln2d N

s3
√

N
, (E6)

where C0 is a constant.

Crucially, the constant C0 does not depend on the system
size but depends only on parameters such as the range of
the Hamiltonian (z), the lattice structure, or the correlation
length ξ .

We can always set the energy of the ground state of
H to be zero. Moreover, keeping in mind Eqs. (E2) and
(E3), we have ‖H‖ ≤ ∑

v∈LN
‖Hv‖ ≤ hN , meaning that

the largest Ei is ≤ hN . Thus, the real range of energies in
Eq. (E4) can be summarized as Emin := min{Ei} = 0 and
Emax := max{Ei} ≤ hN , and for any E �∈ [Emin, Emax] one
sets q(E) = 0 so that integrals with infinite energy ranges
are meaningful.

We now bound C, assuming two partitions I1 = (−∞, b]
and I2 = (b, ∞) (i.e., d = 2). We first estimate the prob-
abilities p1 and p2 = 1 − p1, defined in Eq. (15), using

Theorem 2:

p1 =
∑

Ei≤b

qi = J (b) = G(b) + εN , (E7)

where

εN = O

(
ln2d N√

N

)
. (E8)

Next, we note that, since 〈H 〉 = ∑
Ei<b qiEi + ∑

Ei≥b qiEi,

∑

Ei<b

qi(Ei − 〈H 〉) = −
∑

Ei≥b

qi(Ei − 〈H 〉). (E9)

So, on our introducing

E =
∑

Ei−b≥0

qi(Ei − 〈H 〉), (E10)

the bin energies, as given by Eq. (16), read

ε1 − 〈H 〉 = − E

p1
and ε2 − 〈H 〉 = E

p2
. (E11)

Therefore, according to Eq. (17), for the coarse-grained
Fisher information, we obtain

C = β4[p1(ε1 − 〈H 〉)2 + p2(ε2 − 〈H 〉)2] = β4 E2

p1(1 − p1)
.

(E12)

Now, taking into account Eq. (E7), we can write

1
p1(1 − p1)

= 1
G(b)[1 − G(b)]

× {
1 + O(εN [2G(b) − 1]) + O(ε2

N )
}
.

(E13)

Thus, introducing

b̃ = b − 〈H 〉√
2 var(H)

(E14)

and noticing that

G(b) = 1
2

+ 1
2

erf b̃, (E15)

similarly to Eq. (E12), we can write

C = β4 4E2

1 − (erfb̃)2

[
1 + O(εN erfb̃) + O(ε2

N )
]
. (E16)
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Turning to E, we rewrite Eq. (E10) as

E =
∑

Ei−b≥0

qi(Ei − 〈H 〉)=
∞∑

l=0

∑

�l≤Ei−b<�(l+1)

qi(Ei − 〈H 〉),

(E17)

where � > 0 is an arbitrary constant. With this, by choos-
ing an arbitrary natural number R, we can lower-bound E
as

E =
∞∑

l=0

∑

�l≤Ei−b<�(l+1)

qi(Ei − 〈H 〉)

≥
R∑

l=0

∑

�l≤Ei−b<�(l+1)

qi(Ei − 〈H 〉)

≥
R∑

l=0

(�l + b − 〈H 〉)
∑

�l≤Ei−b<�(l+1)

qi,

which, on our introducing

�̃ = �√
2 var(H)

(E18)

reads

E ≥
√

2 var(H)

R∑

l=0

(�̃l + b̃)
∑

�l≤Ei−b≤�(l+1)

qi. (E19)

Next, using Theorem 2, we arrive at the following esti-
mate:

∑

�l≤Ei−b<�(l+1)

qi = J [b + �(l + 1)] − J (b + �l)

= G[b + �(l + 1)] − G(b + �l) + εN

=
∫ b−〈H 〉+�(l+1)

b−〈H 〉+�l

dt√
2π var(H)

e− t2
2 var(H)

+ εN = 1√
π

∫ b̃+�̃(l+1)

b̃+�̃l
dt e−t2 + εN .

(E20)

Substituting Eq. (E20) into Eq. (E19), we obtain

E ≥
√

2 var(H)

π

R∑

l=0

(b̃ + �̃l)
∫ b̃+�̃(l+1)

b̃+�̃l
dte−t2

+
√

var(H)O
[
(Rb̃ + R2�̃)εN

]

≥
√

2 var(H)

π

∫ b̃+�̃(R+1)

b̃
dt(t − �̃)e−t2

+
√

var(H)O
[
(Rb̃ + R2�̃)εN

]
.

(E21)

Since � and R have so far been free, we choose them such
that

�̃ → 0 and R�̃ → ∞ as N → ∞. (E22)

With this choice, we have

∫ b̃+�̃(R+1)

b̃
dt(t − �̃)e−t2 =

∫ ∞

b̃
dt(t − �̃)e−t2

+ O
(
e−R2�̃2) = 1

2
e−b̃2 + O(�̃) + O

(
e−R2�̃2)

. (E23)

We specify our choice of �̃ and R as

�̃ = ln−1 N and R = ln2 N (E24)

in full accordance with Eq. (E22) (note that this choice is
not unique). With these �̃ and R, e−R2�̃2 = e− ln2 N = o(�̃)

as N → ∞; therefore, we can absorb the second O term
into the first O term in Eq. (E23). Then, substituting Eq.
(E23) into Eq. (E21), we arrive at

E ≥ 1
2

√
2 var(H)

π

[
e−b̃2 + O

(
ln−1 N

) + O
(
εN b̃ ln2 N

)

+ O
(
εN ln3 N

)]
(E25)

= 1
2

√
2 var(H)

π

[
e−b̃2 + O

(
ln−1 N

) + O
(
N−1/2 ln2d+3 N

)

+ O
(
b̃N−1/2 ln2d+2 N

)]
. (E26)

Since, for sufficiently large N , N−1/2 ln2d+3 N = o
(

ln−1 N
)
,

we can absorb the second O term into the first O term in
Eq. (E26), thereby obtaining

E ≥ 1
2

√
2 var(H)

π

[
e−b̃2 + O

(
ln−1 N

)

+ O
(
b̃N−1/2 ln2d+2 N

)]
. (E27)

When |b̃| ≤ ln4/5 N , by the same logic as above, the second
O term in Eq. (E27) can be absorbed into the first O term,
producing

E ≥ 1
2

√
2 var(H)

π

[
e−b̃2 + O

(
ln−1 N

)]
. (E28)

To estimate E in the |b̃| ≤ ln4/5 N range more precisely, let
us find an upper-bound for E akin to the bound (E28). To
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that end, we divide the decomposition in Eq. (E17) as

E =
R∑

l=0

∑

�l≤Ei−b<�(l+1)

qi(Ei − 〈H 〉)

+
∞∑

l=R+1

∑

�l≤Ei−b<�(l+1)

qi(Ei − 〈H 〉), (E29)

with R and � satisfying the conditions in Eq. (E22).
We first deal with the second term in Eq. (E29). To do

so, recall that our system has exponentially decaying cor-
relations, and therefore Theorem 4.2 in Ref. [79] applies.
It states that for arbitrary d-dimensional lattices with expo-
nentially decaying correlations, there exists a constant ℵ >

0 such that whenever |E − 〈H 〉| > ℵ√
var(H) the function

J (E) =
{ ∫∞

E dE′q(E′) when E > 〈H 〉 + ℵ√
var(H),∫ E

−∞ dE′q(E′) when E < 〈H 〉 − ℵ√
var(H)

(E30)

satisfies

J (E) ≤ ℵ0 exp
[

− ℵ̃
(
(E − 〈H 〉)2

2 var(H)

)1/(d+1)]
, (E31)

where ℵ̃ > 0 and ℵ0 > 0 are some constants. The bounds
provided in Ref. [79] are a bit tighter, but the bound (E31)
will be sufficient for our needs here.

Now, turning to the second sum in Eq. (E29), we write

∞∑

l=R+1

∑

�l≤Ei−b<�(l+1)

qi(Ei − 〈H 〉) =
∫ ∞

b+(R+1)�
dE(E − 〈H 〉)q(E) ≤

∫ ∞

b+R�
dE(E − 〈H 〉)q(E) = (E − 〈H 〉)J (E)

∣∣∣∣
b+R�

∞

+
∫ ∞

b+R�
dEJ (E) = (b − 〈H 〉 + R�)J (b + R�) +

∫ ∞

b+R�
dEJ (E),

(E32)

where in the second line we noted that q(E)dE = −dJ (E) and performed integration by parts.
Now, keeping mind that − ln4/5 N ≤ b̃ ≤ ln4/5 N and, according to Eq. (E22), R�̃ = ln N , we have that b̃ + R�̃ > 0

and b̃ + R�̃ ≈ ln N , which means that b + R� − 〈H 〉 ≈ ln N
√

2 var(H). Hence, inequality (E31) applies, and therefore
we can write
∑∞

l=R+1
∑

�l≤Ei−b<�(l+1) qi(Ei − 〈H 〉)
ℵ0

√
2 var(H)

≤ (b̃ + R�̃) exp
[
− ℵ̃(b̃ + R�̃)2/(d+1)

]
+
∫ ∞

b̃+R�̃
dxe−ℵ̃x2/(d+1)

= (b̃ + R�̃)exp
[

− ℵ̃(b̃ + R�̃)2/(d+1)
]

+ d + 1
2ℵ̃(d+1)/2

�

(
d + 1

2
, ℵ̃(b̃ + R�̃)2/(d+1)

)
,

(E33)

where �(x, y) is the incomplete � function.
For y 	 1, �(x, y) = yx−1e−y[1 + O(y−1)]. Therefore,

the second term in the last line of Eq. (E33) is

O
{
(b̃ + R�̃)(d−1)/(d+1) exp

[ − ℵ̃(b̃ + R�̃)2/(d+1)]},

which means that
∑∞

l=R+1
∑

�l≤Ei−b<�(l+1) qi(Ei − 〈H 〉)√
2 var(H)

= O
{
(b̃ + R�̃) exp

[
− ℵ̃(b̃ + R�̃)2/(d+1)

]}
. (E34)

For N → ∞, since b̃ + R�̃ ≈ ln N → ∞, the right-hand
side of Eq. (E34) decays to zero. However, when d = 3,

it starts becoming small only when N � 106 (which is for
ℵ̃ = 1, and for smaller ℵ̃ it is even slower); for d = 1, 2,
it becomes small much earlier. To obtain a “safe” estimate
for the O term in Eq. (E34), we note that

(b̃ + R�̃)2 exp
[

− ℵ̃(b̃ + R�̃)2/(d+1)
]

= 1
ℵ̃1/(d+1)

xd+1

ex

≤ 1
ℵ̃(1/(d+1)

(
d + 1

e

)d+1

= O(1), (E35)

where we have introduced x = ℵ̃(b̃ + R�̃)2/(d+1) for trans-
parency. Equation (E35) means that the O term in Eq.
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(E34) is O
[
(b̃ + R�̃)−1

] = O
(

ln−1 N
)
; thus,

∞∑

l=R+1

∑

�l≤Ei−b<�(l+1)

qi(Ei − 〈H 〉) ≤
√

var(H)O
(

ln−1 N
)
.

(E36)

Substituting Eq. (E36) into Eq. (E29), we obtain

E =
R∑

l=0

∑

�l≤Ei−b<�(l+1)

qi(Ei − 〈H 〉) +
√

var(H)O
(

ln−1 N
)

≤
R∑

l=0

[b − 〈H 〉 + �(l + 1)]
∑

�l≤Ei−b<�(l+1)

qi

+
√

var(H)O
(

ln−1 N
)
,

which, keeping in mind Eqs. (E14), (E18), and (E20), we
transform into

E√
2 var(H)

≤ 1√
π

R∑

l=0

[b̃ + �̃(l + 1)]
∫ b̃+�̃(l+1)

b̃+�̃l
dt e−t2

+ O(R2�̃εN ) + O(Rb̃εN ) + O
(

ln−1 N
)

≤ 1√
π

R∑

l=0

∫ b̃+�̃(l+1)

b̃+�̃l
dt(t + �̃)e−t2 + O

(
ln−1 N

)

= 1√
π

∫ b̃+�̃(R+1)

b̃
dt(t + �̃)e−t2 + O

(
ln−1 N

)
.

(E37)

Proceeding as in Eq. (E23) and taking into account Eq.
(E24), we can rewrite Eq. (E37) as

E ≤ 1
2

√
2 var(H)

π

[
e−b̃2 + O

(
ln−1 N

)]
. (E38)

Thus, when |b̃| ≤ ln4/5 N , Eqs. (E28) and (E38) show that

E = 1
2

√
2 var(H)

π

[
e−b̃2 + O

(
ln−1 N

)]
. (E39)

Substitution of Eq. (E39) into Eq. (E16) produces

C
F = 2

π

[
e−b̃2 + O

(
ln−1 N

)]2

1 − (erf b̃)2

[
1 + O(εN erf b̃) + O(ε2

N )
]
,

(E40)

where we used the fact that F = β4 var(H).
Equation (E40) resembles Eq. (36), and shows that the

maximum of C/F over the boundary position, as quan-
tified by b̃, is reached for some small b̃. To be more

specific, Taylor-expanding Eq. (E40) around b̃ = 0, and
considering only b̃ � 1, we see that

C
F = 2

π

[
1 − 2b̃2(1 − 2/π) + O(ln−1 N ) + O(b̃3)

]
.

(E41)

This implies (i) that some b̃2 = O
(

ln−1/2 N
)

yields the
maximum

max
b̃

C
F = 2

π
+ O

(
ln−1 N

)
(E42)

and (ii) that C/F is robust with regard to variations of
the bin boundary around its optimal position, in the sense
discussed in Secs. IV A and IV B.

APPENDIX F: ENERGY DISTRIBUTION OF
CRITICAL LATTICE SYSTEMS

In this section, we show that at a finite-temperature
phase transition point, the energy distribution of a
translation-invariant, finite-range quantum lattice is Gaus-
sian when the critical exponent α = 0 (α is the expo-
nent corresponding to the specific heat; see Sec. IV and
Appendix F 2), albeit with a larger variance as compared
with the noncritical case (see Appendices E and F 1). When
α > 0, we show that the distribution is unimodal with
exponentially decaying tails but not in general Gaussian
(Appendix F 2 b). The section starts with a derivation of
the general formalism for obtaining the energy distribu-
tions, then, in Appendix F 1, we apply the formalism to the
known case of noncritical systems, deriving results con-
sistent with the many-body Berry-Esseen theorem [59,60]
presented in Appendix E. Finally, in Appendix F 2, we
analyze the energy distribution for critical systems.

To understand what the energy distribution near the crit-
ical point looks like, we will invoke Lemma 12 from Ref.
[70] (see also Theorem III.4.15 in Ref. [61]) stating that
the cumulative density of states of a translationally invari-
ant, finite-range lattice in arbitrary spatial dimensions is
an exponential of the canonical entropy of the lattice. To
cast this in more precise terms, we first have to intro-
duce some notation. Fixing periodic boundary conditions,
let HN denote the translation-invariant Hamiltonian of an
N -site lattice (N 	 1). Then, for an arbitrary translation-
invariant state ϒN on the lattice, we define the energy and
entropy densities as

uN (ϒN ) = 1
N

Tr(HNϒN ),

sN (ϒN ) = − 1
N

Tr(ϒN lnϒN ).
(F1)
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Introducing the free energy density,

fN (β) = − T
N

ln ZN , (F2)

where

ZN = Tr e−βHN , (F3)

we can formulate the variational principle for finite N :

min
ϒN

[uN (ϒN ) − TsN (ϒN )] = fN (β),

arg min
ϒN

[uN (ϒN ) − TsN (ϒN )] = τN (β),
(F4)

where

τN (β) = 1
ZN

e−βHN (F5)

is the Gibbs state. The finite-N principle is read off straight-
forwardly from the identity

〈HN 〉ϒN − TS(ϒN ) = FN (β) + TS[ϒN ||τN (β)], (F6)

where S(ϒN ) = − Tr(ϒN lnϒN ) is the von Neumann
entropy, S[ϒN ||τN (β)] = Tr{ϒN [lnϒN − ln τN (β)]} is the
relative entropy, and FN (β) = −T ln ZN = NfN (β) is the
free energy of the lattice at temperature T.

As can be seen, the finite-N situation always yields a
thermal state as the unique solution of the minimization
in Eq. (F4), and therefore cannot account for second-
order phase transitions at finite temperatures. This is of
course in accord with the general understanding that finite-
temperature phase transitions appear only in the thermo-
dynamic limit (N → ∞). In this limit, the Hilbert space
has infinite dimensions, and the simple finite-dimensional
argumentation logic breaks down on certain levels. How-
ever, as is proven in Refs. [61,62], first of all, the densities

u(ϒ) = lim
N→∞

uN (ϒN ), s(ϒ) = lim
N→∞

sN (ϒN ), and

f (β) = lim
N→∞

fN (β) (F7)

exist and the variational principle still holds:

inf
ϒ

[u(ϒ) − Ts(ϒ)] = f (β), (F8)

where the infimum is sought over the set of translation-
ally invariant states. The infimum is delivered by state(s),
which we will call “equilibrium state(s),” satisfying the
Kubo-Martin-Schwinger (KMS) condition (see, e.g., Refs.
[61,62] for a definition; we do not go into the details of
it since we do not use that definition in what follows) at
inverse temperature β. The states that satisfy the KMS

condition for a given β generalize the Gibbs state, always
coinciding with it when the Hilbert space is finite dimen-
sional. In infinite dimensions, the KMS state is unique and
coincides with the Gibbs state only at or below the critical
βc if βc is finite. Above βc, the KMS state will generally not
be unique, with different KMS states representing different
phases (see the discussion in Chap. V in Ref. [80]). When
βc = +∞, the KMS state is a Gibbs state for arbitrary
β < +∞; at βc (i.e., when the system is in the degener-
ate ground state), the set of KMS states coincides with the
ground eigensubspace. Here, we deal only with lattices for
which βc is finite (i.e., only thermal phase transitions).

Defining the minimal and maximal possible energy
densities as

umin := lim
N→∞

minimal eigenvalue of HN

N
,

umax := lim
N→∞

Tr HN

NdN ,
(F9)

where d is the local Hilbert-space dimension of a sin-
gle node of the lattice, we invoke Lemma 9 from Ref.
[70] (also proven in Ref. [61]). It states that for any
u ∈ (umin, umax], there exists a unique β = β(u) for which
at least one equilibrium state at temperature β(u) yields
energy density u. Moreover, the entropy density is

s(u) = β(u)[u − f (β(u))], (F10)

and an analog of the maximal entropy principle holds:
s(u) is the highest entropy density among translationally
invariant states with energy density u.

With this, we are ready to state the result of Lemma 12
in Ref. [70] (which is a clarification and generalization of
Theorem III.4.15 in Ref. [61]): if

QN (u) := # {eigenvalues of HN ≤ uN }, (F11)

where #S denotes the cardinality of a finite set S, then

lim
N→∞

ln QN (u)
N

= s(u). (F12)

Assuming differentiability of ln QN (u)/N with respect
to the small parameter 1/N , we can write Eq. (F12)
as ln QN (u)/N = s(u) + O(1/N ), or QN (u) = eNs(u)+O(1).
Furthermore, also assuming differentiability of sN (u) with
respect to 1/N , we can write sN (u) = s(u) + O(1/N ) (this
can be rigorously proven for 1D and 2D systems even
without assuming analyticity [69]), thereby arriving at

QN (u) = eNsN (u)+O(1). (F13)

Introducing the density of states [cf. Eq. (18)],

N (E) = dQN (u)
Ndu

, (F14)
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where E = Nu, we obtain from Eq. (F12)

N (E) = eNsN (u)+O(1). (F15)

Using this relation, we can write the energy distribution in
the sense of Eq. (20) as

qN (E) = 1
ZN

e−βN [u−TsN (u)]+O(1) = eβNfN (β)−βN [u−TsN (u)]+O(1),

(F16)

where, again, E = Nu, and to obtain the second equality,
we used Eq. (F2). The normalization condition thus takes
the form

∑

n

e−βEn

ZN
= 1 =

∫ u(N )
max

u(N )
min

d(uN )eβNfN (β)−βN [u−TsN (u)]+O(1).

(F17)

Regardless of what the exact form of qN (E) is, by con-
struction it satisfies

∫
d(uN )qN (uN )u = uN (β), (F18)

∫
d(uN )qN (uN )[u − uN (β)]2 = var u = β−2N−1cN (β).

(F19)

Fixing an arbitrary β0 ≤ βc we observe that the infimum
in Eq. (F8) is given by the Gibbs state at temperature T0
[see the discussion below Eq. (F8)], and since N , however
large, is finite, the infimum will be a minimum. There-
fore, in the vicinity of uN (τN (β0)) [which we simply call
uN (β0)], we can write

u − T0sN (u) = fN (β0) + d2[u − T0sN (u)]
du2

∣∣∣∣
u=uN (β0)

[u − uN (β0)]2

2
+ d3[u − T0sN (u)]

du3

∣∣∣∣
u=uN (β0)

[u − uN (β0)]3

6
+ · · · .

(F20)

Writing the double derivative in this formula as

d2[u − T0sN (u)]
du2 = −T0

d2sN (u)
du2 = −T0

d
du

dsN (u)
du

(F21)

and noting that dsN (u)/du = β(u), we find that

d2[u − T0sN (u)]
du2 = T0

T(u)2

dT(u)
du

= T0

T(u)2

1
cN [β(u)]

,

(F22)

where cN (β) is the specific heat of the N -site lattice at the
inverse temperature β:

cN (β) := duN (τN (β))

dT
. (F23)

Observing that

β(uN (β0)) = β0, (F24)

we thus obtain

K2 := d2[u − T0sN (u)]
du2

∣∣∣∣
u=uN (β0)

= β0

2cN (β0)
. (F25)

The cubic term is obtained by differentiating Eq. (F22):

d3[u − T0sN (u)]
du3 = T0β(u)4

cN (β(u))3

dcN (β)

dβ

∣∣∣∣
β=β(u)

− 2T0β(u)3

cN (β(u))2,

(F26)

so

K3 := d3[u − T0sN (u)]
du3

∣∣∣∣
u=uN (β0)

= β3
0

6cN (β0)3

dcN (β)

dβ

∣∣∣∣
β=β0

− β2
0

3cN (β0)2 .

(F27)

The higher-order terms in Eq. (F20) (Kj ≥4) can be obtained
by further differentiating Eq. (F26).

Separating the u-dependent part of O(1) in Eq. (F16) as

const + K1[u − uN (β0)] +
∑

j ≥2

ζj

j !
[u − uN (β0)]j , (F28)

where K1 and all ζj ’s are O(1) (since they depend only on
intensive quantities), we can write Eq. (F16) as
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qN (E) = K exp

⎛

⎝K1[u − uN (β0)] − 1
2
(Nβ0K2 − ζ2)[u − uN (β0)]2 −

∑

j ≥3

1
j !
(Nβ0Kj − ζj )[u − uN (β0)]j

⎞

⎠ , (F29)

where, as usual, E = uN . K is a u-independent quantity
that absorbs all u-independent quantities; it is nothing but
the normalization factor for qN (E).

1. Away from criticality: β0 < βc

When the lattice is away from criticality, cN (β) and its
derivatives are finite (i.e., do not scale with N ). There-
fore, var u ∝ β−2N 1, meaning that when deviating from
the average, 〈u〉, by much more than one standard deviation
[but o(

√
N )], u − 〈u〉 remains o(1). Hence, up to rather

far into the tails of the distribution, the quadratic term
in the exponent in Eq. (F29) dominates the higher-order
terms. Ignoring those higher-order terms and combining
the linear and quadratic terms, and absorbing the resulting
u-independent eK2

2 cN (β0)/(2β2
0 N ) into K , we find

qN (E) = K exp
(

− β2
0 N

2cN (β0)
[u − ũN (β0)]2

)
, (F30)

where

ũN (β0) = uN (β0) + K1cN (β0)

β2
0 N

. (F31)

Noticing that the difference between ũN (β0) and uN (β0)

is only proportional to 1/N , meaning that 〈̃HN 〉β0
−

〈HN 〉β0 = O(1)cN = O(cN ) (which is negligible when
N 	 1), and rescaling u to E = Nu, we find that

qN (E) = K exp
(

− [E − 〈HN 〉β0 + O(cN )]2

2 var(HN )β0

)
. (F32)

Our result in this subsection thus complements the many-
body Berry-Esseen theorem (Theorem 2 in Appendix E).
In particular, the fact that the tails of qN (E) decay expo-
nentially [Eq. (F32)] cannot be directly deduced from the
many-body Berry-Esseen theorem; in this sense, our result
directly connects to Theorem 4.2 in Ref. [79] (discussed in
Appendix E) by strengthening it for the particular case of
translationally invariant lattices.

Equation (F32) reflects the “common wisdom” that the
thermal state is located in a typical subset of energy levels
of width O(

√
var(HN )β0) = O(

√
N ), centered at the aver-

age energy; the energy levels within the typical subset have
approximately equal probabilities, so the entropy of the
state is essentially the logarithm of the number of energy
levels in the subset [which we see by invoking Eq. (F15)
and noting that the number of energy levels in the typical
subset is proportional to

√
NeNsN (β0)].

2. At criticality: β0 = βc

The specific heat of a critical lattice diverges with N , and
even more divergent are its derivatives. This necessitates a
careful bookkeeping of all the terms in the series in Eq.
(F29). To do so, we need to find how the specific heat and
its temperature derivatives scale at criticality.

First, we recall that as the system approaches the critical
temperature, with the approach being parameterized by

t = β − βc

βc
� 1, (F33)

the specific heat and correlation length (ξ ) in the thermo-
dynamic limit scale as

c∞(β) ∝ |t|−α , (F34)

ξ(β) ∝ |t|−ν , (F35)

where 1 > α ≥ 0 and ν > 0 are the corresponding critical
exponents. When α = 0 (e.g., in the 2D Ising model),

c∞(β) ∝ ln |t|−1. (F36)

When N is finite, neither ξ(β) nor cN (β) can diverge as
t → 0. In this case, since the correlation length diverges
in the thermodynamic limit, when the lattice is large but
finite, it will simply become proportional to the size of the
lattice (for spatial dimension less than 4) [67]. Therefore,
in d spatial dimensions,

ξ(βc) ∝ N 1/d. (F37)

On the other hand, Eq. (F34) suggests that cN ∝ ξα/ν .
Therefore,

cN (βc) ∝ Nα/(νd), (F38)

and when α = 0,

cN (βc) ∝ ln N ; (F39)

for the proof of this in the case of the 2D Ising model, see
Ref. [68].
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By the same logic, for any α ≥ 0, we have

dj cN (β)

dβ j

∣∣∣∣
β=βc

∝ β−j
c N (α+j )/(νd), (F40)

since in view of Eqs. (F34) and (F36), dj c∞(β)/dβ j ∝
β−j |t|−α−j .

Looking into the structure of Eq. (F26) and its deriva-
tives with respect to u, we see that the term

β
2j −3
c

cN (βc)j

dj −2cN (β)

dβ j −2

∣∣∣∣
β=βc

(F41)

is dominant in Kj , j ≥ 3. Therefore,

Kj ∝ β j −1
c

{
(ln N )−j N (j −2)/(νd) when α = 0,
N [j (1−α)+α−2]/(νd) when α > 0. (F42)

Taking into account the scaling relation (see, e.g., Ref.
[66])

νd = 2 − α, (F43)

we can simplify Eq. (F42) to

Kj ∝ β j −1
c

{
(ln N )−j N (j −2)/2 when α = 0,
N j [(1−α)/(2−α)]−1 when α > 0. (F44)

To determine the regime of validity of the Gaussian
approximation to qN , we now compare the j ≥ 3 terms
with the quadratic term in Eq. (F29):

(NβcK2 − ζ2)[u − uN (βc)]2 	 (NβcKj − ζj )[u − uN (βc)]j .
(F45)

Since NK2 and all NKj ’s diverge with N , in the above
inequality the ζ ’s, being O(1), are not going to play a role,
and therefore, we omit them.

We analyze the α = 0 and α > 0 cases separately.

a. Energy distribution for α = 0

In this case, if we take Eq. (F44) into account, Eq. (F45)
takes the form

βc(ln N )−1[u − uN (βc)]2 	 β j −1
c (ln N )−j N (j −2)/2

|u − uN (βc)|j ∀j ≥ 3, (F46)

which reduces to

|u − uN (βc)| � β−1
c

(ln N )1+1/(j −2)

√
N

∀j ≥ 3. (F47)

The latter simply means that as long as

|u − uN (βc)| � Tc
ln N√

N
, (F48)

the quadratic term in Eq. (F29) will dominate the higher-
order terms. Noting that for α = 0 the standard deviation

of u,
√

var u, is proportional to Tc
√

ln N/N , we conclude
that the energy distribution is Gaussian up until O(

√
N )

standard deviations into the tails.
Just like when away from criticality, the linear term in

Eq. (F29) shifts the tip of the distribution function propor-
tional to TccN [see Eq. (F31)], implying an asymmetry of
the distribution as a whole. However, this shift, being pro-
portional to Tc ln N , is much less than than the standard
deviation var E ∝ Tc

√
N ln N , meaning that the energy

distribution, in the energy range in which it is Gaussian,
is close to Eq. (E5) [and Eq. (33)].

We quantify the proximity of qN (E) to a Gaussian more
precisely for the classical 2D Ising model in Appendix F 3.

b. Energy distribution for 1 > α > 0

For strictly positive α’s, Eq. (F45) becomes

βcN−α/(2−α)[u − uN (βc)]2 	 β j −1
c N j [(1−α)/(2−α)]−1

|u − uN (βc)|j , (F49)

which leads to

|u − uN (βc)| � TcN−(1−α)/(2−α). (F50)

Taking into account the standard deviation of u,

√
var u = Tc

√
cN (βc)

N
∝ TcN−(1−α)/(2−α), (F51)

we see that the situation with Gaussianity here is trick-
ier than for noncritical lattices or those that are critical
but with α = 0. We see that once we depart one standard
deviation from the average, we already find ourselves in
a situation where both the quadratic term and the higher-
order terms are O(1). However, as long as |E − 〈HN 〉βc | �
TcN 1/(2−α), qN (E) tends to a Gaussian as N → ∞.

Lastly, since α < 1, cN/N → 0 as N → ∞, the shift
of the peak of the Gaussian caused by the linear term in
Eq. (F29), being proportional to cN/N [see Eq. (F31)], is
much less than the variance of u, which is proportional
to

√
cN/N . Therefore, as in the previous cases, we can

ignore that effect, while, of course, keeping in mind that
it indicates a certain asymmetry of the overall energy dis-
tribution, with the asymmetry becoming more significant
the higher the value of α.

To sum up, for |E − 〈HN 〉βc | � TcN 1/(2−α), qN (E) ∝
exp

(
− (E−〈HN 〉βc )

2

2NcN (βc)

)
. That qN (E) significantly deviates

from a Gaussian when α > 0 is not surprising in the light
of Appendix F 3.

Furthermore, since sN (u) is a strictly concave function
of u (see Theorem III.4.13 in Ref. [61]), and therefore so is
sN (u) − βcu, we see from Eq. (F16) that −(1/N ) ln qN (E)
is a strictly monotonically increasing function once one
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departs from its unique minimum near 〈HN 〉βc . The strict
convexity of sN (u) − βcu in particular means that once
|u − uN (βc)| = �(1), where � is according to standard
asymptotic notation, qN (Nu) = e−N�(1). In other words,
the distribution qN (E) is unimodal, with exponentially
decaying tails.

3. Classical 2D Ising model at the phase transition

We now consider the most salient example of a finite-
temperature phase transition with α = 0—the classical
square-lattice 2D Ising model. To make the inevitably
complicated analysis as easy as possible, we choose the
model to have symmetric, nearest-neighbor couplings, all
equal to 1 (J = 1), be at zero magnetic field, and have peri-
odic boundary conditions on both boundaries. In such a
case, the free energy per particle in the thermodynamic
limit, f = limN→∞(1/N )FN = −(β−1/N ) ln ZN [cf. Eq.
(F7)], is given by [75]

f = − ln 2
2

− ln cosh(2β)

+ 1
2π

∫ π

0
dθ ln

(
1 +

√
1 − ι2 cos2 θ

)
, (F52)

where

ι = 2 sinh(2β)
cosh2(2β)

, (F53)

with the critical temperature being

βc = ln(1 + √
2)

2
. (F54)

Differentiating βf (β), we obtain

∂(βf )
∂β

= lim
N→∞

1
N

〈H 〉β ,

∂2(βf )
∂β2 = − lim

N→∞
1
N

〈(H − Hβ)
2〉β

:= − lim
N→∞

1
N

E2 = −β−2c(β),

(F55)

where, as before, c(β) is the specific heat and

En := 〈(H − Hβ)
n〉β (F56)

is the nth central moment. Using the easy-to-derive for-
mula

En+1 = nEn−1E2 − ∂En

∂β
, n ≥ 2, (F57)

we immediately obtain

∂3(βf )
∂β3 = lim

N→∞
1
N

〈(H − Hβ)
3〉β = lim

N→∞
1
N

E3. (F58)

Near the critical temperature [66]

c(β) ∝ ln |b|−1, (F59)

which at criticality translates into [68]

E2 ∝ N ln N . (F60)

Using E3 = −∂E2/∂β = 2Nβ−3c(β) − Nβ−2[∂c(β)/∂β],
we see that

E3 ∝ N |b|−1; (F61)

see Fig. 8(a). This vaguely suggests that at βc, E3 is nul-
lified for finite but large N . However, Eq. (F61) [and
therefore Fig. 8(a)] is inconclusive since it is not defined
at βc.

Therefore, to understand what really happens, we need
to consider the exact, finite-N solution of the 2D Ising
model. This can be easily done with use of the transfer
matrices [75], and we use the formulas presented in Refs.
[68,72]. Feeding these formulas into MATHEMATICA, we
find the behavior shown in Fig. 8(a). Denoting the maximal
values of |E3| on both sides of βc as

E−
3 := max

β<βc
E3 and E+

3 := max
β>βc

|E3|, (F62)

we find that

E±
3 ∝ N 3/2, (F63)

and the distances of the peaks from βc,

η− := βc − arg max
β<βc

E3 and η+ := arg max
β>βc

|E3| − βc,

both scale as N−1/2:

η± ∝ N−1/2. (F64)

Importantly, there is a certain assymmetry between the
peaks in that they have slightly differing magnitudes and
distances from βc:

0 < E+
3 − E−

3 ∝ N ln N , (F65)

0 < η−−η+∝N−1. (F66)

This suggests that E3 is not necessarily zero at βc, which
is of course not surprising as E3 is not zero even far away
from criticality [see Fig. 8(a)]. At most, E3(βc) may scale
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FIG. 8. (a) Density of the third moment of energy of the 2D Ising model in the thermodynamic limit, defined by Eq. (F58), plotted
against the inverse temperature β. (b) The same quantity for N = 106, calculated with the exact solution of the 2D Ising model, plotted
against β.

proportionally with the peaks (i.e., as N 3/2); therefore, we
can write

E3(βc) = O(N 3/2). (F67)

Keeping in mind that away from criticality, E3 ∝ N for the
asymmetry, which we quantify by

A =
3
√

E3√
E2

, (F68)

we find that

A(β �= βc) ∝ N−1/6,

A(βc) ∝ ln−1/2 N .
(F69)

In both cases, the asymmetry tends to zero in the thermo-
dynamic limit.

Note that E3 peaking near the critical point but not at it
fits very well into the general picture drawn above. Indeed,
as the temperature approaches βc, the typical subset of
energy levels approaches the less dense region character-
ized by the increased specific heat [see Eq. (F29), keeping
in mind that K2 is given by Eq. (F25)]. At some point,
part of the subset will be in the critical, “sparse,” zone,
whereas the other part will be in the noncritical, “dense,”
zone, which will necessarily make the distribution asym-
metric. Then, as one gets even closer to the critical point,
most of the typical subset will be contained in the “sparse”
zone, thereby mitigating the asymmetry.

To assess the Gaussianity of the energy distribution even
further, we invoke the fact that a distribution is Gaussian
if and only if its first and second cumulants (κ1 and κ2)
are nonzero whereas all the cumulants starting from the
third (κk≥3) are zero. We know that κ1 = 〈E〉β , κ2 = E2,
and κ3 = E3. Therefore, if we quantify the Gaussianity by
the relative weight of a cumulant as compared with κ2

(i.e., by κ
1/k
k /κ

1/2
2 ), then Eq. (F69) for the asymmetry A

already gives an answer for the third cumulant. For the
fourth cumulant,

κ4 = E4 − 3E2
2 = −∂E3

∂β
, (F70)

where the second equality is due to Eq. (F57), we find
numerically by calculating ∂E3/∂β that

κ4(βc) ∝ N 2, (F71)

which means that

|κ4|1/4

κ
1/2
2

∣∣∣∣∣
β �=βc

∝ N−1/4,

|κ4|1/4

κ
1/2
2

∣∣∣∣∣
β=βc

∝ ln−1/2 N ,

(F72)

meaning that the fourth cumulant also becomes asymptoti-
cally insignificant in the thermodynamic limit. This shows
that, as proved generally in Appendix F 2 a, at criticality
the energy distribution of the square-lattice 2D Ising model
does indeed tend to a Gaussian.

Lastly, we note from Eqs. (F69) and (F72) that the con-
vergence to Gaussianity at criticality is logarithmic (i.e.,
much slower than the polynomial convergence away from
criticality).
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