
PRX QUANTUM 5, 020201 (2024)
Tutorial

Current Fluctuations in Open Quantum Systems: Bridging the Gap Between
Quantum Continuous Measurements and Full Counting Statistics

Gabriel T. Landi ,1,* Michael J. Kewming,2,† Mark T. Mitchison ,2,3,‡ and Patrick P. Potts 4,§

1
Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA

2
School of Physics, Trinity College Dublin, College Green, Dublin 2, D02K8N4, Ireland

3
Trinity Quantum Alliance, Unit 16, Trinity Technology and Enterprise Centre, Pearse Street, Dublin 2,

D02YN67, Ireland
4
Department of Physics and Swiss Nanoscience Institute, University of Basel, Klingelbergstrasse 82, Basel 4056,

Switzerland

 (Received 18 April 2023; revised 29 January 2024; published 2 April 2024)

Continuously measured quantum systems are characterized by an output current, in the form of a
stochastic and correlated time series, which conveys crucial information about the underlying quantum
system. The many tools used to describe current fluctuations are scattered across different communities:
quantum opticians often use stochastic master equations, while a prevalent approach in condensed-matter
physics is provided by full counting statistics. These, however, are simply different sides of the same coin.
Our goal with this tutorial is to provide a unified toolkit for describing current fluctuations. This not only
provides novel insights, by bringing together different fields in physics, but also yields various analytical
and numerical tools for computing quantities of interest. We illustrate our results with various pedagog-
ical examples and connect them with topical fields of research, such as waiting-time statistics, quantum
metrology, thermodynamic uncertainty relations, quantum point contacts, and Maxwell’s demons.
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I. INTRODUCTION

The importance of quantum measurements to mod-
ern quantum science cannot be overstated. Not only do
they relate to the foundations of quantum theory but they
are also the doorway to the quantum realm, since in
experiments we only observe quantum systems indirectly
through these measurements. One particularly important
scenario is that of continuous measurements, where infor-
mation about the system is available in the form of an
output current, i.e., a classical time series that is fun-
damentally stochastic in nature (Fig. 1). Owing to the
recent advances in quantum science and technology, there
is growing interest in understanding the properties of these
currents in more detail. In particular, their stochastic nature
means that it is vital to also address their fluctuations. On
the one hand, fluctuations represent a fundamental limita-
tion to the measurement precision; but on the other, they
also encode important information. This principle extends
throughout all of quantum physics, from optical coherence
functions (g(1), g(2), . . .) [1–7] to electric charge transport
in mesoscopic conductors [8–21] and gravitational-wave
detectors using radiation squeezing [22,23].

Current fluctuations carry information about the system
that is not available in the average current J := E (I(t)),
where I(t) denotes the classical stochastic output and E(·)
denotes an expectation value over different realizations
of the experiment. For instance, the two-point correlation
function

F(τ ) = E (I(0)I(τ ))− J 2, (1)

contains information on dynamical processes such as Rabi
oscillations and relaxation rates. In photodetection, it is
associated with the Glauber coherence functions g(1) and
g(2) [24]. Current fluctuations also play a key role in the
stable operation of mesoscopic and microscopic devices.
Quantum dot systems can, e.g., operate as autonomous
thermoelectric engines [25], the output of which is an
electric current. This current fluctuates due to the micro-
scopic nature of the system. It thus becomes crucial to
develop strategies for keeping these fluctuations in check,
so that they do not compromise the operation of the device
[26–28].

The first motivation of this tutorial is to provide the
intuition, as well as the tools, to compute current fluctu-
ations from models based on quantum master equations
(QMEs). The results should therefore be useful for both
theoreticians aiming to uncover fundamental features of
quantum fluctuations as well as experimentalists interested

in modeling their findings with the tools of open quantum
systems.

Our second motivation is to bridge a gap that exists
between approaches used by quantum opticians and by
condensed-matter physicists, who study the same kinds of
problems but with different languages and different tools.
For example, quantum opticians often employ stochastic
master equations (SMEs) [6,7] and the quantum regression
theorem (QRT) [29,30]. A typical object of study is the
current power spectrum

S(ω) =
∫ ∞

−∞
e−iωτF(τ )dτ . (2)

Condensed-matter physicists, on the other hand, often
employ a toolkit called full counting statistics (FCS),
which describes the statistics of the stochastic charge (inte-
grated current) N (t) = ∫ t

0 dt′ I(t′). This involves concepts
such as tilted Liouvillians and generalized quantum master
equations (gQMEs) [12,19,31–35]. Among the quantities
studied in FCS, the most popular one is

D = lim
t→∞

d
dt

Var(N (t)), (3)

called the noise, the diffusion coefficient, or the scaled vari-
ance. It is often not appreciated, however, that the noise is
just the zero-frequency component of the power spectrum

D = S(0). (4)

This is but one simple example of how connected the dif-
ferent fields are. In fact, several such connections exist;
e.g., between SMEs and gQMEs. Our goal is that by bridg-
ing the gap between these fields, one would benefit from a
much broader set of tools, which will likely lead to new
insights.

New researchers working with QMEs will often com-
pute the average current, which is rather straightforward
[36]. But when it comes to extracting current fluctuations,
the procedures are not very well disseminated in the liter-
ature. Different communities often use different techniques
and the relations between them are not clear. Our aim here
is to show that making the step from master equations
to current fluctuations is actually straightforward and that
there exist simple and efficient methods for computing said
quantities. This tutorial provides a pedagogical overview
of several efficient numerical techniques that can be used to
characterize current fluctuations. A set of numerical tools,
including the notebooks used to generate all figures of this
tutorial, can be found in Ref. [37]. It contains code in both
Mathematica, using the MELT library [38], and in PYTHON,
using QuTIP [39].

The basic structure of the tutorial is shown in Fig. 2
and a bird’s-eye view of the main formulas is given in
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Quantum diffusion current

Continuously measured 
quantum system

Quantum jump current
(a) (b) (c)Multitime correlations

Full counting statistics

Time

Time

me

me

FIG. 1. Continuously measured quantum systems and their output currents. (a) A paradigmatic example of a photodetector collecting
the photons that leak out of an optical cavity. (b) The measurement gives rise to a stochastic output current; i.e., a correlated time series
that contains information about the underlying quantum system. These currents usually come in two types: quantum jumps, which
involve discrete clicks, as in photodetection; and quantum diffusion, where the current is a continuous noisy signal. In this tutorial, we
provide the tools and the intuition to analyze the statistical properties of these currents, such as their multitime correlations. (c) We also
show how this is connected to the framework of full counting statistics (FCS), which analyzes the properties of the integrated current
(called the net charge).

Fig. 3. The main results are structured in Secs. II–IV.
In each subsection, the concepts are illustrated with four
main examples (Sec. II B and Fig. 4), covering qubits,
fermionic transport, and quantum optics. On a first pass,
the reader may skip these examples, or consult them at will,
without compromising the structure of the core material.
Optional material includes Sec. V, which contains solution
methods for computing the relevant quantities in practice,
and Sec. VI, which discusses the connection with various
topical fields of research.

II. QUANTUM MASTER EQUATIONS AND
OUTPUT CURRENTS

A. Basic setting

In this tutorial, we will focus on systems evolving
according to QMEs of the form

dρ
dt

= Lρ = −i[H , ρ] +
r∑

k=1

D[Lk]ρ. (5)

Sec. II Sec. III Sec. IV

Core material

Optional material

Sec. V. Solution Methods Sec. VI. Research topics

  Examples A–D throughout the tutorial

FIG. 2. The structure of the tutorial, divided into core and
optional material.

The superoperator L is called the Liouvillian. The first
term is the unitary dynamics, where H is the system Hamil-
tonian. The second term encompasses the dissipation,
with D[L] = LρL† − 1

2 {L†L, ρ} being a Lindblad dissipa-
tor. The set of operators {Lk}, which depend on the problem
at hand, are called jump operators. Below, we refer to each
k value as a jump channel. That is, we might say that “Lk is
the jump operator of channel k.” The meaning of different
“channels” will become clear once we discuss examples in
Sec. II B. The solution of Eq. (5) is [40]

ρ(t) = eLtρ0. (6)

Often (but not always [41]), for any initial state, this solu-
tion will evolve toward a unique steady state ρss, which is
the solution of

Lρss = 0. (7)

We will henceforth assume that this is the case, unless
stated otherwise. Equation (5) encompasses a myriad of
interesting problems, across various quantum platforms.
We assume that the reader has some familiarity with equa-
tions of this form. Throughout the tutorial, we set � =
kB = 1.

B. Examples

We now list four examples that will be used through-
out the tutorial, labeled A, B, C, and D. These examples
have been chosen specifically for their pedagogical value
and their ubiquitous implementation, both experimentally
and theoretically. The examples are depicted pictorially in
Fig. 4 and a summary of the main results for each one
(discussed throughout the review) is given in Table I.

020201-4



CURRENT FLUCTUATIONS IN OPEN QUANTUM SYSTEMS PRX QUANTUM 5, 020201 (2024)

Quantum jumps (Secs. II.C and II.D)

Fluctuations of the output current (Secs. III) Full counting statistics (Secs. IV)

Probability distribution

Quantum diffusion (Secs. II.E)

Quantum jumps:

Tilted Liouvillians (Secs. IV)

FIG. 3. An overview of the main results in this tutorial, with the corresponding sections.

1. Example A: Coherently driven qubit coupled to a
thermal reservoir

The first example is a single qubit driven off resonantly
at a detuning� and Rabi frequency�. The Hamiltonian is

H = �

2
σz +�σx = �σ+σ−+�(σ++σ−)−�/2, (8)

where σx,y,z,+,− are Pauli matrices. We work in the compu-
tational basis, |0〉 = |↓〉 and |1〉 = |↑〉 (eigenstates of σz).
The above model describes various physical scenarios.
One is a two-level atom driven by a strong coherent
laser field. The Schrödinger-picture Hamiltonian is H(t) =
ωσ+σ− +�(σ+e−iωdt + σ−eiωdt), where ω is the transition
frequency of the atom and ωd is the laser drive frequency.
Moving to a rotating frame with eiωdtσ+σ− removes the time
dependence and detunes the frequency to � = ω − ωd,
yielding Eq. (8).

We assume that the qubit is coupled to a thermal bath,
described by the QME

dρ
dt

= −i[H , ρ] + γ (N̄ + 1)D[σ−]ρ + γ N̄D[σ+]ρ, (9)

where γ > 0 is the coupling strength and N̄ = (eβω − 1)−1

is the Bose-Einstein distribution, with β = 1/T. The two
dissipators describe the emission and absorption of thermal
photons. Note that even at zero temperature (N̄ = 0), the
first dissipator does not vanish: this corresponds to spon-
taneous emission. If � = 0, the steady state is diagonal in
the σz basis, with 〈σz〉 = −1/(2N̄ + 1). When � 	= 0, the
steady state will involve both populations and coherences
in the computational basis.

The master equation [Eq. (9)], as well as the ones for
the other examples below, are usually a good approxima-
tion when the coupling constant γ to the reservoir is small.

Example A

Example B

Example C

Example D

FIG. 4. Depictions of the four basic examples discussed
throughout the tutorial. For more details, see Table I.
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TABLE I. The main results for the four basic examples treated in this tutorial and the figures and/or equations to which they
correspond. See also Fig. 4 for a schematic of the four examples.

Example A Example B Example C Example D

Name Driven qubit Quantum dot Dephased qubit Parametric oscillator
Definition Eqs. (8) and (9) Eqs. (10) and (11) Eqs. (8) and (13) Eqs. (14) and (15)
Process type Jump Jump Diffusion Both
Quantum trajectories Fig. 7 Fig. 8 Fig. 10 Figs. 9 and 11
Average current Eqs. (42) and (43) Eq. (45) Jdiff = 0 Sec. V F 3
F(τ ), S(ω), or D Fig. 12 and Eq. (81) Eq. (138) Figs. 13 and 14 Sec. V F 3
P(n, t) or C(χ) Fig. 16 Secs. IV D 1 and V E 1 Fig. 18 Fig. 17

Strong system-environment coupling leads to various com-
plications and corresponds to a vast field of research, with
different approaches having been developed in the liter-
ature. Recent overviews can be found in Refs. [42,43].
Here, we only mention that many of these approaches still
involve appropriately modified master equations. Hence
the overarching ideas of this tutorial continue to apply.

2. Example B: Quantum dot coupled to two fermionic
leads

The second example consists of a single quantum dot,
described by fermionic operators c and c† satisfying
the anticommutation relation {c, c†} = 1 and c2 = 0. The
Hamiltonian is

H = ωc†c, (10)

where ω is the energy of the dot. For fermions, terms such
as c + c† are not allowed due to parity superselection rules
[44]. We assume that this dot is connected to two fermionic
reservoirs, each at a temperature Tα and chemical potential
μα , with α = L, R. The corresponding master equation is

dρ
dt

= −i[H , ρ] +
∑
α=L,R

γ α−D[c]ρ + γ α+D[c†]ρ, (11)

where

γ α− = γα(1 − fα), γ α+ = γαfα , (12)

in which γα is the coupling strength and fα = (eβα(ω−μα) +
1)−1 the Fermi-Dirac distribution of reservoir α = L, R.
Note that since the two baths involve the same jump
operators, we could also group them and define effective
rates γ± = γ R

± + γ R
± [45]; but since they represent differ-

ent physical processes, it will be important to keep them
separate. We also note that, mathematically speaking, this
model is equivalent to example A with � = 0 [Eq. (8)],
provided that we map σ− → c and relate N̄ = f /(1 − 2f )
(the strengths γα also change).

3. Example C: Coherently driven qubit subject to
dephasing

The third example is a single qubit undergoing pure
dephasing. The Hamiltonian is identical to Eq. (8) but the
master equation changes to

dρ
dt

= −i[H , ρ] + D[σz]ρ, (13)

where  is the rate of dephasing. While the two dissipa-
tors in Eq. (9) involve jumps between the computational
basis of the qubit, the dephasing only causes decoherence
in this basis. This arises, e.g., from fast and random fluctu-
ations in the energy difference between the computational
basis states [46]. For example, in quantum dots (with σz →
2c†c − 1), the electron couples via the Coulomb interac-
tion to any nearby charges, the fluctuations of which lead to
dephasing. The dissipator in this case could be equivalently
written as 2D[c†c]. As will be discussed, dephasing also
appears whenever an observable, in this case σz, is being
continuously monitored.

For � 	= 0, the steady state of Eq. (13) is unique and
given by the maximally mixed state ρ = 12/2. For � =
0, any state diagonal in the computational basis is a valid
steady state (i.e., the steady state is no longer unique).

4. Example D: Parametrically driven Kerr oscillator

The last example is a parametrically driven optical cav-
ity subject to single-photon losses and a Kerr nonlinearity
[47]. This system can be modeled by a single bosonic
mode, with frequency ωc and annihilation operator a.
The Hamiltonian in a frame rotating at twice the pump
frequency, ωp , reads

H = �a†a + 1
2

(
Ga†2 + G∗a2) + U

2
a†a†aa, (14)

where G is the “two-photon” pumping strength,� = ωc −
ωp/2 is the detuning, and U is the Kerr nonlinearity. The
system is also subject to photon losses from the cavity,
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(a) (b) (c)

FIG. 5. The steady-state Wigner function W(x, p) =
1/π

∫ ∞
−∞ dy〈x − y|ρss|x + y〉e2ipy (where |x〉 are the eigen-

states of position) for example D (Sec. II B 4). The horizontal
and vertical axes refer to the field quadratures (position and
momentum), not shown for clarity. The parameters are as
follows: (a) (G, U,�) = (0.3i, 0, 0), (b) (1, 1/3, 0), and (c)
(1, 1/3, −2), with κ = 1. In all cases, the Wigner function is
non-negative. The color scales are omitted for visibility. These
three examples exhibit the rich landscape of possible states that
can be studied in example D.

which we model by the master equation

dρ
dt

= −i[H , ρ] + κD[a]ρ, (15)

where κ is the photon loss rate. Sometimes, it is also nec-
essary to include two-photon losses, described by the dis-
sipator D[a2], but we assume that these can be neglected
for simplicity.

If U = 0, the model is said to be Gaussian (to be stud-
ied in Sec. V F) and can be solved analytically. The steady
state in this case is a squeezed thermal state with

〈a†a〉 = 2|G|2
κ2 + 4�2 − 4|G|2 , 〈aa〉 = − G(2�+ iκ)

κ2 + 4�2 − 4|G|2 .

(16)

The steady state is only stable when 4|G|2 < κ2 + 4�2, as
is clear from the denominators. Conversely, if U 	= 0, the
steady state is always stable. In this case—known as the
parametrically pumped Kerr (PPK) model—a rich variety
of properties emerge. We illustrate this in Fig. 5, where
we plot the Wigner function of the steady state for differ-
ent choices of the parameters. Figure 5(a) is the squeezed
state given in Eq. (16), while Figs. 5(b) and 5(c) are differ-
ent states that emerge when U 	= 0. For more details on
the phase diagram of this model, see Refs. [48,49]. We
also mention that the steady-state density matrix of this
model can be found analytically, either using the general-
ized P function [50,51] or the coherent quantum absorber
method [47,52]. However, this does not give access to cur-
rent fluctuations. Whether these solution methods can be
generalized to also encompass that is, to the best of our
knowledge, an open and interesting question.

C. Quantum jumps

We now return to the general master equation [Eq. (5)]
and introduce the notion of quantum jumps and output cur-
rents. Inside the dissipators D[Lk], the terms of the form
LkρL†

k play a very different role than the terms L†
kLkρ and

ρL†
kLk. For instance, in the case of a qubit, if L = σ−

and ρ = |↑〉〈↑|, then σ−|↑〉〈↑|σ+ = |↓〉〈↓|, causing the qubit
to transition to the down state. Conversely, σ+σ−|↑〉〈↑| =
|↑〉〈↑| does not. As we will see in what follows, the terms
LkρL†

k will be associated with a quantum jump happening
in channel k.

To make quantum jumps precise, one must recall the
concepts of quantum operations and generalized measure-
ments [53]. Any map taking density matrices to density
matrices (known as completely positive and trace preserv-
ing, CPTP) can be written as the quantum operation

ρ →
∑

j

Mj ρM †
j , (17)

where {Mj } can be any set of operators satisfying the
normalization condition

∑
j M †

j Mj = 1. A quantum oper-
ation, in turn, can always be interpreted as a generalized
measurement, where the labels j represent the different
measurement outcomes (the number of which can be
arbitrary). The probability that outcome j is observed is

pj = tr(Mj ρM †
j ). (18)

And, if the outcome was j , the state of the system is
updated as

ρ → Mj ρM †
j

pj
, (19)

where the factor of pj is included to make sure that the state
is properly normalized. This represents the updated state of
the system, conditioned (or postselected) on knowing that
the outcome was j . This “conditional state” is therefore
random, in the sense that j is sampled randomly with prob-
ability pj . Conversely, if we do not record the outcome, the
updated state would be the statistical average

∑
j

pj
Mj ρM †

j

pj
=

∑
j

Mj ρM †
j ,

which is precisely the original CPTP map Eq. (17). We
refer to Eq. (17) as the unconditional state, in the sense
that it is not conditioned on the actual outcome. The
above decomposition in terms of generalized measurement
outcomes is called an unraveling [54] of the quantum oper-
ation. Unravelings are not unique [55]. And, of course,
implementing a specific one in the laboratory might not be
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simple at all. But the above discussion establishes that, at
least in principle, every quantum operation can be unrav-
eled into a set of possible measurement outcomes and
corresponding conditional states.

We now apply the above ideas to the evolution, given in
Eq. (6), of the master equation. Focusing on an infinitesi-
mal time dt, we can expand the exponential and write

eLdtρ = ρ − idt
(

Heffρ − ρH †
eff

)
+ dt

r∑
k=1

LkρL†
k+O(dt2),

(20)

where

Heff = H − i
2

∑
k

L†
kLk, (21)

is a kind of non-Hermitian Hamiltonian. Equation (20) can
be written as a quantum operation Eq. (17)

eLdtρ = M0ρM †
0 +

r∑
k=1

MkρM †
k , (22)

with Kraus operators

M0 = 1 − iHeffdt,

Mk =
√

dtLk, k = 1, . . . , r.
(23)

One may verify that M †
0 M0 + ∑r

k=1 M †
k Mk = 1 + O(dt2),

so that the Kraus operators are indeed normalized. We have
therefore unraveled one infinitesimal time step of the mas-
ter equation evolution. But, of course, we can now keep
doing this for multiple steps. This is what is called the
quantum jump unraveling of the master equation. At each
time step, there will either be a jump in channel k or no
jump (associated with M0). The probability that a jump
happens, according to Eq. (18), is

pk = tr
{

MkρM †
k

}
= dt tr

{
LkρL†

k

}
. (24)

Since dt is infinitesimal, it is always much more likely
that no jump will occur (probability p0 = 1 − ∑r

k=1 pk).
In this unraveling, therefore, the dynamics is described by
a series of random jumps occurring at random times (and
in random channels), followed by a smooth no-jump evo-
lution (as illustrated in Fig. 6). Interestingly, the no-jump
evolution (under M0) is not unitary but is described by
the non-Hermitian Hamiltonian Heff. This happens because
this evolution is conditional; i.e., it is the evolution given
that no jump happened. And not observing a jump is still
information, so that we still update our knowledge about
the system.

Time

FIG. 6. A depiction of a master equation unraveled into a
stochastic jump equation [Eq. (30)]. The dynamics of an observ-
able will exhibit smooth evolution punctuated by sudden jumps.

Quantum jumps are a consequence of the open nature
of the problem; i.e., the interaction between system and
environment. But in many experiments, they can be con-
nected with outcomes (clicks) in specific detectors placed
within the environment. For instance, in a two-level atom,
σ−ρσ+ represents the emission of a photon, which could
be detected by placing a photodetector close to it. A sim-
ilar idea occurs in electron transport across quantum dots
(example C), where the term cρc† in Eq. (11) extracts an
electron from the system, while c†ρc injects an electron.
In principle, both of these processes could be detected by
observing the charge of the reservoirs. Of course, whether
or not this is experimentally feasible is problem specific.
Furthermore, it might involve a nonideal efficiency (i.e.,
some jumps might be missed). Notwithstanding, what mat-
ters is that, at least in principle, we can associate quantum
jumps with specific detectors located in the environment,
with one detector for each channel k. This is fundamen-
tal to the paradigm that we will use here to bridge the gap
between quantum dynamics and classical outcomes.

The Kraus decomposition given in Eq. (22) allows us to
describe the stochastic effects that monitoring these clicks
would have on the system evolution. We denote the density
matrix conditioned on a particular sequence of clicks as
ρc(t). At each time step, we choose one of the channels k =
0, 1, . . . , r with probabilities pc

k = dt tr
{

L†
kLkρc

}
(and pc

0 =
1 − ∑r

k=1 pc
k ). If the outcome is k = 1, . . . , r, we change

the state of the system as

ρc(t + dt) = Lkρc(t)L
†
k

tr(Lkρ(t)L
†
k)

. (25)

Or if the outcome is 0, we change it as

ρc(t + dt) = ρc(t)− idt
(

Heffρc(t)− ρc(t)H
†
eff

)
. (26)

This yields a quantum trajectory: a stochastic evolution of
the system density matrix conditioned on specific sets of
clicks. In practice, this is not the most efficient way of sim-
ulating quantum trajectories. A more efficient method is
the Monte Carlo wave-function approach [56], which we
discuss in Appendix A.
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Let us introduce classical random variables dNk(t) =
0, 1, which take the value 1 when a jump occurs in channel
k and 0 otherwise. That is,

P (dNk(t) = 1|ρc(t)) ≡ pc
k (t) = dt tr

{
L†

kLkρc(t)
}

. (27)

Here, we write P (dNk(t) = 1|ρc(t)), with a conditional in
ρc(t) to emphasize that it depends on the entire stochas-
tic trajectory dNk(t′) for t′ < t. These random variables
dNk(t), as we will see, play a fundamental role, as they
describe the connection between the quantum dynamics
and classical observable outcomes. In terms of the dNk(t),
we can also write the conditional updating as a stochastic
master equation

ρc(t + dt) = (1 − ∑r
k=1 dNk(t))

1 − ∑r
k=1 pc

k (t)
M0ρc(t)M

†
0

+
r∑

k=1

dNk(t)
Mkρc(t)M

†
k

pc
k (t)

. (28)

Since pc
k ∝ dt, we never observe more than a single jump

during a time step of dt, which implies the relations

dNkdNl = dNkδkl, dtdNk = 0, (29)

with δkl denoting the Kronecker delta. The last equation
describes the defining properties of a stochastic point (or
jump) process [57] and will be explained in more detail
below, in Eq. (35).

With the help of Eq. (29), we can expand the stochas-
tic master equation [Eq. (28)] into leading order in dt,
allowing us to write it as [6,54,58]

dρc = dtLρc +
r∑

k=1

(
dNk − dt〈L†

kLk〉c

) (
LkρcL†

k

〈L†
kLk〉c

− ρc

)
,

(30)

where dρc = ρc(t + dt)− ρc(t) and 〈O〉c = tr{Oρc}. This
is a nonlinear equation due to the appearance of the aver-
ages 〈L†

kLk〉c. It is also worth mentioning that if a state is
initially pure, it will remain so under the evolution given
in Eq. (28). If this is the case, then instead of Eq. (28), we
can write

|ψc(t + dt)〉 =
r∑

k=0

dNk(t)
Mk|ψc(t)〉√

pc
k

. (31)

Expanding in the same way that we did to get to Eq. (30),
this becomes [54,58]

d|ψc〉 = dt

(
−iHeff + 1

2

r∑
k=1

〈L†
kLk〉c

)
|ψc〉

+
r∑

k=1

dNk(t)

⎛
⎜⎝ Lk√

〈L†
kLk〉c

− 1

⎞
⎟⎠ |ψc〉. (32)

For most time steps, the second term will vanish and the
system will evolve smoothly according to the first term,
which essentially involves the non-Hermitian Hamiltonian
Heff in Eq. (21). Conversely, when a jump occurs, one of
the dNk will be 1 and the first term in Eq. (32) can be
neglected, since it is of order dt.

The unconditional density matrix, ρ(t) = eLtρ(0), is
recovered by averaging over the ensemble of all possi-
ble sequences of clicks; i.e., by repeating the dynamics
multiple times, with the same initial condition and dif-
ferent random sequences of clicks. We will denote this
expectation value by

ρ(t) = E[ρc(t)]. (33)

A similar average must therefore hold at the level of pk and
pc

k , which allows us to write

pk = E[pc
k ] = dttr

{
L†

kLkρ
}

≡ P (dNk = 1) . (34)

If we average Eq. (28) over the dNk(t), we should there-
fore recover the unconditional map given in Eq. (22). To
actually carry out this computation, however, care must
be taken with the fact that dNk(t) and ρc(t) are not sta-
tistically independent since, as highlighted in Eq. (27), we
use ρc(t) to generate dNk(t). Instead, the following identity
holds [59]:

E [dNk(t)g (ρc(t))] = E
[
pc

k (t)g (ρc(t))
]

, (35)

for any function g(ρc). Using this relation in Eq. (28)
yields

E
[

dNk(t)
Mkρc(t)M

†
k

pc
k (t)

]
= E

[
Mkρc(t)M

†
k

]
= Mkρ(t)M

†
k ,

(36)

so that the unconditional dynamics in Eq. (22) is indeed
recovered. Eq. (35) also shows that if we take g(ρc) = dt (a
constant), then E[dNk(t)dt] = E[pc

k (t)dt] ∝ dt2. The quan-
tity dNkdt is therefore always of order dt2, which explains
why we can set dNkdt = 0, as in Eq. (29).

020201-9



LANDI, KEWMING, MITCHISON, and POTTS PRX QUANTUM 5, 020201 (2024)

D. Output currents

The increments dNk can be understood as the change in
a counting variable Nk(t), which counts the net number of
jumps that took place in channel k between [0, t] (or the
number of clicks in a detector that measures those jumps).
Often, though, we are interested in quantities that involve
multiple channels. For instance, we might wish to count
the particle current, which is the number of excitations
exchanged between the system and the bath in a dissipa-
tor such as Eq. (9). In this case, D[σ+] should count as +1
and D[σ−] as −1. To encompass this kind of situation, we
define the total charge

N (t) =
∑

k

νkNk(t), (37)

where the νk are weights associated with whatever physi-
cal process one is dealing with (ν± = ±1 in the previous
example). The stochastic current, in turn, is defined as the
rate of change of the charge:

I(t) = dN
dt

, N (t) =
∫ t

0
dt′I(t′). (38)

The choice of νk is determined by what one wishes to
describe. Here are some examples:

(a) Particle current. In Eq. (9), we choose ν− = −1 for
D[σ−] (emission) and ν+ = +1 for D[σ+] (absorp-
tion).

(b) Energy current. if each excitation carries a well-
defined energy ε, we might similarly define ν± =
±ε.

(c) Photon current. in example D [Eq. (15)], photons
can only be lost to the environment, so ν = 1 gives
the net photon current. Unlike the particle current,
in this case we always have N (t) � 0 (the pho-
ton count can only go up). If there are two-photon
losses, we can also choose ν = 1 for D[a] and ν = 2
for D[a2], so that the jumps a2ρ(a†)2 count as two
photons.

(d) Dynamical activity. This represents the net num-
ber of jumps, irrespective of their channels. It is
obtained by setting νk = 1 for all Lk in the QME.
The dynamical activity has recently become popular
in connection with the so-called kinetic uncertainty
relations [60,61].

One might also be interested in describing multiple current
specimens at the same time, e.g., particle currents to the
left bath and to the right bath. These can be constructed
as Nα(t) = ∑

k ναkNk(t), with coefficients ναk, where the α
label the current type. For simplicity, we will focus for now
on a single current specimen but in Sec. VI C we show how
the results can be generalized.

The current I(t) [or the charge N (t)] is a stochastic
quantity. The average current is

J (t) := E [I(t)] = 1
dt

E [dN (t)] = 1
dt

∑
k

νkE [dNk(t)] .

(39)

Using Eq. (34), we find that

J (t) =
∑

k

νktr
{

L†
kLkρ(t)

}
. (40)

This is only an average, however, and therefore it conveys
only a limited amount of information about the stochas-
tic current. Our goal in this tutorial is to develop the tools
to go beyond the average and also look at fluctuations. In
the remainder of this section, we discuss examples and
also introduce the paradigm of quantum diffusion, which
is complementary to quantum jumps. The reader interested
in skipping ahead may go straight to Sec. III.

1. Imperfect detection

In actual experiments, we often cannot detect the clicks
with perfect efficiency. Introducing partial detection effi-
ciency in the model is therefore crucial for describing
various realistic situations. In our framework, this can be
done seamlessly using the following trick. Suppose that the
r jump operators Lk are each measured with an efficiency
ηk ∈ [0, 1], such that ηk = 1 means perfect efficiency. We
can then double the number of jump operators by defin-
ing L0

k = √
1 − ηkLk and L1

k = √
ηkLk, so that Eq. (5) is

rewritten as

Lρ = −i[H , ρ] +
r∑

k=1

D[L0
k]ρ + D[L1

k]ρ. (41)

We now have 2r jump operators and we can interpret L1
k as

the set that is accessible for detection and L0
k as a set that is

inaccessible. In practice, this simply means that we need to
construct the charge equation [Eq. (37)] using ν0

k = 0, for
the part that is inaccessible.

2. Output current for example A

There are two dissipators in Eq. (9), so there will be
two counting variables, dN− and dN+, associated with
the jump operators σ− and σ+. For example, to construct
the particle current, we use weights ν± = ±1, leading to
I(t) = (dN+/dt)− (dN−/dt). The average current is then

J (t) = γ N̄ 〈σ−σ+〉 − γ (N̄ + 1)〈σ+σ−〉
= γ

(
N̄ − (2N̄ + 1)〈σ+σ−〉) . (42)
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(a)

(b)

FIG. 7. The quantum jump stochastic dynamics for example
A (Sec. II B 1), with � = 0, � = γ , and N̄ = 0.2. (a) The quan-
tum trajectory associated with the conditional evolution 〈σ+σ−〉c
as a function of time, where individual jump events are denoted
by the arrows (red = absorption, blue = emission). (b) The
net particle current N (t) accumulated after a time t. Due to the
Rabi drive, which is constantly creating excitations, the current is
always negative on average [Eq. (43)]. In this particular example,
J/γ ≈ −0.4.

In the steady state, this reduces to

J = − γ�2(
�2 + 2�2

) + γ 2(N̄ + 1
2 )

2
. (43)

The average current is finite due to the Rabi drive, which
is constantly reexciting the qubit. It is also negative for the
same reason: since excitations are constantly being created
in the qubit, it is more likely for it to emit an excitation
than to absorb it.

A much richer behavior is obtained by looking at I(t)
for individual trajectories; i.e., simulating ρc using, e.g.,
the algorithm in Appendix A. Figure 7(a) exemplifies
the quantum jumps mixed in with the smooth no-jump
dynamics. The corresponding trajectory N (t) = ∫ t

0 I(t′)dt′
is shown in Fig. 7(b). This represents the net charge N (t)
that would be observed by an experimentalist able to count
both absorption and emission events. In this simulation, we
have chosen the parameters such that J/γ ≈ −0.4.

We could also study the dynamical activity (the jumps
per unit time), obtained by using ν+ = ν− = 1. Instead
of Eq. (42), in this case we have K = γ (N̄ + 1)〈σ+σ−〉 +
γ N̄ 〈σ−σ+〉. An interesting particular case is when the Rabi
drive vanishes, � = 0. In Eq. (43), this leads to J = 0,
since the system equilibrates with the bath; i.e., because
there is no Rabi drive to create excitations, the number
of jumps into or out of the bath must balance out. The
dynamical activity, on the other hand, reads (for � = 0)

K = 2γ N̄ (N̄ + 1)
2N̄ + 1

, (44)

(a)

(b)

FIG. 8. Stochastic trajectories for example B (Sec. II B 2), with
γ = γL = γR, TL = 2γ , TR = γ , ω = 21γ , μR = 20γ , and μL =
10γ . We have chosen the parameters such that there is a large
chemical potential bias μR > μL, which causes the current to
be pumped against the temperature gradient. (a) The occupation
of the dot 〈c†c〉, where we have labeled the color-coded jumps
from the right reservoir in blue and those from the left reservoir
in red. (b) The net charge N (t) monitored from the left reser-
voir, which decreases, showing that particles are moving from
the right reservoir (cold) to the left reservoir (hot). We count
only particle events from the left reservoir νL

− = −1, νL
+ = 1 and

νR
± = 0. Together with ω > μR, this implies the behavior of a

refrigerator [62].

which is only zero if N̄ = 0 (zero temperature). This hap-
pens because even in the absence of any drive, the system
will continue to jump up and down due to the thermal fluc-
tuations, so that even if the average current is zero (net in
= net out), the overall activity is not zero.

3. Output current for example B

Quantum trajectories for example B are shown in Fig. 8.
There are four dissipators, γ R

−D[c], γ R
−D[c], γ R

+D[c†], and
γ R

+D[c†], with the rates parametrized as in Eq. (12). For
example, to compute the particle current from the left bath,
we may set νR

− = −1, νR
+ = +1, and νR

± = 0. In the steady
state, we obtain

J = γL(〈c†c〉 − fL) = γLγR(fR − fL)
γL + γR

. (45)

In some parameter ranges, this model can behave as a
refrigerator, where a chemical potential bias μR > μL
pumps current against a temperature bias TL < TR [62–
64]. This can be seen from the fact that J depends on
the difference in Fermi distributions, not the difference
in temperature. A well-adjusted chemical potential could
therefore change the sign of J . In Fig. 8, we look at this
from the perspective of individual quantum trajectories.
The dynamics in this case is clearly incoherent. Every time
the dot receives an electron (〈c†c〉c = 1), it will remain
there for a certain residence time, after which it will tunnel
out to one of the two baths. At the level of the state of the
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(a)

(b)

FIG. 9. Quantum trajectories for the direct photodetection of
example D (Sec. II B 4). The parameters are fixed at G/κ = 1,
U/κ = 1/3, and �/κ = 2, corresponding to the onset of the
discontinuous transition [Fig. 5(c)]. (a) The conditional mean
photon number 〈â†â〉c as a function of time during a single tra-
jectory. (b) The observed photocurrent I(t), corresponding to a
series of Dirac delta functions at each detection event. The rate
of photodection events can tell us if the system is in a metastable
state [outer lobes in Fig. 5(c)] but it cannot distinguish between
the two metastable states. Figure reproduced from Ref. [48].

system, the bath to which the electron tunnels is immate-
rial. But physically it matters, as this is what determines
whether heat flows to the hot or the cold bath. Because of
the different Fermi distributions, emissions to one bath and
absorptions from the other will be favored, resulting in the
net average current given in Eq. (45).

4. Output current for example D

In Fig. 9, we plot an example trajectory of the PPK
model with the same parameters as in Fig. 5(c). In
Fig. 9(a), we plot the conditional mean photon number
〈a†a〉c and in Fig. 9(b), we plot the photocurrent I(t)/κ .
The dynamics here is seen to alternate between a bright
and a dark phase. It will be bright (many photon emis-
sions) when the state is close to the outer lobes of the
Wigner function and it will be dark when it is in the cen-
tral lobe. The system keeps transitioning back and forth
between these lobes, causing the current to stochastically
alternate between bright and dark.

E. Quantum diffusion and diffusive currents

The quantum jump approach connects clicks in a detec-
tor to the terms LkρL†

k . The master equation (5), however,
is invariant under the transformation

Lk → Lk + αk, H → H − i
2

∑
k

(
α∗

k Lk − αkL†
k

)
,

(46)

where the αk, henceforth referred to as reference currents,
are arbitrary constants (they can even be time dependent).
We could therefore also consider quantum jumps asso-
ciated with (Lk + αk)ρ(Lk + αk)

†, which correspond to a
different unraveling of the QME with Mk = √

dt(Lk + αk)

(M0 is also modified). These modified jumps can also rep-
resent clicks in a physical detector, as discussed in more
detail below.

While the αk are arbitrary, the big advantage, as we will
see, is to consider the case in which their magnitudes are
very large. This causes the jumps to become very frequent.
To understand why this regime is interesting, let us look
at how the average current in Eq. (40) changes. Writing
αk = |αk|eiφk , we obtain

J (t) =
∑

k

νktr
{
(Lk + αk)

†(Lk + αk)ρ(t)
}

=
∑

k

νk

(
|αk|2 + |αk|〈xk〉 + 〈L†

kLk〉
)

, (47)

where we have defined the quadrature associated with
each jump operator:

xk = Lke−iφk + L†
keiφk . (48)

The first term in Eq. (47) is just a constant shift νk|αk|2.
The interesting part is the interplay between the second and
third terms: if |αk| is very large, the current will essentially
be measuring 〈xk〉 instead of 〈L†

kLk〉. By adding a large
reference current, we can thus access an entirely different
observable.

This motivates us to define a diffusive stochastic current
as

Idiff(t) =
r∑

k=1

νk

|αk|
(

dNk

dt
− |αk|2

)
, (49)

i.e., we subtract from dNk/dt the constant offset |αk|2 and
then normalize the results by |αk|. The advantage of this is
that the average current becomes, when |αk| is large,

Jdiff(t) = E[Idiff(t)] =
∑

k

νk〈xk〉, (50)

so that, on average, we are sampling a linear combination
of the xk.

The stochastic master equation [Eq. (30)] continues to
hold after the transformation given in Eq. (46). However,
a more appropriate equation can be derived in the limit-
ing case of large |αk| [6,54,65,66]. The result, derived in
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Appendix B, reads

dρc = dtLρc +
r∑

k=1

dWk [Hkρc − 〈xk〉cρc] , (51)

where

Hkρc = Lke−iφkρc + ρcL†
keiφk , (52)

are such that tr {Hkρc} = 〈xk〉c. In Eq. (51), the dWk are
independent Wiener increments, i.e., Gaussian random
variables with E[dWk] = 0, E[dW2

k] = dt, and [57]

dWkdWl = dtδkl. (53)

We obtain Eq. (51) by time averaging the stochastic mas-
ter equation over the effect of many jumps. In the limit
of large reference currents, the jumps are dominated by
the term proportional to |αk|2 and even a large number of
jumps only results in an infinitesimal change in the density
matrix, which can be described by a Gaussian stochas-
tic process [67]. Analogously, the rate of change of the
counting variables dNk/dt behaves as (see Appendix B)

dNk

dt
� |αk|2 + |αk|

(
〈xk〉 + dWk

dt

)
. (54)

Hence the stochastic diffusive current equation [Eq. (49)]
becomes

Idiff(t) =
∑

k

νk

(
〈xk〉c + dWk

dt

)
. (55)

Since E[dWk(t)] = 0 and dWk(t) is statistically indepen-
dent of ρc(t), averaging Eq. (51) over all trajectories recov-
ers the original master equation [Eq. (5)], i.e., E[ρc(t)] =
ρ(t). Similarly, averaging Eq. (55) yields the average
diffusive current equation [Eq. (50)].

Equations (51) and (55) can also be obtained from an
entirely different physical approach, namely, the contin-
uous application of weak Gaussian measurements [68].
Let Y denote a Hermitian observable and consider the
measurement operators

Mz =
(

2λdt
π

) 1
4

e−λdt(z−Y)2 , (56)

where z ∈ R denotes the possible outcomes and λ > 0 is
the measurement strength. To gain some physical intu-
ition as to what these measurements do, decompose Y =∑

y y|y〉〈y|. Given any state ρ, the probability of obtaining

outcome z is then

tr
{
MzρM †

z

} =
(

2λdt
π

)1/2 ∑
y

e−2λdt(z−y)2〈y|ρ|y〉, (57)

which is a sum of very broad Gaussians, each with
standard deviation 1/

√
2λdt, centered on the eigenvalues

y, and of height proportional to 〈y|ρ|y〉. Moreover, the
unconditional action of the map, after averaging over all
possibilities, is

∫ ∞

−∞
dz MzρM †

z =
∑
y,y ′

e−λdt(y−y ′)2/2|y〉〈y|ρ|y ′〉〈y ′|. (58)

The map therefore does not affect the diagonals of ρ in the
eigenbasis of Y but dampens the coherences (off-diagonals)
by a small amount e−λdt(y−y ′)2/2.

Now consider a scenario in which we continuously
apply the measurement operators given in Eq. (56). We
can imagine a stroboscopic dynamics, where a new mea-
surement is applied after each step dt, leading to a series
of random outcomes z1, z2, . . .. The continuous measure-
ment is thus described by infinitely many infinitely weak
measurements. As we show in Appendix C, this will
lead precisely to the quantum diffusion stochastic mas-
ter equation [Eq. (51)], with jump operator L = √

λY.
Moreover, choosing ν = 1/(2

√
λ) makes the sequence of

outcomes z exactly equal to Idiff(t) in Eq. (55). Note that
since L† = L, this will give rise to dephasing; moreover,
the quadrature equation [Eq. (48)] is x = 2L. And with our
choice of ν, we also have that νx = Y is the original oper-
ator that we are measuring. More compactly, the resulting
stochastic master equation can be written as

dρc = dt (−i[H , ρc] + λD[Y]ρc)+
√
λdW{Y − 〈Y〉, ρc},

(59)

and the output of each measurement is

z = 〈Y〉 + 1

2
√
λ

dW
dt

. (60)

This is sometimes referred to as the Belavkin equation
[65]. We finish by mentioning that quantum diffusion can
also be formulated using a path-integral approach. For
more information on this, see Refs. [69–72].

1. Homodyne, heterodyne, and charge detection

We now detail some common types of experiments
involving diffusive currents. For a summary, see Table II.

Homodyne detection. We consider an optical system
with a single jump operator L = √

κa, describing pho-
tons leaving the system. This outgoing light is com-
bined at a beam splitter with a reference laser drive,
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TABLE II. Common paradigms in quantum diffusion. The corresponding stochastic currents are given in Eq. (55).

Name Jump operators Reference Weights Jdiff

Homodyne L = √
κa α = |α|eiφ ν = 1/

√
2κ Jdiff = 〈xφ〉, xφ = 1√

2
(ae−iφ + a†eiφ)

Heterodyne L1 = L2 = √
κ
2 a α1 = |α|, α2 = i|α| ν1 = ν2 = 1/

√
κ J 1

diff = 〈x0〉, J 2
diff = 〈xπ/2〉,

Heterodyne, time-dependent L = √
κa α = |α|ei�t. ν = 1/

√
2κ Jdiff = cos(�t)〈x0〉 + sin(�t)〈xπ/2〉

Charge detection and/or L = √
σz α = |α| ν = 1/(2

√
) Jdiff = 〈σz〉

Gaussian measurements

called the local oscillator. This yields the reference cur-
rent α = |α|eiφ , proportional to the laser amplitude, so
that (L + α)ρ(L† + α∗) corresponds to clicks in a pho-
todetector placed after the beam splitter [30]. While most
clicks result from the photons that originate from the
local oscillator, information on the quadratures of the field
will still be contained in the diffusive current. Choosing
ν = 1/

√
2κ , we find Jdiff(t) = 〈xφ〉 with the quadrature

operator

xφ = 1√
2

(
ae−iφ + a†eiφ) . (61)

We note that for α to be time independent (as we have
assumed here), the master equation needs to be written in
a frame rotating at the frequency of the local oscillator.
The quadratures given in Eq. (61) are thus in this rotating
frame. Usually, we are interested in the quadratures in a
frame rotating with the frequency of an external drive, ωd.
The frequency of the local oscillator should then be chosen
to match ωd.

Heterodyne detection. Consider splitting the light, leav-
ing the system in two parts, using a beam splitter and
applying homodyne detection to each outgoing beam.
This can be described by splitting the jump operator
in two, L1 = L2 = √

κ/2a. For the local oscillators, we
may choose α1 = |α| and α2 = i|α|. Choosing ν1 = ν2 =
1/

√
κ , this detection scheme results in two diffusive cur-

rents with averages J 1
diff(t) = 〈x0〉 and J 2

diff(t) = 〈xπ/2〉, cor-
responding to orthogonal quadratures. Note that there is
a price to pay for measuring two noncommuting observ-
ables simultaneously (even though not projectively): when
splitting the outgoing light into two beams, vacuum fluc-
tuations enter the unused port, enhancing the noise in the
measurement. This can be seen from the fact that ν is larger
by a factor of

√
2 compared to homodyne detection of a

single quadrature. As a weighting factor, an enhanced ν
will also enhance the fluctuations, as will be discussed in
Sec. III C.

Another method for implementing heterodyne detection
is by mixing the light leaving the cavity with a single
local oscillator, with a strong detuning � (from the frame
of interest). In this case, we have L = √

κa and a time-
dependent reference current α = |α|ei�t. Choosing ν =

1/
√

2κ , the diffusive current then reads

Jdiff(t) = cos(�t)〈x0〉 + sin(�t)〈xπ/2〉. (62)

Assuming that � is sufficiently big, such that we may
neglect changes in the system over the time scale 1/�, we
can recover the two diffusive currents from before as

J 1
diff(t) = �

π

∫ t+2π/�

t
dt′ cos(�t′)Jdiff(t) = 〈x0〉,

J 2
diff(t) = �

π

∫ t+2π/�

t
dt′ sin(�t′)Jdiff(t) = 〈xπ/2〉.

(63)

Of course, this scheme also suffers from the additional
noise in comparison to homodyne detection. In this case,
the added noise results from the averaging in Eq. (63) [6].

Charge detection. For concreteness, we consider a two-
level system. We could, for instance, have the eigenstates
of σz corresponding to two different charge configurations
in a quantum dot system. As will be shown in Sec. VI G,
the charge can be detected with a quantum point contact
(QPC), a current-carrying element placed close to the dot.
The current in the QPC is sensitive to any nearby charges
and therefore can be used to detect whether or not there
is an electron in the dot [15,17]. In turn, the presence of
the QPC provides a fluctuating environment for the sys-
tem, resulting in dephasing described by the jump operator
L = √

σz [example C, Eq. (13)]. The reference current
α is the current through the QPC when the system is in
one of the eigenstates of σz [45]. Choosing ν = 1/(2

√
),

the diffusive current provides a measurement of the charge
configuration, Jdiff = 〈σz〉. In contrast to optical-homodyne
detection, the electrical current through the detector there-
fore constitutes both the reference current, α, as well as the
source of dephasing, determining  (there may, of course,
also be other sources of dephasing).

We have labeled this kind of process as “charge detec-
tion“ but, from this discussion, it is clear that this is in fact
more general. Indeed, in the paradigm of Gaussian mea-
surements [Eq. (56)], it is clear that what we have referred
to as “charge detection“ really applies to the detection of
any Hermitian operator.
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2. Output current for example C

We study the diffusive dynamics of Eq. (51) for the
master equation given in Eq. (13), where we monitor the
population σz of the qubit. This can be done experimentally
with quantum dots or superconducting qubits [73–77].
Equation (51) reduces to

dρc = −i[H , ρc] + D[σz]ρc +
√
(σzρc

+ ρcσz − 2〈σz〉cρc)dW, (64)

where  is the dephasing rate and dW is a Wiener incre-
ment. The diffusive stochastic current equation [Eq. (55)]
is thus

Idiff(t) = 〈σz〉c + 1

2
√


dW
dt

. (65)

In the steady state, ρss = I/2 is the maximally mixed state,
yielding a trivial average current Jdiff(t) = 〈σz〉 = 0.

This model can be used to demonstrate the quantum
Zeno effect under continuous measurement [78], which
arises when the rate of measurement  becomes much
larger than the Rabi frequency� [77]. This causes the sys-
tem to be pinned into one of the eigenstates, |↑〉 or |↓〉,
of the measured operator σz. In Fig. 10(a), we plot the
quantum trajectories corresponding to both the weak and
strong measurement regimes. We see that  � � leads
to Rabi oscillations, which are suppressed when  � �,
being replaced by abrupt jumps.

The raw signal Idiff(t) in Eq. (65) is primarily domi-
nated by the white noise dW/dt. In order to extract useful
information, such as an estimate of the trajectories, Idiff(t)
must be filtered in postprocessing, yielding a filtered cur-
rent Ĩdiff(t). An example of the resulting filtered trajectory is
shown in Fig. 10(b). While not the subject of this tutorial,
we note that the optimal filtering strategy is highly depen-
dent on the system dynamics and experimental parameters,
and must therefore be chosen carefully. In this exam-
ple we have used a first-order Butterworth low-pass filter
[79]. For  � �, we have used a cutoff at the Rabi
frequency 2� to attenuate high-frequency signals while
leaving low-frequency signals unaffected. For  � �, on
the other hand, we have applied the filter centered at 2�,
in order to suppress all other frequencies. We can also see
the effect of these filters by taking the Fourier transform
F{Ĩdiff(t)} of the filtered current [Fig. 10(c)], which shows
the suppression of the unwanted frequencies. For a more
in-depth discussion of Butterworth filters, please refer to
Appendix G.

In the limit where � = 0, this setup realizes a (contin-
uous) quantum nondemolition (QND) measurement [80]
of the qubit population. A QND measurement is one
that yields the same outcome when the measurement is
repeated, which can only occur if the dynamics preserves

(a)

(b)

(c)

FIG. 10. The output current for example C (Sec. II B 3), with
� = 0 and  = (0.2�, 20�), which correspond to the red and
black curves, respectively. (a) We plot both the oscillatory (red)
and jump phases (black) of the quantum trajectory 〈σz(t)〉c. (b)
We plot both filtered homodyne currents Ĩdiff(t) corresponding to
either regime, where the filtering is done with a Butterworth low-
pass and band-pass filter, respectively. (c) To see the effect of the
filtering on Ĩdiff(t), we plot the Fourier transform of the filtered
signals, showing the suppression of unwanted frequencies. Here,
the blue dashed line corresponds to the Rabi frequency 2�. For
further details on this filtering, see Appendix G.

the value of the measured observable. In this case, after a
time t � −1 has elapsed, the conditional dynamics pins
the qubit to one of its energy eigenstates, so that sub-
sequent measurements provide no additional information
on σz. Indeed, it is easy to check that the eigenstates
of σz are steady-state solutions of the conditional master
equation [Eq. (64)] when � = 0, because the final noise
term vanishes when 〈σz〉 = ±1.

3. Homodyne detection for example D

We again consider example D but instead of counting
photons as in Sec. II D 4, we perform homodyne detec-
tion along p = i(a† − a)/

√
2 (see Table II), again for the

same configuration as in Fig. 5(c). The results are shown
in Fig. 11. The measurement along p can now also resolve
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FIG. 11. Quantum trajectories for the homodyne detection
along p in example D (Sec. II B 4). The parameters are fixed
at G/κ = 1, U/κ = 1/3, and �/κ = 2, corresponding to the
configuration in Fig. 5(c). The curves showcase the tunneling
dynamics of the system, between three metastable states. The
figure shows the filtered homodyne current Idiff(t) (red) and the
underlying conditional moment 〈p〉c (black); the former has been
processed by a low-pass filter to remove high-frequency noise.
Figure replicated from Ref. [48].

the two outer lobes, so that we see tunneling between all
three of them. We can again pass the raw homodyne cur-
rent Idiff(t) through a low-pass Butterworth filter, yielding
a filtered current Ĩdiff(t) that approximates the underlying
trajectory 〈p〉c.

III. FLUCTUATIONS IN THE OUTPUT CURRENT

In Sec. II, we have introduced the idea of fluctuating
(stochastic) currents as the output the dynamics of an open
quantum system [Eqs. (38) and (55), for jump and dif-
fusive processes, respectively]. We have also computed
their corresponding average currents [Eqs. (40) and (50)].
These averages, however, only convey a limited amount
of information about the process. A much broader picture
is obtained by looking at fluctuations. Crucially, since the
currents I(t) form a time series, one can look at the correla-
tions between fluctuations at different times, i.e., two-point
correlations. This is, in fact, where the true richness of
the stochastic approach lies: the clicks in the detectors are
not independent because they stem from the same quan-
tum system. Their correlations therefore teach us about the
system dynamics.

A. Two-point correlation function

The correlations between I(t) and I(t + τ) are captured
by the two-point correlation function

F(t, t + τ) = E (δI(t)δI(t + τ))

= E (I(t)I(t + τ))− J (t)J (t + τ), (66)

where δI(t) = I(t)− J (t) is a shorthand for the current
fluctuations (recall that J (t) = E(I(t)). Note that I(t) is

a classical random variable, so I(t) and I(t + τ) com-
mute; hence F(t, t + τ) = F(t + τ , t) and it suffices to take
τ > 0.

For quantum jumps, we show in Appendix D that the
two-point function can be written as

F(t, t + τ) = δ(τ )K(t)+ tr
{
J eLτJ ρ(t)

} − J (t)J (t + τ),
(67)

where

K(t) =
∑

k

ν2
k tr

{
L†

kLkρ(t)
}

� 0 (68)

and

J ρ =
∑

k

νkLkρL†
k . (69)

This superoperator J will play a crucial role. For example,
note how the average current equation given in Eq. (40)
can be written as

J = tr {J ρ} . (70)

The first term in Eq. (67) is proportional to a Dirac delta
function, which in the Fourier domain corresponds to white
noise: it is present at all frequencies with equal strength.
This singular correlation appears due to the approxima-
tion that the jumps occur instantaneously, which is implicit
in the master equation. Physically, of course, nothing
diverges. The prefactor K(t) is a measure of how fre-
quently jumps occur overall and is closely related to the
dynamical activity [81,82], coinciding with it whenever
νk = ±1.

The unequal-time correlations are captured by the other
two terms in Eq. (67). The second term, in fact, is related
to the probability of a jump occurring at time t + τ given
that a jump was observed at time t (see Appendix D):

P
(
dNq(t + τ) = 1|dNk(t) = 1

) = dt2

pk(t)
tr

{
LqeLτLkρ(t)

}
,

(71)

where pk(t) = dttr {Lkρ(t)}. In a quantum optics context,
this kind of correlation is related to Glauber’s second-
order coherence function g(2)(τ ) [24], as will be discussed
in Sec. III D. In the extreme case of a pure Poisson pro-
cess, where each jump is statistically independent of all
the others, the second and third terms in Eq. (67) cancel
out, leaving only the white noise (see Appendix F). Hence
white noise is associated with the occurrence of temporally
uncorrelated fluctuations.
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Next, we turn to quantum diffusion [Eq. (55)]. As shown
in Appendix E, the two-point function reads instead

Fdiff(t, t + τ) = δ(τ )Kdiff + tr
{
HeLτHρ(t)

}
− Jdiff(t)Jdiff(t + τ). (72)

This is similar in structure to Eq. (67) but with

Kdiff =
∑

k

ν2
k (73)

and

Hρ =
∑

k

νk

(
e−iφk Lkρ + eiφkρL†

k

)
=

∑
k

νkHkρ, (74)

with Hk given in Eq. (52). The superoperator H plays a
very similar role to J in Eq. (69). For instance, just like
J = tr {J ρ}, we see from Eq. (50) that Jdiff = tr {Hρ}.
In a quantum optics context, the second term in Fdiff is
related to Glauber’s first-order coherence function g(1)(τ )
(Sec. III D).

As before, the first term in Eq. (72) represents white
noise. However, unlike in Eq. (67), the white-noise inten-
sity Kdiff is independent of the present state of the system.
This is because it derives from fluctuations of the refer-
ence current used to perform the measurement. In quantum
optics, this is sometimes referred to as shot noise. Here,
we avoid this term to prevent confusion with its other
meanings in mesoscopic physics.

Henceforth, we will present most of the formulas in
terms of the quantum jump notation in Eq. (67). How-
ever, unless stated otherwise, all expressions also hold for
diffusion, provided that we replace K → Kdiff and J →
H.

B. Power spectrum

Equation (67) holds for any state ρ(t). In the steady
state, though, F(t, t + τ) becomes a function only of the
time difference τ :

F(τ ) = δ(τ )K + tr
{
J eL|τ |J ρss

} − J 2. (75)

It is then natural to look at its Fourier transform, which
yields the power spectrum

S(ω) =
∫ ∞

−∞
e−iωτF(τ )dτ (76)

= K +
∫ ∞

−∞
e−iωτ (

tr
{
J eL|τ |J ρss

} − J 2) dτ . (77)

The power spectrum is real and even, S(ω) = S(ω)∗ =
S(−ω), which follows from the corresponding properties
of F(τ ) and the fact that the currents here are classical

objects. We see from Eq. (77) that the white noise yields
a frequency-independent background. On top of this, tem-
poral correlations give rise to peaks and dips in S(ω). The
position, width, and height of these features convey infor-
mation about the system. A detailed guide is presented
in Sec. V C 2 for the case of weak dissipation. There, we
show that the positions of the peaks are associated with the
energy differences (transition frequencies) of the system
and that the widths are related to dissipation. Moreover,
whether a dip or a peak appears indicates whether jumps
are correlated or anticorrelated. We also remark that the
power spectrum is different from the emission spectrum,
e.g., of an optical cavity, which describes the energies of
the emitted quanta rather than the distribution of emissions
in time. Emission and absorption spectra are discussed in
Sec. VI I.

The power spectrum can also be related to the Fourier
transform of the stochastic current I(t) itself. Consider a
large enough integration time T and let

δĨ(ω) = 1√
T

∫ T

0
dteiωtδI(t), (78)

where, recall, δI(t) = I(t)− J (t). Then, it follows that
E

[∣∣δĨ(ω)∣∣2
]

= 1/T
∫ T

0 dt
∫ T

0 dt′eiω(t−t′)F(t − t′). Changing
variables to τ = t − t′ and s = (t + t′)/2 and carrying out
the integral over s, we find that

E
[∣∣δĨ(ω)∣∣2

]
=

∫ T

0
dτ

T − τ

T
F(τ )eiωτ

+
∫ 0

−T
dτ

T + τ

T
F(τ )eiωτ . (79)

If T is much larger than the time over which F(τ ) decays
to zero, then we can approximate T ± τ � T, from which
it follows that

S(ω) = lim
T→∞

E
[∣∣δĨ(ω)∣∣2

]
. (80)

This expression is known as the Wiener-Khintchine
theorem [83–85] and is useful for computing S(ω) from
finite-length time series (cf. Fig. 12).

1. Power spectrum for example A

We return to the resonantly driven qubit considered in
Sec. II D 2 and Fig. 7. The two-point function F(τ ) and
power spectrum S(ω) are shown in Fig. 12, using the same
set of parameters as in Fig. 7 (we omit the Dirac delta con-
tribution from F(τ )). The methods for computing these
quantities will be outlined in Sec. V. The two-time cor-
relation function is initially negative (anticorrelation) and
takes its smallest values as τ → 0. This means that we
are unlikely to see another detection event immediately
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(a)

(b)

FIG. 12. (a) The two-point function F(τ ) and (b) the power
spectrum S(ω) [Eq. (81)] for a quantum jump stochastic dynam-
ics for example A (Sec. II B 1), with � = 0, � = γ , and N̄ =
0.2. The two-point correlation function is initially negative, indi-
cating anticorrelated behavior, but becomes positive at γ τ ∼ 1.5
before quickly decaying to zero. The power spectrum has two
dips that signify the presence of Rabi oscillations. The black
dashed lines correspond to the Rabi frequency. The red curve
corresponds to the power spectrum, whereas the gray curve
corresponds to the power spectrum as measured from the homo-
dyne current of a single trajectory, with step γ δt = 0.001 and
total time γ t = 2000, divided into Nsamp = 20 samples of length
Nsteps = 105.

following the first one and we say that the emissions are
antibunched (see Sec. III D). This happens because when-
ever an emission occurs, it takes some time for the system
to be rotated back to its excited state by the drive. The
half period of the bare Rabi oscillations is π/2� but the
peak in F(τ ) does not occur exactly at τ = π/2� due to
the perturbing effect of thermal excitations. In the long-
time limit, F(τ ) → 0, indicating that detection events are
uncorrelated with the initial detection event.

Anticorrelated emissions cause dips in S(ω), which we
plot in Fig. 12(b). The dips are positioned at ω = ±2�,
corresponding to the energy gap of the Hamiltonian given
in Eq. (8). The widths of the peaks are proportional to the
damping rate γ . In the limit N̄ = 0, the power spectrum
can be written analytically as

S(ω)= J

{
1 − 24γ 2�2

γ 4 + γ 2
(
5ω2 + 16�2

) + 4
(
ω2 − 4�2

)2

}
.

(81)

In Fig. 12, we also illustrate how one might reconstruct
the power spectrum from the stochastic current I(t) in a
single shot, mimicking a real experimental situation. To
do this, we must work with the discretized version of I(t),
which we will denote as Itn , where tn corresponds to the

discrete index in time that is incremented by tn = t0 + nδt,
where δt = Nsteps/T is the time increment, Nsteps is the total
number of time steps, and T is the total integration time.
We begin by collecting Nsamp unique series measurements
of the current I i

tn , labeled i = 1, . . . , Nsamp, each of length
Nstep. To compute the power spectrum, one first computes
the signal δI i

tn= I i
tn − Et[I i

tn], where the average is taken on
the time axis tn. One then computes the absolute square of
the numerical Fourier transform of δIt to obtain the power
spectrum [cf. Eq. (80)],

Si
ω = 1

T

∣∣∣∣∣∣
Nsteps−1∑

n=0

δI i
tne−iωnδt

∣∣∣∣∣∣
2

, (82)

and one then concludes by averaging over all Nsamp sam-
ples Ei[Si

ω]. The power spectrum is thus reconstructed
from multiple samples of the signal, which can also be
obtained by partitioning a single long observation into
Nsamp samples [86].

2. Power spectrum for example C

Next, we revisit the dephased-qubit example of
Sec. II E 2 and Fig. 10. Since this is a diffusive measure-
ment, we still use the formulas given in Eqs. (75) and (76)
but with the replacements K → Kdiff and J → H. Recall
that this model exhibits two drastically different regimes
depending on the strength of the measurement : the oscil-
latory phase (weak measurement,  � �) and the jump
phase (strong measurement,  � �). We focus on the
steady state, where ρss = I/2 and Jdiff = 0. The two-point
function in this case can be computed analytically and
reads

F(τ ) = δ(τ )+ 4e−κτ
(
 sinh

(
�′τ

)
�′ + cosh

(
�′τ

))
,

(83)

where �′ = √
2 − 4�2. Inserting this in Eq. (76) yields

S(ω) = 1 + 642�2

42ω2 + (
ω2 − 4�2

)2 . (84)

These results are plotted in Fig. 13 for the same two
measurement strengths used in Fig. 10. In the oscillatory
phase, the sign of F(τ ) also oscillates, hence alternating
between positively and negatively correlated. This indi-
cates the presence of coherent Rabi oscillations, which
decay in time due to the dephasing induced by the mea-
surement. Likewise, S(ω) exhibits two peaks at ω = ±2�,
as these frequencies dominate the homodyne signal. In the
jump phase, the oscillatory dynamics is replaced with a
monotonic decay in F(τ ). Indeed, if  � �, we obtain
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(a)

(b)

FIG. 13. (a) The two-time correlation function F(τ ) [Eq. (83)]
for example C (Sec. II B 3), with homodyne detection along
〈σz(t)〉c, for � = 1 and  = (0.2, 20) (black and red curves,
respectively). In the weak-measurement phase, we see an oscil-
lating F(τ ) with a decaying envelope. However, in the strong-
measurement (i.e., jump) phase, all oscillations are suppressed
and we simply see a positive monotonically decaying F(τ ). This
positive correlation means that if the system is observed in either
state |↑〉 or |↓〉, then it is more likely to be observed in the same
state at a later time. (b) The power spectrum S(ω) [Eq. (84)]. The
two peaks for the oscillatory regime correspond to the eigenen-
ergies of the system. Note the log scale of the y axis. For the
jump regime, the slowly decaying F(τ ) yields a sharply peaked
deltalike power spectrum at the origin.

F(τ ) � 4e−2t�2/ . The two-point function is therefore
always positive and very large, signaling a very large cor-
relation. Moreover, it exhibits a very slow decay. The
measurement therefore pins the system to one of the eigen-
states and no change is ever possible, which is the limit
of the quantum Zeno effect. This is further seen in the
power spectrum S(ω), which becomes a Lorentzian in the
jump phase and approaches a delta function in the limit of
 → ∞ [note the log scale in Fig. 10(c)].

C. The noise

The fluctuations in the total charge N (t) are captured by
the variance Var(N (t)) = E

(
N (t)2

) − E (N (t))2. It turns
out to be more convenient to study its rate of change,

D(t) := d
dt

Var(N (t)). (85)

This quantity is widely studied in FCS (Sec. IV). Con-
fusingly, in the literature it goes by many names: such
as scaled variance, diffusion coefficient, and noise (some
authors refer to it simply as the variance, although it is clear
from Eq. (85) that this is not the case). We will call it noise.

Using Eqs. (38) and (66), we can also write

Var(N (t)) =
∫ t

0
dt′

∫ t

0
dt′′F(t′, t′′). (86)

Plugging this into Eq. (85) and recalling that F(t, t′) =
F(t′, t) yields

D(t) = 2
∫ t

0
F(t, t − τ)dτ . (87)

This result is general, in that it holds even in transient
regimes. In the steady state, we can replace F(t, t − τ) =
F(−τ) = F(τ ) and (for sufficiently long times t) extend
the upper integration limit to +∞. As a result, we find
that the noise is directly related to the zero-frequency
component of the power spectrum equation [Eq. (76)]:

D = S(0) = 2
∫ ∞

0
F(τ )dτ

= K + 2
∫ ∞

0

(
tr

{
J eLτJ ρss

} − J 2) dτ . (88)

Since, in this case, D becomes independent of time, the
variance will grow linearly in time:

Var (N (t)) = Dt. (89)

This is why D is also sometimes referred to as the “scaled
variance”: in the steady state, it essentially represents
Var (N (t)), except for the fixed scaling with t. Away from
the steady state, D(t) has no definite sign but Eq. (89)
shows that in the steady state, D � 0. However, the second
term in Eq. (88) is not necessarily positive, so that current
correlations can both increase or decrease the noise. In fact,
this is related to whether S(ω) has a peak or a dip at ω = 0.

The noise can be attributed to the following interest-
ing interpretation: It yields the time it takes to reduce
the uncertainty in estimating the current to one unit.
That is, suppose that we wish to measure J . Physically,
this is tantamount to measuring the expectation value of
the system observable

∑
k νkL†

kLk for quantum jumps or∑
k νk(e−iφk Lk + eiφk Lk) for quantum diffusion. We can do

this in a single shot, by collecting the current I(t) for a total
time T and computing the time average

Ī(T) = 1
T

∫ T

0
dt I(t). (90)

Clearly, E[Ī(T)] = J for any T, so this estimator is unbi-
ased. The mean-squared error, on the other hand, is
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FIG. 14. The integrated diffusive current Ndiff(t) for example
C (Sec. II B 3), for over 5000 simulations with  = 0.2�. The
variance of the distribution, at long times, is Dt [Eq. (89)], where
D is given by Eq. (93).

�Ī 2(T) := E
[
(Ī(T)− J )2

]
, which can be written as [87]

�Ī 2(T) = 2
T2

∫ T

0
dτ(T − τ)F(τ ). (91)

For sufficiently large T, we can approximate T − τ ∼
T and extend the upper limit of integration to infinity,
yielding

�Ī 2(T) � D
T

. (92)

Thus, D determines how the error in the estimation dimin-
ishes with the integration time.

1. Fluctuations in example C

The trajectories for example C have been studied in Sec.
(II E 2) and F(τ ) and S(ω) in Sec. (III B 2). In fact, S(ω)
has been given in Eq. (84). Taking ω = 0 leads to

D = 1 + 42

�2 . (93)

In Fig. 14, we plot the histogram of N (t) for multiple tra-
jectories as a function of t. As is clear, the distribution
becomes broader and broader with time. At long times,
the variance, according to Eq. (89), is precisely Dt. Thus,
in the oscillatory phase, D is practically unity, while in
the jump phase it grows as 2. We also note that, at long
times, the distribution looks like a Gaussian due to the cen-
tral limit theorem. Typically, cumulants higher than second
order also scale linearly in time but their effects can only
be seen in the tails of the distribution. These higher-order
cumulants can be treated using the tools of FCS (Sec. IV).

D. Quantum regression theorem and coherence
functions

The two-point function F in Eq. (66) describes cor-
relations between the classical stochastic outputs I(t) at

different times. We can translate this into temporal corre-
lations of the quantum jump operators Lk. To do this, we
must invoke the QRT [29,30], which provides a way of
calculating two-time correlation functions from the QME.
The QRT states that, for any three system operators A, B,
and C,

〈A(t)B(t + τ)C(t)〉 = tr
{
BeLτ (Cρ(t)A)

}
(94)

(for fermionic operators, this formula requires a slight
modification, as discussed in Ref. [88, Appendix B]). It
is often convenient to express Eq. (94) in terms of the
adjoint Liouvillian, L†, which is defined implicitly by
tr [AL(B)] = tr

[
L†(A)B

]
and takes the explicit form

L†(•) = i[H , •] +
∑

j

D†[Lj ](•), (95)

where D†[L](•) = L†(•)L − 1
2 {L†L, •} is the adjoint dis-

sipator. Then, correlation functions can also be written
as

〈A(t)B(t + τ)C(t)〉 = tr
[
AeL

†τ (B)Cρ(t)
]

. (96)

If the state ρ(t) is already known, this only requires find-
ing the operator B(τ ) = eL

†τ (B) or, equivalently, solving
the equation dB/dτ = L†B. This can be understood as a
kind of Heisenberg-picture evolution for open quantum
systems, although some caveats apply, e.g., the evolution
operator eL

†τ is not distributive over the operator product
(for a discussion, see Appendix H).

The QRT allows us to rewrite the typical terms in the
quantum jump two-point function [Eq. (67)] as

tr
{
J eLτJ ρ(t)

} =
∑
k,q

νkνq

〈
L†

q(t)L
†
k(t + τ)Lk(t + τ)Lq(t)

〉
.

(97)

Similarly, for quantum diffusion [Eq. (72)], we obtain

tr
{
HeLτHρ(t)

} =
∑
k,q

νkνqRe
{

ei(φk−φq)〈L†
k(t + τ)Lq(t)〉

+ e−i(φk+φq)〈Lk(t + τ)Lq(t)〉
}

. (98)

We now go into more detail on the interpretation of these
terms. For clarity, we will assume a single jump operator
L with weight factor ν = 1; the extension to multiple jump
operators is immediate. We also focus on the steady state.
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1. Quantum jumps and second-order coherence

The average quantum jump current is J = 〈L†L〉. The
two-point function for quantum jumps can be written as

F(τ ) = δ(τ )J + 〈
L†(t)L†(t + τ)L(t + τ)L(t)

〉 − J 2

= δ(τ )J + J 2 [
g(2)(τ )− 1

]
, (99)

where

g(2)(τ ) = 〈L†(t)L†(t + τ)L(t + τ)L(t)〉
〈L†L〉2 . (100)

In the context of quantum optics and photodetection, L =√
κa and this becomes Glauber’s second-order coherence

function [24]. This function has played a central role in
establishing the particle nature of light, beginning with the
experiment of Hanbury Brown and Twiss [89] and then
has later been used to characterize photon emission via
resonance fluorescence [90] and Hong-Ou-Mandel inter-
ference [91]; the interested reader will find the history of
this work summarized in Refs. [92–94]. Despite its history
in quantum optics, the above formulation makes it clear
that Eq. (100) is applicable to arbitrary counting processes,
e.g., electron counting in quantum dots.

From Eq. (99), we see that the Poisson process (where
the jumps are completely independent of each other) hap-
pens when g(2)(τ ) = 1 for all τ . Moreover, as we show
in Sec. V B, g(2)(τ → ∞) → 1, so that F(τ ) vanishes
at infinity. The interesting question to ask, therefore, is
whether g(2)(τ ) is smaller or larger than 1. From Eq. (99),
we see that if at any given time g(2)(τ ) > 1, then I(t) and
I(t + τ) will be positively correlated, while g(2)(τ ) < 1
means that they are negatively correlated. Recall that posi-
tive correlations mean that if one variable is above average,
there is a tendency for the other to be above average and
vice versa. Conversely, negative correlation means that if
one is above average, then the other has a tendency to
be below average. In our case dN (t) = 0, 1 can take only
two values and the mean must lie somewhere in between.
Hence “above average” means that it is more likely to
observe a click and “below average” means that it is less
likely. We can see this quite clearly by noting that g(2) is
actually proportional to the joint probability of observing
clicks at t and t + τ , i.e.,

g(2)(τ ) = P (dN (t + τ) = 1, dN (t) = 1)
(Jdt)2

, (101)

which follows from Eq. (71). Since (Jdt)2 would be the
joint probability for two completely uncorrelated clicks,
we can conclude that g(2) yields information on delayed
coincidences:

(a) Correlation. g(2)(τ ) > 1 (or F(τ ) > 0): a click at
time t implies that it is more likely that another click
will be observed at time t + τ .

(b) Anticorrelation. g(2)(τ ) < 1 (or F(τ ) < 0): a click
at time t means that it is less likely that another click
will be observed at time t + τ .

These regimes are related to the effects of bunching (anti-
bunching) and super- (sub-)Poissonian statistics, which are
widely studied in the quantum optics literature. There are
a few subtleties, however, and these have been the source
of some confusion in the literature. We will explain this
connection in greater detail below.

One often focuses on g(2)(0). The reason is that g(2)(τ )
is a smooth function, so g(2)(0) has the same interpretation
as above, but between two clicks that are infinitesimally
close to each other. The big advantage of g(2)(0) is that
it is much simpler to compute, since it reduces to an
expectation value in the steady state:

g(2)(0) = 〈L†L†LL〉
〈L†L〉2 . (102)

When g(2)(0) > 1, the observation of one click increases
the probability of seeing a second click immediately after-
ward. Intuitively, this captures the phenomenon of bunch-
ing, where pairs of quanta are more likely to arrive together
than apart. Antibunching is the converse phenomenon,
where clicks are more likely to occur apart than together.

To illustrate this, consider a qubit system with
L = √

γ σ−. Since σ 2
− = 0, it immediately follows that

g(2)(0) = 0. Qubit systems are therefore examples of
extreme antibunching: if a click is observed, there is zero
probability of observing another click immediately after-
ward. In a fermionic picture, the fact that g(2)(0) = 0
can be viewed as a manifestation of the Pauli exclusion
principle.

As another example, consider the optical cavity dissipa-
tor L = √

κa. Using [a, a†] = 1, we can write

g(2)(0) = 〈a†a†aa〉
〈a†a〉2 = 1 + Var(a†a)− 〈a†a〉

〈a†a〉2 , (103)

where Var(a†a)=〈(a†a)2〉 − 〈a†a〉2. The probability of two
clicks coinciding is therefore enhanced when Var(a†a) >
〈a†a〉 and suppressed otherwise. For example, for thermal
radiation ρ = (1 − e−βω)e−βωa†a, we obtain g(2)(0) = 2
for any β. Thermal photons are therefore more likely to
be detected together. This is the essence of the Hanbury-
Brown–Twiss effect [89].

To gain a deeper understanding on bunching and anti-
bunching, consider the stochastic quantum jump dynamics
for the cavity [see, e.g., Eq. (28)]. If a photon is emit-
ted, the state of the system is modified from ρ → ρ ′ =
aρa†/tr(a†aρ). The average number of photons after the
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jump, 〈a†a〉′ := tr(a†aρ ′), will then be

〈a†a〉′ = tr(a†a†aaρ)
tr(a†aρ)

= g(2)(0)〈a†a〉. (104)

Therefore, g(2)(0) specifies how our knowledge of the
average photon number is updated after a jump. If
g(2)(0) > 1, the updated state will have more photons than
before. This may seem counterintuitive, as one might think
that if a photon emission is observed, the photon num-
ber should go down by exactly one unit. However, the
photon number in a state ρ generally fluctuates and observ-
ing the jump updates our knowledge about the system.
To make sense of this, consider the incoherent mixture
ρ = q|0〉〈0| + (1 − q)|n〉〈n|, so that q represents the prob-
ability that there are no photons inside the cavity. In
this state, 〈a†a〉 = (1 − q)n and after the jump ρ ′ = |n −
1〉〈n − 1| so 〈a†a〉′ = (n − 1). Light, in this state, can be
either bunched or antibunched. For instance, if n = 2,
then Eq. (104) yields g(2)(0) = 1/2(1 − q), which will be
bunched for q > 1/2 and antibunched otherwise. This hap-
pens because before the jump there was a probability that
there were no photons at all in the cavity. But once we
observe a jump, that possibility is eliminated and so the
average number of photons increases.

Strictly speaking, however, the value of g(2)(0) alone is
not sufficient to infer whether clicks occur preferentially
in bunches or spaced apart. The issue is related to the
(lack of) monotonicity of g(2)(τ ). For example, the value of
g(2)(0) = 2 for thermal light implies bunching in the above
sense only if g(2)(τ ) decays monotonically to its long-time
value of g(2)(∞) = 1 (this was assumed implicitly in the
above discussion). If, instead, g(2)(τ ) increases to some
maximum value g(2)(τmax) > 2 (in principle possible in a
driven nonlinear system), then photodetections are more
likely to be separated by a time delay of τmax than to occur
together.

To avoid such paradoxes, some authors [95,96] insist
on a stricter definition of bunching and antibunching that
takes into account the entire behavior of g(2)(τ ):

(a) Bunching. g(2)(0) > g(2)(τ ) for all τ : the most likely
time to observe a second click is immediately after
the first one (τ = 0).

(b) Antibunching. g(2)(0) < g(2)(τ ) for all τ : the least
likely time to observe a second click is immediately
after the first one. (τ = 0).

Historically, this definition arose in quantum optics to dis-
tinguish quantum from classical states of light. Classically,
g(2)(τ ) = 〈Icl(t + τ)Icl(t)〉/〈Icl(t)〉〈Icl(t + τ)〉 is the nor-
malized autocorrelation function of a fluctuating classical
intensity Icl(t). Assuming stationary statistics, the Cauchy-
Schwarz inequality 〈I1I2〉2 ≤ 〈I 2

1 〉〈I 2
2 〉 then directly implies

that g(2)(0) ≥ g(2)(τ ) [97]. The experimental observation

of antibunched photon emission by two-level atoms has
therefore been crucial for establishing the quantum nature
of light, since such intensity correlations cannot arise from
any stochastic classical field [90].

Nevertheless, g(2)(0) itself still precisely quantifies
whether click coincidences are enhanced or suppressed
relative to random (Poisson) noise and it is common
to see bunching (antibunching) defined by the condition
g(2)(0) > 1 (g(2)(0) < 1) in the literature [98,99]. Since
g(2)(∞) = 1 for a continuously measured quantum sys-
tem, this is equivalent to the stricter definition above
whenever g(2)(τ ) is a monotonic function.

On a more coarse-grained level, click correlations can
be quantified by the Fano factor, defined by [100]

f (t) = Var(N (t))
E(N (t))

. (105)

(The denominator is usually chosen so that f � 0. And if
the νk have units as, e.g., in electric charge transport, f is
usually divided by a convenient factor to remain dimen-
sionless.) In the long-time limit, the Fano factor reduces to
the ratio

f = D
J

, (106)

and, using Eq. (99), we have

f = 1 + 2J
∫ ∞

0
dτ

[
g(2)(τ )− 1

]
. (107)

Therefore, when the clicks are correlated (anticorrelated)
on average, the above integral is positive (negative) and we
have f > 1 (f < 1). The marginal case f = 1 corresponds
to Var(N ) = E(N ) [cf. Eq. (105)], which is a characteris-
tic of pure Poisson statistics (this is also shown explicitly
in Appendix F). This motivates the following common
terminology:

(a) Super-Poisson noise. f > 1 (or D > J ): clicks are
(positively) correlated on average.

(b) Sub-Poisson noise. f < 1 (or D < J ): clicks are
anticorrelated on average.

The Fano factor is particularly prominent in electronic
charge transport [11,96,101], where time-integrated cur-
rents can be readily measured but the absence of single-
electron detectors makes a direct measurement of g(2)(τ )
extremely challenging. In the quantum optics litera-
ture, one sometimes comes across the equivalent Man-
del parameter Q(t) = f (t)− 1, defined such that positive
(negative) values pertain to super-Poisson (sub-Poisson)
noise [102].

Intuitively, a super-Poissonian Fano factor is associated
with bunching, while sub-Poisson noise is associated with
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antibunching. However, this is not always the case, as
discussed in Refs. [95,96,103]. In fact, it is possible to con-
struct examples where g(2)(τ ) is nonmonotonic in time,
such that g(2)(0) < g(2)(τ ) yet nonetheless f > 1; like-
wise, bunched detections can lead to sub-Poisson noise.
Moreover, it is important to emphasize that while pure
Poisson noise implies that f = 1, the converse is not true:
correlated clicks may still result in a Fano factor f = 1
upon time averaging, whenever g(2)(τ ) is nonmonotonic.

A key takeaway message of this section is that care must
be taken with the concepts of bunching, antibunching, and
sub- or super-Poisson noise. While they all quantify cor-
relations between clicks, they have different meanings and
sometimes inequivalent definitions in the literature.

2. g(2) function for example D

We consider the second-order coherence function for
example D. In the particular case in which U = 0, the sys-
tem can be solved analytically using Gaussian tools, as
discussed below in Sec. V F 3. The g(2) function, computed
using those results, reads

g(2)(τ ) = 1 + (κ − 2G)2e−τ(κ+2G) + (κ + 2G)2e−τ(κ−2G)

8G2 .

(108)

In particular, we see that g(2)(0) = 2 + κ2/4G2. This
describes the statistical properties of radiation squeezing.

The case G → 0 is somewhat delicate, as the above
formula seems to imply that g(2) diverges. What actually
happens is that since this is the vacuum state, both 〈a†a〉 →
0 and 〈a†a†aa〉 → 0, so that according to Eq. (102), we
obtain an indeterminacy. To solve this, it is illuminating
to also include the effects of temperature by changing the
dissipator to κ(N̄ + 1)D[a] + κN̄D[a†], where N̄ is the
Bose-Einstein distribution reflecting thermal fluctuations
[similar to Eq. (9)]. This will change g(2)(0) to

g(2)(0) = 2 + G2κ2(2N̄ + 1)2

(2G2 + N̄κ2)2
. (109)

If we take N̄ ≡ 0, we recover the previous result. But if we
take G → 0 with N̄ finite, we obtain g(2)(0) = 2, which is
the result for thermal light. The order of limits therefore
matters.

3. Quantum diffusion and first-order coherence

We now turn to quantum diffusion and consider the mea-
surement of a single quadrature, xφ = Le−iφ + L†eiφ , of a
jump operator L. We leave ν unspecified. For light (L =√
κa), this corresponds to homodyne detection (Table II)

and ν = 1/
√

2κ . Using the QRT result in Eq. (98), the

diffusion two-point function Fdiff in Eq. (72) becomes

Fφ(τ )/ν2 = δ(τ )+ Re
[〈L†(τ )L〉 + e2iφ〈L(τ )L〉] − 〈xφ〉2.

(110)

Each term in the square brackets is important in its own
right. In quantum optics, the first term is proportional to
Glauber’s first-order coherence function,

g(1)(τ ) = 〈L†(τ )L〉
|〈L〉|2 . (111)

As discussed in Sec. VI I, the Fourier transform of g(1)(τ )
describes the frequency spectrum of the emitted light
[104]. Hence g(1) is related to the monochromaticity of
a light beam: a long coherence time (slowly decaying
g(1)(τ )) corresponds to a sharply peaked frequency distri-
bution. Again in the optical context, the term 〈L(τ )L〉 is
related to squeezing of radiation. We can isolate it by com-
paring the fluctuations along two orthogonal quadratures
[105], e.g.,

[
F0(τ )− Fπ/2(τ )

]
/ν2 = 2Re [〈L(τ )L〉] + 〈xπ/2〉2 − 〈x0〉2.

(112)

While the above results are used in the quantum optics con-
text (L = √

κa and ν = 1/
√

2κ), they are also important in
other scenarios, as we show in the following example.

4. g(1) function for example A

We consider the first-order coherence function for a
driven qubit in example A. This function is directly con-
nected to the coherence properties of photons emitted by
the qubit into its surroundings, as we discuss in Sec. VI I.
Figure 15 shows g(1)(τ ) for two different driving strengths.
We observe either underdamped or overdamped behavior
in time, depending on whether the Rabi frequency � is
larger or smaller than the damping rate γ . These two dif-
ferent regimes give rise to very different frequency spectra
of the emitted photons (see Sec. VI I).

IV. FULL COUNTING STATISTICS

So far, we have focused on the first and second moments
of the current or charge. We can also take a step further and
consider the full statistics of the net charge N (t) [Eq. (37)],
i.e., the probability distribution P(n, t) ≡ P (N (t) = n).
From this, one can compute, e.g., dE (N (t)) /dt = J (t) and
dVar (N (t)) /dt = D(t), as studied in Sec. III. In addition,
the tools that we now develop will allow us to generalize
our previous results and put quantum jumps and quantum
diffusion within a unified framework.
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FIG. 15. The first-order coherence function [Eq. (111)] for
example A (Sec. II B 1), with � = 0 and N̄ = 0.1. For weak dis-
sipation (γ = 0.2�), we see damped oscillations, whereas for
strong dissipation (γ = 2�), we see pure exponential decay.

A. Quantum jumps

Let N denote the set of allowed values that N (t) might
take (note that even though the Nk are integers, the νk
are arbitrary, so the set N is not necessarily restricted to
the integers). To obtain P(n, t), we introduce the so-called
n-resolved density matrix ρn(t) [106,107], i.e., the unnor-
malized density matrix given that after a time t the net
charge is n. From Eq. (22), we can infer that this must
evolve as

ρn(t + dt) = M0ρn(t)M
†
0 +

r∑
k=1

Mkρn−νk (t)M
†
k . (113)

This equation simply states that a jump in channel k
changes the total charge by νk. The probability distribu-
tion for the total charge is then given by the normalization,
P(n, t) = tr{ρn(t)}, and the original density matrix can
be recovered as ρ = ∑

n∈N ρn(t). Equation (113) is con-
siderably simplified by Fourier transforming the density
matrix,

ρχ(t) =
∑
n∈N

einχρn(t), (114)

where χ is known as the counting field. Fourier transform-
ing Eq. (113) and using Eq. (23) for the Kraus operators,
we find that the counting-field-dependent density matrix
ρχ obeys a generalized QME,

dρχ(t)
dt

= Lχρχ(t), ρχ(0) = ρ0, (115)

with the so-called tilted Liouvillian

Lχρ = −i[H , ρ] +
∑

k

(
eiχνk LkρL†

k−
1
2
{L†

kLk, ρ}
)

.

(116)

Note that for χ = 0, the generalized QME (115) reduces
to the usual QME in Eq. (5), since Lχ=0 = L. The tilted
Liouvillian is a crucial object that greatly simplifies the
analysis. Note how the counting field appears only in the
jump part and pinpoints precisely the terms we associate
with each jump channel. It also weights them with the
appropriate νk. In fact, Lχ encodes all relevant superop-
erators in its derivatives at χ = 0. For example,

L′ρ := ∂χLχρ
∣∣
χ=0 = i

∑
k

νk LkρL†
k=iJ ρ (117)

is the J superoperator defined in Eq. (69). Similarly, the
second derivative reads

L′′ρ = −
∑

k

ν2
k LkρL†

k , (118)

which, upon taking the trace, is minus the term K in
Eq. (68).

The solution of Eq. (115) is ρχ(t) = eLχ tρ0, which does
not have unit trace because Lχ is not trace preserving for
χ 	= 0. From this solution, the desired probability distribu-
tion can be obtained as the inverse Fourier transform

P(n, t) =
∫ ∞

−∞

dχ
2π

e−inχ tr{ρχ(t)}. (119)

To be precise, this will not exactly yield tr {ρn(t)} but,
rather, a sum of Dirac δ functions at the allowed values N ,
each with weight tr {ρn(t)}. If the set N comprises integers
only, e.g., for particle current and dynamical activity, then
P(n, t) can be obtained without the Dirac δ functions by
changing the integration limits to

P(n, t) =
∫ π

−π

dχ
2π

e−inχ tr
{
ρχ(t)

}
. (120)

1. P(n, t) for example A

The stochastic trajectories for example A have been
studied in Sec. II D 2 and Fig. 7. For that configuration,
the charge N (t) was more likely to be negative, although it
could also be positive for some stochastic trajectories. We
can compute P(n, t) numerically using Eq. (120), as fol-
lows. We first set a grid of χ values from −π to π . For
each χ , and for each time t, we compute ρχ(t) = eLχ tρ0
and its trace. Finally, we use this to integrate Eq. (120)
numerically. Figure 16 illustrates the result for a grid of
1000 χ values. For short times, the distribution is centered
around 0 and has a non-negligible portion with n > 0. For
later times, it then moves to the left and n > 0 becomes less
and less likely. In this example, excitations continue to be
emitted indefinitely, so that P(n, t) will continue to move
left. It also becomes more and more spread with time.
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FIG. 16. The FCS probability P(n, t), Eq. (120) for example
A (Sec. II B 1). The parameters chosen are the same as those
of Fig. 7. The negative count corresponds to the particle current
flowing from cold to hot.

2. P(n, t) for example D

We follow the same procedure as in Sec. IV A 1 to com-
pute the FCS distribution for photon counting in example
D. The results are plotted in Fig. 17, which shows the aver-
age number of counts n increasing with time. Here, we
use parameters that are different to those that generate the
steady state in Fig. 5(c), with G = 1, U = 1/3,� = 0, and
κ = 1.

3. Classical master equations

FCS was originally developed in the context of classi-
cal master equations. These are included in the quantum
result as a particular case. Consider a QME with H =∑

i Ei|i〉〈i| and jump operators Lij = √
Wij |i〉〈j |, describ-

ing jumps between energy eigenstates, with transition rate
Wij (for i 	= j ). From the QME, the diagonal elements
pn = 〈n|ρ|n〉 will evolve according to the classical (Pauli)
master equation

dpn

dt
=

∑
j

Wnj pj − npn, (121)

where n = ∑
j Wjn is called the escape rate from level n.

If the system starts without any coherences in this basis,

FIG. 17. The FCS probability P(n, t) [Eq. (120)] for exam-
ple D (Sec. II B 4), with G = 1, U = 1/3, � = 0, and κ = 1 for
varying times.

it will remain so throughout. Hence to fully describe the
system, it suffices to look at the populations pn.

The first term in Eq. (121) describes jumps (since it
describes a process that goes from j → n), while the sec-
ond describes the “no-jump events.” The tilted Liouvillian
is still given by Eq. (116). But since we only want the
dynamics of the populations, it is simpler to define a matrix
Wχ with entries

(Wχ )nj =
{

Wnj eiχνnj j 	= n,
−n j = n,

(122)

where νnj is the weight factor associated with the jump
operator Lnj . Letting pχ ,n(t) = 〈n|ρχ(t)|n〉, the vector pχ(t)
will evolve according to pχ(t) = eWχ tp(0). Hence

tr{ρχ(t)} =
∑

nj

(eWχ t)nj pj (0), (123)

from which P(n, t) can be computed using Eq. (119).
In a classical master equation, all transitions are asso-

ciated with jumps and can thus be monitored, at least in
principle. The crucial difference of the quantum case is the
presence of the unitary dynamics −i[H , ρ], which gener-
ates transitions that, fundamentally, cannot be monitored
and hence will never correspond to a click in a detector.

B. Quantum diffusion

The integrated charge in quantum diffusion, Ndiff(t) =∫ t
0 dt′ Idiff(t′), varies continuously. Nevertheless, the result-

ing probability distribution P(n, t) can still be written as
in Eq. (119), where ρχ still satisfies Eq. (115). What
changes is the shape of the tilted Liouvillian Lχ . Instead
of Eq. (116), we now obtain

Lχρ = Lρ + iχHρ − χ2

2
Kdiffρ, (124)

where Kdiff and H are defined in Eqs. (73) and (74).
This result is derived in Appendix I in two ways: as a
limit of the quantum jump model when |αk| → ∞ and for
the Gaussian positive operator-valued measure (POVM)
model discussed at the end of Sec. II E. In particular, recall
that the latter corresponds to a Hermitian jump operator
L = √

λY (where Y is the observable being measured) and
a weight ν = 1/(2

√
λ) for the current. The corresponding

tilted Liouvillian therefore reads

Lχρ = −i[H , ρ] + λD[Y]ρ + i
χ

2
{Y, ρ} − χ2

8λ
ρ. (125)

This equation nicely illustrates the trade-off between the
measurement back action—associated with the dissipator
λD[Y]—and the white noise Kdiff ∝ 1/λ: a large measure-
ment strength (large λ) causes significant back action, but
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FIG. 18. FCS probability distributions P(n, t) for example C
(Sec. II B 3), in the same regimes as studied in Fig. 10. (a)
/� = 0.2; (b) /� = 2.0. Each curve is for a different time
�t, as denoted in the legend.

reduces the white noise, while for small λ, it is the other
way around.

1. P(n, t) for example C

Stochastic trajectories for example C have been stud-
ied in Sec. II E 2 and Fig. 10. There, we have seen that
depending on the relative damping strength /�, the
quantum trajectories are fundamentally different, present-
ing an oscillatory behavior for small  and a jump behavior
for large . Figure 18 shows the corresponding FCS prob-
ability distribution P(n, t) for the integrated charge. In this
case, the operator being measured is σz. Since the system
oscillates symmetrically between the eigenstates of σz, we
find a distribution that is symmetrical around n = 0, so that
on average Jdiff = 0. However, we see that P(n, t) behaves
in fundamentally different ways in the two regimes. For
small  [Fig. 18(a)], the oscillatory nature of the trajec-
tories results in a distribution of the integrated current
made up of a single centered peak. Conversely, for large
 [Fig. 18(b)], the jump behavior results in a bimodal dis-
tribution. This happens because in this case, 〈σz〉c spends
most of its time close to ±1, as in the red curve in Fig. 10.

2. Statistics of an undriven cavity

Consider the cavity model in example D. However, let
us assume that there is no external drive and no Kerr non-
linearity. All we have is an optical cavity with dissipation.
In the interaction picture with respect to H = ωca†a, the
Liouvillian simply reads Lρ = κD[a]ρ. Suppose that the
cavity is prepared in some nontrivial state ρ0 and, at t = 0,
we begin measuring the photons that leak out. Each time
we repeat this experiment, we will therefore count a certain
number n of photons, which will be described by the FCS
probability P(n, ∞) given by Eq. (120). In Appendix O,
we show that in this particular model, P(n, ∞) yields the
same statistics as a projective measurement of ρ0 on the
Fock basis,

P(n, ∞) = 〈n|ρ0|n〉. (126)

While this may seem intuitive, it is not at all obvious. After
all, a projective measurement is instantaneous, while the
continuous measurement is extended in time.

Next, consider the case of homodyne measurements
(Table II). We show, again in Appendix O, that Eq. (119)
yields

P(x, ∞) = 〈x|ρ0|x〉, (127)

which is a projective measurement of the initial state in the
basis of the quadrature operator x = (ae−iφ + a†eiφ)/

√
2

(these are the marginals of the Wigner function). In this
case, there is a caveat, though: the initial field present in
the cavity leaks out at the amplitude damping rate κ/2.
As time goes on, the fraction of signal coming from the
initial state thus diminishes and at long times, only pho-
tons from the local oscillator are measured. To amend for
this, we must use a time-dependent weight factor, ν(t) =√
κ/2e−κt/2 [6], that matches the amplitude damping rate

and suppresses the counts as time progresses. Only for this
specific choice of ν(t) will Eq. (127) follow.

Finally, we can consider heterodyne detection. This will
also require a similar time-dependent weight factor, ν(t) =√
κe−κt/2. The joint measurement of the two orthogonal

quadratures x0 and xπ/2 will then yield a joint distribution
that coincides with the Husimi function,

P(x0, xπ/2, ∞) = 1
π

〈α|ρ0|α〉, (128)

where |α〉 is a coherent state at α = (x0 + ixπ/2)/
√

2. Since
coherent states are not orthogonal, this measurement is
not projective but, instead, corresponds to a generalized
measurement with operators Mα = 1√

π
|α〉〈α|.

We note that alternative derivations of Eqs. (126)–(128)
starting from the quantum Langevin equation can be found
in Ref. [6, Sec. 4.7.6]. These complement our deriva-
tions starting from the Lindblad master equation given in
Appendix O.

C. Fluctuations for arbitrary Lχ

The dependence of Lχ with χ in Eq. (124) is fun-
damentally different from the jump case in Eq. (116).
Nevertheless, as in Eqs. (117) and Eq. (118), we can still
obtain the relevant superoperators by taking derivatives
with respect to χ ; namely,

L′ρ = iHρ, L′′ρ = −Kdiffρ, (129)

which is in one-to-one correspondence to Eqs. (117)
and (118). This suggests that all quantities studied in
Sec. III—namely J , F , S, and D—can actually be writ-
ten in terms of L′ and L′′. Indeed, we show in Appendix J
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that all equations of Sec. III still hold for a general tilted
Liouvillian, provided that we identify

J ρ := −iL′ρ, K := −tr
{
L′′ρ

}
. (130)

For quantum jumps, J and K reduce to Eqs. (69) and (68).
For diffusion, J becomes H in Eq. (74) and K becomes
Kdiff in Eq. (73). Equation (130) provides a substantial
generalization to our previous results: it not only unifies
the formulas for quantum jumps and quantum diffusion
but also holds for any tilted Liouvillian (and therefore
can encompass other scenarios that are not covered in this
tutorial).

D. Cumulant generating function

The Fourier transform of a probability distribution is
called its characteristic function. Returning to Eq. (119),
we see that this is precisely what we have—the quantity
inside the integral is the characteristic function of P(n, t):

M (χ , t) := E
[
eiN (t)χ] = tr{ρχ(t)} = tr

{
eLχ tρ(0)

}
.

(131)

From M , we can extract all moments as

E
[
N (t)j

] = (−i∂χ)j M (χ , t)
∣∣∣∣
χ=0

. (132)

When interested in higher moments, it is often convenient
to consider the cumulants, denoted here by 〈〈N (t)j 〉〉, which
can be obtained from the cumulant generating function
C(χ , t), defined as

C(χ , t) = ln M (χ , t), 〈〈N (t)j 〉〉 = (−i∂χ)j C(χ , t)
∣∣∣
χ=0

.

(133)

The first three cumulants are equal to the mean, the vari-
ance, and the skewness, respectively. In the long-time
limit, the cumulant generating function takes on a particu-
larly simple form,

C(χ , t) � λ0(χ)t, (134)

where λ0(χ) is the eigenvalue of Lχ with the largest real
part (the spectral properties of Liouvillians will be dis-

cussed in Sec. V and the proof of this result is given in
Appendix K). This eigenvalue is such that λ0(0) = 0. In
the past, the eigenvalue λ0(χ) has been the subject of con-
siderable attention, as it turns out to contain substantial
information about the system, including properties such as,
e.g., phase transitions [108].

Equation (134), together with Eq. (133), shows that for
large times, all cumulants will be proportional to t. This
is consistent with what we have found in Eq. (89), and is
consistent with the results of Fig. 16. For this reason, we
define the scaled cumulant generating function (SCGF) as

C(χ) = lim
t→∞ ∂tC(χ , t) = λ0(χ). (135)

From C(χ), we can determine all scaled cumulants by
taking derivatives as (−i∂χ)j C(χ)

∣∣
χ=0. The first scaled

cumulant is J and the second is D. We also note that
even when the eigenvalues of Lχ cannot be computed
analytically, the cumulants can sometimes be obtained by
expanding the characteristic polynomial of Lχ [109].

For large times, the distribution P(n, t) will often look
Gaussian. However, the fact that all cumulants scale with
t means that there will be deviations from Gaussianity,
which can be observed by looking at the tails of the dis-
tribution (usually with a log-scale plot). These so-called
large deviations represent a field of study in itself (see, e.g.,
Ref. [110]).

The asymptotic distribution P(n, t) can be obtained by
inverse Fourier transforming Eq. (134), as in Eq. (120):

P(n, t) =
∫

dχ
2π

e−inχeC(χ)t. (136)

We note, however, that this may result in negative prob-
abilities if t is chosen such that the long-time limit is not
justified (an example will be given in Fig. 19).

1. SCGF for example B

Consider example B, a quantum dot coupled to two
fermionic reservoirs [cf. Sec. II B 2]. This example is suffi-
ciently simple that the SCGF can be obtained analytically
using the vectorization methods that will be discussed in
Sec. V. The result is

C(χ) = −γL + γR

2
+

√(
γL + γR

2

)2

+ γLγR
[(

eiχ − 1
)

fRf̄L + (
e−iχ − 1

)
fLf̄R

]
, (137)

where f̄i = 1 − fi. Computing derivatives as in Eq. (133) yields all scaled cumulants. The first is the average current
J in Eq. (45). The second is the noise, which in this case reads
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D = γLγR

(γL + γR)3

[
(γL + γR)

2(fLf̄L + fRf̄R)

+ (γ 2
L + γ 2

R )(fR − fL)2
]

, (138)

and so on for higher-order cumulants. In studies of elec-
tronic transport, the first term of D is usually referred to as
thermal noise, as it remains present in equilibrium (fL = fR)
and only vanishes at zero temperature. The second line,
which vanishes in equilibrium, is referred to as shot noise
[11]. In contrast, in quantum optics, the white noise, Kdiff,
is referred to as shot noise (cf. Sec. III A). In both senses of
the term, shot noise arises from the discrete nature of the
particles that carry the observed current, i.e., electrons and
photons, respectively.

If one tunnel rate is much smaller than the other, the
SCGF simplifies considerably and reduces to (choosing
γR � γL)

C(χ) = γR
[(

eiχ − 1
)

fRf̄L + (
e−iχ − 1

)
fLf̄R

]
. (139)

Note that the largest of the tunnel rates drops out of this
expression. This is a general feature of long-time transport
statistics: the smallest tunnel rate constitutes a bottle-
neck for transport and therefore determines the statistics.
Before discussing the probability distribution associated
with Eq. (139), we consider the regime where fR = 1 and
fL = 0, which is sometimes called the large-bias regime,
as it can be obtained by a large voltage bias across the
quantum dot. In this regime, the second term in Eq. (139)
vanishes and Eq. (136) reduces to a Poisson distribution:

P(n, t) =
∫ π

−π

dχ
2π

e−inχeC(χ)t

= e−γRt
∫ π

−π

dχ
2π

e−inχeγRteiχ

= e−γRt
∞∑

k=0

(γRt)k

k!

∫ π

−π

dχ
2π

ei(k−n)χ

= (γRt)n

n!
e−γRt. (140)

Thus, in this regime, the transport can be understood as
being mediated by independent tunneling events into the
right reservoir (see also Appendix F). The Poisson distri-
bution has the peculiar feature that all (scaled) cumulants
are equal; here, J = γR.

Outside the regime of fR = 1 and fL = 0, the probability
distribution corresponding to the SCGF in Eq. (139) still
has a closed-form expression, which is given by

P(n, t) = e−γRt(fRf̄L+fLf̄R)

(
fRf̄L
fLf̄R

) n
2

In

(
2γRt

√
fLf̄LfRf̄R

)
,

(141)

where In denotes the modified Bessel function of the first
kind. This is a bidirectional Poisson distribution [19],
which is determined by two rates: the rate for electrons to
go from right to left, γRfRf̄L, and from left to right, γRfLf̄R.
Similarly to the Poisson distribution, its cumulants have a
peculiar feature: all odd cumulants are equal to the differ-
ence of the rates, J = γR(fR − fL), and all even cumulants
are equal to the sum of the rates, D = γR(fLf̄R + fRf̄L).

2. SCGF for quantum diffusion

For Lχ given in Eq. (124), we can define a new state

ρ̃χ (t) = e
χ2
2 Kdifftρχ(t). (142)

The corresponding generalized QME [Eq. (115)] will be
modified to depend on a new tilted Liouvillian

L̃χ = L + iχH. (143)

The SCGF C(χ) of the original process can then be related
to the SCGF C̃ associated with L̃χ according to

C(χ) = −χ
2

2
Kdiff + C̃(χ). (144)

The first term is the CGF of a Gaussian variable and
will thus simply increase D by Kdiff [Eq. (73)]. All other
cumulants are determined by C̃(χ). Note, though, that
despite its simplicity, this term −(χ2/2)Kdiff is still cru-
cial, as neglecting it can cause the probability distribution
to acquire negative values.

Next, consider Eq. (143) and assume that we have a sin-
gle jump operator L, which is also Hermitian. We will then
have

L̃χρ = −i[H , ρ] + D[L]ρ + iχν{L, ρ}. (145)

We can now imagine a scenario in which the dissipator
D[L] is very small but, because of the weight ν, the term
proportional to χ is not. This is the case for the Gaus-
sian POVM model (L = √

λY and ν = 1/(2
√
λ)) when λ

is very small. In this limit, we can neglect D[L], which
allows us to write down the solution for Eq. (115), leading
to

M̃ (χ , t) = tr
{

e−iHt+i χ2 Ytρ0eiHt+i χ2 Yt
}

, (146)

where Y = 2νL is the observable being measured. This is
the characteristic function that features in the theory of
FCS of phase-coherent systems [32,33]. It is well known
that it can result in negative probabilities [111–113], which
are a consequence of interference effects between different
eigenstates of the observable Y [114]. These negativities
actually happen because we are omitting the noise term;
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the characteristic function M (χ , t) = e−χ2ν2t/2M̃ (χ , t) that
describes an actual measurement leads to proper physical
probabilities. The general tilted Liouvillian in Eq. (124)
shows how Eq. (146) can be extended to include mea-
surement noise and imprecision, as well as non-Hermitian
jump operators.

As a particular case, if [H , L] = 0 we can write
M̃ (χ , t) = ∑

y eiχypy , where py = 〈y|ρ0|y〉 and Y =∑
y y|y〉〈y|. Plugging M (χ , t) = e−χ2ν2t/2M̃ (χ , t) into

Eq. (119) and carrying out the Gaussian integrals yields

P(n, t) =
∑

y

py
e− (n−yt)2

2ν2t√
2πν2t

. (147)

The charge distribution is therefore a mixture of Gaus-
sians, weighted by py , each with mean yt and variance
ν2t = t/4λ.

V. SOLUTION METHODS

A. Computing D using an auxiliary equation

There is a simple method to compute the noise D(t)
[Eq. (87)], which also works away from the steady state
and even in driven systems [35]. Let us first write it more
explicitly using Eq. (67):

D(t) = K(t)+ 2
∫ t

0
dτ

(
tr

{
J eLτJ ρ(t − τ)

}

− J (t)J (t − τ)) . (148)

Now define the (traceless) superoperator G(ρ) := J ρ −
ρtr(J ρ) and an auxiliary variable σ(t), which is the
solution of

dσ
dt

= Lσ(t)+ G(ρ(t)), σ(0) = 0. (149)

This is similar to the original QME [Eq. (5)] but with an
inhomogeneous right-hand side, depending on ρ(t) (the
instantaneous true state at time t). Even though G is a non-
linear superoperator in ρ, this is still a linear equation in σ .
The solution is therefore

σ(t) =
∫ t

0
dτeLτG(ρ(t − τ)). (150)

One can now readily verify that Eq. (148) can be written
as

D(t) = K(t)+ 2tr {J σ(t)} . (151)

Thus, we can obtain D(t) by solving two master equations:
the original one, yielding ρ(t), and the auxiliary one, given

by Eq. (150). Note that while ρ(t) affects σ(t), the converse
is not true. One may therefore view σ(t) as a monitoring
operator, which register information about ρ(t).

In the steady state, Eq. (149) becomes the algebraic
equation

Lσ = −Gρss = − [J ρss − ρss tr(J ρss)] . (152)

Thus, in addition to finding ρss, this method only requires
solving an algebraic equation. The method also works for
driven systems, i.e., when Lt is time dependent. One must
simply account for this time dependence when solving
both the original QME [Eq. (5)] and the auxiliary equation
[Eq. (150)].

B. Vectorization

One of the difficulties in working with the results devel-
oped in Sec. IV is that they always involve superoperators,
such as L and J , which multiply the state both on the left
and right. We have already been able to simplify this some-
what by using the convention that ABρ ≡ A (B(ρ)), i.e.,
superoperators always act on whatever is on the right. This
suggests that (linear) superoperators behave like matrices,
while ρ behaves like a vector. This connection is made pre-
cise by a procedure called vectorization and, as we will see,
it leads to a significant simplification of all the formulas. It
also makes their numerical computation very efficient.

Vectorization is the operation that maps density matrices
to vectors and superoperators to matrices. There are many
ways of doing this. The simplest is to stack columns:

vec
(

a b
c d

)
=

⎛
⎜⎝

a
c
b
d

⎞
⎟⎠ . (153)

This allows us to write the density matrix as a vector. To
make the calculations cleaner, we will use the following
two notations interchangeably:

|ρ〉〉 = vec(ρ). (154)

Given any three matrices A, B, and C, the operation given
in Eq. (153) satisfies the following useful property:

vec(ABC) = (CT ⊗ A)vec(B). (155)

Note that the right-hand side contains CT and not C†.
This happens because vectorization is a basis-dependent
operation. Using Eq. (155) we can, e.g., convert

vec(LρL†) = (L∗ ⊗ L)|ρ〉〉. (156)

The result is therefore a bigger matrix, L∗ ⊗ L, acting on
the vector |ρ〉〉. We can also do the same thing for terms
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such as [H , ρ]: we simply write Hρ = Hρ1, where 1 is
the identity. We then obtain

vec ([H , ρ]) = (
1 ⊗ H − H T ⊗ 1

) |ρ〉〉. (157)

Our original Liouvillian [Eq. (5)] is therefore mapped into

L = −i(1 ⊗ H − H T ⊗ 1)

+
r∑

k=1

[
L∗

k ⊗ Lk − 1
2
1 ⊗ L†

kLk − 1
2
(L†

kLk)
T ⊗ 1

]
,

(158)

which is a matrix of size d2 (where d is the dimension
of the Hilbert space). Sometimes it might be convenient
to write the vectorized superoperator with a hat, as L̂.
However, as we will see, it is usually clear from the con-
text whether or not the superoperator is vectorized, so for
simplicity we will use the same symbol for both.

Vectorization takes |ψ〉〈φ| → |φ〉∗ ⊗ |ψ〉. Moreover, its
inner product coincides with the Hilbert-Schmidt prod-
uct between operators, 〈〈A|B〉〉 = tr(A†B). In particular, the
normalization condition becomes

tr(ρ) = 〈〈1|ρ〉〉, (159)

where |1〉〉 = ∑
i |i〉∗ ⊗ |i〉 is the vectorized identity.

The steady state given in Eq. (7) is now written as

L|ρss〉〉 = 0. (160)

In addition, L is traceless, which means that tr {L(ρ)} = 0
for any state ρ. In vectorized notation, this can be written
as

〈〈1|L = 0. (161)

Equations (160) and (161) are in fact eigenvalue-
eigenvector equations, with eigenvalue 0. Since L is not
Hermitian, it will have different left and right eigenvectors
for each eigenvalue. Thus, |ρss〉〉 is the right eigenvector
of L with eigenvalue 0, while 〈〈1| is the left eigenvector
with the same eigenvalue. More generally, the eigenvalue-
eigenvector equations will have the form

L|xj 〉〉 = λj |xj 〉〉, 〈〈yj |L = λj 〈〈yj |. (162)

Since L is not Hermitian, 〈〈yj | 	= (|xj 〉〉)† but they still
satisfy

〈〈yj |xk〉〉 = δjk. (163)

We will adopt the convention that λ0 = 0, so that |x0〉〉 =
|ρss〉〉 and 〈〈y0| = 〈〈1|. We also mention that if the eigen-
values λj are complex, they will always come in complex-
conjugate pairs [115].

The spectrum of the Liouvillian ultimately determines
all of the dynamical properties. Because L is traceless,
it always has at least one eigenvalue 0, which therefore
means there is also at least one steady state. Some sys-
tems might have multiple steady states (for examples, see
Refs. [41,116]). For simplicity, we will always assume that
the steady state is unique. As a consequence, all eigenval-
ues except λ0 will be nonzero. Another point that we have
implicitly assumed above is that L is in fact diagonaliz-
able, meaning that it has a set of d2 linearly independent
eigenvectors. Some non-Hermitian matrices might not be
[117]. But again, this is rare and we will assume for
simplicity that L is diagonalizable.

With these assumptions, the vectorized Liouvillian can
be decomposed as

L =
∑
j 	=0

λj |xj 〉〉〈〈yj |, (164)

where we exclude j = 0 since λ0 = 0. The full set of
eigenvectors also satisfies the completeness relation

|ρss〉〉〈〈1| +
∑
j 	=0

|xj 〉〉〈〈yj | = 1d2 . (165)

And, finally, the matrix exponential appearing in Eq. (6)
can be written as

eLt = |ρss〉〉〈〈1| +
∑
j 	=0

eλj t|xj 〉〉〈〈yj |. (166)

This is a crucial result, as it completely specifies the
dynamics of the system. The imaginary part of the λj gives
rise to oscillations. And if the dynamics is stable, we must
have Re(λj ) < 0, which will cause the second term in
Eq. (166) to decay exponentially in time, until eventually
all that survives is the first term. In fact, since 〈〈1|ρ0〉〉 = 1
by normalization, we have that

|ρ(t)〉〉 = eLt|ρ0〉〉 = |ρss〉〉 +
∑
j 	=0

eλj t|xj 〉〉〈〈yj |ρ0〉〉, (167)

which tends to |ρss〉〉 when t → ∞.
Since λ0 = 0, the Liouvillian is not invertible. Instead,

very often the results can be expressed in terms of the
Drazin pseudoinverse, defined as

L+ :=
∑
j 	=0

1
λj

|xj 〉〉〈〈yj |; (168)

i.e., we “invert what we can.” The properties of the Drazin
inverse are discussed in detail in Appendix L, where we
show that it can also be equivalently written as

L+= −
∫ ∞

0
dτeLτ (1 − |ρss〉〉〈〈1|) . (169)
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C. Computation of fluctuations in vectorized notation

We are now in a position to rewrite all of our main
results in terms of the vectorized Liouvillian and its eigen-
values and eigenvectors. The average current Eq. (70)
reads

J = 〈〈1|J |ρss〉〉. (170)

The steady-state two-point function Eq. (67) becomes, in
terms of Eq. (166),

F(τ ) = δ(τ )K + 〈〈1|J eL|τ |J |ρss〉〉 − J 2 (171)

= δ(τ )K +
∑
j 	=0

eλj |τ |〈〈1|J |xj 〉〉〈〈yj |J |ρss〉〉. (172)

Note how the first term in Eq. (166) cancels the term −J 2.
Since Re(λj ) < 0, we can carry out the Fourier transform
and obtain the power spectrum Eq. (76):

S(ω) = K − 2
∑
j 	=0

λj

λ2
j + ω2

〈〈1|J |xj 〉〉〈〈yj |J |ρss〉〉

= K −
∑
j 	=0

(
1

λj − iω
+ 1
λj + iω

)

× 〈〈1|J |xj 〉〉〈〈yj |J |ρss〉〉. (173)

This result gives a very clean interpretation for the
observed behavior of S(ω) in, e.g., Fig. 12. Namely, there
will be peaks or dips near ω = Im(λj ), with the width of
the peaks being proportional to Re(λj ).

We can also write Eq. (173) more compactly as follows.
For any ω 	= 0, the matrix L2 + ω2 is invertible and, using
Eq. (164), can be written as

1
L2 + ω2 = 1

ω2 |ρss〉〉〈〈1| +
∑
j 	=0

1
λ2

j + ω2
|xj 〉〉〈〈yj |. (174)

Multiplying this by L and using Eqs. (160) and (164), we
obtain

L
L2 + ω2 =

∑
j 	=0

λj

λ2
j + ω2

|xj 〉〉〈〈yj |. (175)

Thus, we see that Eq. (173) can also be written as

S(ω) = K − 2〈〈1|J
( L
L2 + ω2

)
J |ρss〉〉

= K − 〈〈1|J
(

1
L − iω

+ 1
L + iω

)
J |ρss〉〉. (176)

Finally, we turn to the noise D in Eq. (88) by taking the
limit ω → 0. In terms of the Drazin inverse [Eq. (168)], it
becomes

D = K − 2〈〈1|JL+J |ρss〉〉 (177)

= K − 2
∑
j 	=0

1
λj

〈〈1|J |xj 〉〉〈〈yj |J |ρss〉〉. (178)

The above results can be used to efficiently compute S(ω)
and D. Details on concrete numerical implementations are
provided in Appendix M.

1. Drazin inverse for example A

To illustrate the Drazin inverse, consider example A. For simplicity, we assume that N̄ = � = 0. The vectorized
Liouvillian reads

L =

⎛
⎜⎝

−γ −i� i� 0
−i� − γ

2 + i� 0 i�
i� 0 − γ

2 − i� −i�
γ i� −i� 0

⎞
⎟⎠ . (179)

Taking the Drazin inverse, using either Eq. (169) or Eq. (168), we obtain

L+=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− γ
(
γ 2−4�2

)

(γ 2+8�2)
2

2i�
γ 2+8�2 − 2i�

γ 2+8�2
12γ�2

(γ 2+8�2)
2

8i�
(
γ 2+2�2

)

(γ 2+8�2)
2 − γ

γ 2+8�2 − 1
γ

− 8�2

γ 3+8γ�2

4i�
(
γ 2−4�2

)

(γ 2+8�2)
2

− 8i�
(
γ 2+2�2

)

(γ 2+8�2)
2 − 8�2

γ 3+8γ�2 − γ

γ 2+8�2 − 1
γ

− 4i�
(
γ 2−4�2

)

(γ 2+8�2)
2

γ
(
γ 2−4�2

)

(γ 2+8�2)
2 − 2i�

γ 2+8�2
2i�

γ 2+8�2 − 12γ�2

(γ 2+8�2)
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (180)
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2. Power spectrum for quantum jumps with weak
dissipation

To gain more intuition on the behavior of S(ω) for quan-
tum jumps, we consider the case in which the dissipative
terms in Eq. (5) are very small. Let H |n〉 = En|n〉 and
defineωnm = En − Em as the set of all transition (Bohr) fre-
quencies allowed in the system. As shown in Appendix N,
the peaks or dips at ω 	= 0 obey the following rules:

(a) position: ω � ωnm
(b) width: γnm � −〈m|LD (|m〉〈n|) |n〉
(c) height: gnm � ∑

k,q νkνq〈m|L†
kLk|n〉〈n|LqρL†

q|m〉

where LD = ∑
k D[Lk] is the total dissipator of the master

equation. If gnm is real, there will either be a peak when
gnm > 0 or a dip when gnm < 0. If gnm is complex, there
will be a peak to the left of ωnm, immediately followed by
a dip to the right, or vice versa. Peaks in S(ω) therefore
reflect correlated jumps on that specific transition, while
dips reflect anticorrelated jumps. This provides more detail
than looking only at g(2)(0) [Sec. III D], as it allows us to
address individual transitions. It is important to note that,
very often, many of the gnm are zero (for |n〉 	= |m〉), so
that not all nonzero ωnm will indeed appear as peaks. In
fact, we see that gnm ∝ 〈m|L†

kLk|n〉, and in many models
L†

kLk is diagonal in the eigenbasis of H , so that this term
vanishes. The existence of peaks and/or dips at ω 	= 0 is
therefore conditioned on having jump operators for which
[H , L†

kLk] 	= 0.
On the other hand, the height and width of the central

peak or dip, at ω = 0, is more difficult to assess, even in
this weak-dissipation limit. The reason is that this peak will
be related to the subset of system transition frequencies
having ωnm = 0 (which include ωnn but might also include
m 	= n when the spectrum is degenerate). Because of the
degeneracy of this set, it is not possible in general to eval-
uate the height and width of the resulting peak. A concrete
illustration of all these ideas for the case of example A is
given in Appendix N.

D. Computing cumulants using recursive methods

Different methods exist for computing higher-order
cumulants [34,118] of FCS [Sec. IV D]. Here, we dis-
cuss the recursive method of Ref. [34], which applies to
both Markovian and non-Markovian counting statistics for
arbitrary measurement processes. We will not cover the
derivation in detail but, rather, we will outline the main
results for the Markovian case.

Consider the tilted Liouvillian Lχ of Eq. (116). We can
recast it in terms of the unperturbed Liouvillian L plus
some perturbation δLχ ,

Lχ = L + δLχ , (181)

where δLχ vanishes smoothly as χ → 0. Following in a
similar spirit to Sec. V B on vectorization, we will define a
new set of perturbed eigenvalues and left and right eigen-
vectors of the tilted Liouvillian using the vectorization
introduced in Sec. V B:

Lχ |xi(χ)〉〉 = λi(χ)|xi(χ)〉〉, (182)

〈〈yi(χ)|Lχ = 〈〈yi(χ)|λi(χ), (183)

which, in the limit of χ = 0, recover the eigenvectors
and eigenvalues of the unperturbed Liouvillian L. We are
primarily interested in the largest eigenvalue λ0(χ)

Lχ |ρss(χ)〉〉 = λ0(χ)|ρss(χ)〉〉, (184)

which is such that λ0(0) = 0. The key insight of Ref. [34]
is to perform a Taylor expansion around χ = 0 of the
eigenvalue λ0(χ), the right eigenvector |ρss(χ)〉〉, and the
perturbation δLχ

λ0(χ) =
∞∑

n=1

(iχ)n

n!
〈〈I n〉〉,

|ρss(χ)〉〉 =
∞∑

n=0

(iχ)n

n!
|ρ(n)ss 〉〉,

δLχ =
∞∑

n=1

(iχ)n

n!
L(n),

(185)

where 〈〈I n〉〉 are the steady-state scaled cumulants of the
current and |ρ(0)ss 〉〉 = |ρss〉〉 is the (χ -independent) steady
state. This permits one to define a recursion relation for
cumulants,

〈〈I n〉〉 =
n∑

m=1

(
n
m

)
〈〈1|L(m)|ρ(n−m)

ss 〉〉, (186)

where

|ρ(n)ss 〉〉 = L+
n∑

m=1

(
n
m

) (〈〈I m〉〉 − L(m)
) |ρ(n−m)

ss 〉〉. (187)

To showcase how this can be implemented, we will now
compute the first and second cumulants in general as

〈〈I〉〉 = 〈〈1|L(1)|ρss〉〉, (188)

〈〈I 2〉〉 = 〈〈1|L(2)|ρss〉〉 − 2〈〈1|L(1)L+L(1)|ρss〉〉, (189)

where we have used the fact that 〈〈0|L+ = L+|ρss〉〉 = 0
(for more details, see Appendix L).
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Given these results, it is straightforward to check
whether these two definitions agree with our description of
continuous quantum jump measurements. To do this, we
can recast Eq. (116) into unperturbed and perturbed parts
using vectorized notation, where the perturbation is given
by

δLχ =
∑

k

(eiχνk − 1)L∗
k ⊗ Lk. (190)

One can easily show that

L(n) =
∑

k

νn
k L∗

k ⊗ Lk (191)

and thus the first two terms are directly related to those in
Eq. (117) and Eq. (118):

L(1) = −iL′, L(2) = −L′′. (192)

Plugging these two expressions into Eqs. (188) and (189),
we obtain

〈〈I〉〉 = 〈〈1|J |ρss〉〉 = J , (193)

〈〈I 2〉〉 = K − 2〈〈1|JL+J |ρss〉〉 = D. (194)

which agree with Eqs. (170) and (177), respectively.
We can also use this method to compute the first two

moments of the tilted Liouvillian Eq. (124) for quantum
diffusion, as has been considered above in Sec. (IV B).
In this example, the perturbed part of the Liouvillian
corresponds to

δLχ = iχH − χ2

2
Kdiff; (195)

then L(1) = H and L(2) = Kdiff, which, plugging back into
our expressions, leads to the first two cumulants

〈〈Idiff〉〉 = 〈〈1|H|ρss〉〉 = Jdiff, (196)

〈〈I 2
diff〉〉 = Kdiff − 2〈〈1|HL+H|ρss〉〉 = Ddiff. (197)

E. Computing probability distributions using the
saddle-point approximation

In most scenarios, no analytical expression for the
distribution P(n, t) can be found (for exceptions, see
Sec. IV D 1). The saddle-point approximation [119,120]
provides a simple-to-evaluate approximation to P(n, t) if
the cumulant generating function is known. To derive the

probability distribution in the saddle-point approximation,
we write

P(n, t) =
∫ R

−R

dχ
2π

e−inχ+C(χ ,t) =
∫ iR

−iR

dz
2π i

e−nz+C(−iz,t),

(198)

where R → ∞ for continuous distributions and R = π for
discrete ones.

To obtain the saddle-point approximation, we deform
the path of integration such that it passes a saddle point
of the function

g(z) = C(−iz, t)− nz, (199)

along the path of steepest descent, i.e., where Re[g(z)]
decreases fastest. After this deformation, the integral in
Eq. (198) is dominated by the neighborhood around the
saddle point. This is justified in the long-time limit, where
both C(χ , t) and the relevant n scale linearly in time. The
integrand in Eq. (198) is then exponentially suppressed
away from the saddle point. To employ the saddle-point
approximation, we thus need to find the saddle point, as
well as the path of steepest descent.

To find the saddle point, we note that at a saddle point,
the derivative of g(z) vanishes. This results in the saddle-
point equation

∂zC(−iz, t)|z=k = −i∂χC(χ , t)|χ=−ik = n, (200)

where we denote by k the value for z at the saddle point. In
Ref. [119], it is proven that the saddle-point equation has a
unique solution k that is real (note that C(−iz, t) is real for
z real).

To find the path of steepest descent, we approximate
g(z) around the saddle point by its second-order Taylor
expansion,

g(z) � g(k)− 1
2
∂2
χC(χ , t)|χ=−ik(z − k)2. (201)

From the definition of C(χ , t) in Eq. (133), we find that

∂2
χC(χ , t)|χ=−ik

= −E
[
N 2(t)ekN (t)

]
E

[
ekN (t)

] − E
[
N (t)ekN (t)

]2

E
[
ekN (t)

]2 ≤ 0,

(202)

where the inequality holds for real k and follows from the
Cauchy-Schwarz inequality. From Eqs. (201) and (202),
we can infer that the path of steepest descent corresponds
to z − k being purely imaginary. Close to the saddle point,
the path of steepest descent may therefore be parametrized
as z = k + is with s real.
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In the saddle-point approximation, the integral in
Eq. (198) is thus approximated as

P(n, t) � e−nk+C(−ik,t)
∫ ∞

−∞
ds e− 1

2 |C′′(−ik,t)|s2

= 1√
2π |C′′(−ik, t)|e−nk+C(−ik,t), (203)

where k is obtained by solving Eq. (200). Extending the
range of the integral in the last expression is justified
when the integral is indeed dominated by the neighbor-
hood around the saddle point, i.e., values of s close to zero.
This is the case in the long-time limit, where C(χ , t) ∝ t.
We note that the saddle-point approximation does not
guarantee normalized probability distributions. If desired,
the distribution can be normalized after performing the
approximation.

We further note that whenever the saddle-point approx-
imation is justified, it implies a large-deviation principle
as

− lim
t→∞

1
t

ln P(n, t) = k
n
t

− C(−ik), (204)

where C(χ) denotes the SCGF [cf. Eq. (135)].

1. Saddle-point approximation for example B

As an illustration of the saddle-point approximation, we
consider a quantum dot coupled to two fermionic reser-
voirs [cf. Sec. II B 2] in the long-time limit. The SCGF for
this system is given in Eq. (137). For simplicity, here we
consider the case γL = γR = γ and the large-bias limit, i.e.,
fR = 1 and fL = 0. In this case, the SCGF reduces to

C(χ) = γ
(
eiχ/2 − 1

)
, for − π ≤ χ < π . (205)

We note that C(χ) is periodic in χ , with period 2π . How-
ever, for π ≤ χ < 2π , the right-hand side of Eq. (205)
does not correspond to the root of Eq. (137) with the largest
real part. For this scenario, the integral in Eq. (198), with
R = π , can be expressed in closed form as

P(n, t) = e−γ t
[
(γ t)2n

(2n)!
− 2γ t(−1)n

(2n − 1)π

×1F2

(
1
2

− n;
3
2

,
3
2

− n; − (γ t)2

4

)]
, (206)

where 1F2 denotes a generalized hypergeometric function.
A much nicer expression can be obtained using

the saddle-point approximation. From the saddle-point
equation in Eq. (200), we find the saddle point to be
located at k = 2 ln 2n/γ t. Equation (203) then results in the

FIG. 19. The FCS probability distribution for example B
(Sec. II B 2). The solution (solid line) given by Eq. (206) is com-
pared to the saddle-point approximation (dashed line) given by
Eq. (207) for n = 1, 2, and 6 (red, blue, and green), respec-
tively. For early times, the solution in Eq. (206) has negative
values, which is an artifact of the long-time limit taken to derive
the SCGF in Eq. (137). For later times (i.e., γ t � 1), we find
excellent agreement between the two methods.

probability distribution in the saddle-point approximation:

P(n, t) � e2n−γ t

√
nπ

(
γ t
2n

)2n

. (207)

A comparison between Eqs. (206) and (207) is shown in
Fig. 19.

F. Gaussian processes

When considering systems of bosons or fermions, we
can find compact closed formulas for J , F(τ ), S(ω), and D
for the particular case in which the states and processes
involved are Gaussian. These formulas only depend on
matrices that are of size at most 2N , where N is the num-
ber of modes. Hence they can be used efficiently, even
for complex configurations involving multiple modes. To
provide a unified description of bosons and fermions, we
consider a system described by N annihilation operators bi,
which can be either bosonic ([bi, b†

j ] = δij ) or fermionic
({bi, b†

j } = δij ). Throughout, when we write ±, the upper
sign is for bosons and the lower for fermions.

We study a general Gaussian dynamics given by the
Liouvillian

Lρ = −i[H , ρ] +
∑

i

{
γ−

i D[bi]ρ + γ+
i D[b†

i ]ρ
}

, (208)

where

H =
∑

i,j

{
Aij b†

i bj + 1
2

(
Bij b†

i b†
j +B∗

ij bj bi

)}

+
∑

i

(
εib

†
i + ε∗

i bi

)
, (209)
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with matrices A = A† and B = ±BT and a vector ε. For
fermions, one must set εi ≡ 0 due to parity conservation
[44,121]. The factors proportional to B are called squeez-
ing terms in the context of bosons and pairing terms for
fermions.

The general jump operator J in Eq. (69) is now
parametrized as

J ρ =
∑

i

{
ν−

i γ
−
i biρb†

i +ν+
i γ

+
i b†

i ρbi

}
, (210)

with weights ν−
i associated with the extraction of par-

ticles (biρb†
i ), and ν+

i associated with injection (b†
i ρbi).

Similarly, the general diffusion superoperator Eq. (74)
reads

Hρ =
∑

i

[
ν−

i

√
γ−

i

(
e−iφ−

i biρ + eiφ−
i ρb†

i

)

+ ν+
i

√
γ+

i

(
e−iφ+

i b†
i ρ + eiφ+

i ρbi

) ]
, (211)

with possibly different angles φ−
i and φ+

i for each channel.
In practice, though, one will generally have φ+

i = −φ−
i .

The formulas for quantum diffusion and quantum jumps
will be provided in Secs. V F 1 and V F 2. Before that, how-
ever, we must first introduce the notions of the covariance
matrix and the Lyapunov equation.

Gaussian systems are fully characterized by the first
and second moments of the operators bi. When B = 0,
the entire process can be modeled more simply in terms
of a vector of means μ = (〈b1〉, . . . , 〈bN 〉) and a N × N
covariance matrix (sometimes also called the “correlation
matrix”):

Cij = 〈b†
j bi〉 − 〈b†

j 〉〈bi〉. (212)

Using the Liouvillian given in Eq. (208), one can show that
the vector of means evolves as

dμ

dt
= −Wμ − iε, (213)

where

W = iA + 1
2
,  = (γ−∓γ+). (214)

Here, γ± are diagonal matrices with entries γ±
i . The

steady-state solution of Eq. (213) is μ = −iW−1ε, while
for fermions μ ≡ 0 at all times. The covariance matrix,
on the other hand, evolves according to the Lyapunov

equation

dC
dt

= −(WC + CW†)+ γ+. (215)

At the steady state, this reduces to the algebraic equation

WC + CW†=γ+. (216)

Using the vectorization ideas from Sec. V B, we can write
this as (I ⊗ W + W∗ ⊗ I)|C〉〉 = |γ+〉〉, which shows that a
Lyapunov equation is just a linear equation (of the form
Ax = b) for the vector |C〉〉. In practice, there are more
efficient solvers for the Lyapunov equation, which can be
found in most numerical libraries.

When B 	= 0, we also require correlations of the form
〈bibj 〉. To handle this, it is convenient to introduce the
Hermitian operators

qi = 1√
2
(bi + b†

i ), pi = i√
2
(b†

i −bi). (217)

For bosons, these are called quadratures, while for
fermions, they are called Majorana operators. It is impor-
tant to bear in mind that different authors sometimes define
them with other prefactors, such as 1/2 or 1. We use this
definition so that they look as similar as possible to the
original position and momentum operators.

We define a vector of Hermitian operators, R =
(q1, . . . , qN , p1, . . . , pN ). The mean vector is written as r =
〈R〉 and is now real by construction. It can be related to
μ = (〈b1〉, . . . , 〈bN 〉) as

r = (ϕ ⊗ 1N )

(
μ

μ∗

)
, ϕ = 1√

2

(
1 1
−i i

)
. (218)

Here and henceforth, we will often use matrices such
as ϕ ⊗ 1N , mixing a 2 × 2 matrix with a N × N one.
This is based on the ordering of the operators in R =
(q1, . . . , qN , p1, . . . , pN ). Sometimes it is more convenient
to order them as (q1, p1, . . . , qN , pN ). For this case, one
simply needs to change the matrices to 1N ⊗ ϕ.

The operators R satisfy a canonical algebra that can be
written compactly as

[Ri, Rj ]∓=RiRj ∓ Rj Ri = i�ij , (219)

where, for bosons � = (iσy)⊗ 1N , which is known as the
symplectic form, whereas for fermions, � = −i12N . The
covariance matrix is now a 2N × 2N matrix and can be
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defined as [122]

�ij = 1
2
〈[Ri, Rj ]±〉 − 〈Ri〉〈Rj 〉 = i

2
�ij ± 〈Rj Ri〉

− 〈Ri〉〈Rj 〉. (220)

Moreover, the Hamiltonian given in Eq. (209) can be
written as

H = 1
2

RT
HR + RTf , (221)

where f = (ϕ ⊗ 1N )(ε, ε∗) and

H = 1
2

{
12 ⊗ (A ± AT)+ σz ⊗ (B ± B∗)

± σy ⊗ (AT ∓ A)− iσx ⊗ (B ∓ B∗)
}

. (222)

The vector of means r evolves according to

dr
dt

= −Wr +�f , (223)

where

W = −�H + 1
2
12 ⊗ . (224)

It is also worth noting that even though H differs for bosons
and fermions, it turns out that �H looks exactly the same:

�H = − i
2

[
I2 ⊗ (A − AT)− σy ⊗ (A + AT)

− iσx ⊗ (B + B∗)+ σz ⊗ (B − B∗)
]

. (225)

The covariance matrix again evolves according to a Lya-
punov equation, which now reads

d�
dt

= −(W�+�W†)+ ϒ , (226)

where ϒ = 1
212 ⊗ (γ+ + γ−) for bosons and ϒ =

− 1
2σy ⊗ (γ− − γ+) for fermions.
In the upcoming sections, we provide the formulas for

J , F(τ ), S(ω), and D. We will give them in terms of 2N ×
2N matrices like �. This is not only more general but, as
it turns out, the result is also simpler and more transparent.
We start with quantum diffusion, as this involves only two-
operator correlation functions, which are easier to handle.
We then move on to quantum jumps in Sec. V F 2.

We also mention here the connection with stochastic
quantum trajectories. For bosons, quantum jumps are not
Gaussian preserving because biρb†

i breaks Gaussianity.
This does not mean that we cannot compute J , F(τ ), S(ω),

and D, of course. All it means is that we cannot use
Gaussian techniques to model the stochastic trajectories.
Bosonic diffusion, on the other hand, is Gaussian, and
a beautiful framework exists for describing the stochas-
tic trajectories solely in terms of covariance matrices. For
the interested reader, we recommend Ref. [123]. The case
of fermions is almost the opposite. For quantum diffu-
sion with fermions, it is impossible to measure 〈bi〉 due
to parity conservation. One could, of course, study the dif-
fusive unraveling with jump operators such as b†

i bi but the
resulting dynamics is no longer Gaussian. However, and
somewhat surprisingly, quantum jump trajectories with
fermions are Gaussian preserving. This is because all
fermionic Fock states are actually Gaussian [124].

1. Quantum diffusion

As argued above, Gaussian quantum diffusion only
make sense for bosons. Define a diagonal matrix V with
entries

Vii = 1√
2

(
e−iφ−

i ν−
i

√
γ−

i + e−iφ+
i ν+

i

√
γ+

i

)
,

Vi+N ,i+N = i√
2
(e−iφ−

i ν−
i

√
γ−

i − e−iφ+
i ν+

i

√
γ+

i ),

(227)

for i = 1, . . . , N . Moreover, define a vector o = (1, . . . , 1),
of length 2N . In terms of the quadrature or Majorana oper-
ators Eq. (217) and their vector R, we can rewrite the
diffusion superoperator given in Eq. (211) as

Hρ =
2N∑
i=1

(
ViiRiρ + ρRiV∗

ii

)
. (228)

From this, it readily follows that the average diffusive
current is

Jdiff = tr {Hρ} = oT(V + V∗)r. (229)

Next, we compute the two-point correlation function
Fdiff(τ ) in Eq. (72). Using the language of the QRT, devel-
oped in Sec. III D, we can write the relevant term in Fdiff(τ )

as

tr
{
HeLτHρ

} =
∑

ij

(Vii + V∗
ii)

×
[
Vjj 〈Ri(τ )Rj 〉 + V∗

jj 〈Rj Ri(τ )〉
]

.

(230)

We therefore require the two-operator correlation func-
tions for the R operators. We develop these expressions
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in Appendix P. Focusing on steady states, the results are

〈Rj (t)Ri(t + τ)〉 =
[
±G(τ )�̃+ rrT

]
ij

,

〈Rj (t + τ)Ri(t)〉 =
[
±�̃G†(τ )+ rrT

]
ij

,
(231)

where �̃ = �− i�/2 and G(τ ) = e−Wτ is the propagator
for the model in question. The plus or minus signs here
again refer to bosons and fermions (we write the results
for fermions because we will also need them in the quan-
tum jump case). Using these results, we arrive, after some
simplifications, at

Fdiff(τ ) = δ(τ )Kdiff + 2Re
(

oT(V + V∗)G(τ )�̃V∗o
)

,

(232)

where Kdiff = ∑
k(ν

−
k )

2 + (ν+
k )

2. The time dependence of
the two-point function is therefore dictated entirely by the
matrix G(τ ), which is weighted by both the covariance
matrix � of the system as well as the matrix V [Eq. (227)]
describing the ν±

i .
From Fdiff, we compute the power spectrum Sdiff(ω) =∫ ∞

0 dτ(eiωτ + e−iωτ )Fdiff(τ ) [Eq. (76)]. Since the only τ
dependence is in G(τ ), all we need is to employ the
transformation

∫ ∞

0
dτ(eiωτ + e−iωτ )e−Wτ = 2W

W2 + ω2 . (233)

We then arrive at

Sdiff(ω) = Kdiff + 4Re
(

oT(V + V∗)
W

W2 + ω2 �̃V∗o
)

.

(234)

Setting ω = 0 yields the noise in Eq. (88)

Ddiff = Kdiff + 4Re
(

oT(V + V∗)W−1�̃V∗o
)

. (235)

2. Quantum jumps

For quantum jumps, we start by rewriting the jump
operator given in Eq. (210) as

J ρ =
∑

i,j

VjiRiρRj , (236)

where we have defined a new V matrix,

V = 1
2
12 ⊗ (ν+γ++ν−γ−)+ 1

2
σy ⊗ (ν+γ+−ν−γ−).

(237)

[We use the same notation V as in Eq. (227) to emphasize
how these two matrices play similar roles, despite being

different.] The average current again readily follows:

J = tr(J ρ) =
∑

i,j

Vji〈Rj Ri〉 = ±tr(V�̃)+ rTVr. (238)

The relevant part of the two-point function given in
Eq. (67) will now take the form

tr
{
J eLτJ ρ

} =
∑
i,j ,k,�

VjiV�k〈R�(t)Rj (t + τ)Ri(t + τ)Rk(t)〉.

(239)

We thus now need a four-operator correlation function.
For Gaussian states, we can do this using Wick’s theorem
[125]. Let Ri denote operators that are arbitrary linear com-
binations of the b and b† operators. Wick’s theorem states
that for any Gaussian state,

〈R1R2R3R4〉 = 〈R1R2〉〈R3R4〉 ± 〈R1R3〉〈R2R4〉
+ 〈R1R4〉〈R2R3〉 − 2〈R1〉〈R2〉〈R3〉〈R4〉.

(240)

With this result at hand, we obtain, after many simplifica-
tions,

F(τ ) = δ(τ )K + tr
{

G†(τ )(VT ± V)G(τ )�̃V�̃
}

+ 2Re
(

rT(VT + V)G(τ )�̃V + r
)

, (241)

The first term K is computed like Eq. (238) but using (ν±)2
instead of ν± in the definition of the matrix V. Note how the
last term in F(τ ) is structurally very similar to Eq. (232),
except that the vector involved here is the mean r, instead
of the vector of constant entries o = (1, . . . , 1). This term
therefore always vanishes when the mean is zero (and for
fermions). In addition, though, F(τ ) now has a new term
(the one containing the trace), which is independent of the
mean and has a τ dependence that is quadratic in G(τ ). For
fermions, this is the only relevant term.

It is now slightly more complicated to compute S(ω).
The second line in F(τ ) is again linear in G and hence
we can use the transformation given in Eq. (233). The first
term, though, is quadratic. To compute it efficiently, we
define a new matrix

Q(ω) =
∫ ∞

0
dτ e−iωτG(τ )�̃V�̃G†(τ ). (242)

Then, we can write

S(ω) = K + tr
{
(VT ± V) [Q(ω)+ Q(−ω)]}

+ 4Re
(

rT(V + VT)
W

W2 + ω2 �̃Vr
)

. (243)

The reason why it is convenient to define Q(ω) is because
we do not need to perform any integrals to compute it, as
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in Eq. (242). Instead, we can note that Q(ω) is actually the
solution of a generalized Lyapunov equation [126]:

(W − iω/2)Q(ω)+ Q(ω)(W†−iω/2) = �̃V�̃. (244)

So once we have �, we must solve this equation for each
value of ω. Finally, setting ω = 0 yields the noise:

D = K + 2tr
{
(VT ± V)Q

} + 4Re
(

rT(V + VT)W−1�̃Vr
)

,

(245)

where Q ≡ Q(ω = 0) is now the solution of the standard
Lyapunov equation

WQ + QW†=�̃V�̃. (246)

Obtaining the noise therefore requires solving two Lya-
punov equations: one for the actual covariance matrix �
and one for the auxiliary matrix Q. This is the Gaus-
sian equivalent of the situation encountered in Sec. V A;
namely, that to compute the noise, one must solve two
master equations.

3. Example: Parametric oscillator

As an application of these Gaussian methods, we study
the parametric oscillator. It is given by the Hamiltonian
of example D [Eq. (14)], with U = 0. For concreteness,
here we also take� = 0 and G → iG, as this simplifies the
results. We study both the quantum jump and the quantum
diffusion unravelings of Eq. (15). The former represents
direct photodetection of the photons leaking out of the cav-
ity, while the latter represents homodyne detection, except
for a constant overall factor (see Table II).

The steady-state values of 〈a†a〉 and 〈aa〉 have been pre-
sented in Eq. (16). These are computed using the Lyapunov
equation given in Eq. (226). Here, we reproduce the idea,
focusing on � = 0 and G → iG. The matrices W and ϒ
[Eq. (224)] for this model have the form

W =
(
κ
2 − G 0

0 κ
2 + G

)
, ϒ = κ

2
12. (247)

At the steady state, Eq. (226) yields

� :=
( 〈q2〉 1

2 〈{q, p}〉
1
2 〈{q, p}〉 〈p2〉

)
= 1

2

(
κ

κ−2G 0
0 κ

κ+2G

)
.

(248)

The steady state is therefore squeezed, where the momen-
tum is compressed while the position expands. The choice
G → iG is convenient because it makes � diagonal. From
�, we can extract 〈a†a〉 = 2G2/(κ2 − 4G2), which is a
particular case of Eq. (16). This, in turn, yields the aver-
age photon current J = 2κG2/(κ2 − 4G2). The diffusive

current, on the other hand, vanishes, since 〈a〉 = 0 for this
model.

Next, we use the results of Sec. V F 1 to compute F , S,
and D for quantum diffusion. The matrix V in Eq. (227),
which is what defines the measurement in question, is
given by V = √

κ/2diag
(
e−iφ , eiφ

)
. Plugging W , � and

V into Eq. (234) yields the power spectrum. For the par-
ticular choices of homodyning the position (φ = 0) and
momentum (φ = π/2), we obtain [127]

Sq(ω) = 1 + 2Gκ
ω2 + (G − κ

2 )
2 ,

Sp(ω) = 1 − 2Gκ
ω2 + (G + κ

2 )
2 .

(249)

This is plotted in Fig. 20(a). As can be seen, the momen-
tum quadrature, which is squeezed, shows a dip below the
white-noise value of 1. The dip is strongest at G = κ/2,
called the threshold for parametric oscillation, where we
obtain Sp(ω) = 1 − [κ2/(κ2 + ω2)]. The spectrum there-
fore reaches identically zero at ω = 0. That is, the noise
D = S(0) identically vanishes at the threshold for paramet-
ric oscillation. More generally, the noise reads

Dq = (κ + 2G)2

(κ − 2G)2
, Dp = (κ − 2G)2

(κ + 2G)2
. (250)

These equations are plotted in Fig. 20(b) as a function of
G/κ . As the threshold is approached, Dq diverges while Dp
tends to zero.

Next, we turn to the quantum jump unraveling (direct
photodetection). The relevant V matrix is that defined in
Eq. (237), which in this case reads

V = κ

2

(
1 i
−i 1

)
. (251)

Plugging this, together with Eqs. (247) and Eq. (248), into
Eq. (243), we find that

S(ω) = J + G2κ2

(2G + κ)3 + (2G + κ)ω2

− G2κ2

(2G − κ)3 + (2G − κ)ω2 , (252)

with J = 2κG2/(κ2 − 4G2). This is plotted in Fig. 20(c).
As can be seen, the direct photodetection spectrum always
shows a peak around ω = 0. The corresponding noise is

D = 4G2κ(8G4 + 2G2κ2 + κ4)

(κ2 − 4G2)3
(253)

and is shown in Fig. 20(d) as a function of G/κ . Quite
remarkably, we see that the noise associated with quan-
tum jumps is extremely sensitive to G, changing by several
orders of magnitude.
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(a) (b)

(c) (d)

FIG. 20. The power spectrum and noise in the parametric
oscillator (example D, Sec. II B 4, with U = 0). (a) The quan-
tum diffusion power spectra Sq and Sp [Eq. (249)]. (b) The
corresponding noise, given in Eq. (250). (c) The power spec-
tra for quantum jump unraveling, given in Eq. (252). (d) The
corresponding noise, given in Eq. (253).

VI. CONNECTIONS WITH TOPICAL FIELDS OF
RESEARCH

A. Waiting-time distributions

Consider again the quantum jump scenario first intro-
duced in Sec. II C. The dynamics is described by a
series of jumps, occurring at random times, followed by
periods of no jumps, as illustrated in Fig. 6. We are
then naturally led to ask questions such as the follow-
ing: What is the time until the first jump?, or what is
the time between two jumps? Since these times are ran-
dom, we will therefore have a waiting-time distribution
(WTD). WTDs have a long history in stochastic processes
in general [128], with applications including quantum
optics [129,130], electronic transport [131–134], and even
finance [135]. Recently, WTDs have been employed to
estimate entropy production [136] and to distinguish Majo-
rana from Andreev bound states [137]. Here, we follow the
development of Ref. [131], which focuses specifically on
QMEs.

To compute the WTD, we must decompose the dynam-
ics into conditional evolutions involving jumps and no-
jumps. This can be accomplished using a Dyson series
decomposition of ρ(t) = eLtρ(0). Consider the original
QME [Eq. (5)] and define Lkρ = LkρL†

k . These are the
jump superoperators. Suppose that we only want to mon-
itor a subset M of these jumps. For example, it might be

that some channels are not accessible. We then define the
no-jump superoperator as

L0 = L −
∑
k∈M

Lk. (254)

In the case in which all jump operators are monitored, this
reduces to

L0ρ = −i
(

Heffρ − ρH †
eff

)
. (255)

where Heff is the non-Hermitian Hamiltonian defined in
Eq. (21). Moreover, in this case we can connect L0 to
Kraus operator M0 introduced in Eq. (23):

M0ρM †
0 =ρ + dtL0ρ. (256)

Note how there is a subjective character to the definition of
L0, in the sense that it depends on what we choose as our
monitored channels M. The decomposition is thus con-
ditioned on what we assume can be monitored. Different
choices of M will lead to different L0 and hence different
WTDs.

To decompose the dynamics, we use a Dyson series of
eLt. This is exactly the same kind of expansion that is used
in time-dependent perturbation theory. Labeling the initial
state as ρ0, it reads [54]

ρ(t) = eL0tρ0 +
∑
k∈M

∫ t

0
dt1eL0(t−t1)LkeL0t1ρ0

+
∑

k,q∈M

∫ t

0
dt2

∫ t2

0
dt1eL0(t−t2)LkeL0(t2−t1)LqeL0t1ρ0

+ . . . . (257)

Each term in the expansion contains a well-defined num-
ber of jumps. The first term has no jumps; the second has
one jump occurring at time t1 and then integrated over all
possible t1. The third term has two jumps and so on and
so forth. This can thus be interpreted as a decomposition
of ρ(t) into multiple conditional evolutions, each with a
well-defined number of jumps. This is similar in spirit to
the decomposition used in Eq. (113), when we introduced
FCS.

The individual terms are not properly normalized,
though. Their normalization gives precisely the probability
that each conditional evolution occurs. For example,

Pno(t|ρ0) := tr
{
eL0tρ0

}
(258)

is the probability that, starting with the state ρ0, no jump
takes place up to time t. After proper normalization,
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the conditional state of the system, given that no jumps
occurred, is therefore

ρno(t) = eL0tρ0

Pno(t)
. (259)

We can also have similar definitions for the state condi-
tioned on one jump, two jumps, and so on.

The above discussion makes it clear that during the no-
jumps sections, the system evolves as eL0t, while if a jump
occurs we must apply Lk. We can therefore use this to
define the WTD. More precisely, starting with an initial
state ρ0, the probability that the first jump occurs at time t
and in channel k, is given by

W(t, k|ρ0) = tr
{
LkeL0tρ0

}
. (260)

This quantity refers to a single jump, after a specific state
preparation. It is distinct from the WTD between two
jumps, which one might observe in steady-state conditions.
The latter will be defined in Eq. (269). As a sanity check,
if t = 0 we obtain W(0, k|ρ0)dt = dttr

{
L†

kLkρ0

}
, which is

precisely the probabilities pk studied in Eq. (24).
Marginalizing over the channels k gives us the probabil-

ity that it takes a time t for the jump to occur, irrespective
of where it occurs. Using Eq. (254), together with the fact
that tr(Lρ) = 0 for any ρ, we then obtain

W(t|ρ0) =
∑
kM

W(t, k|ρ0) = −tr
{
L0eL0tρ0

} = −dPno

dt
,

(261)

where Pno is given in Eq. (258). In the language of prob-
ability theory, Pno(t|ρ0) is the survival probability, while
W(t|ρ0) is the probability density function. Integrating
W(t|ρ0) from 0 to ∞ and using the fact that Pno(0) = 1,
we then obtain

∫ ∞

0
W(t|ρ0)dt = 1 − Pno(∞|ρ0). (262)

The term Pno(∞|ρ0) reflects the possibility that no jump
ever occurs. Whether or not this will vanish depends on
the problem in question and is related to the existence of
dark states, i.e., initial states that are not affected by the
jump operators in question. For simplicity, we are going to
restrict the discussion to those cases where a jump always
eventually occurs, so that Pno(∞|ρ0) = 0. The WTD (260)
will then be normalized as

∑
k∈M

∫ ∞

0
dt W(t, k|ρ0) = 1. (263)

The assumption that Pno(∞|ρ0) = 0 coincides with the
assumption that L0 is invertible. Indeed, if this is true then

normalization also follows from Eq. (261) and the identity∫ ∞
0 eL0tdt = −L−1

0 (a relation between L−1
0 and the Drazin

inverse L+ is explored in Appendix Q).
If we marginalize W(t, k|ρ0) in t, instead of k, we

obtain the probability that the jump occurs in channel k,
irrespective of when it happens:

W(k|ρ0) =
∫ ∞

0
dt W(t, k|ρ0) = −tr

{
LkL−1

0 ρ0
}

. (264)

This is an interesting quantity in itself, because it can be
used to assess which channel is more likely to click.

The moments of W(t|ρ0) [Eq. (261)] can be computed
with the identity

∫ ∞
0 dt tneL0t = (−1)n+1n!L−(n+1)

0 and
read

E(Tn) = (−1)nn! tr
{
L−n

0 ρ
}

. (265)

So, for example, E(T) is the average time until the first
jump (irrespective of the channel). Alternatively, we can
also postselect on the channel and ask, e.g., “What is the
average time until a jump, given that the jump occurred in
channel k?” The underlying distribution, from Bayes’ rule,
is W(t|ρ0, k) = (W(t, k|ρ0)/W(k|ρ0)). Hence

E(Tn|ρ0, k) =
∫ ∞

0
dt W(t|ρ0, k)tn

= (−1)nn!
W(k|ρ0)

tr
{
LkL−(n+1)

0 ρ0

}
. (266)

The moments satisfy the law of total average, so that we
can recover Eq. (265) as

E(Tn|ρ0) =
∑

k

W(k|ρ0)E(Tn|ρ0, k). (267)

However, the same is not true for the variance, for exam-
ple, which instead the satisfies law of total variance:

var(T) = vark (E(T|k))+ Ek (var(T|k))
=

∑
k

W(k|ρ0)
[
E(T|k)2 − E(T)2

]

+
∑

k

W(k|ρ0)
[
E(T2|k)− E(T|k)2] . (268)

The dependence on ρ0 has been omitted from some of
the terms, for readability. The first term describes how the
average waiting times fluctuate between the different chan-
nels, while the second term describes the variance of the
waiting time within each channel (and then averaged over
all channels).

Equation (260) is the WTD for a single jump after a spe-
cific state preparation ρ0. One might also be interested in
the waiting times between two consecutive jumps. This is
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common when we deal with the steady state, where many
jumps are constantly happening and we just want to make
a histogram of the time between two jumps. We can con-
struct the corresponding WTD directly from Eq. (260). If
the system is in ρss and a jump occurs in a given channel q,
then the state must be updated to ρss → Lqρss/tr(Lqρss).
Using this in Eq. (260) then yields

W(t, k|q) = tr
{
LkeL0tLqρss

}
tr

{
Lqρss

} . (269)

This WTD is normalized as in Eq. (263), for each q. One
can note here a similarity to the two-point correlation func-
tion F(τ ) in Eq. (67), in the sense that both have the
structure “jump → evolve → jump.” The main difference
is that F evolves with eLt, while W has eL0t. This reflects
the fact that W describes correlations between two points
in time, conditioned on there being no jumps in between,
while for F there is no such restriction.

B. Path probabilities in the jump unraveling

The WTD can be extended to describe a sequence of
multiple jumps. This will produce a detection record of the
form

(t1, k1), (t2, k2), . . . , (270)

describing the set of channels where the jumps have
occurred, together with the time tags of when they have
occurred. Eq. (270) is, in fact, what an experimentalist with
access to the quantum jump unraveling would observe. We
use tn to denote absolute times; the relative times, between
jumps, is τn = tn − tn−1. Below, we shall make use of both
notations. The probability of observing a specific sequence
of N jumps can be read from the Dyson series Eq. (257):

W(t1, k1, . . . , tN , kN |ρ0) = tr
{
LkN eL0(tN −tN−1) . . .

Lk1eL0t1ρ0
}

, (271)

where it is implicit that ti+1 > ti. Moreover, if at any given
time t, a total of N jumps has occurred, the (unnormalized)
state of the system will be

ρc(t|t1, k1, . . . , tN , kN ) = eL0(t−tN )LkN eL0(tN −tN−1)

. . .Lk1eL0t1ρ0, (272)

where t > tN and the factor of eL0(t−tN ) accounts for the
no-jump evolution of the system after the N th jump.

The two formulas above reflect a subtlety concerning
two different ensembles that one can work on:

(a) t-ensemble: we fix a given final time t, but allow the
number of jumps N that take place to fluctuate.

(b) N -ensemble: we fix a total number N of jumps, but
the final time tN at which the last jump takes place
is allowed to fluctuate.

The distribution in Eq. (271) is in the N -ensemble, because
we are talking specifically about N jumps and we place
no restriction on what tN might be. In fact, Eq. (271) is
normalized as

∑
k1,...,kN ∈M

∫ ∞

0
dtN , . . . ,

∫ t2

0
dt1W(t1, k1, . . . , tN , kN ) = 1,

(273)

where the integrals are all nested in order to respect ti+1 >

ti.
The t-ensemble is, in many aspects, more natural, since

in physics we usually describe systems at specific times t.
In fact, all previous results about the quantum jump unrav-
eling in this tutorial have been implicitly in the t-ensemble.
Equation (272) is also in the t-ensemble because t is fixed
but N is allowed to fluctuate. The normalization gives us
the probability

W̃t(t1, k1, . . . , tN , kN |ρ0) = tr
{
ρc(t|t1, k1, . . . , tN , kN )

}
,

(274)

which differs from Eq. (271) because N is a random vari-
able. This difference is better appreciated if we look at how
W̃t is normalized:

∞∑
N=0

∑
k1,...,kN ∈M

∫ t

0
dtN · · ·

∫ t2

0
dt1

W̃t(t1, k1, . . . , tN , kN |ρ0) = 1. (275)

This follows from the Dyson series given in Eq. (257) and
the fact that sum over all terms yields the unconditional
state ρ(t), which is normalized, tr(ρ(t)) = 1.

Now consider a sequence of jumps, as in Eq. (270), and
let us analyze a stroboscopic dynamics, where we only
look at the state of the system immediately after each jump.
We will use relative times τi = ti − ti−1. If the ith jump was
associated with the pair (τi, ki), then the state of the system
will change as

ρc
i = Lkie

L0τiρc
i−1

W(τi, ki|ρc
i−1)

, (276)

where W(τ , k|ρ) is precisely the WTD introduced in
Eq. (260) and ρc

0 = ρ0 is the initial state. Using this result
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recursively, we can write Eq. (271) as

W(τ1, k1, . . . , τN , kN |ρ0) = W(τN , kN |ρc
N−1)

. . .W(τ1, k1|ρ0). (277)

This formula seems to imply that the outcomes given in
Eq. (270) form a Markov chain. This is not true, how-
ever, because each ρc

i will depend on all previous outcomes
(τj , kj ) with j � i. So what this shows is that the mem-
ory of the past that each outcome (τi, ki) retains is encoded
entirely in ρc

i−1. This is therefore akin to a hidden Markov
model, where ρc

i is a hidden layer, while (τi, ki) are the
observations.

We can also treat the t-ensemble similarly. Equation (272)
becomes

ρc(t|t1, k1, . . . , tN , kN ) = eL0(t−tN )ρc
N , (278)

and Eq. (274) can be written (now using absolute times) as

W̃t(t1, k1, . . . , tN , kN |ρ0)

= Pno(t − tN |ρc
N )W(tN − tN−1, kN |ρc

N−1)

× . . .W(t2 − t1, k2|ρc
1)W(t1, k1|ρ0). (279)

Here, the first term Pno(t − tN |ρN ) reflects the fact that
there have been no other jumps after tN .

1. Stationarity

Very often, we are interested in the statistics of many
jumps in a steady-state scenario. For example, we have dis-
cussed how Eq. (269) represents what one would obtain by
making a histogram of the waiting times in the steady state.
Intuitively, one expects that after many jumps, Eq. (277)
should become stationary; i.e., it should become approx-
imately (i) independent of the initial state ρ0 and (ii)
translationally invariant. Stationarity does not happen for
all models. For example, an optical cavity in the absence
of any drive might produce a few jumps, depending on the
initial state, but eventually these will stop. The conditions
for a model to support a stationary jump distribution are
related to the eigenvalues of the superoperator −JL−1

0 , as
shown recently in Ref. [138]. Here, instead, we will ask
a simpler question: is there a special state π for which
Eq. (271) is stationary from the very beginning? Con-
sider, e.g., the two-outcome distribution W(τ1, k1, τ2, k2|π).
If we marginalize over τ2, k2, we recover W(τ1, k1|π) pre-
cisely as given in Eq. (260). Stationarity means that if
we marginalize, instead, over τ1, k1, we should obtain
W(τ2, k2|π) with exactly the same shape as W(τ1, k1|π).

Naively, one might assume that this special state is
the steady state ρss. It turns out, however, that this is
not the case. Indeed, using Eq. (271) and marginalizing

W(τ1, k1, τ2, k2) over τ1, k1 yields

∑
k1

∫
dτ1 tr

{
Lk2eL0τ2Lk1eL0τ1π

}

= tr
{
Lk2eL0τ2J (−L−1

0 )π
}

, (280)

where, recall, J = ∑
k∈M Lk. If this is to have the form

given in Eq. (260), then π must satisfy the fixed-point
equation

π = −JL−1
0 π . (281)

One can show that the solution is the so-called “jump
steady state” (JSS) [138],

π = J ρss

K
, (282)

where

K =
∑
k∈M

〈L†
kLk〉ss =

∑
k∈M

tr {Lkρss} = −tr {L0ρss} ,

(283)

is called the dynamical activity and describes the number
of jumps per unit time in the steady state. We use the same
letter K here to emphasize the connection with Eq. (68);
in fact, the two coincide provided that we take νk = 1 for
k ∈ M and zero otherwise.

We can now establish several results concerning the
steady-state statistics, which resonate directly with exper-
iments. First, what is the relative frequency with which
channel k clicks? We start with W(τ , k|π) and marginalize
over τ , leading to

pk :=
∫ ∞

0
dτ W(τ , k|π) = − 1

K
tr

{
LkL−1

0 J ρss
}

= 1
K

tr {Lkρss} , (284)

where we have used the fact that J = L − L0 and Lρss =
0. These are closely related to the original jump probabil-
ities pk in Eq. (24). The difference is that pk is restricted
only to the subset M of jumps and therefore we need a
different normalization. If we marginalize Eq. (269) over t,
we obtain the transition probability that jump q is followed
by jump k:

W(k|q) = tr
{
Lk(−L−1

0 )Lqρss
}

tr
{
Lqρss

} . (285)

One may verify that pk are the fixed points of this transition
probability,

∑
q W(k|q)pq = pk.
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Next, What is the time between jumps, irrespective
of the channels? Again, starting with W(t, k|π) but now
marginalizing over k yields

W(t) = tr
{
L0eL0tπ

} = − tr
{
L0eL0tL0ρss

}
tr(L0ρss)

, (286)

which is normalized as
∫ ∞

0 W(t)dt = 1. This result could
also have been obtained by averaging Eq. (269) over pq.
From W(t), it follows that the average time between jumps
is

E(T) = 1
K

, (287)

which makes sense, since the dynamical activity is pre-
cisely the number of jumps per unit time in the steady
state.

2. Renewal processes

A renewal process is any process for which, after a
jump, the state of the system is completely reset; i.e., no
memory of its previous past is retained. Mathematically,
in a renewal process, for each jump operator Lk there is a
corresponding (properly normalized) state σk such that

Lkρ

tr(Lkρ)
= σk. (288)

In vectorization language (Sec. V B), this is tantamount to
Lk being rank-1 matrices of the form

Lk = |σk〉〉〈〈ξk|, (289)

for vectors 〈〈ξk|.
For example, in the case of a qubit, a jump σ−ρσ+ is

renewal, since it completely resets any ρ. Conversely, for
a bosonic system, a jump aρa† is not renewal, since aρa†

still retains a memory of ρ. Another example of a sys-
tem that is not renewal is two coupled qubits (a double
quantum dot) with jump operators acting locally on each
qubit. A jump will reset the local state of one qubit but not
the global state of the two. Generally, therefore, renewal
processes are quite rare.

For renewal processes, the WTD between two jumps
[Eq. (269)] becomes independent of ρ:

W(t, k|q) = tr
{
LkeL0tσq

} = 〈〈ξk|eL0t|σk〉〉. (290)

Moreover, Eqs. (282) and (284) reduce to

pk = 〈〈ξk|ρss〉〉/K , π =
∑

k

pkσk. (291)

The JSS is therefore a simple a statistical mixture of the
postjump states σk. Recursively applying Eq. (288) allows

us to decompose Eq. (271) as

W(t1, k1, . . . , tN , kN |π) =
∑

q

W(tN , kN |kN−1)

. . .W(t1, k1|q)pq. (292)

Renewal processes therefore form a Markov chain: each
outcome ti, ki depends only on the previous jump channel
ki−1. If there is only one jump channel, the waiting times
therefore become independent and identically distributed:

W(t1, . . . , tN ) = W(tN ) . . .W(t1). (293)

For renewal processes with a single jump channel, the vari-
ance of the waiting-time distribution can be connected to
the noise D [Eq. (85)]. Defining the mean waiting time
μ = E(T) and the variance σ 2 = E(T2)− μ2, the relation
reads

D = σ 2

μ3 , (294)

which provides a deep connection between fluctuations in
the WTD and the variance of the integrated charge N (t).
This relation is proven in Appendix R and is well known
in renewal theory [139].

C. Multiple current specimens and current-current
correlations

1. Correlations between different currents

Throughout this tutorial, we have mainly considered the
case in which there is only a single current of interest, I(t)
or N (t), defined by the set of weights νk that enter into
Eq. (37). All results readily generalize when we have two
or more current specimens or multiple detectors [140]. For
instance, in systems with two reservoirs, this could be the
particle current to each of the baths. Alternatively, it could
be the energy and particle currents. For multiple currents,
Eq. (37) generalizes to

Nα(t) =
∑

k

ναkNk(t), (295)

where ναk is the weight that current α attributes to the jump
Lk. The corresponding current is then Iα(t) = dNα/dt. For
instance, in example A [Eq. (9)], we might use νp− = −1,
νp+ = +1 for the particle current and νd− = νd+ = 1 for
the dynamical activity.

With multiple currents, an interesting question con-
cerns the correlations between them. For example, how
are the emissions to one reservoir correlated with absorp-
tions from the other? To address this question in general,
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we consider the correlations among the set of “elementary
currents” {Ik}r

k=1, where

Ik(t) = dNk

dt
, (296)

is the current pertaining to one specific jump operator Lk
entering the master equation [Eq. (5)]. The corresponding
average current is simply

Jk = E[Ik(t)] = tr (Lkρss) , (297)

where Lkρ = LkρL†
k and we focus on the steady state for

simplicity. The steady-state two-point correlation function
between any pair of elementary currents is (for τ ≥ 0)

Fkq(τ ) = E[Ik(t + τ)Iq(t)] − JkJq

= Jkδkqδ(τ )+ tr
(
LkeLτLqρss

) − JkJq, (298)

which can be derived following the exact same steps as
used in Appendix D but taking care with the indices k and
q. For a set of elementary diffusive currents of the form

Ik(t) =
〈
e−iφk Lk + eiφk L†

k

〉
c
(t)+ dWk

dt
, (299)

one obtains expressions similar to Eqs. (297) and (298) but
with the replacement

Lk(ρ) → Hk(ρ) = e−iφk Lkρ + eiφkρL†
k , (300)

as can be shown following the same steps as in
Appendix E. For τ < 0, the autocorrelation function can
be found using the symmetry relation Fkq(−τ) = Fqk(+τ).

From Eq. (298), we readily compute the power spectrum
matrix as in Eq. (2),

Skq(ω) =
∫ ∞

−∞
dτ e−iωτFkq(τ ), (301)

and the noise or diffusion matrix Dkq = Skq(0). The lat-
ter is interpreted similarly to Eq. (85): the diagonal entries
are Dkk = (d/dt)Var (Nk(t)). Conversely, the off-diagonals
read

Dkq = d
dt

Cov
(
Nk(t), Nq(t)

)
, (302)

where Cov(A, B) = E(AB)− E(A)E(B) is the covariance.
The power-spectrum matrix is Hermitian at each fre-
quency, Skq(ω) = S∗

qk(ω) = Sqk(−ω). The noise matrix is

real and symmetric, Dkq = Dqk, and admits the explicit
expression

Dkq = Jkδkq − 〈〈1|LkL+Lq|ρss〉〉 − 〈〈1|LqL+Lk|ρss〉〉.
(303)

Meanwhile, the real symmetric matrix

Skq(ω) := |Skq(ω)|2
Skk(ω)Sqq(ω)

, (304)

is referred to as “coherence” in the language of signal pro-
cessing and provides a (frequency-resolved) measure of
the correlations between any pair of elementary currents.
With these definitions in hand, it is straightforward to find
the corresponding quantities for any linear combination of
the elementary currents: one simply sums over the cor-
responding coefficients as in Eq. (295). For example, the
long-time covariance matrix is given by

Dαβ = d
dt

Cov
(
Nα(t), Nβ(t)

) =
∑
k,q

ναkDkqνβq. (305)

FCS (Sec. IV) can be extended to study cross-correlations
in a similar way, by introducing multiple counting fields
χα: one for each current specimen, pertaining to a
total charge transfer nα . Let us use numerical labels
for the different currents, α = 1, 2, . . ., allowing us to
introduce a convenient vector notation n = (n1, n2, . . .),
χ = (χ1,χ2, . . .), and νk = (ν1k, ν2k, . . .). The multicurrent
analogue of Eq. (119) is then

P(n, t) =
(∏

α

∫
dχα
2π

)
e−in·χ tr[ρχ (t)], (306)

where ρχ is the solution of dρχ/dt = Lχρχ , with

Lχρ = −i[H , ρ] +
r∑

k=1

(
eiνk ·χLkρL†

k−
1
2
{L†

kLk, ρ}
)

.

(307)

An important example of current-current correlations
arises in heterodyne detection of the light emitted by
an optical cavity. As discussed in Sec. II E 1, we split
the jump operator entering the QME Eq. (15) into two
as L1 = L2 = √

κ/2a and take orthogonal phases for the
reference currents φ1 = 0 and φ2 = π/2. The correspond-
ing output currents are defined by choosing ν11 = ν22 =
1/

√
κ and ν12 = ν21 = 0. From Eq. (298), we obtain the
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current-current correlations

F11(τ ) = κ−1δ(τ )+ Re
[〈a†(τ )a〉 + 〈a(τ )a〉] − J 2

1 ,

F22(τ ) = κ−1δ(τ )+ Re
[〈a†(τ )a〉 − 〈a(τ )a〉] − J 2

2 ,

F12(τ ) = Im
[〈a(τ )a〉 + 〈a†(τ )a〉] ,

F21(τ ) = Im
[〈a(τ )a〉 − 〈a†(τ )a〉] .

(308)

By combining these correlations appropriately, we recover
the complex functions that characterize the first-order
optical coherence, discussed in Sec. III D. This can
be done succinctly by defining the complex current
IHet(t) = [I1(t)+ iI2(t)]/

√
2, the average of which is

JHet = E[IHet(t)] = 〈a〉, which is a complex number JHet =
|JHet|eiϕ . It follows that

E[δI∗
Het(t + τ)δIHet(t)] = κ−1δ(τ )+ |JHet|2

(
g(1)(τ )− 1

)
,

E[δIHet(t + τ)δIHet(t)] = |JHet|2 (〈a(τ )a〉 − cos 2ϕ) ,
(309)

where δIHet = IHet − JHet. Therefore, both the emission
spectrum, which depends on g(1)(τ ) [Eq. (111)], and the
spectrum of squeezing, related to 〈a(τ )a〉, can be inferred
by monitoring temporal fluctuations of the heterodyne
current.

2. Higher-order current correlations

So far, we have considered only the first two cumulants
of the currents: namely, their averages and second-order
correlation functions. Recent years have seen growing
interest in higher-order cumulants of output currents in
continuously measured quantum systems. Going beyond
second-order correlations gives access to more detailed
information on the system, allowing for more stringent
comparisons between experimental data and theoretical
models [141] or the detection of quantum measurement
invasiveness [142], for example. Exact formulas for arbi-
trary current correlation functions have been derived using
stochastic calculus methods in Refs. [118,143] for diffusive
measurements and then generalized to quantum jump mea-
surements in Ref. [144]. Analogous results for multitime
correlation functions have been derived using a quasiprob-
ability approach in Ref. [142] and directly from the QME
in Ref. [145]. Here, we simply describe the results using
the formalism of this tutorial and refer the interested reader
to the original references for further details.

To find a general expression for current correlation
functions, consider the generating functional

Z[χ(t)] = E

[
exp

(
r∑

k=1

∫ t

0
dt′ χk(t′)Ik(t′)

)]
. (310)

Here, Ik(t) is the elementary current corresponding to jump
channel k, as in Eq. (296), and χ(t) = [χ1(t), . . . ,χr(t)] is
a vector of arbitrary source functions which, as we will
see, coincide with the counting fields in FCS (Sec. IV) up
to a factor i. An arbitrary M -point correlation function can
then be generated by functional differentiation of Z[χ(t)],
as [146]

E[Ik1(t1) · · · IkM (tM )]

= δ

δχk1(t1)
· · · δ

δχkM (tM )
Z[χ(t)]

∣∣∣∣
χ=0

. (311)

We assume, without loss of generality, that the time argu-
ments are ordered so that 0 ≤ t1 ≤ t2 ≤ · · · ≤ tM ≤ t. As
shown in Ref. [144], the generating functional can be
expressed as

Z[χ(t)] = tr
{
T exp

[∫ t

0
dt′Lχ (t′)

]
ρ0

}
. (312)

where Lχ is a tilted Liouvillian. For quantum jumps, it
reads

Lχ (t) = L +
r∑

k=1

(
eχk(t) − 1

)
Lk, (313)

which is the multicurrent generalization of Eq. (116).
Conversely, for diffusion [Eq. (299)], it becomes [143,144]

Lχ (t) = L +
r∑

k=1

(
χk(t)Hk + χk(t)2

2

)
, (314)

which is the generalization of Eq. (124). All of these results
can therefore be understood as an elegant generalization of
the FCS results of Sec. IV B, to also describe the statistics
of instantaneous currents.

However, the generating functional given in Eq. (312)
contains more information than the standard FCS
approach, since we can obtain arbitrary temporal correla-
tion functions. If we assume that all time arguments are
distinct, using Eq. (311) we obtain

E
[
Ik1(t1)Ik2(t2) · · · IkM (tM )

]
= tr

[
LkMS(tM , tM−1)LkM−1 · · ·Lk1S(t1, 0)ρ0

]
, (315)

where S(t, t′) = eL(t−t′) is the time-evolution operator and
the result holds for 0 < t1 < · · · < tM < t. Equation (315)
is the natural generalization of Eqs. (297) and (298) to
arbitrary M -point functions and it shares the same intu-
itive mathematical structure. For diffusive currents, the
same expression holds but with the replacement Lk →
Hk [143]. This result can also be derived through more
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elementary methods, by generalizing the argument of
Appendix E to multiple distinct time points [118].

When two or more time arguments coincide, however,
the correlation function is singular, e.g., the delta-function
singularity of the two-point function, F(t1, t2) ∼ Kδ(t1 −
t2) [cf. Eq. (67)]. To regulate these divergences systemati-
cally, one can consider the smoothed currents

Ik[f ] =
∫ t

0
dt′ f (t − t′)Ik(t′). (316)

Here, the filter function f (t) could, e.g., represent a low-
pass filter that removes high-frequency components of the
white noise [see Appendix G]. Such filtering emerges in
any real measurement due to the finite response time of the
measuring apparatus and is therefore quite natural from an
experimental as well as from a mathematical point of view.

Smoothed correlation functions can be found from par-
tial differentiation of a modified generating function, as
[143]

E
[
Ik1[f1] · · · IkM [fM ]

] = ∂

∂ε1
· · · ∂

∂εM
Zε[{fm(t)}]

∣∣∣∣
ε=0

,

(317)

where

Zε[{fm(t)}] = E

[
exp

(
M∑

m=1

εmIkm[fm]

)]
. (318)

This is simply a special case of the generating functional
in Eq. (310), obtained by choosing the source functions

χk(t) =
M∑

m=1

εmfm(t)δk,km . (319)

Therefore, an explicit expression for Zε[{fm(t)}] is
obtained by substituting Eq. (319) into Eq. (313) (or
Eq. (314) in the diffusive case).

To clarify how this procedure works in practice, con-
sider the following example. Suppose that we are inter-
ested in the smoothed currents

Ĩk(t) =
∫ t

0
dt′�e−�(t−t′)Ik(t′), (320)

where � is the bandwidth of a low-pass filter, modeled
here by a simple exponential response in the time domain.

We wish to compute the correlation functions

F̃k1k2(t1, t2) = E[Ĩk1(t1)Ĩk2(t2)] − E[Ĩk1(t1)]E[Ĩk2(t2)].
(321)

This can be achieved by introducing the filter functions

fm(t) = �(tm − t)�e−�(tm−t), (322)

where �(t) is the unit step function, so that Ĩk(tm) =
Ik[fm] in the notation of Eq. (316). The modified generator
entering Eq. (312) becomes

Lχ (t) =
{
L + ∑2

m=1

(
eεmfm(t) − 1

)
Lkm (k1 	= k2)

L + (
eε1f1(t)+ε2f2(t) − 1

)
Lk1 (k1 = k2).

(323)

All other χk(t) have been set directly to zero, since we
are only interested in correlation functions for the currents
Ĩk1 and Ĩk2 . Assuming, for simplicity, that ρ0 = ρss is the
steady state, we find the average current [147]

E[Ĩk1(t1)] = ∂Zε

∂ε1

∣∣∣∣
ε=0

=
∫ t

0
dt′ tr

[
S(t, t′)f1(t′)Lk1S(t′, 0)ρss

]

=
∫ t

0
dt′ f1(t′)tr

[
Lk1ρss

]
. (324)

Clearly, this is consistent with Eq. (297) and for �t1 � 1
we obtain simply E[Ĩk1(t1)] ≈ Jk1 . Similarly, the steady-
state two-point function is given by

E[Ĩk1(t1)Ĩk2(t2)]

= ∂2Zε

∂ε1∂ε2

∣∣∣∣
ε=0

= δk1k2�(t1 − t2)Jk1

+
∫ t

0
dt′

∫ t′

0
dt′′f1(t′)f2(t′′)tr

[
Lk1S(t′, t′′)Lk2ρss

]

+
∫ t

0
dt′

∫ t′

0
dt′′f2(t′)f1(t′′)tr

[
Lk2S(t′, t′′)Lk1ρss

]
,

(325)

where

�(t1 − t2) =
∫ t

0
dt′f1(t′)f2(t′) ≈ �

2
e−�|t1−t2|, (326)

where the final approximation holds for �(t1 + t2) � 1.
These results are, of course, fully consistent with

Eq. (298) and they become exactly equivalent in the limit
of infinite detector bandwidth, � → ∞. In fact, we could
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have derived Eq. (325) directly by convolution of Eq. (298)
with the filter functions given in Eq. (322). However, the
present approach allows systematic computation of higher-
order cumulants as well, by appropriately modifying the
source fields entering the generator Lχ (t). While a gen-
eral expression for such cumulants can be formally written
down [143], it is typically easier to find the specific cor-
relation function of interest by constructing the generating
function and computing its derivatives explicitly. Finally,
we note that the generating functional approach can be
extended to account for dark counts (where jumps are
erroneously registered by the detector), finite detection
efficiencies, and mixed detection schemes with both quan-
tum jump and diffusive output currents (for details, see
Ref. [144]).

D. Quantum sensing and metrology

Continuous quantum measurements offer the ideal plat-
form for sensing and metrology. The output currents are
associated with direct clicks in a detector and therefore
form a classical time series of random outcomes. Using
methods such as maximum likelihood, one can use these
outcomes to estimate parameters of the model; i.e., which
enter in the system Hamiltonian or the jump operators.
In other words, we can use a continuously measured sys-
tem as a sensor. Quantum sensing and metrology is now a
broad and fertile field of research [148,149]. In this section,
we focus on aspects of it that pertain specifically to contin-
uously measured systems. We will assume that the reader
has some knowledge of quantum metrology; in particular,
the concept of the quantum Fisher information (QFI). For
a concise introduction to the subject, see Ref. [148].

In the standard paradigm of quantum metrology, a sys-
tem is prepared in some state ρθ , which depends on a
certain unknown parameter θ . The standard procedure is
then to measure ρθ , obtaining a random outcome X . After-
ward, the system is reset, i.e., prepared again in ρθ , and
the protocol is repeated. The theory of quantum metrology
aims to determine: (i) what kind of measurement is able to
extract the most information about θ and (ii) how quantum
resources such as entanglement and squeezing can provide
a boost in sensitivity compared to the classical case.

The continuous-measurement metrology paradigm is
slightly different. The state of the system is never reset.
Instead, it is continuously measured in the steady state,
leading to a series of outcomes, which are now corre-
lated with each other (as explored extensively in this
tutorial). These outcomes are, e.g., the random increments
dNk obtained at each time step of a quantum jump trajec-
tory (Sec. II C). For simplicity, we will denote them more
generally as X1, X2, . . .. Notwithstanding this fundamen-
tal difference in paradigm, the two basic questions remain
the same. For example, depending on the system and the

parameter being estimated, different unravelings may lead
to more or less precision.

Techniques for doing metrology with quantum continu-
ous measurements have been studied in Refs. [150–154]
and have recently been applied to estimate temperature
in a model akin to example A with � = 0 [155]. These
references have developed tools for computing, e.g., the
maximum-likelihood estimators directly from quantum
trajectories. In addition, they also discuss how to obtain
the corresponding Fisher information (FI). Given a certain
trajectory, with data points X1, X2, . . . and corresponding
probability distribution P(x1, x2, . . .), the FI is defined as

F(θ) =
∑

x1,x2,...

P(x1, x2, . . .)
(
∂

∂θ
ln P(x1, x2, . . .)

)2

.

(327)

The usefulness of the FI lies in the Cramer-Rao bound
(CRB): let Q(X1, X2, . . .) denote any function of the
data—it then follows that

Var (Q) � [∂θE(Q)]2

F(θ) . (328)

The FI therefore bounds the fluctuations of any quantity.
For example, suppose that we choose Q(X1, X2, . . .) so that
E(Q) = θ is the very parameter we are trying to estimate
(this is called an unbiased estimator). In this case, the
CRB (328) reduces to Var(Q) � 1/F(θ); the FI therefore
imposes a constraint on the error of the unbiased esti-
mator. More generally, if the estimator is biased and we
define the bias as b(θ) = E(Q)− θ , then Eq. (328) yields
Var(Q) � (1 + ∂θb)2/F(θ), which is called the CRB for
biased estimators.

For any unraveling, there will be an associated FI, since
the shape of the data and its distribution will be different
in each case. Computing the FI for specific unravelings
can seldom be done analytically and techniques for obtain-
ing it numerically have been developed in Refs. [150,154].
The QFI, on the other hand, represents the maximization of
the FI over all possible unravelings. And, interestingly, this
can be written down in a compact and elegant way, as first
discovered in Ref. [153]. The proof, for which we defer
to the original paper, uses methods very similar to those
developed in Sec. IV D on FCS, as well as the perturbation
theory methods used in Sec. V D. Consider a general Lind-
blad equation of the form given in Eq. (5). Assume that
both H and the Lk can depend on a certain parameter θ .
Then, the QFI associated with measuring for a sufficiently
large time τ is given asymptotically by [153]

F(θ) = 4τ

(∑
k

〈(∂θLk)
†(∂θLk)〉 − 〈〈1|LLL+LR|ρss〉〉

− 〈〈1|LRL+LL|ρss〉〉
)

. (329)
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The first term is an expectation value in the steady state. In
the other two, L+ is the Drazin inverse [Eq. (169)], while
LL(R) are superoperators defined as

LLρ = −i(∂θHeff)ρ +
∑

k

(∂θLk)ρL†
k , (330)

LRρ = iρ(∂θH
†
eff)+

∑
k

Lkρ(∂θL
†
k), (331)

where Heff = H − i/2
∑

k L†
kLk [Eq. (21)]. Thus, to com-

pute the QFI we only need to have access to the Drazin
inverse. This is similar in complexity to computing the
noise [as per Eq. (177)].

Note how Eq. (329) depends linearly on the total mea-
sured time τ . This means that the mean-squared error in
the estimation is going to decrease as 1/τ . The longer we
measure, the higher is the precision with which we can
estimate the parameter. The origin of this linear depen-
dence is related to the fact that, even though the outcomes
of a continuous measurement are correlated, this correla-
tion still decays with time. That is, a click in a given time
will be correlated with clicks at past times but the correla-
tion between clicks becomes negligible if they are very far
apart. This has recently been proven in Ref. [156].

Equation (329) often simplifies considerably, since the
parameter θ is usually only encoded in either the Lk or H .
For example, if it is encoded in H only, it reduces to

F(θ) = −4τ tr
[
(∂θH)L+ ({ρss, ∂θH})] , (332)

which we now wrote in nonvectorized notation for clarity.
In general, we interpret F(θ) as the amount of infor-

mation about θ contained in the continuous-measurement
data. Equivalently, F(θ) is the sensitivity of the statistics
of the data to small changes in the parameter. The QFI
corresponds to a maximization of this information over
all possible unravelings. Thus, in general, it is not read-
ily accessible experimentally, as we never have access to
all possible unravelings. Notwithstanding, it provides a
crucial upper bound: no unraveling can do any better.

1. QFI for example A

To illustrate the idea, consider example A. For simplic-
ity, we take N̄ = � = 0, so we can use the Drazin inverse
in Eq. (180). The Hamiltonian is then simply H = �σx.
First, suppose that the parameter we wish to measure is the
Rabi frequency � in Eq. (8). Then, Eq. (332) applies and
we obtain the remarkably simple result

F(�) = 16τ
γ

. (333)

The QFI in this case is independent of � and inversely
proportional to the bath coupling strength. This happens

because large couplings tend to reduce the Rabi oscilla-
tions.

Next, suppose that we wish to estimate γ . In this case,
the only dependence is on the jump operator L = √

γ σ−.
We then find that

F(γ ) = 4τ�2

γ 3 + 8γ�2 . (334)

As a sanity check, this vanishes for zero Rabi drive (� =
0): no excitations are created in the system and hence there
is no current, even at the stochastic level.

E. Fluctuation theorems, the fluctuation-dissipation
theorem, and the Onsager reciprocal relations

1. Fluctuation theorems

Fluctuation theorems are powerful relations that hold
arbitrarily far from equilibrium and relate the probabil-
ities for a system trajectory, X , to its time reverse, Xtr
[19,157–159]. They take the general form

P(Xtr)

P(X )
= e−σ(X ), (335)

where σ(X ) denotes the entropy production along the tra-
jectory X . The fluctuation theorem thus states that if a
trajectory produces a sizable amount of entropy (σ � 1), it
is exponentially unlikely for its time reverse to occur. This
explains why in macroscopic systems (where entropy pro-
duction becomes large), we only observe processes with
positive entropy production.

From Eq. (335), a so-called integral fluctuation theorem
may be derived by multiplying with P(X ) and summing
over all possible trajectories [160]:

〈e−σ(X )〉 = 1, (336)

where the average is over the distribution P(X ). Using
Jensen’s inequality, it can be shown that Eq. (336) implies
the second law of thermodynamics:

〈σ(X )〉 ≥ 0. (337)

While negative entropy production is a possibility, the
average value of σ always has to be nonnegative. The
fluctuation theorem may thus be seen as a generalization
of the second law of thermodynamics to systems where
fluctuations matter.

In the setting of this tutorial, we may derive a fluctua-
tion theorem from FCS [161–164]. We consider a scenario
in which the system is connected to multiple reservoirs,
which we label α [see, e.g., example B and Eq. (11)].
This means that we can define a one-to-one function α(k),
which associates each jump operator Lk with a single reser-
voir α. The trajectory X in the fluctuation theorem will
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then be the net charges {Nα} flowing to each reservoir,
which we can build using Eq. (295), for multiple current
specimens, but with weights ναk, which are such that a
given k only appears in one charge Nα .

Not all master equations will satisfy a fluctuation
theorem; to do so, there is a fundamental condition that
they must satisfy, called local detailed balance. It consists
of the assumption that the jump operators always come in
pairs: for each Lk, there always exists another jump oper-
ator Lk′ belonging to the same bath (α(k′) = α(k)), such
that

Lk = L†
k′eναkσα/2. (338)

In this and what follows, we will leave the dependence α =
α(k) implicit. The ναk are the weight factors in Nα(t) and,
for the formula to be consistent, they must satisfy ναk′ =
−ναk. The quantities σα appearing in Eq. (338) represent
the entropy production associated with the pair of jumps
k and k′. In the most common case, if Lk exchanges an
energy εk with its bath, then Lk′ exchanges εk′ = −εk. The
associated entropy production is σα = εk/Tα , so that the
entropy produced by Lk is ναkσα , while that produced by
Lk′ is −ναkσα .

Here, we focus on the case in which both the Hamil-
tonian as well as the jump operators obey time-reversal
symmetry,

�H�−1 = H , �Lk�
−1 = Lk, (339)

where � denotes the antiunitary time-reversal operator
[165,166], which obeys �i = −i� and �2 = ±1. For
�2 = 1, which is the case for particles with integer spin (or
no spin), Eq. (339) implies that we may construct a basis
where H and Lk are real-valued matrices. In the following,
we focus on this case for simplicity. The final results also
hold for �2 = −1, as shown in Appendix S.

In vectorized notation, the tilted Liouvillian in Eq. (307)
may be written as [cf. Eq. (158)]

Lχ = −i(1 ⊗ H − H T ⊗ 1)+
r∑

k=1

[
eiναkχαL∗

k ⊗ Lk

− 1
2
1 ⊗ L†

kLk − 1
2
(L†

kLk)
T ⊗ 1

]
, (340)

where there is a single counting field χα associated with
each current Nα and we have also used the fact that each
k appears only in a single α to write νk · χ = ναkχα [cf.
Eq. (307)]. For real-valued H and Lk, the local detailed-
balance condition in Eq. (338) implies that

eiναk(−χα+iσα)Lk ⊗ Lk = eiναk′χαLT
k′ ⊗ LT

k′ , (341)

which in turn implies the symmetry (using H = H T) [167]

L−χ+iσ = LT
χ , (342)

where σ is a vector with entries σα . Because transposition
of a matrix does not affect its eigenvalues, the SCGF in
Eq. (137) (which is the eigenvalue of the tilted Liouvillian
with the largest real part) exhibits a similar symmetry:

C(χ) = C(−χ + iσ ). (343)

For the long-time probability distribution, this implies, via
Eq. (136),

P(−n, t)
P(n, t)

= e−n·σ . (344)

When the nα count excitations exchanged with the envi-
ronment, Eq. (344) is known as an exchange fluctua-
tion theorem [168]. From Eq. (344), an integral fluctu-
ation theorem may be derived in analogy to Eqs. (336)
and (337):

〈e−n·σ 〉 = 1 ⇒ 〈n〉 · σ ≥ 0, (345)

where the average is over the distribution P(n, t) and the
inequality is obtained using Jensen’s inequality. We note
that we have only used Eqs. (338) and (339) to derive
the fluctuation theorem, without assuming anything on the
σα . Equation (344) may thus be applicable to systems
describing nonthermal reservoirs.

We note that for broken time-reversal symmetry, sim-
ilar fluctuation theorems may be derived [169,170]. In
that case, the probability distribution in the denomina-
tor of Eq. (344) has to be replaced with the distribution
describing the time-reversed scenario.

2. Fluctuation theorem for example B

Consider example B, a quantum dot coupled to two
electronic reservoirs [cf. Sec. II B 2], where we count the
electrons entering and leaving to each reservoir indepen-
dently. With the master equation in Eq. (11), this cor-
responds to the weights να± = ±1. Since the rates in the
master equation obey

γ α+
γ α−

= e−βα(ω−μα), (346)

the relation in Eq. (338) is fulfilled, with σα = −βα(ω −
μα). The quantity σα gives the entropy production asso-
ciated with an electron entering the quantum dot from
reservoir α. The fluctuation theorem in Eq. (344) then
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reduces to

P(−nL, −nR, t) = P(nL, nR, t)e
∑
α=L,R nαβα(ω−μα). (347)

This relation may further be simplified by using the fact
that in the long-time limit, nL � −nR due to current con-
servation (i.e., the current entering from the left reser-
voir matches the current leaving to the right reservoir).
Formally, this can be shown by introducing the unitary
superoperator

U(•) = ei χR
2 c†c(•)ei χR

2 c†c, U†(•) = e−i χR
2 c†c(•)e−i χR

2 c†c.
(348)

One may then show that

U†LχL,χRU = LχL−χR,0. (349)

Since a unitary transformation does not change the eigen-
values of a matrix, the SCGF has the symmetry

C(χL,χR) = C(χL − χR, 0). (350)

It is straightforward to show that for the probability distri-
bution, this implies that

P(nL, nR, t) = P(nL)δnL,−nR . (351)

With this relation, the fluctuation theorem in Eq. (347)
reduces to the more familiar form [161,171,172],

P(−n, t)
P(n, t)

= en[βL(ω−μL)−βR(ω−μR)] −−−→
βL=βR

e−nβeV, (352)

where n denotes the number of electrons that have passed
from the left to the right reservoir (which may be measured
at either reservoir) and we have introduced the bias voltage
eV = μL − μR. The fluctuation theorem in Eq. (352) may
also be shown to hold for the explicit probability distri-
bution presented in Eq. (141) (where γR � γL) by using
In(z) = I−n(z) and the relation

fα
1 − fα

= e−βα(ω−μα). (353)

3. Fluctuation-dissipation theorem

The fluctuation-dissipation theorem relates fluctuations
in thermal equilibrium to linear-response coefficients [173,
174]. A prominent example is the thermal noise in a two-
terminal electric conductor, which reads [11]

S(ω) = ω coth
( ω

2T

)
G(ω)

ω→0−−→ S(0) = 2TG(0),

(354)

where G(ω) denotes the frequency-dependent ac conduc-
tance [175]. The power spectrum in equilibrium thus con-
tains information on the linear response of the system.

More generally, if a continuity equation relates the mea-
sured currents to an observable in the system, a fluctuation-
dissipation theorem may be exploited to access linear-
response coefficients. For an example with energy currents,
see Ref. [176]. While the fluctuation-dissipation theorem
traditionally describes the linear response around thermal
equilibrium, it has been extended to nonequilibrium steady
states [177,178]. In the following, we will focus on the
zero-frequency limit of the fluctuation-dissipation theorem
(for a finite-frequency approach to FCS, see Ref. [179]).

From the fluctuation theorem, a fluctuation-dissipation
theorem may be derived [19]. To this end, we introduce the
notion of equilibrium. In equilibrium, we expect any pro-
cess to be equally likely to its time reverse. This implies
that P(n, t) = P(−n, t). Inspecting Eq. (344), this happens
only if σ · n = 0, which is certainly not true for any val-
ues of nα . However, we note that Eq. (344) only holds in
the long-time limit, where the conservation laws generally
impose strong conditions on the probability distribution,
as exemplified in Eq. (351). Here, we assume that these
conservation laws impose the condition

P(n, t) ∝ δσ eq·n,0, (355)

where σ eq denotes the value that σ takes in equilibrium,
which is usually of the form σα = β(εα − μ), determined
by a single temperature and chemical potential for all reser-
voirs. In this case, the Kronecker delta in Eq. (355) ensures
energy conservation, i.e.,

∑
α nαεα = 0. It also ensures that

no entropy is produced in equilibrium, which allows us to
effectively set σ eq · n = 0. Since this is zero, adding σ eq · n
to the exponent of Eq. (344) therefore allows us to recast
the fluctuation theorem as

P(−n, t)
P(n, t)

= e−n·δ ⇒ 〈e−n·δ〉 = 1. (356)

where δ = σ − σ eq.
Note that the quantity appearing in the integral fluctu-

ation theorem in Eq. (356) has the form of a moment-
generating function [cf. Eq. (131)]. Its logarithm may thus
be expanded in the cumulants of n as [160]

0 = ln〈e−n·δ〉 =
∞∑

j =1

(−1)j

j !
〈〈(δ · n)j 〉〉, (357)

where the first equality directly follows from the integral
fluctuation theorem. Taking the derivative with respect to
δα and δβ and subsequently setting δ = 0 then results in

∂δα 〈〈nβ〉〉
∣∣
δ=0 + ∂δβ 〈〈nα〉〉

∣∣
δ=0 = 〈〈nαnβ〉〉

∣∣
δ=0. (358)

Taking a time derivative as well as the long-time limit, this
relation reduces to the fluctuation-dissipation relation (cf.

020201-50



CURRENT FLUCTUATIONS IN OPEN QUANTUM SYSTEMS PRX QUANTUM 5, 020201 (2024)

Sec. VI C)

Dαβ

∣∣
δ=0 = ∂δαJβ

∣∣
δ=0 + ∂δβ Jα

∣∣
δ=0

= 2∂δαJβ
∣∣
δ=0, (359)

where the last equation follows from the Onsager recipro-
cal relations in Eq. (362) below. If we apply Eq. (358) to
example B, discussed in Sec. VI E 2, we recover the zero-
frequency version of the fluctuation-dissipation theorem in
Eq. (354), with the conductance G(0) = ∂VJ and voltage
eV = μL − μR. For this result that involves the electrical
current and noise, the weight factors should be chosen as
ν± = ±e, with e denoting the charge of the electron.

In analogy to Eq. (358), similar relations for nonlinear
response currents can be obtained by taking higher-order
derivatives of Eq. (357) with respect to δα [171,180,181].

4. Onsager reciprocal relations

We introduce the linear-response coefficients

Lαβ = ∂δβ Jα
∣∣
δ=0. (360)

These coefficients define a positive-semidefinite matrix.
This can be shown from the positivity of the entropy pro-
duction, which follows from Eq. (356). In linear response,
we may write

〈n · δ〉 =
∑
α,β

δαLαβδβ ≥ 0, (361)

which, since δα may be chosen arbitrarily, implies
that the matrix with entries Lαβ is positive semidef-
inite. The Onsager reciprocal relations state that, for
time-reversal symmetric systems, this matrix is also
symmetric [182,183]:

Lαβ = Lβα . (362)

This follows from the fluctuation theorem [19] in Eq. (356)
by considering the SCGF, which obeys the symmetry

C(χ , δ) = C(−χ + iδ, δ), (363)

where we treat the SCGF as a function of the two variables
χ and δ. In terms of the SCGF, the Onsager coefficients
may be written as

Lαβ = −i∂δβ ∂χαC(χ , δ)
∣∣
χ=δ=0. (364)

Differentiating Eq. (363), one may show that

∂δβ ∂χαC(χ , δ)
∣∣
χ=δ=0 = − i

2
∂χβ ∂χαC(χ , δ)

∣∣
χ=δ=0

= ∂δα∂χβC(χ , δ)
∣∣
χ=δ=0. (365)

From this equation, together with Eq. (364), the Onsager
reciprocal relations in Eq. (362) follow immediately. We

note that from these equations, the fluctuation-dissipation
theorem in Eq. (359) also follows, as 2Lαβ = Dαβ . Fur-
thermore, by taking higher-order derivatives of Eq. (363),
higher-order reciprocal relations may be derived [180].

5. Fluctuation-dissipation theorem and Onsager
reciprocal relation for example B

As in Sec. VI E 2, we consider example B, where δα =
−βα(ω − μα)− σeq. Here, the equilibrium condition in
Eq. (355) is met as long as σL = σR = σeq, where σeq may
be chosen arbitrarily. Interestingly, this does not only hap-
pen in thermal equilibrium, where βL = βR and μL = μR,
but it may occur when the voltage bias exactly counteracts
the thermal bias [184]. The average currents in the steady
state read [cf. Eq. (45)]

JR = −JL = γLγR(fR − fL)
γL + γR

. (366)

writing fα = 1/(e−σα + 1), we find ∂δα fα = fα(1 − fα). The
Onsager coefficients then read

LLL = LRR = −LLR = −LRL = γLγR

γL + γR
feq(1 − feq).

(367)

The Onsager reciprocal relations thus hold as expected.
Furthermore, in equilibrium, the noise of example B is [cf.
Eq. (138)]

DLL = DRR = −DLR = −DRL = 2
γLγR

γL + γR
feq(1 − feq),

(368)

obeying the fluctuation-dissipation theorem.

F. Thermodynamic and kinetic uncertainty relations
(TURs and KURs)

One area of research that has received considerable
attention in recent years relates the behavior of quantum
trajectories to the framework of stochastic thermodynam-
ics. Given the unraveled description of stochastic quan-
tum trajectories, thermodynamic quantities such as heat,
work, and entropy production also become random vari-
ables. This was first studied in Refs. [185,186]. Since
this first insight, there has been an extensive body of
research on using quantum trajectories to study quantum
thermodynamics. The most recent progress is reviewed in
Ref. [187].

One of the most significant developments in the field of
stochastic thermodynamics has been the discovery of ther-
modynamic uncertainty relations (TURs) [188,189]. TURs
establish a trade-off between the noise in a certain cur-
rent and the entropy-production rate σ̇ . Entropy production
was introduced in Sec. VI E. In short, it is the fundamental
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concept behind the second law of thermodynamics, quan-
tifying the degree of irreversibility, or dissipation, of a
process. According to the second law, the average entropy-
production rate should always be non-negative 〈σ̇ 〉 � 0.
For a review on entropy production, see Ref. [190]. The
original TUR, which holds only for classical Markovian
stochastic processes, reads [188]

D
J 2 � 2

〈σ̇ 〉 . (369)

This bound was derived for classical master equations of
the form described in Sec. IV A 3. In that notation, the
entropy production acquires the form [191]

〈σ̇ 〉 =
∑
n	=j

Wnj pss
j ln

[
Wnj pss

j /Wjnpss
n

]
. (370)

The fact that the right-hand side of the TUR is inversely
proportional to 〈σ̇ 〉 means that in order to decrease the
fluctuations, one must increase the dissipation.

In Ref. [60], the authors have derived a different bound,
termed the kinetic uncertainty relation (KUR). The bound
reads

D
J 2 � 1

K
, (371)

where K is the dynamical activity, i.e., the number of
jumps per unit time. In the notation of Sec. IV A 3, K =∑

n,j Wnj pss
j . The TUR and KUR are independent bounds

and no strict relation exists between them. In fact, in some
regimes the TUR may be rather tight and the KUR loose,
or the other way around. Bounds unifying the two have
recently been developed in Refs. [192,193].

The TUR and KUR only hold for classical stochastic
processes and they can be violated in quantum systems.
For example, an extensive analysis in a double quantum
dot system, including a discussion on how to compute the
noise D using FCS, can be found in Ref. [61]. These vio-
lations are due to quantum coherence effects and therefore
mark a fundamental difference between quantum and clas-
sical stochastic processes. The fact that they can be vio-
lated in the quantum regime has led to intensive research
in trying to derive new bounds that would represent the
quantum version of the TUR [194–198]. The derivations of
these bounds make use of many of the concepts discussed
in this tutorial; in particular, FCS (Sec. IV), vectorization
(Sec. V B), and the QFI (Sec. VI D).

For concreteness, we will focus here on the results of
Ref. [195], as they match in a particularly nice way to the
tools developed in this tutorial. Their first main result was

the following bound for the steady-state noise:

D
J 2 � h′

0

F , (372)

where h′
0 is a numerical factor, which is 1 for jump currents

and 1/2 for diffusive currents (see below). Moreover,

F = K − 4〈〈1|LLL+LR|ρss〉〉 − 4〈〈1|LRL+LL|ρss〉〉,
(373)

where K = ∑
k〈L†

kLk〉 is the dynamical activity, while

LLρ = −iHeffρ + 1
2

∑
k

LkρL†
k ,

LRρ = iρH †
eff + 1

2

∑
k

LkρL†
k , (374)

[here, Heff is defined in Eq. (21)]. The derivation of this
bound uses the QFI discussed in Eq. (329) and is based on
the clever idea of performing an infinitesimal deformation
of both the Hamiltonian and the jump operators to

Hθ = (1 + θ)H , Lk,θ = √
1 + θLk. (375)

One then applies the Cramer-Rao bound given in
Eq. (328), taking the function Q to be the integrated charge
N (t) [Eq. (38)]. The bound is to be evaluated at θ =
0, so that Varθ (N (t))

∣∣∣
θ=0

= Var(N (t)) = Dt [Eq. (89)].
Conversely, the average current changes because we are
deforming all jump operators by

√
1 + θ . This causes

Eθ (N (t)) = ∫ t
0 dt′Eθ (I(t′)) = hθJt, where hθ depends on

which current we are studying. For jump currents, J (t)
is quadratic in Lk and so hθ = 1 + θ , while for diffu-
sive currents, J (t) is linear in Lk and so hθ = √

1 + θ .
In either case, because of this simple scaling we then
have ∂θEθ (N (t))

∣∣∣
θ=0

= h′
0Jt. Finally, we evaluate F(θ) at

θ = 0 using Eq. (329). Combining everything then yields
Eq. (372).

The first term in Eq. (373) is the same dynamical activ-
ity as in the KUR Eq. (371). The other two terms, on the
other hand, represent quantum corrections. The quantity f
is a kind of quantum total activity, in the sense that it also
captures the activity associated with the unitary dynamics.
Indeed, if we specialize Eq. (372) to the classical master
equation case discussed in Sec. IV A 3—i.e., H = 0 and
jump operators Lnj = √

Wnj |n〉〈j |—in this case it turns out
that the second and third terms in Eq. (373) vanish and
we recover f = K ; i.e., the quantum bound in Eq. (372)
recovers the KUR in Eq. (371).

Reference [195] has also shown how, in the classical
case, the TUR Eq. (369) can be derived from the same
method. Unfortunately, this holds only for classical MEs.

020201-52



CURRENT FLUCTUATIONS IN OPEN QUANTUM SYSTEMS PRX QUANTUM 5, 020201 (2024)

FIG. 21. The ratio D/J 2 and the right-hand side 1/f of
Hasegawa’s bound [Eq. (372)] for example A (Sec. II B 1), as
a function of �/γ (with � = N̄ = 0).

Instead of the deformation given in Eq. (375), one now
changes the rates Wnj in the jump operators as

Wθ
nj = Wnj

[
1 + θ

(
1 −

√
Wjnpss

n

Wnj pss
j

) ]
. (376)

Proceeding in exactly the same way yields the classical
TUR in Eq. (369), with 〈σ̇ 〉 defined as in Eq. (370).

1. Hasegawa’s bound for example A

Take example A with � = N̄ = 0. The average current
is J = 4γ�2/(γ 2 + 8�2) and the noise is

D = 4γ�2
(
γ 4 − 8γ 2�2 + 64�4

)
(
γ 2 + 8�2

)3 . (377)

The right-hand side of Eq. (372), on the other hand, has

f = 4�2
(
γ 2 + 32�2

)
γ 3 + 8γ�2 . (378)

The left- and right-hand sides of Eq. (372) are shown in
Fig. 21 as a function of �/γ . As can be seen, in certain
regions the bound can be quite tight, while in others it can
become rather loose (note the log scale).

G. Quantum point contacts

A QPC is a tunneling device consisting of two fermionic
reservoirs connected by a single tunnel junction [11].
When a QPC is placed next to a quantum dot, the electric
field from the charges in the dot modulate the tunneling
amplitude of the QPC. The amount of current flowing
through the QPC therefore gives a measure of the amount
of nearby charges [15,199–202]. A similar charge sensor
can be implemented by replacing the QPC with a single-
electron transistor (SET) [203–206], or by employing an

optical scheme based on resonance fluorescence [207]. As
we have discussed, making a continuous charge measure-
ment on the system leads to conditioning of the system
dynamics on the measurement outcomes. This effect has
been studied extensively, first considering the ensemble
average [45,208], then in terms of the unraveled quan-
tum trajectories formalism [45,209,210], and subsequently
for the repeated-interactions framework [211]. Since these
early contributions, many have also become interested in
using QPCs to access the FCS of the transported charge
[212–214]. Experiments showcasing this include [15,204,
215–217]. Using the techniques introduced in the previous
sections, we will bridge the gap between quantum trajec-
tories and the FCS for QPCs. We follow the approach
developed in Refs. [45]. For concreteness, we will focus
on the scenario of example B; the extension to multiple
quantum dots is straightforward.

The setup is illustrated in Fig. 22, which shows the
quantum dot, together with its two leads [as described
by the master given in Eq. (11)]. The QPC, which is
placed next to the dots, is modeled by two additional
reservoirs, described by annihilation operators aα,k, with
energies ωα,k, where α = L, R. The two sides of the QPC
are coupled according to

HQPC =
∑

k,α∈{L,R}
ωα,ka†

k,αak,α

+
∑
k,k′

(
Tk,k′ a†

R,kaL,k′ + T ∗
k,k′ a†

L,k′aR,k

)
, (379)

where Tk,k′ are the tunneling coefficients between states k
in the left reservoir and k′ in the right one. The electrostatic
potential of the quantum dot introduces an interaction term
with the QPC that is of the form

VQPC-dot =
∑
k,k′

c†c
(
χk,k′a†

R,kaL,k′ + χ∗
k,k′a†

L,k′aR,k

)
, (380)

for coefficients χk,k′ . Hence the tunneling amplitudes of the
QPC are modified depending on whether the dot is empty
or occupied.

Reference [45] has shown how to trace out the QPC
in order to obtain a QME for the dot alone. The chem-
ical potentials of the QPC reservoirs, μL = μ+ eV/2
and μR = μ− eV/2, as well as their temperatures T, are
assumed to satisfy |eV|, kBT � μ. They also assume that
around the chemical potential μ, the tunneling rates Tk,k′ ,
χk,k′ , as well as the densities of states gL and gR of the reser-
voirs, are roughly k independent. This means that the most
relevant contribution will come from the tunneling rates
T00 and χ00 that lie around the average chemical potential
μ. The resulting master equation then acquires the form

dρ
dt

= Lρ + D
[
T + X c†c

]
ρ, (381)
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FIG. 22. The schematics of a QPC placed next to a quantum
dot in order to detect its charge.

where T = 2πeVgLgRT00 and χ = 2πeVgLgRχ00. Here,
Lρ is the Liouvillian given in Eq. (11), which encapsulates
the effect of the two leads coupled to the dot (Fig. 22), with
rates γL(R) and Fermi occupations fL(R). Note that

D[T + χc†c]ρ = |χ |2D[c†c]ρ − i[δc†c, ρ], (382)

where δ = (χ∗T − χT ∗)/2i. The action of the QPC there-
fore produces a dephasing in the dot, as well as a Lamb
shift; i.e., a shift in the natural energy gap of the dot by
a factor δ. The new term in Eq. (381) does not affect the
dynamics, which has a steady-state occupation

〈c†c〉 = γLfL + γRfR
γL + γR

. (383)

It also does not affect the electron current to the reservoirs,
computed in Eq. (45).

The authors of Ref. [45] have also considered the con-
ditional master equations in both the jump and diffusion
unraveling. The jump unraveling describes the case in
which the number of electrons tunneling through the QPC
is small and is strongly affected by whether or not the
dot is occupied. Conversely, the diffusion unraveling mod-
els the case in which the tunnel current is very high and
weakly affected by the occupation of the dot. In practice,
the latter regime is usually more experimentally relevant.
In both cases, this provides a very neat and straightforward
application of the formalism developed in this tutorial.

In the jump-unraveling regime, there is a current incre-
ment dN (t) associated with the jump operator L = T +
χc†c (with weight ν = 1). An increment dN (t) = 1 means
that an electron has tunneled through the QPC. The
probability of observing this increment is P(dN = 1) =
dt〈L†L〉c. If at a given time the dot is empty, the tunneling
probability will be dt|T |2 := dtP ; and if the dot is occu-
pied, it will be dt|T + χ |2 := dtP ′. Due to electrostatic
repulsion, the presence of an electron in the dot raises the
tunneling barrier, implying that P ′ < P .

The resulting stochastic master equation is of the form
[see Eq. (30)]

dρc = dt (Lρc + D[L]ρc)+ (
dN − dt〈L†L〉c

)

×
(

LρcL†

〈L†L〉c
− ρc

)
. (384)

Bear in mind that L, as given in Eq. (11), has in itself
another four jump operators, associated with currents to
the left and right leads of the dot. When writing Eq. (384),
it is assumed that these jump operators are not moni-
tored; the only monitoring comes from the QPC. Of course,
whether or not this is the case depends on the experiment.
For example, in Sec. II D 3, we have discussed quantum
jump trajectories where the actual leads of the dots have
been monitored. In principle, we could also have all five
jump operators being monitored. Within our framework,
these situations are all readily addressable by appropriately
choosing the weight factors νk.

The average current through the QPC is given by
Eq. (40) with L = T + χc†c; viz.,

JQPC = P + (P ′ − P)〈c†c〉, (385)

which is simply a weighted average of P when the dot is
empty and P ′ when it is occupied. Note, therefore, how
this differs from the particle current J flowing through the
dot.

The two-point correlation of the QPC current [see
Eq. (67)] is given by

F(τ ) = JQPCδ(τ )+ e−(γL+γR)τ (P ′ − P)2〈c†c〉(1 − 〈c†c〉).
(386)

This is positive and therefore represents correlated emis-
sions. The corresponding power spectrum is a simple
Lorentzian around ω = 0, with the noise given by

D = JQPC + 2
γL + γR

(P ′ − P)2〈c†c〉(1 − 〈c†c〉). (387)

If |T | � |χ |, the number of tunneling electrons through
the QPC will be very large and only weakly affected by the
occupation of the dot. In this limit, the conditional dynam-
ics of the dot is more appropriately described by a diffusive
master equation [Eq. (51)]. The fact that the jump operator
in question is L = T + χc†c means that this situation is
identical in spirit to shifting the jump operators through a
local oscillator, as we first did when we introduced the dif-
fusive unraveling in Sec. II E. For simplicity, we assume
that T and χ are real and hence χ < 0 (since P ′ < P).
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The resulting diffusive SME therefore reads

dρc = dt
(
Lρc + χ2D[c†c]ρc

)
+ χdW

[
c†cρc + ρcc†c − 2〈c†c〉cρc

]
. (388)

The corresponding stochastic current is given by Eq. (54)
as

IQPC = T 2 + 2T
(
χ〈c†c〉c + dW

dt

)
. (389)

The diffusive current [Eq. (55)], which subtracts and nor-
malizes the offset T , reads

Idiff = 2χ〈c†c〉c + dW
dt

. (390)

H. Feedback: From Maxwell’s demon to error
correction

Throughout this tutorial, we have focused on the infor-
mation that the output current gives us about the system.
This information, in turn, can be fed back to the system to
manipulate its time evolution [6,218]. Such measurement
and feedback scenarios enable many tasks, including the
following:

(a) Maxwell’s demon. Maxwell envisioned a “neat fin-
gered being” [219] that could detect individual
particles in a gas. This being, now known as
Maxwell’s demon, could use this information to
create a nonequilibrium situation out of equilib-
rium, e.g., by sorting the particles by their energy.
As most prominently worked out by Szilard [220,
221], this could be used to extract energy in the
form of work from an equilibrium environment,
seemingly violating the second law of thermody-
namics. Recent advances in nanotechnology have
enabled the implementation of Maxwell’s and Szi-
lard’s ideas in ground-breaking experiments [222–
225]. By now, it is well established that the second
law is in fact not violated if the demon is included
in the thermodynamic analysis [226,227]. Multiple
ways of including both classical and quantum infor-
mation in the thermodynamic bookkeeping have
been put forward [228–231].

(b) State preparation. To perform experiments with
quantum systems, it is often required to initiate the
system in a low-entropy state. Furthermore, certain
states have been shown to act as a resource for dif-
ferent tasks [232]. The most prominent example is
provided by entangled states, which can be used for
tasks in the fields of quantum sensing [149] and
quantum cryptography [233]. Initiating and/or sta-
bilizing such quantum states can be a difficult task,
which in many cases may be enabled by feedback.

Some examples include the cooling of a mechanical
oscillator close to its ground state [234], Fock-state
stabilization [235], and the stabilization of Rabi
oscillations [236].

(c) Quantum error correction. A major obstacle in
developing a large-scale quantum computer is pro-
vided by decoherence. The field of quantum error
correction [237,238] aims to counteract this prob-
lem by using redundant encodings of the quantum
information, such that errors can be detected and
corrected for without destroying the fragile superpo-
sition states that are required for quantum computa-
tion. Many strategies exist to use a measured current
in a feedback loop for error correction [239–242].
For an experiment on the subject, see Ref. [243].

The simplest example of feedback is provided by adding
a term that is linear in the (stochastic) current I(t) =∑

k νk(dNk/dt), i.e., of the form I(t)K, where K is an arbi-
trary superoperator describing the action taken from the
feedback. This term enters as

ρc + dρc = eI(t)Kdt [ρc + (dρc)0] , (391)

where (dρc)0 denotes the increment of the conditional den-
sity matrix in the absence of feedback, e.g., Eq. (30) or
Eq. (51) for jump or diffusion unravelings. Equation (391)
ensures that the time evolution due to feedback is inserted
at each time step after the measurement. And the fact
that we are using only the instantaneous current, at that
time step, ensures that the dynamics is still time local
(Markovian).

For quantum jumps, expanding the exponential in
Eq. (391) and using the fact that (dNk)

l = dNk, we find the
stochastic master equation for linear feedback [244]:

dρc = dtLρc + dt
r∑

k=1

(
〈L†

kLk〉cρc − LkρcL†
k

)

+
r∑

k=1

dNk

(
eνkK LkρcL†

k

〈L†
kLk〉c

− ρc

)
. (392)

Averaging over all measurement outcomes results in the
unconditional master equation [244]

dρ
dt

= −i[H , ρ] +
r∑

k=1

(
eνkKLkρL†

k−
1
2
{L†

kLk, ρ}
)

,

(393)

which describes the ensemble-averaged effects of feedback.
This equation has been employed to describe problems
including charging a quantum battery [245], enhancing
the precision of parameter estimation [246], manipulating
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EPR steering [247], entanglement generation [248], quan-
tum state stabilization [249], and quantum error correction
[239].

Alternatively, we can also use linear feedback within the
diffusive unraveling. To this end, we replace I(t) → Idiff(t)
in Eq. (391) and we interpret (dρc)0 as the right-hand side
of Eq. (51). Expanding the exponential in Eq. (391) to lin-
ear order in dt (second order in dWk), we find with the help
of Eq. (55) [250],

dρc = dtLρc + dtKHρc + dtKdiffK2ρc

+
r∑

k=1

dWk [Hkρc − 〈xk〉cρc] , (394)

where Hk is given in Eq. (52) and H = ∑
k νkHk in

Eq. (74). Again, averaging over all trajectories results in
the unconditional master equation [Eq. [250]]:

dρ
dt

= Lρ + KHρ + KdiffK2ρ. (395)

This equation has been employed to tackle countless
problems, including quantum battery charging [251], the
engineering of many-body dynamics [252], quantum error
correction [240,241], cooling of a trapped ion [253,254]
and a macroscopic oscillator [255], entanglement genera-
tion [256], and quantum state stabilization [257,258] and
to generate squeezing [259].

Equation (395) is extremely useful for feedback proto-
cols where the measured signal is being fed back linearly
to the system. However, we may be interested in proto-
cols that are nonlinear in the measurement outcome. For
instance, consider a measurement of the location of an
electron in a double quantum dot. Depending on the out-
come, external voltages may suddenly be changed to alter
the energy landscape of the double dot. Such feedback pro-
tocols can be employed to implement Maxwell’s demon
and Szilard’s engine in an electronic system [223,260–
262]. As illustrated in Fig. 10, the diffusive current first
needs to be filtered to remove the white noise that other-
wise completely drowns the signal. Reference [263] has
recently put forth fundamental new results for dealing
with nonlinear feedback, including filtered currents. We
consider a low-pass filter with a bandwidth γ described
by

Ĩdiff(t) = γ

∫ ∞

0
dτ e−γ τ Idiff(t − τ). (396)

In this case, it can be shown that the filtered measurement
outcome Ĩdiff(t) follows an Ornstein-Uhlenbeck process,
describing noisy relaxation toward the system-dependent
value

∑
k νk〈xk〉c. With the help of the low-pass filter, a

master equation can be derived for the quantity

ρ(z) = E[ρcδ(z − Ĩdiff(t))], (397)

which represents a current-resolved density matrix. It pro-
vides a joint description of both the system state ρ =∫

dz ρ(z) and the observed measurement outcome z, which
occurs with probability p(z) = tr{ρ(z)}. The time evolu-
tion of this object is governed by a hybrid equation, termed
the quantum Fokker-Planck master equation: [263,264]

dρ(z)
dt

= L(z)ρ(z)− γ ∂z (H − z) ρ(z)+ γ 2

2
Kdiff∂

2
z ρ(z).

(398)

Here, the feedback is included in a z dependence of the
Liouvillian that is not restricted to be linear in z. The
second and third terms in the last equation correspond
to drift and diffusion terms familiar from Fokker-Planck
equations. However, the drift term is given by a super-
operator, ensuring that the outcome z drifts toward a
system-dependent quantity.

In the large-bandwidth limit, where γ is much larger
than any energy scale of the system, a master equation
for the reduced system state can be obtained, generaliz-
ing Eq. (395) to feedback protocols that are nonlinear in
the measurement outcome [263]. Beyond that, however,
solving Eq. (398) is generally challenging, as one has
both the operator character of ρ as well as the continuous
dependence on the variable z.

I. Emission and absorption spectra

So far, we have primarily focused on the temporal fluc-
tuations of the output currents, which are equivalently
represented in the Fourier domain by the power spec-
trum S(ω). However, it is also of interest to consider the
emission spectrum, which describes the frequency con-
tent of the emitted quanta themselves. One may also be
interested in the absorption spectrum, which describes the
rate at which the system absorbs energy from an external
(coherent or thermal) field. While distinct from the power
spectrum S(ω), the emission and absorption spectra can
similarly be computed from the system dynamics under
certain assumptions on the nature of the environment into
which the quanta are emitted. The framework for achieving
this is known as input-output theory, originally developed
by Gardiner and Collett [104] and described in detail in
Ref. [30].

1. Input-output theory

We focus on the setting typical of quantum optics, where
the environment comprises a set of bosonic modes that
are coupled linearly to the system. For simplicity, let us
first assume that there is a single dissipation channel with
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jump operator L. This situation can be modeled by a global
system-environment Hamiltonian of the form

Htot = H +
∫ ∞

−∞
dω

[
ωb†

ωbω + i√
2π

(
b†
ωL − L†bω

)]
,

(399)

where H is the system Hamiltonian and b†
ω creates an

excitation with frequency ω in the environment, satisfying
the commutation relation [bω, b†

ω′] = δ(ω − ω′). Note that
here the frequencies are assumed to extend over all positive
and negative values and the system-environment coupling
is taken to be frequency independent (the resulting cou-
pling constant is absorbed into L). Strictly speaking, these
assumptions are unphysical, because they imply that the
Hamiltonian is unbounded from below. However, they are
justified in the quantum optical context where the system-
bath coupling is weak and the relevant transition frequen-
cies of the system are relatively high. In that case, only
environment modes near resonance with the system are
significant and all others (including all those with negative
frequency) make a negligible contribution.

The benefit of this model is that it generates linear
equations of motion for the environment operators in the
Heisenberg picture:

dbω(t)
dt

= −iωbω(t)+ 1√
2π

L(t). (400)

This equation can be formally solved in terms of an initial
condition at a time t0 < t, as

bω(t) = e−iω(t−t0)bω(t0)+ 1√
2π

∫ t

t0
dt′e−iω(t−t′)L(t′).

(401)

Now, the Heisenberg equation for an arbitrary system
operator A is given by

dA
dt

= i[H , A] + 1√
2π

∫ ∞

−∞
dω

(
[L†, A]bω − b†

ω[L, A]
)

.

(402)

Substituting Eq. (401) into Eq. (402), interchanging the
order of integration, and using the fact that

∫ t

t0
dt′

∫ ∞

−∞

dω
2π

e−iω(t−t′)L(t′)=
∫ t

t0
dt′δ(t − t′)L(t′)= 1

2
L(t),

(403)

one obtains

dA
dt

= i[H , A] + D†[L]A + [L†, A]bin − b†
in[L, A]. (404)

Here, we have identified the adjoint dissipator D†[L],
defined below Eq. (95), and defined the input field,

bin(t) = 1√
2π

∫
dω e−iω(t−t0)bω(t0). (405)

Equation (404) is known as a quantum Langevin equation
(QLE), by analogy with the classical Langevin equation
describing a system driven by a fluctuating force. The first
term of Eq. (404) represents the coherent Hamiltonian evo-
lution and the second term describes damping. The final
two terms describe the influence of environmental noise,
which is represented by the input field bin. The noise statis-
tics are determined by the correlation functions of bin,
evaluated in the initial state at t = t0, which is assumed to
be a product state with respect to the system-environment
partition. For example, a Markovian thermal reservoir is
characterized by the input correlation function

〈b†
in(t)bin(t′)〉 = N̄δ(t − t′), (406)

where N̄ is the thermal occupation number. For this kind
of input, it can be shown using the methods of quantum Ito
calculus [30] that the QLE (404) is equivalent to the master
equation

d
dt
ρ = −i[H , ρ] + (N̄ + 1)D[L]ρ + N̄D[L†]ρ, (407)

which is the standard QME describing coupling to a
bosonic thermal environment. A similar equivalence holds
for a more general class of Gaussian noise inputs, includ-
ing coherent displacement and squeezing [30].

The QLE (404) describes the dynamics of the system in
terms of the noise input. To find a connection to the output
currents, we note that Eq. (400) can also be solved in terms
of a final boundary condition at time t1 > t, as

bω(t) = eiω(t1−t)bω(t1)− 1√
2π

∫ t1

t
dt′eiω(t′−t)L(t′).

(408)

Equating the right-hand sides of Eqs. (401) and (408),
integrating over all frequencies, and using Eq. (403), one
obtains the input-output relation

bout(t) = bin(t)+ L(t), (409)

where we have defined the output field

bout(t) = 1√
2π

∫
dω eiω(t1−t)bω(t1). (410)

This describes properties of the environment at time t1,
which is usually taken to be in the far future. The input
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and output fields obey the commutation relations

[bin(t), b†
in(t

′)] = [bout(t), b†
out(t

′)] = δ(t − t′), (411)

reflecting the Markov assumption inherent to the model.
The input-output formalism extends straightforwardly

to a master equation with multiple jump operators and
(possibly time-dependent) driving fields. For each jump
operator Lj , one considers an independent bosonic reser-
voir described by a Hamiltonian of the form Eq. (399).
Each reservoir gives rise to an input field bin,j and an out-
put field bout,j , defined analogously to Eqs. (405) and (410).
Then, the system dynamics is described by a quantum
Langevin equation,

dA
dt

= i[H , A] +
∑

j

(
D†[Lj ]A + [L†

j , A]bin,j − b†
in,j [Lj , A]

)
,

(412)

while the input-output relation generalizes to

bout,j (t) = bin,j (t)+ Lj (t). (413)

2. Emission spectrum

The input-output relation [Eq. (413)] allows one to
compute spectral properties of steady-state currents using
knowledge of the system dynamics. In general, a system
producing a stationary current must have multiple input-
output channels to sustain a flow of energy between them.
For notational simplicity, however, we focus on one par-
ticular input-output channel and drop the subscript j in the
following.

The quantity 〈b†
ω(t1)bω(t1)〉dω is the number of quanta

(e.g., photons) in the environment in a small frequency
interval near ω, as would be measured at time t1. If we
take t1 to be large enough so that the steady state has been
reached, the total number of emitted photons diverges. To
regulate the divergence, we consider the Fourier transform
over a finite observation time T,

b̃out(ω) = 1√
2π

∫ T/2

−T/2
dt eiω(t−t1)bout(t). (414)

Clearly, this reduces to bω(t1) as T → ∞ [265]. The
asymptotic flux of output photons per unit frequency near
ω is given by

lim
T→∞

1
T

〈
b̃†

out(ω)b̃out(ω)
〉
= lim

T→∞
1
T

[〈
b̃†

in(ω)b̃in(ω)
〉

+
〈
b̃†

in(ω)L̃(ω)+ L̃†(ω)b̃in(ω)
〉
+ 〈

L̃†(ω)L̃(ω)
〉]

,

(415)

where we have used the input-output relation and defined
b̃in(ω) and L̃(ω) analogously to Eq. (414). The first term

on the right-hand side of Eq. (415) represents the input flux
and the third term describes spontaneous emission by the
system, while the second term describes both absorption
and emission processes stimulated by the input field.

To isolate the emission spectrum, the corresponding
input channel must be in the vacuum state (otherwise,
one cannot distinguish whether the detected photons were
emitted by the system or were present in the environment
already). For a vacuum input, the expectation value of any
operator string with bin on the right or b†

in on the left van-
ishes. Therefore, only the third term on the right-hand side
of Eq. (415) survives, yielding the emission spectrum

E(ω) = lim
T→∞

1
T

〈
L̃†(ω)L̃(ω)

〉

= lim
T→∞

1
2πT

∫ T/2

−T/2
dt

∫ T/2

−T/2
dt′ e−iω(t−t′)〈L†(t)L(t′)〉

= 1
2π

∫ ∞

−∞
dτ e−iωτ 〈L†(τ )L〉. (416)

To obtain the third line of Eq. (416), we replace the cor-
relation function by its steady-state value (valid since T
is large), which depends only on the time difference τ =
t − t′. The result is then obtained after changing integra-
tion variables to τ and ts = (t + t′)/2 and carrying out the
trivial integral over ts [266]. The integrand of Eq. (416) is
proportional to the first-order coherence function, g(1)(τ ),
which can be computed from the master equation using the
QRT as discussed in Sec. III D. The total emitted flux is

∫
dω E(ω) = 〈L†L〉 = J , (417)

which equals the total average output current (with ν =
1). Therefore, E(ω) quantifies the contribution to J from
emitted quanta with frequency ω.

3. Absorption spectrum

The rate at which photons at a given frequency are
absorbed from an external field is quantified by the absorp-
tion spectrum. However, this term has at least two distinct
meanings in the literature, depending on the nature of the
input field driving the system.

(a) Incoherent absorption. In the case of a thermal noise
input, the output flux can be shown to be [104]

lim
T→∞

1
T

〈
b̃†

out(ω)b̃out(ω)
〉
= N̄

2π
+ (N̄ + 1)E(ω)− N̄A(ω),

(418)

where the first term represents the input flux and the second
term is the rate of stimulated and spontaneous emission,
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while the third term is the rate of absorption, with

A(ω) = lim
T→∞

1
T

〈
L̃(ω)L̃†(ω)

〉 = 1
2π

∫ ∞

−∞
dτ eiωτ 〈L(τ )L†〉.

(419)

This function quantifies the frequency content of quanta
absorbed from the thermal input field. We refer to it here as
the incoherent absorption spectrum. Conceptually, A(ω) is
similar to the emission spectrum E(ω): both describe the
frequency distribution of quanta exchanged with a white-
noise field. We see that

∫
dωA(ω) = 〈LL†〉, (420)

which is the average current associated with jump opera-
tor L† appearing in the last term on the right-hand side of
Eq. (407).

(b) Coherent absorption spectrum. Alternatively, one
may ask about the rate of photons absorbed from a coher-
ent drive at a specific frequency. This situation is described
mathematically by considering a jump operator of the form
L = √

γ c, for some dimensionless system operator c and
dissipation rate γ , and taking a coherent input field of the
form

bin(t) = i�e−iωdt

√
γ

+ b′
in(t). (421)

The first, c-number, term represents the coherent drive
amplitude with frequency ωd and Rabi frequency � and
the remainder b′

in(t) represents a vacuum input. Referring
to the QLE (404) [or Eq. (412)], we see that the only effect
of adding the coherent drive is to shift the Hamiltonian as
H → H +�(eiωdtc + e−iωdtc†).

To find the rate at which quanta are absorbed from the
drive, we look at the difference between the total output
and input flux, which can be found by integrating Eq. (415)
over frequency. In the steady state, this will be equal to the
difference between the rates of emission and absorption. In
particular, the total emission rate is just the output current
J , given by the integral of the third term on the right-hand
side of Eq. (415) [cf. Eqs. (416) and (417)]. The absorption
rate is therefore given by the second term on the right-hand
side of Eq. (415), integrated over frequency, i.e.,

W(ωd) = − lim
T→∞

1
T

∫ ∞

−∞
dω

〈
b̃†

in(ω)L̃(ω)+ h.c.
〉

= − lim
T→∞

1
T

∫ T/2

−T/2
dt

〈
b†

in(t)L(t)+ h.c.
〉

= i� lim
T→∞

1
T

∫ T/2

−T/2
dt

〈
eiωdtc(t)− e−iωdtc†(t)

〉
.

(422)

We refer to this quantity as the coherent absorption spec-
trum. Equation (422) can also be interpreted as the average
power absorbed from the drive [267] in units of the energy
quantum ωd, i.e.,

W(ωd) = 1
ωd

〈
∂Hd(t)
∂t

〉
, (423)

where Hd(t) = �(eiωdtc + e−iωdtc†) is the driving Hamil-
tonian and the overline • denotes a time average. Note
that because the evolution of c(t) depends on the drive,
reconstructing the coherent absorption spectrum generally
requires solving a different master equation for each value
of ωd.

4. Emission and absorption spectra for example A: the
Mollow triplet

We now compute the emission and absorption spec-
tra for example A, a driven two-level system [Eq. (9)].
This problem has been theoretized by Mollow [268,
269] and first observed experimentally in sodium vapor
in Ref. [270]. Within the input-output formalism, it is
described by a qubit with Hamiltonian H = ω0σz/2 and
two input-output channels. The first input is a coherent
driving field as in Eq. (421), with associated jump opera-
tor L1 = −i

√
εσ− and ε → 0. The second input describes

the environment into which photons are emitted, with asso-
ciated jump operator L2 = √

γ σ−. We assume that this
input is described by thermal white-noise statistics as in
Eq. (406), with a small thermal component of N̄ = 0.1.

Moving to a rotating frame via the unitary transforma-
tion e−iωdtσz/2, the emission spectrum is given by

E(ω) = γ

2π

∫ ∞

−∞
dτ ei(ωd−ω)τ 〈σ+(τ )σ−〉,

= γ |〈σ−〉|2δ(ω − ωd)

+ γ

2π

∫ ∞

−∞
dτ ei(ωd−ω)τ [〈σ+(τ )σ−〉 − |〈σ−〉|2] .

(424)

Here, for completeness, we have explicitly separated the
emission spectrum into its divergent and regular parts. The
former arises due to the presence of a nonzero expecta-
tion value 〈σ−〉, and can be understood in terms of elastic
scattering of photons from the driving field into the output
channel. A similar term appears in the emission spec-
trum for any system with 〈L〉 	= 0; see the footnote below
Eq. (416). The second, regular, part of Eq. (424) repre-
sents the spectral content of photons scattered inelastically
by the two-level system, which is plotted in Fig. 23(a).
For weak driving, � � γ , emission is peaked around the
driving frequency with a line width proportional to γ . For
strong driving, � � γ , the emission spectrum splits into
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(a)

(b)

(c)

FIG. 23. Emission and absorption spectra for example A
(Sec. II B 1) for resonant driving (ωd = ω0) and two different
damping rates, γ = 0.2� (blue curves) and γ = 2� (red). (a)
The emission spectrum [Eq. (424)]. (b) The incoherent absorp-
tion spectrum. (c) The coherent absorption spectrum [Eq. (425)],
as a function of the detuning.

the characteristic Mollow triplet, with sidebands emerg-
ing at ω = ωd ±�. This reflects a transition in the g(1)(τ )
coherence function from overdamped decay to under-
damped oscillations as � increases, as shown in Fig. 15.
Similar features are seen in the incoherent absorption
spectrum, the regular part of which is plotted in Fig. 23(b).

The coherent absorption spectrum for example A can be
computed analytically, as

W(ωd) = �〈σy〉 = γ�2

(ω0 − ωd)2 + 2�2 + (γ /2)2
, (425)

where the expectation value is taken with respect to the
steady state of Eq. (9) (which is time independent in the
rotating frame) with detuning � = ω0 − ωd. This result

is plotted in Fig. 23(c). Unlike the emission and inco-
herent absorption spectra, W(ωd) always shows a sin-
gle peak at the resonance frequency. For weak driving,
� � γ , the absorption line width is of order γ , while
at stronger driving it is instead proportional to the Rabi
frequency, �.

J. Quantum correlations and entanglement witnesses

As we have discussed throughout this tutorial, the two-
time correlation function provides a measure of temporal
correlations between currents. This makes it particularly
useful for the study of quantum correlations and mea-
sures of entanglement. Here, we will briefly discuss a
few seminal examples that are relevant to the techniques
we have described. For a tutorial on the subject, see
Ref. [271].

It is possible to use the g(2)(τ ) function for multiple
measurement ports, as described in Sec. VI C, as an entan-
glement criterion between observed currents. This has first
been described in Ref. [272] where the authors have shown
how entanglement between two driven optomechanical
systems can be measured. In this proposal, there are two
optomechanical cavities with a mechanical frequency ωM
that are coherently driven at a frequency �D. Here, the
position of a mechanical oscillator modulates the fre-
quency of an optical cavity mode. In the measured output
current, the spectrum exhibits mechanical sidebands that
are displaced from the drive frequency�D by the mechani-
cal frequency ωM . These sidebands are the result of Raman
scattering processes, in which a photon either gains or
loses energy by destroying or creating one phonon in the
mechanical oscillator. The corresponding output modes are
commonly known as the blue and red sidebands, respec-
tively. Moreover, the presence of a photon in either the red
or the blue sideband can be used to encode a logical qubit
for the purpose of verifying entanglement. As shown in
Ref. [272], these sidebands can serve as the logical basis to
entangle the two mechanical oscillators by mixing the out-
put on a single 50:50 beam splitter, erasing any which-way
information. In each arm of the experiment after the beam
splitter—denoted A and B—there is a frequency filter, pro-
jecting out the red and blue sidebands and thus leading to
four measurement outcomes: Ar, Ab, Br, and Bb. This cre-
ates entanglement in the following way. The detection of a
red (blue) sideband photon informs us that one phonon has
been created (annihilated) in one of the oscillators. Given
that path information has been erased, we cannot say in
which oscillator the phonon has been created. Thus, the
final entangled state is a superposition of single-phonon
states localized in each of the two mechanical oscillators.

As the authors show, the creation of a phonon in either
of the mechanical oscillators by the coherent drive can be
measured via the multicurrent g(2) function conditioned on
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a particular measurement outcome,

g(2)Ab|Ar
(τ ) = 〈b†

Ar
(τ )b†

Ab
(τ + t)bAb(τ + t)bAr(τ )〉

〈b†
Ar

bAr〉〈b†
Ab

bAb〉
, (426)

which can be computed using the methods outlined in
Sec. VI C. This function provides one with a measure of the
coherence between the measurement of a blue-sideband
photon measured in detector Ab at t + τ given that we
have measured a red-sideband photon at τ in Ar, providing
a clear indication that a phonon excitation was coher-
ently—as opposed to a thermal excitation—generated in
one of the two oscillators. Using these multicurrent g(2)

functions, the author derive an upper bound on an entan-
glement witness, denoted

Rm(τ ) = 4

⎛
⎜⎝g(2)Ab|Ar

(τ )+ g(2)Bb|Ar
(τ )− 1(

g(2)Ab|Ar
(τ )− g(2)Bb|Ar

(τ )
)2

⎞
⎟⎠ , (427)

in which a measurement of Rm(τ ) < 1 is evidence of
entanglement between the two mechanical oscillators. This
entanglement has since been verified experimentally [273].

Other research has focused on using the emission spec-
trum E(ω) to study quantum correlations. For example, as
has been shown in [274], two mechanical oscillators with
bosonic annihilation (creation) operators a (a†) and b (b†)

can be entangled in a two-mode squeezed state—where the
squeezing parameter is r—by independently coupling both
oscillators to a single driven optical cavity mode c (c†).
The mechanical sidebands that are measured in the cavity
emission spectrum are directly related to the occupations of
mechanical two-mode Bogoliubov modes 〈β†

i βi〉, defined
in terms of the squeezing parameter r by

β1 = a cosh r + b† sinh r, β2 = b cosh r + a† sinh r.
(428)

As shown in Ref. [274], the entanglement witness for con-
tinuous modes [275] is directly related to the occupation of
these Bogoliubov modes 〈β†

i βi〉. Moreover, these occupa-
tions are directly related to the heights of the measured red
(blue) sidebands in E(ω). Thus, from a direct measurement
of E(ω), one can witness the entanglement of mechani-
cal squeezed states, which has in fact been accomplished
experimentally [276].

VII. CONCLUSIONS AND OUTLOOK

The first main goal of this tutorial has been to put forth a
toolkit for describing current fluctuations in continuously
measured systems. We have done this by using a unified
approach, in which we have started with a general QME
and identified the jump operators with particular clicks in

a detector. One can then build the corresponding output
currents by weighting these clicks according to the physics
in which one is interested. This has allowed us to describe,
within a single framework, various phenomena from quan-
tum optics to mesoscopic transport. Our second goal has
been to provide a bridge between the stochastic master
equations often used by quantum opticians and the tools
of FCS used in condensed-matter physics and statistical
mechanics. Both of these goals, we believe, are unique and
cannot be found elsewhere in the literature.

Overall, we hope that this tutorial will encourage
researchers working with QMEs to go beyond the aver-
age current. There are countless studies in the literature
describing fascinating physical systems but focusing only
on the average current, as it is something that readily fol-
lows from the QME. Here, we have shown that, with
just a little more effort, one can go beyond the average
to compute the two-point correlation function, the power
spectrum, the noise, the FCS distribution, and the scaled
cumulant generating function.

After studying this tutorial, the reader will hopefully
should have gained the following insights. The reader
will hopefully should have gained an appreciation for the
stochastic quantum trajectories that arise from continuous
measurements in the basic setting introduced in Sec. II.
Most importantly, they understand the intrinsic connection
between the stochastic measurement back action on the
conditioned density matrix, and the measured output cur-
rents, for both jump and diffusive unravelings. The reader
will hopefully understands the connection between two-
point correlation functions, the power spectrum, and the
underlying noise in this measured current, as discussed in
Sec. III. Through Sec. IV the reader will hopefully has
become familiar with the theory of FCS, epitomized by the
tilted Liouvillian and the cumulant generating function. An
overview of the main formulas developed in Secs. II–IV
is shown in Fig. 3. After completing Sec. V, the reader
will hopefully has learned techniques to compute all these
new quantities. This involves a mixture of techniques that
are not always conventional. Finally, from Sec. VI, the
reader will hopefully has gained a broad appreciation of the
topical literature in which these techniques can be readily
used.

Looking ahead, we believe that the toolkit put forth
in this tutorial may be used to advance various fields of
research. One example is thermodynamics: how do we
account for the energetics of quantum continuous mea-
surements [277] and the associated entropy production
[42,187]? TURs and KURs [195], as well as the possibil-
ity of doing feedback control [263], offer two interesting
scenarios in which continuous measurements meet thermo-
dynamics. However, much remains unexplored. Another
foundational field with exciting possibilities is that of
Markovianity and memory in quantum systems [278,
279]. Throughout this tutorial, the system itself evolves
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according to a Markovian master equation, while the out-
come currents are non-Markovian—this is the quantum
analogue of a hidden Markov model. Many features relat-
ing to the memory effects of the output current still remain
open. Going further, very little is known of continuously
measured systems the underlying dynamics of which is
non-Markovian. We hope that our readers will now feel
empowered and inspired to tackle these fascinating open
questions.
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APPENDIX A: MONTE CARLO WAVE-FUNCTION
METHOD

In this appendix, we describe a more efficient method
of performing stochastic simulations of the quantum jump
unraveling. First, a small parenthesis: let X denote a
random variable that can take values over a discrete
alphabet x = 1, . . . , d, with probabilities px. To sample X
efficiently, one may use the standard inversion method
[280]:

(1) Construct the cumulative distribution Cx = ∑x
y=1 py .

(2) Sample a uniformly distributed random number r ∈
[0, 1].

(3) Select the smallest x such that Cx ≥ r.

This can, of course, also be adapted to continuous variables
by replacing a sum with an integral.

Quantum jumps can be simulated by applying the Kraus
operators in Eq. (23): discretize time in small steps dt. At
each time step:

(1) Sample one of k = 0, 1, . . . , r with probabilities
pc

k = dttr
{

L†
kLkρc

}
and pc

0 = 1 − ∑r
k=1 pc

k .

(2) Apply the corresponding operator ρc → MkρcM †
k /pk

associated with the value of k that has been sampled.

Despite its simplicity, this method is not at all effi-
cient because most of the time the sampling will return
k = 0 (no jump). We are thus using a large number
of random numbers but in most time steps very little
happens.

Here, we describe the Monte Carlo wave-function
(MCWF) method [56], which is much more efficient. The
method is rooted in the waiting-time distribution ideas dis-
cussed in Sec. VI A. In particular, Eq. (258) states that
if the system is prepared in ρ0, the probability that up
to a time t no jump has occurred is given by Pno(t) =
tr

{
eL0tρ0

}
, where L0 is the no-jump superoperator defined

in Eq. (254). The conditional state of the system, given that
no jump has occurred, is eL0tρ0/Pno(t). We will assume, as
in Sec. VI A, that only a subset M of the jump operators
are monitored. The idea of the MCWF is to first sample
the random time τ where the jump will occur and then
sample the resulting channel k. Both are sampled using the
inversion method above.

First, we consider the jump times: Pno(t) is a sur-
vival probability (the probability that it does not jump),
so 1 − Pno(t) is the cumulative distribution. We there-
fore need to sample a uniform random number r and
solve 1 − Pno(t) = r, which will give us the jump time τ .
Since r is uniform over [0, 1], this is the same as solving
for Pno(t) = r. Unfortunately, this is often a complicated
equation that cannot be solved analytically. Instead, we
evolve the system in small time steps as ρ → eL0�tρ and
compute the trace at each step, which is precisely Pno. We
then keep going until Pno = r, which gives us the jump
time τ . The state immediately before the jump will be
ρ∗ = eL0τ ρ0/Pno(τ ).

Next, we need to decide to which channel the jump
occurs. We know from Eq. (24) that pk = dt tr

{
L†

kLkρ
∗
}

.
But over the set k ∈ M, these are not normalized.
We therefore define normalized probabilities pk = pk/K ,
where K = ∑

k∈M pk. The jump channel is then chosen by
sampling k ∈ M from pk. The state of the system is also
updated to a postjump state Lkρ

∗L†
k/tr

{
L†

kLkρ
∗
}

. Then, the
process restarts.

To summarize, the nth iteration of the MCWF algorithm
reads (with t0 = 0):

(1) Start from the state ρn−1 at time tn−1.
(2) Sample two uniform random numbers r, r′ ∈ [0, 1].
(3) Evolve ρn−1 in time under L0, and compute its trace

Pno(t) = tr
{
eL0tρn−1

}
at each time step.

(4) Stop when Pno(t) = r. This defines the duration
τn from the last jump (so the absolute time
is tn = tn−1 + τn). The prejump state is ρ∗

n =
eL0τnρn−1/Pno(τn).
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(5) Use r′ with the inversion method to sample the
channel kn ∈ M from the distribution

pk =
tr

{
L†

kLkρ
∗
n

}
∑

q∈M tr
{

L†
qLqρ∗

n

} . (A1)

(6) Update the state as

ρn = Lknρ
∗
n L†

kn

tr
{

Lknρ
∗
n L†

kn

} = LkneL0τnρn−1

tr
(
LkneL0τnρn−1

) . (A2)

Suppose that the algorithm runs to a specified final time tf
and it happened that there were a total of N jumps. The
unnormalized state of the system at time tf will then be
ρ(tf ) = eL0(tf −tN )ρN .

The dynamics will depend on the choice of channels
M that are monitored, as this affects both L0 and all k-
sums. If all jumps are monitored and the initial state ρ0
is pure, then the conditional states eL0τnρn−1 remain pure
at all times. This follows from the fact that, in this case,
eL0tρ = e−iHefftρeiH†

efft [cf. Eq. (255)]. It is then possible to
reformulate the entire procedure as a stochastic evolution
of pure states ρn = |ψn〉〈ψn|. In particular, the states are
generated according to the Markov chain

|ψn〉 = Lkne−iHeffτn |ψn−1〉
‖Lkne−iHeffτn |ψn−1〉‖ , (A3)

with all other formulas being adapted in a similar way.
This provides a major advantage, since only pure state vec-
tors (wave functions) rather than density matrices need be
stored, which is the origin of the name MCWF. In fact,
this leads to a quadratic reduction (with respect to Hilbert-
space dimension) in the memory cost of a simulation.

APPENDIX B: DERIVATION OF THE
STOCHASTIC MASTER EQUATION FOR

QUANTUM DIFFUSION

To derive the stochastic master equation [Eq. (51)] for
quantum diffusion, we employ the transformation given
in Eq. (46) to the stochastic master equation for quan-
tum jumps [cf. Eq. (30)]. For simplicity, we focus here
on a single channel; the generalization to r channels is
straightforward. Upon regrouping terms, we find

dρc = dtLρc +
(

dN
|α| − dN

〈x〉
|α|2 − |α|dt

)

× [
Le−iφρc + ρcL†eiφ − 〈x〉cρc

]

+ 1
|α|

(
dN
|α| − |α|dt

) (
LρcL†−〈L†L〉cρc

)
. (B1)

In addition, the transformation also affects the probability
of observing a jump [cf. Eq. (47)]:

P(dN = 1) = dt
(|α|2 + |α|〈x〉c + 〈L†L〉c

)
. (B2)

Equation (51) can be obtained by taking the limit |α| →
∞. However, some subtleties arise concerning the time
scales involved. Equation (B1) is only accurate in the
regime where, in each time step dt, at most one jump
occurs. Hence it is implicitly assumed that dt remains suf-
ficiently small so that |α|dt � 1. Conversely, to obtain
Eq. (51), we want a scenario in which, in each time step,
many jumps occur. Hence we must integrate Eq. (B1) over
a time dτ chosen such that ρc only changes infinitesimally,
while dτ |α| → ∞.

In the first line of Eq. (B1), this simply results in the
replacement dt → dτ . For the second line, we identify the
Wiener increment as

dW =
∫ dτ

0

[
dN (t)
|α| − dN (t)

〈x〉c

|α|2 − |α|dt
]

. (B3)

To see that this is indeed a Wiener increment, we note that
the probability of observing dN = 1 only depends on the
conditional state ρc. If we can neglect the changes in ρc
during the time interval dτ , we may assume all dN during
this time interval to be uncorrelated. Then, it holds that

P
(∫ dτ

0
dN

)
= B [dτ/dt, P(dN = 1)] , (B4)

where B[n, p] denotes the binomial distribution with n tri-
als and success probability p . For a large number of trials,
the binomial distribution is well approximated by a Gaus-
sian distribution with mean np and variance np(1 − p).
From Eq. (B3), it then follows that dW is also normally
distributed with mean

E[dW] = dτ
|α|

[
〈L†L〉c

(
1 − 〈x〉c

|α|
)

− 〈x〉2
c

]
→ 0, (B5)

where the arrow denotes the limit of large |α| and variance

E[dW2] = dτ
(

1 + 〈x〉c

|α| + 〈L†L〉c

|α|2
) (

1 − 〈x〉c

|α|
)2

+ O(dt) → dτ . (B6)

For an illustration of why dW2 = E[dW2], we refer the
reader to Ref. [57].

Finally, we note that
∫ dτ

0

[
dN
|α| − |α|dt

]
= dW + |α|dτ

1 − 〈x〉c
|α|

− |α|dτ → dW

+ 〈x〉cdτ . (B7)

The third line in Eq. (B1) thus vanishes, as it is O(1/|α|).
We hence arrive at Eq. (51). Equation (B7) also allows for
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deriving the smoothed version of the diffusive stochastic
current given in Eq. (55):

1
dτ

∫ dτ

0
Idiff(t)dt = ν

(
〈x〉c + dW

dτ

)
, (B8)

where Idiff(t) is given in Eq. (49). To recover the equa-
tions in the main text, we relabel dτ → dt at the end of
all calculations carried out in this appendix.

APPENDIX C: MODELING A CONTINUOUS
MEASUREMENT BY A SERIES OF DETECTORS

In this appendix, we provide additional details on the
Gaussian measurement approach to quantum diffusion,
described in Eq. (56). The Gaussian nature of the POVMs
can be motivated by the central limit theorem [68]. Each
Gaussian POVM models the effect of the continuous mea-
surement over the time dt. We may equally well describe
this by N POVMs separated in time by the spacing dt/N ,
where N can be taken arbitrarily large. By the central limit
theorem, the sum of these N measurement outcomes is
approximately distributed by a Gaussian.

We first look at a single measurement. From the prob-
ability distribution of outcomes in Eq. (57), we obtain the
average and variance of z as follows:

E(z) = 〈Y〉, Var(z) = 1
4λdt

+ 〈Y2〉 − 〈Y〉2 � 1
4λdt

,

(C1)

where the last equality holds since dt is infinitesimal. From
this, we see that the quantity

dW = 2
√
λdt(z − 〈Y〉) (C2)

will behave exactly like a Wiener increment; i.e., E(dW) =
0 and dW2 = dt. Let us now define L = √

λY and δL =
L − 〈L〉. The map MzρM †

z can now be expanded, up to
order dt (and remembering that dW2 = dt). As a result, one
finds that

MzρM †
z

tr
{

MzρM †
z

} = ρ + dt
[
δLρδL − 1

2
{δL2, ρ}

]

+ dW{δL, ρ} (C3)

= ρ + dtD[L]ρ + dW (Hρ − 〈x〉ρ) . (C4)

In the last line, we have simply recast the results in
the language of the quantum diffusion SME in Eq. (51):
since L† = L, it follows that D[δL] = D[L]. Moreover,
Hρ = Lρ + ρL = {L, ρ}, as defined in Eq. (52) and x =
L + L† = 2L [Eq. (48)].

To finish, we now compose the action of the map given
in Eq. (C3), with the remaining evolution of the system.

Just for now, we define L as the Liouvillian composing all
other dynamical elements of the system, which includes
the unitary part, as well as other potential dissipators. We
then imagine a stroboscopic dynamics, where we alternate
between the “free” evolution with L and the Gaussian map
given in Eq. (C3). This will lead to a conditional density
matrix evolving according to

ρc(t + dt) = eLdt Mzρc(t)M †
z

tr
{

Mzρc(t)M
†
z

} , (C5)

which is conditioned on the outcome z, as well as all
other past outcomes. Expanding eLdt to first order in dt and
combining with the result of Eq. (C3) then leads to

ρc(t + dt) = ρc(t)+ (Lρ + D[L]ρ)+ dW (Hρ − 〈x〉ρ) .
(C6)

This is precisely the Belavkin equation [Eq. (59)]. Note
that now we can also absorb D[L] into the Liouvillian L.

Lastly, we compare the outcomes z with the stochastic
current Idiff(t) in Eq. (55). In terms of x = 2L = 2

√
λY,

we can write Eq. (C2) as z = 1/2
√
λ (〈x〉 + dW/dt). Com-

paring with Eq. (55), we therefore see that z will reduce
to Idiff provided that we set the associated weight to ν =
1/(2

√
λ).

APPENDIX D: DERIVATION OF F(t, t + τ)

IN EQ. (67)

To derive Eq. (67), we must compute

E (I(t)I(t + τ)) = 1
dt2

E (dN (t)dN (t + τ))

= 1
dt2

∑
k,q

νkνqP
(
dNk(t) = 1, dNq(t + τ) = 1

)
, (D1)

where we have used the fact that dN takes on the value νk
whenever dNk = 1. To proceed, we therefore need the joint
probability P

(
dNk(t) = 1, dNq(t + τ) = 1

)
that in time t

there is a jump in channel k and in time t + τ another jump
in channel q (irrespective of what happens in between). We
assume that τ > 0. To proceed, we first write it in terms of
a conditional probability,

P
(
dNk(t) = 1, dNq(t + τ) = 1

)
= P

(
dNq(t + τ) = 1|dNk(t) = 1

)
pk(t), (D2)

where pk(t) = tr{L†
kLkρ(t)}dt is the probability of a jump

at time t. The conditional probability is then computed as
follows. If a jump has occurred in channel k at time t, then
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the state of the system must be updated to

ρ(t) → Lkρ(t)
tr {Lkρ(t)} = dt

pk
Lkρ(t), (D3)

where Lkρ = LkρL†
k . This is then used as the initial state

and the system evolves up to time t + τ :

dt
pk
Lkρ(t) → dt

pk
eLτLkρ(t). (D4)

The conditional probability is now given by the same for-
mula [Eq. (24)] for pq(t + τ) but using this as the initial
state. That is,

P
(
dNq(t + τ) = 1|dNk(t) = 1

) = dt2

pk
tr

{
LqeLτLkρ(t)

}
.

(D5)

Hence all factors of dt eventually cancel and we are left
with

E (I(t)I(t + τ)) =
∑
k,q

νkνqtr
{
LqeLτLkρ(t)

}

= tr
{
J eLτJ ρ(t)

}
. (D6)

The case τ = 0 must be handled separately:

E
(
I(t)2

) = 1
dt2

∑
k

ν2
k pk = 1

dt

∑
k

ν2
k tr

{
L†

kLkρ(t)
}

:= 1
dt

K(t), (D7)

where K(t) is defined in Eq. (68). The result still depends
on 1/dt and is therefore infinite in the limit dt → 0. We
may thus formally replace it with a δ function and therefore
write

E (I(t)I(t + τ)) = δ(τ )K(t)+ tr
{
J eLτJ ρ(t)

}
. (D8)

Subtracting J (t)J (t + τ) then yields Eq. (67).

APPENDIX E: DERIVATION OF Fdiff(t, t + τ) IN
EQ. (72)

For simplicity, we will assume that there is a single jump
operator L involved. The generalization to multiple opera-
tors is straightforward but more cumbersome. The system
will thus evolve according to the conditional dynamics:

dρc = dtLρc + dW [Hρc − 〈x〉cρc] , (E1)

where Hρ = Le−iφρ + ρL†eiφ and x = Le−iφ + L†eiφ .
Moreover, the associated stochastic current is simply

Idiff(t) = 〈x〉c(t)+ ξ(t), (E2)

where 〈x〉c(t) = tr {xρc(t)} and ξ(t) = dW/dt.

It is convenient to discretize time in steps of dt and
let tj = jdt, j = 0, 1, 2, . . .. The randomness in the sys-
tem stems from the Wiener increments dWj = dW(tj ).
The expectation 〈x〉j = 〈x〉c(tj ) depends, by definition,
on dW0, . . . , dWj −1. We will use the notation dW0:j −1 =
(dW0, . . . , dWj −1) to denote the collection of Wiener incre-
ments from 0 to j − 1.

The evolution of ρj = ρc(tj ) given by Eq. (E1) will be
written more compactly as

ρj +1 = VdWj ρj , (E3)

where the map VdWj ρ is nonlinear in ρ. The evolution from
tj to tk > tj can thus be written as

ρk = VdWk−1 . . .VdWj +1VdWj ρj . (E4)

To obtain the two-point function, we must compute
(assuming that tk > tj )

E
(
Idiff(tj )Idiff(tk)

) = E
(〈x〉j 〈x〉k

) + E
(〈x〉j ξk

)
+ E

(〈x〉kξj
) + E

(
ξj ξk

)
. (E5)

The second term vanishes because 〈x〉j is independent of ξk
(since tk > tj ) and E(ξk) = 0. The fourth term in Eq. (E5)
yields E(ξj ξk) = δjk/dt → δ(tj − tk).

To compute the two remaining terms, we shall make
use of the law of total averages, which states that given
a function f (dW0:k−1), we can write

E (f (dW0:k−1)) = E
(
E

[
f (dW0:k−1)

∣∣dW0:j −1
])

, (E6)

where E(a|b) = ∑
a ap(a|b) is the conditional average,

which is still a function of b. The above equation there-
fore establishes that to compute an average over dW0:k−1,
we can first compute an average over dWj :k−1, with fixed
dW0:j −1, and afterward average over dW0:j −1.

For example, we can write

E
(〈x〉k〈x〉j

) = E
(〈x〉j E

[〈x〉k
∣∣dW0:j −1

])
. (E7)

Now,

E
[〈x〉k

∣∣dW0:j −1
] = tr

{
xE

[
VdWk−1

. . . VdWj +1VdWj ρj
∣∣dW0:j −1

]}
, (E8)

where ρj only depends on dW0:j −1. Since dW0:j −1 is fixed,
we can compute the averages over dWk−1, . . . dWj +1 and
dWj . These averages are all independent and, for a given
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ρ, independent of dW,

E(VdWρ) = ρ + dtLρ � eLdtρ. (E9)

We are thus left with

E
[〈x〉k

∣∣dW0:j −1
] = tr

{
xeL(tk−tj )ρj

}
. (E10)

Hence

E
(〈x〉k〈x〉j

) = E
[
tr

{
xeL(tk−tj )ρj

}
tr

{
xρj

}]
, (E11)

where this remaining average is over dW0:j −1. Albeit com-
plicated, we will see that this term will actually cancel out
in the final expression.

Finally, we turn to the fourth term in Eq. (E5). It reads

E
(〈x〉kξj

) = tr
{
xE

[
ξjVdWk−1 . . .VdWj ρj

]}
. (E12)

This is similar to before but the term corresponding to j
is different, since it is multiplied by ξj = dWj /dt. In fact,
from Eq. (E1), we see that

E(ξjVdWj ρ) = Hρ − ρtr {xρ} . (E13)

Hence

E
(〈x〉kξj

) = E
[
tr

{
xeL(tk−tj )Hρj

}]
− E

[
tr

{
xeL(tk−tj )ρj

}
tr

{
xρj

}]
. (E14)

When we plug this into Eq. (E5), the second line will can-
cel out the term obtained in Eq. (E11). In fact, although the
exponentials are slightly different in both, this difference
becomes negligible when dt → 0. Equation (E5) therefore
finally reduces to

E
(
Idiff(tj )Idiff(tk)

) = δ(tj − tk)+ E
[
tr

{
xeL(tk−tj )Hρj

}]
.

(E15)

This finishes the proof. To obtain Eq. (72), we must simply
subtract Jdiff(tj )Jdiff(tk) and take the limit dt → 0.

APPENDIX F: WHITE NOISE

A stationary Poisson process is described by a stochas-
tic increment dNk(t) the average of which is a constant,
E[dNk(t)] = pk = dt × const. and which is independent of

any previous jumps, so that

P(dNk(t + τ) = 1|dNq(t) = 1) = pk, (F1)

for any τ > 0. Now consider a current I(t) = ∑
k νkdNk/dt

constructed from a linear combination of stationary Pois-
son increments. The average current is

J =
∑

k

νkpk

dt
. (F2)

Following the arguments of Appendix D, for τ > 0 we
have

E (I(t)I(t + τ)) = 1
dt2

∑
k,q

νkνqP(dNk(t + τ)

= 1|dNq(t) = 1)pq

= 1
dt2

∑
k,q

νkνqpkpq

= J 2. (F3)

Therefore, the connected autocorrelation function for arbi-
trary τ is simply

F(τ ) = E (I(t)I(t + τ))− J 2 = Kδ(τ ), (F4)

where K = ∑
k ν

2
k pk/dt. The two-point function of a Pois-

son white noise therefore only contains a Dirac delta
correlation. Deviations from white noise in the power spec-
trum of a stationary quantum jump process correspond to
a departure from pure Poisson statistics.

The Fano factor [cf. Eq. (105)] for a linear combination
of Poisson processes thus reads

f = K
J

=
∑

k ν
2
k pk∑

k νkpk
. (F5)

For νk = 1, the Fano factor reduces to one, which explains
why f = 1 is associated with Poissonian statistics. Note
that if all weights are equal, νk = q, the Fano factor is
usually defined as

f (t) = Var(N (t))
qE(N (t))

, (F6)

which still results in f = 1.
The counterpart of white noise for a time-continuous

process is simply the Wiener process, W(t), the incre-
ment of which obeys E[dW(t)] = 0, dW(t)2 = dt, and
E[dW(t)dW(t + τ)] = 0 for τ 	= 0. These properties
ensure that fluctuations at different times are statistically
independent while retaining a finite power spectrum. A
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current formed from a linear combination of indepen-
dent Wiener increments can be written as I(t) = J +∑

k νkdWk(t)/dt, for a constant J . It is then straightforward
to see that, for τ > 0,

E (I(t)I(t + τ))− J 2 = 0, (F7)

and that when τ = 0,

E (I(t)I(t))− J 2 = 1
dt2

∑
k,q

νkνqE[dWk(t)dWq(t)]

= 1
dt

∑
k

ν2
k , (F8)

using the property E[dWk(t)dWq(t)] = δkqdt. In the limit
dt → 0, we can thus write

F(τ ) = Kdiffδ(τ ), (F9)

with Kdiff = ∑
k ν

2
k .

APPENDIX G: FILTERING BASICS

In this appendix, we touch on some basic concepts in
signal processing that have been used in Sec. II E 2. A filter
converts an input signal X (t) into an output signal Y(t) by
means of a convolution

Y(t) =
∞∫

−∞
h(t − t′)X (t′)dt′, (G1)

for a certain function h(t). It is convenient to define h(t)
to be zero when t < 0; A commonly used filter in the
quantum optics literature [263,281–286]—which has been
similarly defined in Eq. (396)—is that given by

h(t) = γ e−γ tθ(t), (G2)

where γ is called the bandwidth of the filter. Here, θ(t)
is the Heaviside function, which makes this filter causal;
i.e., Y(t) only depends on past values of X (t). Eq. (G2)
is an example of a low-pass filter because, as we will
see, it tends to remove high frequencies but allow for low
frequencies to pass.

Filters are more commonly defined in Fourier space.
Using the convolution theorem, we obtain

Y(ω) = h(ω)X (ω), (G3)

where h(ω), the Fourier transform of h(t), is called the
transfer function. For the filter given in Eq. (G2), we find

h(ω) = 1
1 − iω/γ

. (G4)

This complex function is more conveniently analyzed
in terms of its phase and absolute value. The latter, in

particular, is called the “gain”:

G(ω) = |h(ω)|. (G5)

Further, for visualization purposes, the gain is measured in
decibels (dB) and is thus plotted on a log scale given by

GdB(ω) = 20 log10{G(ω)}. (G6)

For the low-pass filter given in Eq. (G4),

G(ω) = 1√
1 + (ω/γ )2

. (G7)

Equation (G7) is actually just one element of the family of
Butterworth filters, defined by the gain function

G(ω) = 1√
1 + (ω/γ )2n

, (G8)

where n is called the order of the filter, such that n =
1 recovers Eq. (G7). Results for different values of n
are shown in Fig. 24(a). As anticipated, the filter passes
frequencies ω < γ and attenuates frequencies ω > γ .
Increasing n gives rise to sharper cutoffs. For n → ∞, the
gain becomes rectangular at γ , leaving frequencies ω < γ

unaffected, while entirely suppressing ω > γ . There is a
phase freedom in how to define the corresponding trans-
fer function h(ω), which generates Eq. (G8). One possible
choice is to write it as

h(ω) =
n∏

k=1

(−1)n

(iω/γ )+ ei(2k+n−1)π/2n . (G9)

We can also have high-pass filters, which have the oppo-
site effect. For example, consider a function h(t) similar to
Eq. (G2) but convolving with dX /dt instead of X (t):

Y(t) =
∞∫

−∞
e−γ (t−t′)θ(t − t′)

dX
dt′

, (G10)

with no factor of γ in front in order to make Y(t) have the
same units as X (t). Applying the convolution theorem and
recalling that the Fourier transform of dX /dt is −iωX (ω),
we obtain

Y(ω) = −iω/γ
1 − iω/γ

X (ω) := h̃(ω)X (ω). (G11)

The corresponding gain is shown in Fig. 24(b) and, as we
can see, behaves exactly opposite to the low-pass case, fil-
tering out low frequencies but allowing high frequencies to
pass. A more systematic way of creating high-pass filters is
to start with the low-pass one and apply the transformation
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(a) (b) (c)

FIG. 24. The gain function for Butterworth filters of different orders, n = 1, 2, 3, and 4: (a) low-pass, (b) high-pass, and (c) band-pass
with ωh = 10ωl.

ω → 1/ω (and, to make things dimensionless, we also set
γ → 1/γ ). With this, one can then obtain a family of high-
pass Butterworth filters starting with Eq. (G8). Results for
this are shown in Fig. 24(b) for different values of n.

Finally, we can have a band-pass filter, which selects
only within a certain window, specified by two frequen-
cies, ωl and ωh > ωl. Band-pass filters can also be con-
structed from low-pass filters, by shifting the frequencies
as

ω

γ
→ 1√

�ω

(
ω

ω0
+ ω0

ω

)
, (G12)

where �ω = ωh − ωl and ω0 = √
ωhωl. Examples for the

Butterworth case with different n are shown in Fig. 24(c).

APPENDIX H: ADJOINT LINDBLAD EVOLUTION

The adjoint Liouvillian defined in Eq. (95) can be under-
stood as the generator for a kind of “Heisenberg-picture”
evolution for open quantum systems. In particular, the
operator A(t) = eL

†tA can be obtained as the solution of
the adjoint QME

d
dt

A(t) = L†A(t), A(0) = A. (H1)

This solution can then be used to generate expectation
values,

〈A(t)〉 = tr [A(t)ρ(0)] = tr [Aρ(t)] , (H2)

in addition to two-time correlation functions as shown in
Eq. (96). This is especially useful since one may only need
to know the evolution of specific observables, rather than
the full information contained in the density matrix.

As a simple example, let us consider example D: a cavity
without driving or nonlinearity so that G = U = 0. More-
over, let us allow for the presence of finite-temperature

damping, so that the Liouvillian becomes

L • =−i[H , •] + κ(N̄ + 1)D[a] • +κN̄D[a†] • . (H3)

The adjoint QME for the annihilation operator is

da
dt

= −i�a − 1
2
κa, (H4)

while the equation for the number operator n = a†a is

dn
dt

= κ(N̄ − n). (H5)

The solutions of these equations are easily found to be

a(t) = e−i�t−κt/2a(0), (H6)

n(t) = N̄ + e−κt [n(0)− N̄
]

, (H7)

which is far simpler than solving the master equation
dρ/dt = Lρ, as the latter is an infinite system of coupled
differential equations for the matrix elements of ρ.

It is crucial to note, however, that—unlike for a purely
unitary dynamics generated by a Hamiltonian—one cannot
obtain the solution Eq. (H7) for n(t) directly from Eq. (H6),
i.e., n(t) 	= a†(t)a(t), or, more precisely,

eL
†t(a†a) 	= eL

†t(a†)eL
†t(a). (H8)

This shows that the evolution operator eL
†t is not distribu-

tive over the operator product. Equivalently, the adjoint
Liouvillian does not obey the Leibniz product rule, since

dn
dt

= L†(a†a) 	= L†(a†)a + a†L†(a). (H9)

Therefore, care must be taken when working with the
adjoint QME and its solutions: superoperators always
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act on everything to their right. For example, it is a
common misconception that the adjoint Liouvillian does
not preserve the canonical commutation relations because
[a(t), a†(t)] 	= 1. However, this misunderstanding arises
simply from an incorrect application of the evolution
superoperator, which should act on the commutator as a
whole:

eL
†t ([a, a†]

) = eL
†t (1) = 1. (H10)

The last equality follows because L†(1) = 0 (this is a con-
sequence of trace preservation, as shown explicitly below).
Note that the same caution applies to all open quantum sys-
tems and not only to the specific example of a quantum
oscillator.

The only exceptions to this rule are the purely Hamil-
tonian superoperators of the form L• = −i[H , •], which
generate the evolution superoperator U = eLt. The cor-
responding adjoint superoperator acts as U†(A) = U†AU,
where U = e−iHt is a unitary operator. It is straightforward
to check that U(U†(A)) = A for any operator A; hence
U itself is a unitary superoperator—its adjoint is also
its inverse. Such unitary superoperators are distributive
because

U(AB) = UABU†=UAU†UBU†=U(A)U(B). (H11)

Equivalently, a Leibniz rule holds for a Hamiltonian gen-
erator L† = i[H , •], since

[H , AB] = [H , A]B + A[H , B], (H12)

which is a well-known commutator identity.
Finally, we note that the adjoint Liouvillian L† is defined

by the relation

tr[A†L(B)] = tr[L†(A†)B]. (H13)

In the vectorization language of Sec. V B, this is equiva-
lent to the standard definition of the adjoint with respect to
the Hilbert-Schmidt inner product, 〈〈A|B〉〉 = tr[A†B] [287],
i.e.,

〈〈A|LB〉〉 = 〈〈L†A|B〉〉. (H14)

This is the underlying reason for the choice of notation L†.
Moreover, it implies that L† can be found simply by taking
the conjugate transpose of the matrix L, i.e.,

L =
∑
j 	=0

λj |xj 〉〉〈〈yj | ⇒ L†=
∑
j 	=0

λ∗
j |yj 〉〉〈〈xj |. (H15)

Therefore, the right (left) eigenvectors of L are the left
(right) eigenvectors of L†, with the same eigenvalues up
to complex conjugation. In particular, since the identity is
always a left eigenvector of L with eigenvalue 0, we have

L†|1〉〉 = 0 ⇒ L†(1) = 0. (H16)

APPENDIX I: FULL COUNTING STATISTICS FOR
QUANTUM DIFFUSION

1. As a limiting case of quantum jumps

To derive the tilted Liouvillian for quantum diffusion,
as in Sec. IV B, we start with Eq. (116) and apply the
transformation in Eq. (46), which results in

Lχρ = Lρ +
r∑

k=1

(
eiχνk − 1

)
(αk + Lk)ρ(α

∗
k + L†

k). (I1)

The corresponding probability distribution stemming from
FCS refers to the total charge N (t) = ∑

k νkNk(t). Instead,
we are interested in

Ndiff(t) =
∫ t

0
dt′Idiff(t′) =

r∑
k=1

νk

(
Nk(t)
|αk| − |αk|t

)
, (I2)

where each counting variable is rescaled and there is an off-
set that is independent of the system dynamics. The rescal-
ing is obtained by changing the weights in Lχ as νk →
νk/|αk|. The offset can be included by the replacement

Lχ → Lχ − iχ
r∑

k=1

νk|αk|. (I3)

This can actually be anticipated from Eq. (119), since the
probability distribution P̃ for ñ = n − ct, where ct is a
constant offset in the total charge, can be written as

P̃(ñ, t) = P(ñ + ct, t) =
∞∫

−∞

dχ
2π

e−iñχ tr
{
e(Lχ−iχc)tρ0

}
,

(I4)

where P denotes the probability distribution for n.
Applying these replacements to Eq. (I1), we obtain the

tilted Liouvillian that describes the FCS for Ndiff(t):

Lχρ = Lρ +
r∑

k=1

(
eiχ νk|αk | − 1

)
(αk + Lk)ρ(α

∗
k + L†

k)

− iχ
r∑

k=1

νk|αk|. (I5)

Taking the limit |αk| → ∞, this reduces to Eq. (124).

2. For Gaussian POVMs

We can also arrive at the same result for the case of
Gaussian measurements in Eq. (56) (for a similar discus-
sion, see Ref. [288]). As discussed in Appendix C, the
outcomes z represent the output current in this case, cor-
responding to a measurement of the operator x = 2L =
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2
√
λY with weight ν = 1/(2

√
λ). As in Sec. IV and

Eq. (113), the FCS can be obtained by considering the n-
resolved density matrix. Under a continuous measurement
described by Eq. (56), its time evolution is given by

ρn(t + dt) = eLdt
∫ ∞

−∞
dzMzρn−zdt(t)Mz, (I6)

where L denotes the Liouvillian in the absence of the
continuous measurement. This equation implies that the
measurement outcome z (corresponding to the instanta-
neous diffusive current) increases the total charge by zdt.
Fourier transforming this equation, we find that

ρχ(t + dt) = eLdt
∫ ∞

−∞
dzeiχzdtMzρχ(t)Mz. (I7)

The integral over z can be evaluated upon inserting identi-
ties

∑
y |y〉〈y|, resolved in the eigenstates of Y, on the left

and right of the density matrix. Expanding to linear order
in dt, we find the generalized QME

∂

∂t
ρχ(t) = Lρχ(t)+ λD[Y]ρχ(t)

− χ2

8λ
ρχ(t)+ i

χ

2
{Y, ρχ(t)}. (I8)

This equation nicely illustrates the trade-off between mea-
surement back action (the term proportional to λ) and
imprecision noise (the term proportional to 1/λ). We note
that for L = √

λY and ν = 1/(2
√
λ), the last equation is

equivalent to Eq. (124). Note that in the latter, the term
D[Y] is included in L, in contrast to Eq. (I8).

APPENDIX J: MOMENTS FROM FULL
COUNTING STATISTICS

In this appendix, we consider the following problem. We
have a system described by a generic tilted Liouvillian Lχ ,
the form of which we do not wish to specify. Our goal
is to obtain the formulas for the first two cumulants. The
starting point is Eq. (132), which, written more explicitly,
reads

E
[
N (t)j

] = (−i∂χ)j tr
{
eLχ tρ(0)

} ∣∣∣∣
χ=0

(J1)

Thus, to use this formula we must be able to compute
(−i∂χ)j eLχ t. Derivatives of this kind, however, are quite
difficult to handle because Lχ generally does not commute
with ∂χLχ . We can see this using the following general
Baker-Campbell-Hausdorff formula. Let Gφ denote any
operator (or superoperator) depending on some parameter

φ. Then,

deGφ

dφ
=

(
G′ + 1

2
[G, G′] + 1

3!
[G, [G, G′]] + . . .

)
eGφ

(J2)

= eGφ

(
G′ − 1

2
[G, G′] + 1

3!
[G, [G, G′]] + . . .

)
, (J3)

where G′ = ∂φG. The series is infinite because G and G′
generally do not commute with each other. An alternative
formula, also highlighting the noncommutativity, is

∂φeGφ =
1∫

0

dy eGφyG′eGφ(1−y), (J4)

which also shows that this will generally be a difficult
computation.

Because of these difficulties, we shall take another route.
Start with the first moment:

E (N (t)) = −i∂χ tr
{
eLχ tρ0

} ∣∣∣∣
χ=0

. (J5)

Instead of computing it, we look instead at the current:

J (t) = d
dt

E (N (t)) = −i
∂

∂t
∂

∂χ
tr

{
eLχ tρ0

} ∣∣∣∣
χ=0

. (J6)

If we differentiate first with respect to t, we do not
encounter the difficulties in Eq. (J2) because G = Lχ t
and Ġ = Lχ , so that [G, Ġ] = 0. In other words, ∂teLχ t =
LχeLχ t. In terms of the solution ρχ(t) = eLχ tρ0 of the
generalized QME (115), Eq. (J6) can thus be written as

J (t) = −i
∂

∂χ
tr

{
Lχρχ(t)

} ∣∣∣∣
χ=0

. (J7)

Finally, we take the derivative with respect to χ and set
χ = 0, leading to

J (t) = −itr
{
L′ρ(t)+ Lρ ′(t)

}
, (J8)

where, here and henceforth, the prime always denotes the
derivative with respect to χ , evaluated at χ = 0. That is,
L′ = ∂χLχ

∣∣
χ=0 and ρ ′ = ∂χρχ

∣∣
χ=0. The second term in

J (t) vanishes, because L = Lχ=0 is the true Liouvillian,
which is traceless. We therefore finally arrive at

J (t) = −i tr
{
L′ρ(t)

} = tr {J ρ(t)} , (J9)

with the identification J = −iL′, as in Eq. (130).
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Next, we do the same for the variance, or its time deriva-
tive, which is the noise D [Eq. (85)]. Using Eq. (132) for
the second moment, we obtain

D(t) = (−i)2
∂

∂t
∂2

∂χ2 tr
{
eLχ tρ0

} ∣∣∣∣
χ=0

− 2J (t)E (N (t))

= − ∂2

∂χ2 tr
{
Lχρχ(t)

} ∣∣∣∣
χ=0

− 2J (t)E (N (t))

= −tr
{
L′′ρ + 2L′ρ ′ + Lρ ′′} − 2J (t)E (N (t)) .

(J10)

The term tr
{
Lρ ′′} vanishes because L is traceless. In the

last term, we can use J (t) = −itr
{
L′ρ(t)

}
and E (N (t)) =

−itr
{
ρ ′(t)

}
[which follows from Eq. (J5)]. We are then left

with

D(t) = −tr
{
L′′ρ(t)

} − 2tr
{
L′ρ ′} + 2tr

{
L′ρ

}
tr

{
ρ ′} .
(J11)

The complicated term here is tr(ρ ′) = ∂χ tr
{
eLχ tρ(0)

} ∣∣
χ=0.

We can compute it using Eq. (J4) [and changing variables
to τ = t(1 − y)]:

∂eLχ t

∂χ

∣∣∣∣
χ=0

=
t∫

0

dτ eL(t−τ)L′eLτ . (J12)

Multiplying by ρ0 and noting that eLτ ρ0 = ρ(τ), we then
finally conclude that

ρ ′(t) ≡ ∂χρχ(t)
∣∣
χ=0 =

t∫

0

dτ eL(t−τ)L′ρ(τ). (J13)

Inserting this in Eq. (J11) finally yields

D = −tr
{
L′′ρ(t)

} − 2

t∫

0

dτ
{
tr

[
L′eL(t−τ)L′ρ(τ)

]

−tr
[
L′ρ(t)

]
tr

[
L′ρ(τ)

]}
. (J14)

This can now be compared with the general definition
given in Eq. (87), which allows us to identify the two-
point correlation function F(t, t − τ). As a result, we find
exactly Eq. (67), provided that we identify J and K as per
Eq. (130).

This analysis, albeit somewhat involved, proves that for
any tilted Liouvillian, all formulas for J , F , S, and D devel-
oped in this tutorial continue to hold, provided that we
make the identification in Eq. (130).

APPENDIX K: THE LONG-TIME LIMIT AND THE
SCGF

Here, we show how the SCGF reduces to an eigenvalue
of the tilted Liouvillian [cf. Eqs. (116) and (124)]. To this
end, we rewrite the moment-generating function as

M (χ , t)= tr
{
eLχ tρ0

} =
∑

j

eλj (χ)t〈〈1|xj (χ)〉〉〈〈yj (χ)|ρ0〉〉,

(K1)

where we have used the eigendecomposition of Lχ , in the
same form as that for L shown in Eq. (164). In the long-
time limit, the sum will be dominated by the eigenvalue
with the largest real part, denoted λ0(χ). Taking the log-
arithm, we find that the cumulant generating function will
therefore behave asymptotically as

C(χ , t) � λ0(χ)t + ln〈〈1|x0〉〉〈〈y0|ρ0〉〉, (K2)

Since the second term is independent of time, it follows
that the SCGF is given by

C(χ) = lim
t→∞

d
dt

C(χ , t) = λ0(χ). (K3)

APPENDIX L: DRAZIN INVERSE AND
CONNECTION WITH MOORE-PENROSE

The Drazin pseudoinverse has been defined in
Eqs. (169) or (168). The equivalence between the two def-
initions follows readily from Eq. (166). We use pseudoin-
verses because L itself is not invertible. In this appendix,
we explore the properties of the Drazin pseudoinverse in
more detail. For Hermitian matrices, the Drazin pseudoin-
verse coincides with the Moore-Penrose pseudoinverse (to
be more properly defined below). But when it is not Her-
mitian, as is always the case with Liouvillians, the two are
different. In this appendix, we will also clarify their relation
[see Eq. (L12) below].

The basic intuition of any pseudoinverse is that “we
invert what we can.” This is clear from Eq. (168),
where we invert all eigenvalues that are nonzero: L+ :=∑

j 	=0
1
λj

|xj 〉〉〈〈yj |. For example, pseudoinverses appear in
the context of resolvents and perturbation theory, although
this is not always mentioned explicitly. Indeed, consider
standard quantum mechanical perturbation theory. Let
H |n〉 = En|n〉 denote a Hamiltonian and let V be a small
perturbation. Assuming that the En are nondegenerate, the
eigenvalues of H ′ = H + V can be written up to second
order as

E′
n = En + 〈n|V|n〉 + 〈n|V(En − H)+V|n〉

+ 〈n|V(En − H)+V(En − H)+V|n〉 + . . . . (L1)

Here, En − H = ∑
j 	=n(En − Ej )|j 〉〈j |, which is not invert-

ible. The pseudoinverse hence reads (En − H)+ =
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∑
j 	=n 1/(En − Ej )|j 〉〈j |; again, we invert what we can and

we leave the singular parts untouched.
In the vectorized notation of Sec. V B, the Drazin

pseudoinverse given in Eq. (169) can be written as

L+= −
∫ ∞

0
dτ eLτP , (L2)

where

P = 1 − |ρss〉〉〈〈1| =
∑

k

|xk〉〉〈〈yk|. (L3)

In fact, using Eq. (166), one may verify that this reduces
exactly to Eq. (168). One may also verify that

L+L = LL+=1 − |ρss〉〉〈〈1|. (L4)

That is, it returns the identity on the subspace complemen-
tary to that defined by |ρss〉〉〈〈1|. From this, it also follows
that LL+L = L and L+LL+ = L+.

Technically speaking, the Drazin inverse that we are
using is actually called the “group inverse,” which is
a special case of Drazin inverses to matrices satisfying
rank(A2) = rank(A). The Drazin or group inverse can be
more generally defined as the unique matrix L+ satisfying

LL+L = L, (L5)

L+LL+ = L+, (L6)

L+L = LL+. (L7)

On the other hand, the Moore-Penrose pseudoinverse,
which we will denote by LMP, is defined as the unique
matrix satisfying

LLMPL = L, (L8)

LMPLLMP = LMP, (L9)

(LMPL)† = LMPL, (L10)

(LLMP)† = LLMP. (L11)

Equations (L8) and (L9) are the same as Eqs. (L5)
and (L6). But Eq. (L7) is not equivalent to Eqs. (L10)–(L11),
unless the matrix is Hermitian.

The relation between the Drazin and Moore-Penrose
pseudoinverses is given by

L+=PLMPP , (L12)

which we now prove. The calculation of LMP is a bit more
complicated. If L†L is invertible then LMP = (L†L)−1L†.
But for Liouvillians this is never the case, so this formula
is not useful. One way to compute it is via singular-value
decomposition. Another, which will be useful for our pur-
poses, is through rank decomposition. Let |i〉〉 denote a
generic orthonormal basis of dimension d2 − 1, where d2

is the dimension of the Liouvillian (and d is the dimension
of the Hilbert space). We now define two matrices,

B =
∑

i

|xi〉〉〈〈i|, C =
∑

i

λi|i〉〉〈〈yi|, (L13)

which are of dimension d2 × (d2 − 1) and (d2 − 1)× d2,
respectively. They are such that L = BC, as written in
Eq. (164).

The Moore-Penrose pseudoinverse is then given by

LMP = C†(CC†)−1(B†B)−1B†, (L14)

which satisfies Eqs. (L8)–(L11), as one may verify. The
matrices CC† and B†B are both invertible and of dimension
d2 − 1. From Eq. (L14), it follows that

LLMP|xk〉〉 = |xk〉〉, 〈〈yk|LMPL = 〈〈yk|. (L15)

Together with Eq. (165) this implies that

PLMPL = LLMPP = P . (L16)

With these relations, one may now verify that the Drazin
inverse, as defined in Eq. (L12), will satisfy all proper-
ties in Eqs. (L5)–(L7). And since the matrix satisfying
said properties is unique, this proves that Eq. (L12) is
indeed the correct relation between the Drazin and the
Moore-Penrose.

APPENDIX M: NUMERICAL COMPUTATION OF
S(ω) AND D

In this appendix, we discuss methods to compute S(ω)
and D efficiently. Crucial to these is the fact that the vec-
torized Liouvillian L in Eq. (158) is generally very sparse.
In such cases, methods involving the solution of linear sys-
tems of equations (as opposed to diagonalization) become
particularly efficient. Conversely, if L is not large, it might
be simpler to just diagonalize it.
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1. Power spectrum

Suppose that we choose to diagonalize L. Then,
for each ω, S(ω) can be efficiently reconstructed from
Eq. (173) by precomputing and storing the coefficients
〈〈1|J |xj 〉〉〈〈yj |J |ρss〉〉.

When L is large, diagonalization becomes costly and it
is more efficient to transform S(ω) into the solution of a
linear system of equations. We use Eq. (176) and start by
precomputing L2. For each ω, we define a new vector |z〉〉
as the solution of

(L2 + ω2)|z〉〉 = J |ρss〉〉. (M1)

Since L2 + ω2 is invertible (for ω 	= 0), this solution is
unique. The power spectrum is then written as

S(ω) = K − 2〈〈1|JL|z〉〉. (M2)

2. Drazin inverse and noise

To compute the noise in Eq. (177) we require the Drazin
inverse. Again, if all eigenvalues and eigenvectors are
known, we can compute it from Eq. (168). However, this
is usually too costly if L is large. Instead, we note that
we never require L+ itself but only |z〉〉 := L+|α〉〉, i.e.,
the Drazin acting on a certain vector |α〉〉 In the case of
Eq. (177), we have |α〉〉 = J |ρss〉〉. But let us focus here on
a general |α〉〉 and develop a general result.

Multiplying |z〉〉 by L and using Eq. (L4), we see that |z〉〉
is the solution of the linear system of equations

L|z〉〉 = |α〉〉 − |ρss〉〉〈〈1|α〉〉. (M3)

But because L is not invertible, Eq. (M3) has an infi-
nite number of solutions. Since |z〉〉 := L+|α〉〉 and since
〈〈1|L+ = 0 [which follows from Eq. (168)], the solution
in which we are interested is the one satisfying 〈〈1|z〉〉 = 0.
We can enforce the solver to produce this solution by
adding an additional row to Eq. (M3), as follows:

⎛
⎜⎜⎜⎝

...
L
...

〈〈1|

⎞
⎟⎟⎟⎠ |z〉〉 =

⎛
⎜⎜⎜⎝

...
|α〉〉 − |ρss〉〉〈〈1|α〉〉

...
0

⎞
⎟⎟⎟⎠ .

(M4)

The matrix on the left is now of dimension (d2 + 1)× d.
The solution of this system will be exactly |z〉〉 := L+|α〉〉.

Returning now to the case of D, if we define |z〉〉 =
L+J |α〉〉, then

D = K − 2〈〈1|J |z〉〉. (M5)

As an example, suppose that Lρ = γD[σ−]ρ. In vector-
ized form, this becomes

L =

⎛
⎜⎝

−γ 0 0 0
0 − γ

2 0 0
0 0 − γ

2 0
γ 0 0 0

⎞
⎟⎠ . (M6)

Similarly, 〈〈1| = (1 0 0 1). The matrix on the left-hand side
of Eq. (M4) would then be

⎛
⎜⎜⎜⎝

−γ 0 0 0
0 − γ

2 0 0
0 0 − γ

2 0
γ 0 0 0
1 0 0 1

⎞
⎟⎟⎟⎠ . (M7)

APPENDIX N: POWER SPECTRUM FOR WEAK
DISSIPATION

We analyze the power spectrum S(ω) in the limit in
which all dissipative terms in Eq. (5) are very small. Our
starting point is Eq. (173). We split the Liouvillian as L =
LH + LD, where LH = −i[H , •] and LD = ∑

k D[Lk]. To
construct the power spectrum, we will use perturbation the-
ory to build the eigenvalues and eigenvectors of L in the
limit in which LD is small. In terms of H |n〉 = En|n〉, the
unitary part LH can be written as

LHρ = −i
∑
n,m

ωnm|n〉〈n|ρ|m〉〈m|, (N1)

where ωnm = En − Em. The eigenvalues of LH are thus
−iωnm, while the corresponding right and left eigenvectors
are

|xnm〉〉 = |m〉∗ ⊗ |n〉, 〈〈ynm| = 〈m|∗ ⊗ 〈n|. (N2)

Before we use perturbation theory, however, we must be
careful about the zero eigenvalues. For LH there are at least
d of them, corresponding to ωnn ≡ 0. There might also
be more if the En are degenerate. Let Z denote the set of
indices (n, m) having ωnm = 0, and let nZ be the set having
ωnm 	= 0. All eigenvectors in Z, which we will henceforth
refer to as |xα〉〉 and 〈〈yα|, therefore have λ0

α = 0. Those in
nZ, on the other hand, will be referred to as xnm〉〉 and 〈〈ynm|
and have λ0

nm = −iωnm 	= 0.
After we include the perturbation LD, the power spec-

trum given in Eq. (173) will change to

S(ω) = K − 2
∑
α∈Z

λ1
α

(λ1
α)

2 + ω2 gα

− 2
∑

n,m,ωn,m 	=0

λ1
nm

(λ1
nm)

2 + ω2 gnm, (N3)
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where λ1
α and λ1

nm are the perturbed eigenvalues (once LD
is included) and

gα = 〈〈1|J |xα〉〉〈〈yα|J |ρss〉〉,
gnm = 〈〈1|J |xnm〉〉〈〈ynm|J |ρss〉〉. (N4)

To lowest order in the perturbation, we can actually use
the unperturbed eigenvectors; i.e., include only the pertur-
bation of the eigenvalues.

For the set Z, we need to use degenerate perturbation
theory. This is much more difficult and we will therefore
not touch on this part. These terms, however, will only
contribute to the peak or dip at ω = 0. This will be true
even if the λ1

α are complex, because by hypothesis the real
parts are always small. The peaks at ω 	= 0 will therefore
be associated with the states in nZ. These states might also

be degenerate. However, for simplicity, we will assume
that this is not the case. Therefore, all that remains to be
done is to write down the perturbed eigenvalue, which will
be

λ1
nm = −iωnm + 〈〈ynm|LD|xnm〉〉 := −iωnm + γnm. (N5)

The γnm represent new effective damping rates and are
responsible for broadening the peaks and dips. In general,
they may have an imaginary part. But since they are small
by hypothesis, this can just be absorbed into ωnm. We will
therefore assume that γnm is real.

From this analysis, we see that the peaks and dips will be
positioned at ω = ωnm, and will have width equal to γnm.
Finally, to understand whether they will be peaks or dips,
we can write the power spectrum more explicitly as

S(ω) = K − 2
∑
α∈Z

λα

λ2
α + ω2 gα − 2

∑
ωnm>0

iωnm(ω
2
nm − ω2)(gnm − g∗

nm)− γnm(ω
2
nm + ω2)(gnm + g∗

nm)

ω4
nm + 2ω2

nm(γ
2
nm − ω2)+ (γ 2

nm + ω2)2
. (N6)

This shows that if gnm is real, we will have a peak when gnm > 0 or a dip if gnm < 0. Conversely, if it is complex, there
will be peaks immediately followed by dips.

To illustrate these ideas, consider example A [Eq. (9)], with � = 0. The vectorized Liouvillian reads

L =

⎛
⎜⎜⎝

−γ (N̄ + 1) 0 0 γ N̄
0 i�− γ (N̄ + 1/2) 0 0
0 0 −i�− γ (N̄ + 1/2) 0

γ (n̄ + 1) 0 0 −γ N̄

⎞
⎟⎟⎠ . (N7)

The exact eigenvalues and eigenvectors of this matrix
read

λ00 = 0, |x00〉〉 = N̄ |00〉 + (N̄ + 1)|11〉,
λ01 = −i�− γ (N̄ + 1/2), |x01〉〉 = |10〉,
λ10 = i�− γ (N̄ + 1/2), |x10〉〉 = |01〉,
λ11 = −γ (2N̄ + 1), |x11〉〉 = |00〉 − |11〉,

(N8)

where |ij 〉 = |i〉 ⊗ |j 〉 and the eigenvectors are not normal-
ized (the left eigenvectors 〈〈ynm| are also not shown). These
results can now be plugged into Eq. (173). In the limit of
weak dissipation, the elements linked to nonzero transi-
tion frequencies are |x01〉〉 and |x10〉〉. However, for these
two states, it follows that J |x01〉〉 = 0, so that they actu-
ally do not contribute. This is tantamount to the fact that
L†

kLk = {σ+σ−, σ−σ+} being diagonal in the computational
basis. As a consequence, we find that the only term actually
contributing to Eq. (173) is λ11.

APPENDIX O: EXTRACTING PROBABILITIES
FROM A CAVITY USING FCS

In this appendix, we demonstrate the results discussed in
Sec. IV B 2. Our system is an optical cavity prepared in a
generic state ρ0 and evolving according to the Liouvillian
Lρ = κD[a]ρ. Our goal will be to solve for the gener-
alized master equation [Eq. (115)], with the appropriate
tilted Liouvillian Lχ for each type of measurement.

1. Direct photodetection

For direct photodetection, the tilted Liouvillian is given
by Eq. (116), with L = √

κa and ν = 1:

Lχρ = κ

[
eiχaρa†−1

2
{a†a, ρ}

]
. (O1)

We want to solve for the moment-generating function
M (χ , t) = tr

{
ρχ(t)

} = tr
{
eLχ tρ0

}
and then take the limit

t → ∞. The tilted Liouvillian Lχ turns out to have exactly
one zero eigenvalue, all others having negative real parts.
The corresponding right eigenvector, as one may verify, is
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the vacuum state |vac〉〉 = |0〉〈0|, which is the same as the
right eigenvector of L. The left eigenvector is different,
however, and acts as 〈〈χ |•〉〉 = ∑

n〈n| • |n〉einχ . That is, it
yields a tilted version of the trace. In fact, one can verify
that tr

{
eiχa†aLχ(•)

}
= 0, which therefore proves that this

is a left eigenvector with zero eigenvalue. One also sees
that if χ = 0, we recover the usual trace, 〈〈χ |•〉〉 = tr(•).

The evolution under the tilted master equation will
therefore have the form

eLχ t|ρ0〉〉 = |vac〉〉〈〈χ |ρ0〉〉 +
∑

j

eλj ,χ t|xj ,χ 〉〉〈〈yj ,χ |, (O2)

where the sum contains eigenvalues λj ,χ with a strictly
negative real part. In the long-time limit, these terms will
all vanish and we are therefore left with |ρχ(t → ∞)〉〉 =
|vac〉〉〈〈χ |ρ0〉〉. Hence, taking the trace, we find that

M (χ , ∞) = tr
{
ρχ(∞)

} = 〈〈χ |ρ0〉〉 =
∑

n

einχ 〈n|ρ0|n〉.
(O3)

Plugging this into Eq. (120) and carrying out the now
trivial Fourier transform, we arrive at Eq. (126): viz.,
P(n, ∞) = 〈n|ρ0|n〉.

2. Homodyne detection

For homodyne detection, the tilted Liouvillian is given
by Eq. (124) (see also Table II). Unlike standard homo-
dyne detection, however, in this case we choose a time-
dependent weight factor ν(t) = ν0 exp(−κt/2), with ν0 =√
κ/2. The tilted Liouvillian will thus be

Lχ(t) = κD[a] + iχH(t)− χ2

2
ν2

0 e−κt, (O4)

where

H(t)ρ = ν(t)
√
κ(aρ + ρa†). (O5)

The moment-generating function is again the solution of
the generalized QME [Eq. (115)]. However, since the
dynamics is time dependent, it will now be given by

M (χ , ∞) = tr{T e
∫ ∞

0 dtLχ (t)ρ0}, (O6)

where T denotes the time-ordering operator. Using the
identity

T e
∫ t

0 dτ [A(τ )+B] = eBτT e
∫ t

0 dτe−BτA(τ )eBτ , (O7)

we may write

M (χ , ∞) = e− ν2
0

2κ χ
2
tr{T eiχ

∫ ∞
0 dtH̃(t)ρ0}, (O8)

with

H̃(t) = e−κtD[a]H(t)eκtD[a]. (O9)

To obtain Eq. (O8), we have made use of tr{eτκD[a]ρ} =
tr{ρ}, for any τ and ρ.

From the definitions of H(t) and D[a], one may show
that

[H(t),D[a]] = −1
2
H(t). (O10)

Through the Baker-Campbell-Hausdorff formula, this
implies that

H̃(t) = e− κ
2 tH(t) = e−κtH(0). (O11)

Equation (O8) then reduces to

M (χ , ∞) = e− ν2
0

2κ χ
2
tr

{
ei χκ H(0)ρ0

}

= e− ν2
0

2κ χ
2
tr

{
ρ0ei χκ H†(0)1

}
, (O12)

where

H†(0)X = ν0
√
κ(Xa + a†X ) (O13)

is the adjoint of H(0). It is straightforward to show that

[H†(0)]n1 = (ν0
√
κ)n :(a + a†)n :, (O14)

where :: denotes normal ordering. This allows us to write

M (χ , ∞) = e− ν2
0

2κ χ
2
tr{ρ0 :e

iχ ν0√
κ
(a+a†)

:}

= e− ν2
0

2κ χ
2
tr{ρ0e

iχ ν0√
κ

a†
e

iχ ν0√
κ

a}

= tr{ρ0e
iχ ν0√

κ
(a†+a)}

= tr{ρ0eiχx}

=
∫

dx〈x|ρ0|x〉eiχx, (O15)

where for the last equality, we have used ν0 = √
κ/2 and

x = (a† + a)/
√

2. Plugging this into Eq. (119) yields the
probability P(Ndiff(t) = x). The remaining Fourier trans-
form is trivial and we therefore arrive at Eq. (127); viz.,
P(x, ∞) = 〈x|ρ0|x〉.
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3. Heterodyne detection

For heterodyne detection, we include two counting
fields, χx and χy . The moment-generating function is still
given by Eq. (O6), with the Liouvillian

Lχ (t) = κD[a] + iχxHx(t)+ iχyHy(t)− χ2
x + χ2

y

2
ν2

0 e−κt,

(O16)

where

Hx(t)ρ = ν0e− κ
2 t

√
κ

2
(aρ + ρa†),

Hx(t)ρ = −iν0e− κ
2 t

√
κ

2
(aρ − ρa†).

(O17)

Note that Hx(t) = H(t)/
√

2 [cf. Eq. (O5)]. This is because
for heterodyne detection, we need to split the outgoing
beam in two before performing homodyne detection on
each output.

A calculation completely analogous to the last subsec-
tion then results in

M (χx,χy) = e−(χ2
x +χ2

y )
ν2
0

2κ tr{ρ0 :e
iχx

ν0√
2κ
(a+a†)−χy

ν0√
2κ
(a†−a)

:}

= tr{ei ν0√
2κ
(χx+iχy )a†

ρ0e
i ν0√

2κ
(χx−iχy )a}

=
∫

dxdyeiχxx+iχy y 1
π

〈
x + iy√

2

∣∣∣∣ ρ0

∣∣∣∣x + iy√
2

〉
,

(O18)

where in the last equality, we have expressed the trace
in terms of the coherent states a|α + iβ〉 = (α + iβ)|α +
iβ〉 and we chose ν0 = √

κ . The probability distribution
P(Nx(t) = x, Ny(t) = y) in the limit t → ∞ is thus given
by the Husimi Q function

Q(x, y) = 1
π

〈
x + iy√

2

∣∣∣∣ ρ0

∣∣∣∣x + iy√
2

〉
. (O19)

APPENDIX P: CALCULATIONS IN THE
GAUSSIAN CASE

In this appendix, we prove Eq. (231). The proof is based
on the QRT, described in Sec. III D, according to which

〈Rj (t)Ri(t + τ)〉 = tr
{
RieLτ

(
ρ(t)Rj

)}
,

〈Rj (t + τ)Ri(t)〉 = tr
{
Rj eLτ (Riρ(t))

}
.

(P1)

In terms of the adjoint Liouvillian L† [defined as per
Eq. (95)], we can also write this as

〈Rj (t)Ri(t + τ)〉 = 〈Rj R̂i(τ )〉t

〈Rj (t + τ)Ri(t)〉 = 〈R̂j (τ )Ri〉t,
(P2)

where Ô(τ ) := eL
†τO and where 〈. . .〉t is an expectation

value over ρ(t).
The key to proving Eq. (231) is to now find a closed

evolution equation for R̂i(τ ). For Gaussian processes, as
one can verify starting from the general Liouvillian given
in Eq. (208), this will evolve in the same way as the mean
vector in Eq. (223). That is,

dR̂(τ )
dτ

= −WR̂i(τ )+�f . (P3)

This equation is linear and the solution is simply

R̂(τ ) = G(τ )R +
τ∫

0

dsG(τ − s)�f , (P4)

where R = R̂(0) and G(τ ) = e−Wτ . The last term can be
simplified by noting that even though this is an operator
equation for R̂, the last term is proportional to the identity
matrix. And, in fact, it is the same term that appears in the
equation for the mean vector r. In fact, solving Eq. (223)
for r, between two arbitrary times t and t + τ , yields

r(t + τ) = G(τ )r(t)+
τ∫

0

ds G(τ − s)�f . (P5)

This shows that the second term in Eq. (P4) is simply
r(t + τ)− G(τ )r(t). This statement is actually true for any
time t, since Eq. (P5) only depends on the time difference
τ . However, with the last term in Eq. (P2) in mind, we
actually want quantities evaluated at times t and t + τ , it is
convenient to stick with r(t + τ)− G(τ )r(t). Hence

R̂(τ ) = G(τ )R + r(t + τ)− G(τ )r(t). (P6)

This is a general formula for eL
†τR, with the right-hand

side written in terms only of G(τ ) and the mean vector.
Plugging this into Eq. (P2) then yields, e.g., for the first

correlation function,

〈Rj (t)Ri(t + τ)〉 =
∑

k

Gik(τ )〈Rj Rk〉t

+ 〈Rj 〉t [r(t + τ)− G(τ )r(t)]i , (P7)

where, of course, 〈Ri〉t = rj (t). To finish, we write this in
terms of

�̃ij = (�− i�/2)ij = ±〈Rj Ri〉 − 〈Ri〉〈Rj 〉. (P8)

We then arrive exactly at Eq. (231).
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APPENDIX Q: RELATION BETWEEN L+ AND
L−1

0

The Liouvillian relates to the no-jump superopera-
tor L0 as L = L0 + J , where J = ∑

k Lk. Here, we
prove an identity between L−1

0 and the Drazin inverse
L+ [Eq. (168)]. We begin by noting the identity (P =
|ρss〉〉〈〈1|)

L+≡ lim
ε→0

(L + ε)−1 − 1
ε
P , (Q1)

which readily follows from Eq. (168) if we write

(L + ε)−1 = 1
ε
|ρss〉〉〈〈1| +

∑
j 	=0

1
λj + ε

|xk〉〉〈〈yk|, (Q2)

We now consider the matrix identity

(A + B)−1 = A−1 − A−1B(A + B)−1, (Q3)

and set A = L0 and B = J + ε, leading to

(L + ε)−1 = L−1
0 − L−1

0 (J + ε)(L + ε)−1

= L−1
0 − L−1

0 (J + ε)

(P
ε

+ L+
)

= L−1
0 − 1

ε
L−1

0 JP − L−1
0 JL+−L−1

0 P

− εL−1
0 L+. (Q4)

The steady-state and normalization conditions imply
LP = 0. Together with L = L0 + J , we then see that
L−1

0 JP = −P . Plugging this into Eq. (Q4) and using
Eq. (Q1), we then find

L+ = L−1
0 Q − L−1

0 JL+

= QL−1
0 Q − QL−1

0 JL+, (Q5)

where Q = 1 − P and, in the last line, we have used the
fact that L+ = QL+Q. Isolating L+, we then finally arrive
at

L+=(1 + QL−1
0 J )−1QL−1

0 Q, (Q6)

which is the desired relation.

APPENDIX R: PROOF OF EQ. (294)

We consider a single renewal jump channel which, in
vectorized notation, reads J = |σ 〉〉〈〈ξ | with 〈〈1|σ 〉〉 = 1.
The average current J and the dynamical activity K coin-
cide: J = K = tr(J ρss) = 〈〈ξ |ρss〉〉. The noise is given by
Eq. (177), which now becomes

D = K − K〈〈ξ |L+|σ 〉〉. (R1)

The WTD, on the other hand, reads W(t) = 〈〈ξ |eL0t|σ 〉〉,
where L0 = L − J . The mean waiting time is μ = 1/K

[Eq. (287)] and the variance of the waiting time, according
to Eq. (265), is

σ 2 = − 2
K

〈〈1|L−1
0 |ρss〉〉 − μ2. (R2)

Equation (294), which we wish to prove, therefore reduces
to the identity

〈〈ξ |L+|σ 〉〉 = 1 + K〈〈1|L−1
0 |ρss〉〉. (R3)

To prove it, we first establish the following relations:

〈〈ξ |L−1
0 = −〈〈1|, L−1

0 |σ 〉〉 = −|ρss〉〉
K

. (R4)

The first, for example, can be derived by using the fact that
J = L − L0 and 〈〈1|L = 0 to write 〈〈1|JL−1

0 = −〈〈1|.
But since 〈〈1|σ 〉〉 = 1, it is also true that 〈〈1|JL−1

0 =
〈〈ξ |L−1

0 . The second relation follows from a similar rea-
soning and the fact that L|ρss〉〉 = 0.

The proof of Eq. (R3) now follows from Eq. (Q6).
Because of Eq. (R4), we have that QL−1

0 J = 0, a result
that is special for renewal processes with only a single
jump channel. As a consequence, Eq. (Q6) reduces to
L+ = QL−1

0 Q. Or, more explicitly,

L+ = L−1
0 − L−1

0 |ρss〉〉〈〈1| − |ρss〉〉〈〈1|L−1
0

+ 〈〈1|L−1
0 |ρss〉〉 |ρss〉〉〈〈1|. (R5)

One may verify that, together with Eq. (R4), this relation
establishes Eq. (R3).

APPENDIX S: FLUCTUATION THEOREM FOR
	2 = −1

In this appendix, we show that the symmetry in the
SCGF in Eq. (343) follows from Eq. (340) under the
assumption of time-reversal symmetry, even for�2 = −1,
where H and Lk may in general not be real valued. To this
end, we consider the Liovillian

L̄χ = −i(H ⊗ 1 − 1 ⊗ H T)

+
r∑

k=1

[
eiναkχαLk ⊗ L∗

k − 1
2

L†
kLk ⊗ 1− 1

2
1 ⊗ (L†

kLk)
T
]
,

(S1)

which is obtained from Lχ in Eq. (340) by exchang-
ing the matrices before and after the Kronecker products.
The Liouvillians L̄χ and Lχ have the same eigenvalues.
Indeed, L̄χ corresponds to a different but completely legit-
imate vectorization prescription, where we first transpose
the matrix before stacking its columns, and thus describes
the same physics. For time-reversal symmetric H and
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Lk [cf. Eq. (339)] and using the local detailed-balance
condition in Eq. (338), we find the symmetry

L̄χ = �LT
χ+iσ�

−1. (S2)

Due to the antilinearity of �, this implies the following
symmetry for the SCGF:

C(χ) = C∗(χ + iσ ) = C(−χ + iσ ), (S3)

where the last equality follows from Eq. (136). Equation (S3)
is identical to Eq. (350). The remaining results thus follow
analogously.
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