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THE SECOND LAW

The Ist law puts heat and work on similar footing and says that, in
principle, one can be interconverted into the other.

For a system coupled to two baths, for instance, we have: /-\!
dU .

‘” +
b

Not all such processes, however, are actually possible. =

A

This is the purpose of the 2nd law.

GTL and M. Paternostro, “Irreversible entropy production,

from quantum to classical”, To appear in Review of Modern Physics.
arxXiv:2009.0/668



The 2nd law deals with entropy.
Entropy, however, does not satisfy a continuity equation.

There can be a flow of entropy from the system to the environment, which is given
by the famous Clausius expression Q/T.

But, in addition, there can also be some entropy which is spontaneously produced in
the process. The entropy balance equation thus reads

as . 0, O.
— =
dt T,

The quantity = is called the entropy production rate.

The second law can now be formulated mathematically by the statement




VWhy entropy production matters

st and 2nd laws for a system coupled to two baths:
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The efficiency of the engine may then be written as
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Entropy production is therefore the reason the efficiency is smaller than Carnot:
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“The efficiency of a quasi-static or reversible Carnot cycle
depends only on the temperatures of the two heat reservoirs,
and is the same, whatever the working substance. A Carnot

engine operated in this way is the most efficient possible heat

engine using those two temperatures.”




Flow of heat

The 2nd law reads
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But if there is no work involved, @, = —Q;,
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Heat flows from hot to cold.



“Heat can never pass from a colder to a warmer body

without some other change, connected therewith, occurring
at the same time.”




Work from a single bath

Finally, suppose there 1s only one bath present:

W =—Qn ‘
zz_ﬁzwzo h
13, 13,

Positive work (in my definition) means an external agent is doing work on
the system.



“It is impossible to devise a cyclically operating device, the

sole effect of which is to absorb energy in the form of heat
from a single thermal reservoir and to deliver an equivalent
amount of work.”




2nd law at the quantum level

Pxy = Ulpxy ® ,01/)UT

e The degree of 1i1rreversibility of this process 1s quantified by the
entropy production:

Py
2=IX:Y)+ S(pyllpy)

= S(X') = S(X) + @ I'X :Y) = S(py) + S(py) = S(pxy)

where : , : ,
S(le |:0Y) — tr(py hle — Py lan> U

® = tryd (oy = ppinpy |

. Px
1s called the entropy flux.
e @ depends only on Y. Measures change in the “thermodynamic
potential” Inpy Describes an enormous
variety of processes!
e If pyze—/)’Hy/ZY we get ® =— 0. (maybe a complicated U)

M. Esposito, K. Lindenberg, C. Van den Broeck, “Entropy production as correlation between system and reservoir” .
New Journal of Physics, 18, 013013 (2010).



Conditional entropy production

e Part of the irreversibility stems from our ignorance e How to define Y and ® ?
about the environment. ¢ ¢

e Suppose we measure Y after it interacted with X. * Natural generalization of the flux:

Pxy = Pxy; = (1 @ M)pxy(1 ® M) O = szt r { (py — phz)lnpy}

<

p, = trY(M;MZpgf) B tr{(p _5)lnp }
— Y Y Y

. {A@} = generalized measurement operators acting on Y:

where py = szpgflz.

This is a conditional state: It 1s the state of XY, Z
conditioned on the measurement outcome being Z.
e Butvery often tr(py In py) = tr(py In py), so
e What 1s the entropy production and flux, conditioned on

these outcomes?

O =
S =SX'|2)—SX)+®,  where SX'|2) = ) p.S(py.)
Z Flux 1s physical; no subjective

component associated to information

is the quantum-classical conditional entropy :
acquired.



e The unconditional and conditional X’s are thus e One may show that

> = SX) - SX) + @ 0<Z <X

C U

> =S5X"z2) - SX)+ d
e Thus, the conditional entropy production
still satisfies a 2nd law (2.2 0).

e But 1t 1s also smaller than the
2. =2 —1 unconditional one:

where e Conditioning makes the process more

reversible.

I=SX)-85X'12) =Y p.Spy.|py)

<

is the Holevo y quantity (4.

K. Funo, Y. Watanabe and M. Ueda, “Integral quantum fluctuation theorems
under measurement and feedback control”. PRE, 88, 052121 (2013).

GTL and M. Paternostro, “Irreversible entropy production,

from quantum to classical”, To appear in Review of Modern Physics.
arxXiv:2009.076638

M. Naghiloo, J. J. Alonso, A. Romito, E. Lutz, K. Murch,
“Information Gain and Loss for a Quantum Maxwell’s Demon”. PRL 181, 030604 (2018).



CIM-?2: Continuously measured collisional models
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Information-theoretic quantities

e The unconditional dynamics is governed by * The conditional dynamics, on the other hand,
the stroboscopic map 1s governed by (up to a normalization)
— — TAT
pXt — g(pXt_l) =t rYt{ Ut(pXt_l X th) U;} pthCr - Cé)pzz‘('OXt—l|Ct—1) o trYt{MZtUt<pXt—1 ® th> Ut MZt}
e And its information content is thus * And 1ts information content 1s thus summarized
summarized by the von Neumann entropy by the quantum-classical conditional entropy
S(X,) = — tr{py Inpy ) SX,18) = ), PE) S(px,c)
Gt

Their difference Is the Holevo information:

IX,: £) = SX) = SX,18) = ) PCID(pyc | 1px) =0
s



Gain rate/Loss rate - ISS

e The change in Holevo information can have any sign:
AL=IX :0)—I(X_;:C_1)
e But we can split 1t into a Gain rate and a Loss rate

AlL=G,— L,
G=IX:2|(_)=IX:0)—IX :{_;) =0

L=1X,_y:6_)—1X,: 1) 20

Informational steady-state:
but



Thermodynamics

e The entropy flux/production 1s now the same as before:

e Unconditional:

AT = S(X) — S(X,_,) + AD,

e Conditional:
AZ? — S(Xt | gt) — S(Xt—l | Z:t—l) + A(Dt
= AT — AL
e Flux 1s again the same 1in both.



Minimal qubit models

Thermal ancilla qubit + partial SWAP.
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Minimal qubit models - Two-qubit ancilla

The other prepared in |+)

One ancilla thermal.

Sequential partial SWAPs
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Starting from the ISS:
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Single-shot scenario
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 Gaussian continuous weak measurements

e The theory of continuous measurements is further developed, and can go much deeper,

N
the case of continuous variables undergoing Gaussian-preserving dynamics.

e Let x=1(q,P;»9», P> -..) denote the vector of quadrature operators. Gaussian systems are
fully characterized by their 2 first moments:

e the average X = (x)

| | 1
. and the covariance matrix (CM) aljza({xl-,xj})—(xi)(xj).

e We must track both the conditional and unconditional dynamics.

e Unconditional means we monitor (there 1s still backaction) but we don’t care about the
results. Described by a Lindblad MEq.

Conditional dynamics 1s stochastic because we condition on random outcomes. Described
by a stochastic MEq.

A. Serafini, “Quantum Continuous Variables: A Primer of Theoretical Method” .

M. G. Genoni, L. Lami, and A. Serafini,

“Conditional and unconditional Gaussian quantum dynamics”,
Contemp. Phys. 8%, 331 (2016).



e The continuous measurement will cause the mean

X. to evolve stochastically according to the

e Unconditional variables evolve as 1n a ) .
Langevin equation:

Lindblad master equation:

_ dx, _
d;tu A%+ b = (A% +b) + (0,CT +ThHE®

, where C,I" are matrices and &(¢) is a vector of
where A,b depend on both unitary and white noises o(7)

dissipative dynamics.

e The CM, on the other hand, evolves

e Similarly, the CM evolves according to the deterministically:
Lyapunov equation:
d 0 _ 4 +06 A" +D - y(0)
o =Aoc.+ o0 — y(o
- :A6u+0uAT+D dt © ¢
dt
where D is called the diffusion matrix. where

¥(©0)=(6,C'+TYCo+T) >0

describes the information gained due to the
measurement.

M. G. Genoni, L. Lami, and A. Serafini, “Conditional and unconditional Gaussian quantum dynamics”,
Contemp. Phys. 8%, 331 (2016).



Thermodynamics of Gaussian CMs

e In the case of continuous measurements, the relevant quantity i1s the entropy production
rate.

e We formulate the thermodynamics of this model using a semi-classical representation 1n
terms of the Wigner function W(x) (standard approach does not work).

e The Wigner function, conditioned on a given outcome for the average, 1s VK(X\X).

e The variable X is classical, with probability distribution p(Xx).

e The conditional and unconditional Wigner functions are thus associated by a Kalman
filter:

W, (x) = JWC(x | Dp(E)dx

A. Belenchia, L. Mancino,GTL and M. Paternostro, “Entropy Production in Continuously Measured
Quantum Systems”, arXiv:1908.09382. npj Quantum Inf 6, 97 (2020).



e As an alternative representation of entropy, we can use

= — JWM(X)ln W (x)dx
and

S = — J p()'c)d)'cJWC(x | X)In W (x| x)dx

e Their difference represents the net amount of information acquired by the measurement
record:

I=S,—-8. >0

e This is the phase-space analog of the Holevo quantity. Exactly the same idea (4.

G. Adesso, D. Girolami, A. Serafini, "Measuring gaussian quantum information and correlations using the Rényi
entropy oforder 2”. PRL 109, 190502 (2012).



LJ Unconditional production/flux

e The unconditional Wigner function evolves

i - ° | | ransl in
according to a Fokker-Planck equation: The stochastic MEq 1s translated 1into

a stochastic Fokker-Planck equation :

ow ow.
E=d1V[J JStO] at

where where

=div|J+ Jsto

J = (Ax+b)W—§VW Jsto = W(o,CT +TT)E®)

1S a quasi-probability current.
e One can show that the flux does not

e The entropy production and flux rates are change:
" dx O =0
[, =2 — J'D7ly>0 c u
J W,

as i1ntuitively expected.

O = - ZJJTD‘IA dx

J. P. Santos, GTL, M. Paternostro, “The Wigner entropy productionrate”, PRL 118, 220601 (2017).



e Hence, as before, we will have

=5+, |
| M.=1I1 -1
[.=S +®,

e In particular, the netrate of information gain can be shown to be

I = %tr [D(Gc_l — au_l)] — %tr [)(((fc)ac_l] =L—-G

v/ The 1st term is the informationlossrate due to the dissipation (x D).
v The 2nd term is the information gain rate, due to the update matrix y(o.)
e In the steady-state I=0. But this does not mean we are no longer acquiring information.

e What it means is that G =L: the information acquired 1s balanced by the information
dissipated.
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| —
1 ‘-*
= Copenhagen setup 10| Homodyne |
—~ [ Receiver
=
e Optomechanical system continuously monitored by an © —
optical field.
e Competition: Thermal bath vs. Measurement. 1?
L | | |
e Quadratures of the mechanical mode: x = (g, p) 0 100 Ting(()ps) 500 400
¢ Unconditional dynamics tends to x, =0
6,=n+1/2+T /T,
e Conditional dynamics evolves instead to Informational steady-state:
dx r, Conditional dynamics relaxes
7R \/ Nl qbac(H)e(?) to a colder state, 6. < 6,
; which can only be maintained
o

C

dt

by continuously monitoring S.

— I_‘m(au _ Gc) — 477Fqba03
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FIG. 2. Stochastic entropy flux and production rates. a, The
stochastic entropy flux rates (light blue) for a sample of 10
trajectories. The dark blue line is the ensemble average over
all the trajectories. b, The stochastic entropy production rates
(light blue) and the ensemble average (dark blue), for the same
sample of trajectories.
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FIG. 3. Informational contribution to the entropy produc-
tion rate. We obtain the informational contribution (dark blue)
from the entropy production. The dashed (dot-dashed) line is
the differential gain of information due to the measurement
(loss of information due to noise input by the phonon bath).



Conclusions

e Knowing something about the bath makes the process less irreversible.
e The conditional entropy production quantifies this effect.

e We put forth a framework based on continuously monitored collisional models to address this
scenario:

e (Clear conditions for identifying informational steady-states.

e We also provide an experimental assessment of the entropy production

at the level of stochastic trajectories 1in a
gquantum optomechanical system.

Thank you! @

WWW.fmt.if.usp.br/~gtland:i



http://www.fmt.if.usp.br/~gtlandi

