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2nd law at the quantum level

e The degree of 1i1rreversibility of this process 1s quantified by the
entropy production:

PE
S =1(S: E)+S(pgl | pp)

= AS;+ @ I'(S : E) = S(pg) + S(pp) — S(psg)

pse = Ulps ® PE)UT

where S(pgl 1 pe) = tr(ppIn pi — prIn pp) v

b=t "E{ (PE — Pl’z)lnPE}

Ps
1s called the entropy flux.
e @ depends only on E. Measures change in the “thermodynamic
potential” Inpg Describes an enormous
variety of processes!
e If pEze—ﬁHE/ZE we get ® = — B0, (maybe a complicated U)

M. Esposito, K. Lindenberg, C. Van den Broeck, “Entropy production as correlation between system and reservoir” .
New Journal of Physics, 18, 013013 (2010).



Part of the irreversibility stems from our 1ignorance
about the environment.

Suppose we measure E after 1t interacted with S.

Pse = Psgp = (1 @ Mppgp(l @ M;j)

pr=1 "E(M;Mkﬂfz)

{M,} = generalized measurement operators acting on E:

This 1s a conditional state: It is the state of SE,
conditioned on the measurement outcome being k.

What 1s the entropy production and flux, conditioned
on these outcomes?

.= ) pS(py) — S(ps) + @,
k

How to define 2. and ®.?

C

Conditional entropy production

e Natural generalization of the flux:

@, =Y peer{ (g = ppynpg |
k

e If measurement 1s non-disturbing,
:zlpmﬁﬁk==Pé-
k

e Whence:
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Flux 1s physical; no subjective
component associated to information
acquired.



e The unconditional and conditional X’s are thus e One may show that

X = S(pg) — S(ps) + @ O<2. <2

.= ) piS(g) — Slpg) + @
k

e Thus, the conditional entropy production
still satisfies a 2nd law (2.2 0).

e Whence, e But it is also smaller than the

, unconditional one:
Z“c — 2 _%M(pS)

where  Conditioning makes the process more
reversible.
P9 = S0P — Y PSPs) = D PSPyl 109
k k

is the Holevo quantity (4.

K. Funo, Y. Watanabe and M. Ueda, “Integral quantum fluctuation theorems
under measurement and feedback control”. PRE, 88, 052121 (2013).

GTL and M. Paternostro, “Irreversible entropy production,
from quantum to classical”, arXiv:2009.07668

M. Naghiloo, J. J. Alonso, A. Romito, E. Lutz, K. Murch,
“Information Gain and Loss for a Quantum Maxwell’s Demon”. PRL 181, 030604 (2018).



4 Continuous weak measurements

e What about systems that are continuously monitored by a weak probe?
e Things become more interesting because now we have the entire measurementrecord to take into account.

e For instance, there will be both integral and differential information gains.
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H. M. Wiseman and G. J. Milburn, “Quantum Measurement and Control” .
K. Jacobs, “Quantum Measurement Theory”.



 Gaussian continuous weak measurements

e Experimentally relevant and easier to handle.
e Quadrature operators: x = (q,P1,9> Py ---)

e Average: X = (x)

1
. Covariance matrix (CM): al:j:E({xi,xj})—(xi)(xj).
e We must track both the conditional and unconditional dynamics.

e Unconditional means we monitor (there 1s still backaction) but we don’t care about the
results. Described by a Lindblad MEq.

e Conditional dynamics 1s stochastic because we condition on random outcomes. Described
by a stochastic MEq.

A. Serafini, “Quantum Continuous Variables: A Primer of Theoretical Method” .

M. G. Genoni, L. Lami, and A. Serafini, “Conditional and unconditional Gaussian quantum dynamics”,
Contemp. Phys. 8%, 331 (2016).



e The continuous measurement will cause the mean

X. to evolve stochastically according to the

e Unconditional variables evolve as: ) .
Langevin equation:

ax, =AX,+ b ax, v L ol
It u " = (Ax.+b)+ (6.C" +1"")E(2)
where A,b depend on both unitary and where C,I' are matrices and &(f) is a vector of
dissipative dynamics. white noises .
° Similarly, the CM evolves aCCOI"d'ing to the e The CM, on the other hand, evolves
Lyapunov equation: deterministically:
do, . do, T
=Aoc,+0,A" +D =Ac,+0. A" +D — y(o,)

dt dt

where D is called the diffusion matrix.
where

7(©0)=(6.C'+TH(Co+T) >0

(update matrix) describes the information
gained due to the measurement.

M. G. Genoni, L. Lami, and A. Serafini, “Conditional and unconditional Gaussian quantum dynamics”,
Contemp. Phys. 8%, 331 (2016).



Thermodynamics of Gaussian CMs

e In the case of continuous measurements, the relevant quantity i1s the entropy production
rate.

e We formulate the thermodynamics of this model using a semi-classical representation 1n
terms of the Wigner function W(x) (standard approach does not work).

e The Wigner function, conditioned on a given outcome for the average, 1s VK(X\X).

e The variable X is classical, with probability distribution p(Xx).

e The conditional and unconditional Wigner functions are thus associated by a Kalman
filter:

W, (x) = JWC(X | D)p(E)dx

A. Belenchia, L. Mancino, GITL and M. Paternostro, “Entropy Production in Continuously Measured
Quantum Systems”, arXiv:1908.09382. Accepted in npj Quantum Information.



e As an alternative representation of entropy, we use

= — JWM(X)ln W (x)dx

and

= Jp(@dchWC(x | 5)ln W.(x | H)dx

e Their difference represents the net amount of information acquired by the measurement
record:

I=S,-S.>0

e This is the phase-space analog of the Holevo quantity. Exactly the same idea 4.

G. Adesso, D. Girolami, A. Serafini, "Measuring gaussian quantum information and correlations using the Rényi
entropy oforder 2”. PRL 109, 190502 (2012).



LJ Unconditional production/flux

* The unconditional Wigner function evolves e The stochastic MEq is translated into
according to a Fokker-Planck equation: a stochastic Fokker-Planck equation :
oW, ow.
e =div|/+J
= divJ(W) Py [ Sto]
where where
D _ T T
JW)=(Ax+b)W,——VW, Jsto = Wlo L7 +17)5(1)
2

1S a quasi-probability current.
e One can show that the flux does not

e The entropy production and flux rates are change:
" dx O =0
Mn,=2|—J'D"'J>0 -
J W, as 1ntuitively expected.

u —_

O = ZJJTD‘lA dx

J. P. Santos, GTL, M. Paternostro, “The Wigner entropy productionrate”, PRL 118, 220601 (2017).

A. Belenchia, L. Mancino, GTL and M. Paternostro, “Entropy Production in Continuously Measured
Quantum Systems”, arXiv:1908.09382. Accepted in npj Quantum Information.



e Hence, as before, we will have

=5+, |
| M.=1I1 — 1
.=S +®,

e In particular, the netrate of information gain can be shown to be

I = %tr [D(Gc_l — au_l)] — %tr [)((GC)GC_I] =L-G

v/ The 1st term is the information lossrate due to the dissipation (x D).

v/ The 2nd term is the information gainrate, due to the update matrix y(o.)
e In the steady-state [=0. But this does not mean we are no longer acquiring information.

e What it means is that G =L: the information acquired 1is balanced by the information
dissipated.

GTL, M. Paternostro, A. Belenchia, Inf i | steadv-stat
“Thermodynamics and information in continuously monitored collisional models”, fielrnEI elriall sU=Elel =izl
In preparation.
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= Copenhagen setup 101 Homodyne | i
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e (Optomechanical system continuously monitored by an optical © —
field.
e Competition: Thermal bath vs. Measurement. 1;
| | | |
e Quadratures of the mechanical mode: x = (q,p) 0 100 200 300 400

Time (us)
e CM 0 |

e Unconditional dynamics tends to X, =0
6,=n+1/2+T,,I/T,

e Conditional dynamics evolves instead to Informational steady-state:

Conditional dynamics relaxes
X+ \/ 4;7Fqbaoc(t)§(t) to a colder state, 6. < 0,

which can only be maintained
by continuously monitoring S.

dx 1,
dt 2
do

C

dt

=1,(0,—0,) - 4’7Fqba0§
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FIG. 2. Stochastic entropy flux and production rates. a, The
stochastic entropy flux rates (light blue) for a sample of 10
trajectories. The dark blue line is the ensemble average over
all the trajectories. b, The stochastic entropy production rates
(light blue) and the ensemble average (dark blue), for the same
sample of trajectories.
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FIG. 3. Informational contribution to the entropy produc-
tion rate. We obtain the informational contribution (dark blue)
from the entropy production. The dashed (dot-dashed) line is
the differential gain of information due to the measurement
(loss of information due to noise input by the phonon bath).



Conclusions

e Knowing something about the bath makes the process less irreversible.
e The conditional entropy production quantifies this effect.
e But quantifying this for continuously monitored quantum systems is not trivial.
e We put forth a framework for GCV systems.
e Rich and clear physical interpretation.

e We also provide an experimental assessment of the entropy production
at the level of stochastic trajectories 1n a
quantum optomechanical system.
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