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All we see is data …1110000100010011100111101100…

We cannot see quantum systems…

How can we study the stochastic thermodynamics of quantum devices?

What is stochastic quantum thermodynamics?



• To measure a system we must send in a probe (or ancilla).  
• S+A interaction encodes information about S on A.  
• Extract information by measuring A. 

• Information-back action trade-off: the more information we want, the more we disturb 
the system.
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A simple example

• Qubit: apply unitary  then measure in the computational basis  where . 

• Start in .  

1. Sample first outcome  from . 

Update state to . 

2. Sample second outcome  from . 

Update state to . 

• Generates a bitstring of emitted symbols . 

• Probability of a sequence forms a Markov chain: .

U Px = |x⟩⟨x | x = 0,1

|ψ0⟩

x1 p(x1) = |⟨x1 |U |ψ0⟩ |2

|ψ1⟩ = |x1⟩

x2 p(x2 |x1) = |⟨x2 |U |x1⟩ |2

|ψ2⟩ = |x2⟩

x1:n = (x1, …, xn)

P(x1, …, xn) = p(xn |xn−1)…p(x2 |x1)p(x1)



Non-projective measurements lead to long memory

• Apply a set of Kraus operators . Starting at : 

1. Sample first outcome  from . Update state to . 

2. Sample second outcome  from . Update state to . 

 

                and        

• String probability is now  which is highly non-Markovian.  

• Evolution of the system is Markovian. But output data is not.  

• Looks like a Hidden Markov Model (HMM): 
• Quantum system is hidden.  
• Measurement outcomes (what we see) = emitted symbols

∑x
F†

x Fx = 1 ρ0

x1 p(x1) = tr{Fx1
ρ0F†

x1
} ρx1

=
Fx1

ρ0F†
x1

p(x1)

x2 p(x2 |x1) = tr{Fx2
ρx1

F†
x2

} ρx1:2
=

Fx2
ρx1

F†
x2

p(x2 |x1)

p(xn+1 |x1:n) = tr{Fxn+1
ρx1:n

F†
xn+1} ρx1:n+1

=
Fxn+1

ρx1:n
F†

xn+1

p(xn+1 |x1:n)

P(x1:n) = p(xn |x1:n−1)p(xn−1 |x1:n−2)…p(x2 |x1)p(x1)

ρ0 ρx1
ρx1:2

ρx1:3

x1 x2 x3

…1110000100010011100111101100…
GTL "Patterns in the jump-channel statistics of open quantum systems,"  arXiv 2305.07957



Instruments: simplify and generalize

• Instruments = superoperators: 
 
   

• Update rules become:  
 
        

 
and 

   

Mxρ = FxρF†
x

p(xn+1 |x1:n) = tr{Mxn+1
ρx1:n}

ρx1:n+1
=

Mxn+1
ρx1:n

p(xn+1 |x1:n)

Data Data

Prob. of a string:  

 

Conditional state 

 

           

P(x1:n) = tr{MxN
…Mx1

ρ0}

ρx1:n
= MxN

…Mx1
ρ0/P(x1:n)

Instruments represent the 
most general kind of 

measurement possible. 

Also encompass inefficient 
measurements  

 
Mxρ = ∑

k∈x

FkρF†
k

Wiseman, H. M. & Milburn, G. J. Quantum Measurement and Control. (Cambridge University Press, New York, 2009)



Unconditional dynamics
• If we measure but don’t record the outcome the state of the system still changes 

(measurement back action) 

• Ex: collision model or master equation.  
 
                                    where                 

•  is a quantum channel.  

• After  steps: . 

• Describes the average impact that the  
interaction with the ancilla causes in the system.

ρ′￼ = ∑
x

pxρ′￼x = ∑
x

Mxρ = ℳρ ℳ = ∑
x

Mx

ℳ

n ρn = ℳnρ0

System

Ancilla

Interaction Data
New  
Ancilla Data



Connection to Hidden Markov Models
•  = prob. that system goes from  while emitting a symbol . 

• If HMM state is  the prob. that we observe symbol  is  
 
                                           

• If outcome was , bayesian update the state of the hidden layer: 
 

                                      

• Define substochastic matrices:  and . Then  

                                 and                

P(x, σ |σ′￼) σ′￼ → σ x

π(σ′￼) x

p(x) = ∑
σ,σ′￼

P(x, σ |σ′￼)π(σ′￼)

x

π(σ |x) =
P(x, σ)

p(x)
=

∑σ′￼
P(x, σ |σ′￼)π(σ′￼)

p(x)

(Mx)σ,σ′￼
= P(x, σ |σ′￼) ⟨1 | = (1,…,1)

p(x) = ⟨1 |Mx |π⟩ |πx⟩ =
Mx |π⟩
p(x)

A

B

C

x = 1

x = 0

x = 0
x

=
1

x = 1

x = 0

Compare with 

 
 

and  
 

 

p(x) = tr{Mxρ}

ρx =
Mxρ
p(x)

Milz, S. & Modi, K. “Quantum Stochastic Processes and Quantum non-Markovian Phenomena”.  
PRX Quantum 2, 030201 (2021)



Prediction

• Mixed state representation & unifilar models: if we know  and we  

observe  we know with certainty that the system evolved to . 

• Usefulness: data compression 
 
                             

If we can know the internal state, we can make statistical predictions 
of future outcomes. 

• Example: figuring out the internal state of a large language model.

ρx1:n

xn+1 ρx1:n+1

p(xn+1 |x1:n) = p(xn+1 |ρx1:n
)

F. Binder, J. Thompson, M. Gu, “Practical unitary simulator for non-Markovian complex processes,”  
Phys. Rev. Lett. 120 240502 (2018).



Quantum jumps

GTL "Patterns in the jump-channel statistics of open quantum systems,"  arXiv 2305.07957

GTL, Michael J. Kewming, Mark T. Mitchison, Patrick P. Potts "Current fluctuations in open quantum systems: Bridging the gap between 
quantum continuous measurements and full counting statistics," PRX Quantum 5, 020201 (2024)

Mark Mitchison Michael Kewming Patrick Potts



• Consider a quantum master equation  
 

                                        

• The infinitesimal evolution can be written as a set of instruments:  
 
                                                 

 
(jump)                        for                          
 

(no jump)                              where        

•  is infinitesimal: most of the time the system evolves with no jump.

dρ
dt

= ℒρ = − i[H, ρ] +
r

∑
x=1

LxρL†
x − 1

2 {L†
x Lx, ρ}

ρt+dt = eℒdtρt = ∑
x

Mxρt

Mxρ = dt LxρL†
x = dt 𝒥xρ x = 1,2,…, r

M0ρ = ρ + dtℒ0ρ ℒ0ρ = − i[H, ρ] −
1
2

r

∑
x=1

{L†
x Lx, ρ}

px = tr{Mxρ} = dttr{L†
x Lxρ}

GTL, Michael J. Kewming, Mark T. Mitchison, Patrick P. Potts "Current fluctuations in open quantum systems: Bridging the gap between 
quantum continuous measurements and full counting statistics," PRX Quantum 5, 020201 (2024)



The t and the N ensembles
• -ensemble:  fixed.  is random. 

• Instruments:      and            for  

• Trajectory:  

• -ensemble:  is fixed.  is random. 

• Instruments:   

•  Trajectory:                         

• Quantum jumps without time tags: we know a jump happened, but do not know when 

• Instruments: .  

• Trajectory: 

t tf N̂

M0ρ = (1 + dtℒ0)ρ Mxρ = dt LxρL†
x x = 1,2,…r

00000x100000000x200000…

N N ̂tf

Mx,τρ = 𝒥xeℒ0τρ

(x1, τ1), (x2, τ2), …, (xN, τN) τj = tj − tj−1

Mx = − 𝒥xℒ−1
0

x1, x2, …
A. A. Budini, R. M. Turner, and J. P. Garrahan. “Fluctuating Observation Time Ensembles in the Thermodynamics of Trajectories.” Journal of 
Statistical Mechanics: Theory and Experiment 2014 (3): P03012 (2014)



Quantum jumps without time tags

• Lattice with L sites, each of which can have 0 or 1 particles.  

• excitations can be injected on the left ( ) 

• or extracted on the right ( ).  

• And they can tunnel back and forth through the chain: not monitorable.  

• All we would observe are symbols: .

IL

ER

ILILER

IL ER

IL IL ER

t1 t2 t3

Prob. of a string:  

 

Conditional state 
 

P(x1:n) = tr{MxN
…Mx1

ρ0}

ρx1:n
= MxN

…Mx1
ρ0/P(x1:n)

GTL "Patterns in the jump-channel statistics of open quantum systems,"  arXiv 2305.07957
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ER



Direct and indirect observation of quantum jumps



Fink et. al., “Signatures of a dissipative phase transition  
                           in photon correlation measurements” 
Nature Physics 14 365-369 (2018)

Hofmann, et. al.  
“Measuring the Degeneracy of Discrete Energy 
Levels Using a GaAs / AlGaAs Quantum Dot,”  
Phys Rev. Lett 117, 206803 (2016)

Quantum jumps = observable clicks in the environment Quantum jumps observed indirectly  
through continuous measurements of the system
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Double quantum dot - 3-level system

• Two dots + Coulomb blockade  
 3 levels only:  

• One-to-one mapping between system transition and  
jump channel 

• e.g.  or , etc. 

→ |0⟩, |L⟩, |R⟩
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Stochastic operation of thermal machines

Abhaya Hegde

Abhaya S. Hegde, Patrick P. Potts, GTL, “Time-resolved Stochastic Dynamics of Quantum Thermal Machines,” arXiv:2408.00694

Patrick Potts



• Double quantum dot  

• Engine process: uses thermal gradient to extract chemical work .  

• Refrigerator process: uses chemical work to make heat flow from 
cold to hot. 

TH, μH TC, μC

Ih

Eh
Ic

Ec

Eh Ic

Ih Ec

• There can also be “idle cycles” (bounces) 

• “Hot bounce” 

• “Cold bounce” 

Can we identify individual cycles  
solely from a bitstring? 

 
IhEcIcIhEhEcIhIcEhIc

Impossible in general, if excitations  
are indistinguishable

{ IcIhEhEc

IcIhEhEc

 =IcIhEhEc

Manzano, Gonzalo, and Roberta Zambrini “Quantum Thermodynamics under Continuous Monitoring: A General Framework,”  
AVS Quantum Science 4 (2): 025302 (2022).



Single excitation assumption

• Result: for cycles to be identifiable the string must always have 
injections followed by extractions. 
 
                          

• Condition: Hilbert space must be split in 2.  

•  injects  post-injection subspace. 

•  extracts  post-extraction subspace. 

…I∙E∙I∙E∙I∙E∙I∙E∙I∙E∙…

L†
αj →

Lαj →

{

Extraction  
to bath α

{

Injection   
from bath α

{ {

Unitary 
work

Work  
reservoirs

dρ
dt

= − i[H, ρ] + ∑
n

D[Kn]ρ + ∑
α∈{h,c}

∑
j

γ−
αjD[Lαj]ρ + γ+

αjD[L†
αj]ρ

(
0 0 0
0 0 0
0 0 0)
Post  
injection

Post  
extraction

Hilbert space = 



Bitstrings of jumps  bitstrings of cycles →

 

• We can use this to answer the following questions:  

• What is the probability that the next cycle is of type X and takes a time 𝛕? 

• How are cycles correlated with each other? 

• What is the average time required to complete each cycle? 

• How many idle cycles happen between two useful cycles?

…I∙E∙I∙E∙I∙E∙I∙E∙… = …X∙X∙X∙X∙…
EL IR

IL ER

IL

EL IR

ER

X = 1

X = 2

X = 3

X = 4

• Define instruments  
 

                                with 2 emitted symbols:  and cycle duration MXτ =
τ

∫
0

dt 𝒥EX
eℒ0(τ−t)𝒥IX

eℒ0t X = 1,2,3,4 τ



Cycle probabilities

• Then prob. a cycle is of type  and takes a time :  . 

• If we don’t care about how long a cycle takes, we just need to marginalize the instrument:  
 

                                         

• Prob. of obtaining each cycle type  
 
                                          

• Conditional cycle times: if cycle is of type , how long it takes? 
 

                               

X τ pX,τ = tr{MXτπE}

MX = ∫
∞

0
dτ MXτ

pX = tr{MXπE}

X

E(τ |X) =
∞

∫
0

dτ τ
pX,τ

pX

 = Jump Steady-State 
 

Correct state to get  
long-time statistics

πE

Relation to steady-state currents: 

I =
p1 − p2

E(τ)

Correlations between cycles: 
 

P(X1, τ1, …, Xn, τn) = tr{MXnτn
…MX1τ1

πE}



Double quantum dot or 3-level system
3

and L0 = L �
P

↵
(JE↵ + JI↵) is the no-jump superop-

erator. In Eq. (6), we have introduced the jump steady-
state [61, 63]

⇡E =
(JEh + JEc)⇢ss

tr
�
(JEh + JEc)⇢ss

 2 HE , (8)

to ensure the jump sequence is stationary.
Marginalizing Eq. (6) over all (Xi, ⌧i) except one yields

the probability that a single cycle is of type X and du-
ration ⌧ ,

p
X
(⌧) = tr

�
O

X,⌧
⇡E

 
. (9)

Integrating over ⌧ yields the probability that the cycle is
of type X:

p
X

=

Z 1

0
d⌧ p

X
(⌧) = tr

�
OX⇡E

 
, (10)

where OX =
R1
0 d⌧ OX,⌧ = JEXL�1

0 JIXL�1
0 .

The average cycle time given it is of type X reads

E(⌧ | X) =
1

p
X

Z 1

0
d⌧ ⌧ p

X
(⌧). (11)

In [61], we show

E(⌧) =
4X

X=1

E(⌧ | X)p
X

=
2

Khc
, (12)

where Khc is the dynamical activity of the baths repre-
senting the average number of jumps per unit time in the
steady-state.

The p
X

in Eq. (10) represent the relative occurrence
of each cycle type over many trajectories, regardless of
their duration. The proportion of p1/2 over p3/4 yields
information on the intermittency of the machine, reveal-
ing how often useful cycles occur over idle ones overall.
In [61], we prove that p1/2 and the excitation current
from Eq. (5) are related by

Iex =
p1 � p2
E(⌧)

, (13)

which provides a fundamental connection between usual
steady-state currents and our results: the system func-
tions as an engine when p1 > p2, and as a refrigerator
when p1 < p2.

Statistics of useful cycles.— Drawing on the concept
of intermittency, we can further address the distribution
of idle cycles and the intervals between useful ones. Let
Ou = O1+O2 and Oid = O3+O4 denote the superoper-
ators associated with useful and idle cycles, respectively
(and similarly for Ou,⌧ and Oid,⌧ ). We find the probabil-
ity of n idles between two useful cycles to be [61]

Pu(n) =
tr
�
OuOn

idOu⇡E

 

tr
�
Ou⇡E

 , n = 0, 1, 2, . . . (14)

FIG. 2. (a) Schematic of a three-level maser connected to
hot and cold baths and driven by a Rabi drive, illustrating
the four jump processes induced by the baths. All cycles for
this model are shown in (b-e) with (b) X = 1: work cycle,
(c) X = 2: refrigeration cycle, (d) X = 3: idle hot, and
(e) X = 4: idle cold.

and, similarly, the time interval t between them to be [61],

Pu(t) =

1Z

�1

dz

2⇡

tr
� eOu,z(1� eOid,z)�1Ou⇡E

 

tr
�
Ou⇡E

 eizt, (15)

where eOX,z =
R1
0 d⌧ e�iz⌧OX,⌧ . These probabilities

provide a refined overview on the performance of the ma-
chine. Remarkably, both these equations fully account
for the statistical dependence between cycles. This dis-
cussion concludes our characterization of the questions
posed in the beginning, taking into account not only the
behavior of individual cycles but also their correlations
in sequences of arbitrary length.
Example: Three-level system.— We apply our results

to a three-level maser [1, 64–72] whose schematic is de-
picted in Fig. 2. It is coupled to hot and cold baths at
energy !↵ and temperature T↵ with their populations
following a Bose-Einstein distribution given by n̄↵ =
[exp(!↵/T↵) � 1]�1. The maser is driven by a Hamilto-
nianH(t) = (!h�!c)�11+!h�22+✏(ei!dt�01+e�i!dt�10)
with a Rabi drive of strength ✏ and frequency !d. The
jump operators are Lh = �02, Lc = �12 (and Kn = 0)
with rates ��

↵
= �↵(n̄↵ + 1) and �+

↵
= �↵n̄↵. Here,

�ij = |iihj| are the transition operators.
The post-extraction subspace is spanned by {|0i, |1i},

and the post-injection by {|2i}. As anticipated, the
Hamiltonian is block diagonal in the joint basis of these
subspaces. In this model, we find that the excitation
current is directly related to the steady-state heat and
work currents as Q̇h = !hIex, Q̇c = �!cIex, and
Ẇ = !dIex [72] and add up to zero only at resonance.
Explicit formulas for the the cycle probabilities of this

model are provided in [61]. Figure 3 (b) illustrates pX(⌧)
[Eq. (9)] as a function of time. The wiggles are reminis-
cent of coherent Rabi oscillations between |0i and |1i. For
large ⌧ , all probabilities scale as p

X
(⌧) ⇠ e��⌧ cos(✏⌧)

where � = (�h + �c)/2.
The marginals pX [Eq. (10)] are shown in Fig. 3 (c) as

a function of ratio of bath temperatures. The plot high-

X = 1 X = 2

X = 3 X = 4

4

FIG. 3. (a-d) Statistics of cycles in three-level maser from Fig. 2. (a) Probability of observing a cycle X within a duration ω
[Eq. (9)] at resonance εd = εh→εc and Th/Tc = 10. (b) Total probability of observing a cycle X [Eq. (10)] and (c) expectation
values for cycle duration [Eqs. (11), (12)] as a function of the ratio of bath temperatures. A vertical line at Th/Tc = εh/εc

separates the refrigerator and engine regimes. The inset shows all expectation values nearly converge at resonance. (d) Mean of
intervening idle cycles between useful cycles and ratios of fraction of idle-to-useful times against bath gradient. The parameters
are fixed (in units of Tc = 1) at ϑh = ϑc ↑ ϑ = 0.05, εh = 8, εc = 2, εd = 4, ϖ = 0.5 unless mentioned otherwise.

tropy production currents, as Q̇h = ωhIex, Q̇c = →ωcIex,
Ẇ = ωdIex and !̇ = εIex, where ε = ωh/Th → ωc/Tc.
The second law !̇ ↑ 0 confirms the conditions for engine
and refrigeration regimes, depending on the sign of ε.

On the level of individual stochastic events, idle cycles
(X = 3, 4) are entropy-neutral, while engine (X = 1) and
refrigeration (X = 2) cycles produce entropy ±ε, respec-
tively. The average entropy produced per cycle is there-
fore E(!cyc) = ε(p1 → p2), which relates to the steady-
state entropy production rate as !̇ = E(!cyc)/E(ϑ). The
variance in entropy production within each cycle reads

Var(!cyc) = ε2
[
(1→ pid)→ (p1 → p2)

2
]
, (15)

where pid := p3 + p4 is the probability of idle cycles.
This variance vanishes in the absence of coherent drive
(ϖ = 0 implying pid = 1, p1 = p2 = 0) and is bounded
by ε2(1 → pid) when p1 = p2. Thus, the fluctuations in
entropy production are directly related to how often the
machine fails to produce useful cycles.

Intermittency of a machine.— These findings show
that thermodynamic quantities can vary significantly be-
tween individual cycles, highlighting the role of the ma-
chine’s regularity or intermittency in its performance.
Despite this variability, due to Q̇h = ωhIex and Q̇c =
→ωcIex, these fluctuations leave the steady-state e”-
ciency una#ected, with ϱ = 1 + Q̇c/Q̇h = 1 → ωc/ωh.
This perspective aligns with Ref. [76], wherein the need
for a complementary metric to characterize small-scale
machines was suggested.

Intermittency as a measure should capture the distri-
bution of idle cycles as a proxy for consistency in heat
flow. Concretely, intermittency can be characterized by
the average number of idle cycles between two useful
ones. Since the typical thermodynamic variables cannot
witness idle cycles, their presence is inferred from only
the time the machine spends abstained from transferring
heat. Thus, in a manner analogous to the previous defi-
nition, the average fraction of time spent performing idle

cycles provides another aspect of intermittency, particu-
larly when idle cycles occur on a di#erent timescale than
useful ones. A perfectly regular machine — one where
only useful cycles occur — would have zero intermittency.
For the three-level maser, characterizing intermittency

is greatly simplified since cycles are independent. In
other words, these cycles form renewal processes. The
trajectory probability from Eq. (6) factors into a prod-
uct because the post-injection subspace is singleton (|2↓).
The average number of idles n between useful ones, and
the fraction of average idle-to-useful times T appear as
[62]

↔n↓ = pid
pu

=
p3 + p4
p1 + p2

, T =
p3E(ϑ |3) + p4E(ϑ |4)
p1E(ϑ |1) + p2E(ϑ |2) , (16)

both of which are plotted in Fig. 3 (d). Assuming ςh =
ςc, we find ↔n↓ ↑ 1 and thus the machine operates ir-
regularly. Selecting an appropriate ratio of bath temper-
atures, e.g., Th/Tc ↗ 9, enables quicker cycle comple-
tion but results in a higher participation of idle cycles.
This emphasizes the subtle trade-o#s involved in balanc-
ing two aspects of intermittency. The case for thermal
machines whose cycles are not independent is treated in
Sec. S5 of [62].
Conclusions.— We showed how to unravel the time-

dependent statistics of quantum thermal machines, en-
abling classification of stochastic dynamics into distinct
cycles based on how they interact with di#erent resource
reservoirs, determination of cycle occurrence frequencies,
and cycle durations. Our results encompass all statis-
tical correlations between cycles, and also connect with
known results in FCS for the average excitation current
and dynamical activity. This approach provides a new
avenue for characterizing quantum thermal machines us-
ing experimentally accessible data. In particular, our for-
malism could be readily employed to analyze, e.g., meso-
scopic transport in quantum dot experiments shedding

⟨n⟩ =
pid

pu
=

p3 + p4

p1 + p2
, T =

p3E(τ |3) + p4E(τ |4)
p1E(τ |1) + p2E(τ |2)

,
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Pedro Harunari

See also poster by Guilherme Fiusa this afternoon!



From quantum to classical master equation

• Any quantum master equation  
 

                                              

• Can be converted to a classical rate equation. Define . Then  

 

                 ,                

• If eigenbasis of  does not change in time, the rate equation fully specifies the dynamics.

dρ
dt

= − i[H, ρ] + ∑
k

D[Lk]ρ

ρt = ∑
x

px(t) |xt⟩⟨xt |

dpx

dt
= ∑

y≠x
{Wxy(t)py − Wyx(t)px} Wxy(t) = ∑

k

|⟨xt |Lk |yt⟩ |2

ρ(t)



• Also useful as an approximation technique. Ex:  
 

 

• In the basis  
 
 

dρ
dt

= − i[g(c†
1 c2 + c†

2 c1), ρ] + γh(1 − fh)D[c1] + γh fhD[c†
1 ] + γc(1 − fc)D[c2] + γc fcD[c†

2 ]

|0⟩, |L⟩, |R⟩

W =

0 γh(1 − fh) γc(1 − fc)

γh fh 0 4g2

γh + γc

γc fc
4g2

γh + γc
0

TH, μH TC, μC

Ih

Eh
Ic

Ec

K. Prech, P. Johansson, E. Nyholm ,GTL, C. Verdozzi , P.  Samuelsson , P. P. Potts 
“Entanglement and thermokinetic uncertainty relations in coherent mesoscopic transport”. Phys. Rev. Res. 5, 023155 (2023).
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Exact for the average current.  
Pretty good for the fluctuations.

• Derived using perturbation theory



Counting observables
• Steady-state = ensemble thing.  

• At the stochastic level, system is always jumping up and down. 
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Counting variables  

Build physical currents  
through counting observables 
 
              

Weights  determine the physics. 
Example: current to the left bath 
               
 
Beyond physics: 

 appends contextual meaning

N̂xy(t)

𝒬̂(t) = ∑
x,y

νx,yN̂xy(t)

νxy

ν0L = − νL0 = 1

νxy



Full Counting Statistics
• FCS deals with the long-time statistics of counting observables. 

• Define the tilted matrix (  = counting field) 
 

                                                           

• And define the generalized master equation  
 

                                           

 

Then                               

ξ

𝕎ξ
xy = {

Wxyeiξνxy x ≠ y

−∑z Wzx x = y

dpξ
x

dt
= ∑

y

Wξ
xypξ

y

Pt(𝒬) =
∞

∫
−∞

dξ
2π

e−iξ𝒬(∑
x

pξ
x)

All cumulants are extensive: 
 

    ( current) 
 

     
 

noise/diffusion coefficient/scaled 
variance.  

(not an actual variance) 

 is the thing in a TUR. 

E(𝒬) = Jt J =

var(𝒬) = Dt

D =

D



Stochastic excursions

• Starts when system leave A.  

• Ends when system first comes back to A.  

• Generalizes the notion of cycles. 

• Excursion time  is random: first passage time. Well known and extensively studied. 

• Our question: statistics of counting observables within a single excursion .
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Q̂( ̂T)

time
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Ongoing work

• We have found a way to compute : joint prob. that excursion takes a given time and 
counting observable has a given value. Can also compute . 

• Exchange FT: if  = entropy production then . 

• Valid at the level of a single excursion. 

• Connection with steady-state quantities: let . Then  
 

      where       

 

      where   .     

P(Q, T)
P(Q1, Q2, …, T)

Q̂ = Σ̂ P(Σ) = e−ΣP(−Σ)

̂Ttot = ̂T + ̂Tres

J =
E(Q̂)

μ
μ = E( ̂Ttot)

D =
var(Q)

μ
+

E(Q̂)Δ2

μ3
−

2E(Q̂
μ

cov(Q̂, ̂T) Δ2 = var( ̂Ttot)

A

B



Conclusions

• Sequential quantum measurements = time-series of correlated stochastic outcomes. 

• Bayesian inference of the quantum state, given outcomes.  

• Unveiling the thermodynamics from measurement data.  

• Stochastic operation of a thermal machine. 

• Open question: machine intermittency vs. current fluctuations? 

• Stochastic excursions: so far classical, but very exciting. 
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Conclusions

• Sequential quantum measurements = time-series of correlated stochastic outcomes. 

• Bayesian inference of the quantum state, given outcomes.  

• Unveiling the thermodynamics from measurement data.  

• Stochastic operation of a thermal machine. 

• Open question: machine intermittency vs. current fluctuations? 

• Stochastic excursions: so far classical, but very exciting. 

Thank you!
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