
Irreversible entropy production: From classical to quantum

Gabriel T. Landi

Instituto de Física da Universidade de São Paulo, 05314-970 São Paulo, Brazil

Mauro Paternostro*

Centre for Theoretical Atomic, Molecular and Optical Physics,
School of Mathematics and Physics, Queen’s University Belfast,
Belfast BT7 1NN, United Kingdom

(published 24 September 2021)

Entropy production is a key quantity in any finite-time thermodynamic process. It is intimately tied
with the fundamental laws of thermodynamics, embodying a tool to extend thermodynamic
considerations all the way to nonequilibrium processes. It is also often used in attempts to provide
the quantitative characterization of logical and thermodynamic irreversibility, stemming from
processes in physics, chemistry, and biology. Notwithstanding its fundamental character, a unifying
theory of entropy production valid for general processes, both classical and quantum, has not yet been
formulated. Developments pivoting around the frameworks of stochastic thermodynamics, open
quantum systems, and quantum information theory have led to substantial progress in such endeavors.
This has culminated in the unlocking of a new generation of experiments able to address stochastic
thermodynamic processes and the impact of entropy production on them. This review aims to provide
a compendium on the current framework for the description, assessment, and manipulation of entropy
production. Formal aspects of its formulation and the implications stemming from the potential
quantum nature of a given process, including a detailed survey of recent experiments, are both
presented.
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I. INTRODUCTION

In every finite-time process, entropy may flow from one
system to another. However, entropy does not satisfy a
continuity equation, so it may also be irreversibly produced
(Carnot, 1824; Clausius, 1854, 1865). Such entropy produc-
tion (Σ) is always non-negative and zero only in the limiting
case where the process is reversible. It therefore serves as the
key quantity behind the second law of thermodynamics, which
can be stated mathematically as

Σ ≥ 0: ð1Þ

Albeit compact, this expression has far-reaching conse-
quences, as it places severe restrictions on the types of
transformations allowed in a physical process. At a founda-
tional level, the statement embodied by Eq. (1) manifests the
lack of time reversal in finite-time processes and stems from
the existence of an arrow of time (Eddington, 1928;
Schnakenberg, 1976; Pomeau, 1982; Luo, Van den Broeck,
and Nicolis, 1984; Mackey, 1989, 1992; Qian, 2001a; Jiang,
Qian, and Zhang, 2003; Maes and Netocyny, 2003; Gaspard,
2004; Costa, Goldberger, and Peng, 2005; Seifert, 2005;
Porporato, Rigby, and Daly, 2007; Blythe, 2008; Parrondo,
Van den Broeck, and Kawai, 2009; Batalhão et al., 2015).
Hence, the characterization and assessment of irreversible
entropy production is one of the most important tasks in
nonequilibrium physics.
The formulation of the entropy production problem, how-

ever, is not universal. It depends on the underlying physical
system, as well as its governing dynamical laws. Despite this,
during the last century several widely applicable frameworks
have been developed, from Onsager’s reciprocity theory
(Onsager, 1931a; de Groot and Mazur, 1961) to the celebrated
fluctuation theorems (Esposito, Harbola, and Mukamel, 2009;
Campisi, Hänggi, and Talkner, 2011; Goold et al., 2016;
Vinjanampathy and Anders, 2016). More recently the dem-
onstrated possibility to control elementary quantum systems
has drawn attention to the potential for thermodynamic
applications in the quantum domain. This is the primary
drive toward a formulation of a theory of entropy production
capable of encompassing both classical and quantum features.
The goal of this review is to provide an overview of the

progress in this formulation. Our approach will be centered
around a unified picture of the second law, described in terms
of global system-environment quantum unitary interactions;
see Sec. III. This allows us to establish a link with information
theory and construct entropy production solely in terms of
information-theoretic quantities. The result is a generalized
form of the second law, valid beyond the standard paradigms
of thermodynamics, but with classical results recovered in the
suitable limit. This approach also has a clear operational
interpretation, with irreversibility emerging from the restric-
tions on the allowed set of operations for a given thermody-
namic process. For a broader perspective on the developments
in quantum thermodynamics over the last two decades, see
Binder et al. (2019).
The results of Sec. III are central to this review. Before

arriving there, we establish the notation and jargon in Sec. I.A,
then discuss in Sec. II why the entropy production problem is

relevant. We then explore the consequences and ramifications
of such a unified formulation. Section IV focuses on infor-
mation-theoretic corrections to Landauer principle and the
role of classical and quantum correlations in heat flow.
Section V embodies another essential part of the review.
We use the concepts developed in Sec. III as building blocks to
assess the entropy production in more general types of
dynamics, constructed in terms of a collisional model. This
allows us to address the classical limit as a particular case of
the quantum formulation.
The link between information and thermodynamics has

other far-reaching consequences, as it allows information to be
cast as a resource, on equal footing with traditional thermo-
dynamic resources such as heat and work. That is, information
can be consumed, stored, or interconverted into other resour-
ces. And it can be used to fuel thermodynamic tasks, such as
Maxwell’s demon engines. This is the topic of Sec. VI. In the
quantum domain this acquires additional significance due to
the possibility of manipulating quantum coherence, as well as
quantum correlations such as discord and entanglement. How
these features are implemented within a quantum formulation
of the entropy production problem is a central theme of this
review.
Finally, we discuss applications and experiments in

Secs. VII and VIII. There is an inevitable arbitrariness on
the choice of papers to cover, and we have chosen to address
those that we believe (i) are representative of the types of
problems the community is currently interested in, and
(ii) have the potential to open unexplored avenues of research.
Concerning the experiments, we have also tried to focus on
those contributions that specifically characterize the entropy
production at the quantum level.
We finish this review in Sec. IX by taking a step back to

look at the larger picture. We compare the formulation put
forth in Sec. III to other approaches, both historical and
modern. The main argument we make is that the second law is
always formulated by starting with a basic physical principle
such as those of Carnot, Clausius, and Kelvin, or statements
such as “the entropy of the Universe never decreases.” One
then asks what the overarching consequences of this principle
are and which other principles can be derived from it. This
provides a measure of how general it is. The information-
theoretic formulation of Sec. IX falls under this category.
However, the basic principle’s main advantage is that it starts
by assuming full knowledge of all degrees of freedom
involved, thus allowing for precise mathematical statements.
Irreversibility is then constructed operationally by specifying
which sources of information can, or cannot, be known in a
given process. This feature greatly generalizes the breadth and
scope of the second law. It not only contains classical
statements as particular cases, it can also go much further,
removing the constraints in the standard thermal paradigms,
such as the need for macroscopically large thermal baths.

A. Irreversible thermodynamics

To clarify the basic ideas, as well as fix the notation, we
start with a textbook review of entropy production in classical
thermodynamics (Fermi, 1956; Callen, 1985). We consider the
simplest scenario of a system S interacting with multiple
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reservoirs E1; E2;…, each with a temperature Ti. The flow of
entropy from S to Ei during a given process is given by the
famous Clausius expression (Clausius, 1854, 1865)

Φi ¼
QEi

Ti
; ð2Þ

where QEi
is the heat that entered Ei (positive when energy

leaves the system).1 According to the Clausius principle, the
corresponding change in the system entropy SS will be
bounded by

ΔSS ≥ −
X
i

QEi

Ti
. ð3Þ

Motivated by this inequality, one then defines the entropy
production as

Σ ¼ ΔSS þ
X
i

QEi

Ti
≥ 0: ð4Þ

The entropy of a system may either increase or decrease
during a process, so ΔSS does not have a well-defined sign.
This is due to the termsQEi

=Ti, since heat can flow both ways.
The only quantity that has a well-defined sign is the entropy
production Σ.
In the past, the terms entropy and entropy production were

often used interchangeably, but they have evolved to have
entirely different meanings. Entropy refers to a property of the
system whereas entropy production refers to transformation-
stransformations undergone by the system. Thus, entropy
production is actually closer in meaning to the original use of
the word entropy, as coined by Clausius in the 1860s
(Clausius, 1854, 1865), in which tropé refers to the word
“transformation” in ancient Greek.
The first law of thermodynamics states that the total change

in internal energy of the system will be given by

ΔHS ¼ W −
X
i

QEi
; ð5Þ

where W is the work performed by an external agent, with
W > 0 indicating that work was performed on the system.
Alternatively, one may also simply view W as the mismatch
between the local energy changes ΔHS and QEi

in system and
baths. Focusing on the case where there is a single reservoir
present, if we substitute QE ¼ W − ΔHS into Eq. (4) we may
write the entropy production as

Σ ¼ βðW − ΔFSÞ; ð6Þ

where β ¼ 1=T (kB ¼ 1) and ΔFS ¼ ΔHS − TΔSS is the
change in free energy of the system. For multiple baths at

different temperatures, it is in general not possible to express Σ
in this way and one must use Eq. (4).
It is often useful to express the results in terms of the

entropy production rate _Σ ¼ dΣ=dt. In this case the second
law is usually written as

dSS
dt

¼ _Σ − _Φ; _Σ ≥ 0; ð7Þ

with _Φ ¼ P
i
_QEi

=Ti the entropy flow rate. Equation (7) is
particularly suited to studying nonequilibrium steady states
(NESSs) that occur when a system is coupled to two or more
reservoirs kept at different temperatures. The typical scenario
to have in mind is a piece of metal coupled to a hot bath at one
end and a cold one at the other. In this case, after a long time
has passed the system will eventually reach a steady state
where dSS=dt ¼ 0. This, however, does not mean the system
is in equilibrium. It simply means that _Σ ¼ _Φ; that is, entropy
is continually being produced in the system, but all of it is
being dumped into the reservoirs. A NESS is therefore
characterized by a finite and constant entropy production rate
_Σ. Thermal equilibrium, on the other hand, occurs only
when _Σ ¼ _Φ ¼ 0.
Irrespective of the definitions of entropy production and

entropy production rate, the second law of thermodynamics
can ultimately be summarized by the statement that both
Σ ≥ 0 and _Σ ≥ 0 are true. Next we discuss some of the far-
reaching consequences of this seemingly simple statement.

II. WHY ENTROPY PRODUCTION MATTERS

The goal of this section is to illustrate, by means of
examples, why entropy production is relevant in characteriz-
ing nonequilibrium systems.

A. Operation of heat engines

Consider a system interacting continuously with two
reservoirs at temperatures Th and Tc < Th, plus an external
agent on which the system can perform work. The first and
second laws, Eqs. (5) and (7), then become

dHS

dt
¼ _W − _Qh − _Qc; ð8Þ

_Σ ¼ dSS
dt

þ
_Qh

Th
þ

_Qc

Tc
: ð9Þ

Writing the results in terms of rates makes the analysis
simpler. One may picture this, for instance, as a continuously
operated machine, or it may also be a stroke-based machine,
but where the strokes happen so fast that we may write all
thermodynamic quantities as rates (like a car engine).
Following Marcella (1992), we now show how the usual
statements of the second law can all be viewed as a
consequence of Eqs. (8) and (9).
If the machine is operated for a sufficiently long time, it

will eventually reach a steady state (limit cycle) where
dHS=dt ¼ dSS=dt ¼ 0. This therefore means that all quan-
tities in Eqs. (8) and (9) balance out as follows:

1We always define heat in this way: as the change in energy of the
environment. The reason is that, as becomes clear in Sec. III, this
helps to avoid ambiguities concerning the distinction between heat
and work, something that is quite delicate in the quantum domain.
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_W ¼ _Qh þ _Qc; ð10Þ

_Σ ¼
_Qh

Th
þ

_Qc

Tc
: ð11Þ

The steady state is therefore characterized by a steady
conversion of heat into work accompanied by a steady
production of entropy.
In the standard operation of a heat engine, heat flows from

the hot bath to the system ( _Qh < 0) and work is extracted
( _W < 0). Using Eqs. (10) and (11) one may write the
efficiency of the engine as

η ¼
_W
_Qh

¼ 1þ
_Qc

_Qh

¼ 1 −
Tc

Th
þ Tc

_Qh

_Σ: ð12Þ

The first two terms on the right-hand side are simply Carnot’s
efficiency ηC ¼ 1 − Tc=Th. Since _Qh < 0, the second law (1)
implies that the last term in Eq. (12) will be strictly non-
positive. Hence, the efficiency of an engine is always reduced
from Carnot’s efficiency by an amount proportional to the
entropy production η ¼ ηC − Tc

_Σ=j _Qhj. This is the Carnot
statement of the second law (Carnot, 1824):

“The efficiency of any quasi-static or reversible
cycle between two heat reservoirs depends only on
the temperatures of the reservoirs themselves, and is
the same, regardless of the working substance. An
engine operated in this way is the most efficient
possible heat engine using those two temperatures.”

It is also useful to cast Eq. (12) in terms of the output power
(P ¼ − _W), which leads to

_Σ ¼ P
Tc

ηC − η

η
: ð13Þ

We therefore see that, for fixed power output, the closer we are
to Carnot efficiency, the smaller the entropy production rate is.
This illustrates why entropy production is often used as a
quantifier of the degree of irreversibility.
Next suppose we have access to a only single bath, so

_Qc ¼ 0. Equation (10) then reduces to _W ¼ _Qh so that
Eq. (11) becomes

_Σ ¼
_Qh

Th
¼

_W
Th

≥ 0: ð14Þ

Positive work means work is injected into the system instead
of being extracted. Hence, work cannot be extracted from a
single bath. This is precisely the Kelvin-Planck statement of
the second law (Thomson, 1851; Planck, 1903):

“It is impossible to devise a cyclically operating
device, the sole effect of which is to absorb energy
in the form of heat from a single thermal reservoir
and to deliver an equivalent amount of work.”

Last, suppose that there is no work involved ( _W ¼ 0),
but instead only heat flow between the two reservoirs.
Equation (10) then yields _Qh ¼ − _Qc, which plugging into
Eq. (11) leads to

_Σ ¼
�
1

Tc
−

1

Th

�
_Qc ≥ 0: ð15Þ

If Tc < Th, we must then necessarily have _Qc ≥ 0; i.e., heat
flows from hot to cold. This is Clausius’s statement of the
second law (Clausius, 1854; Clausius, 1865):

“Heat can never pass from a colder to a warmer
body without some other change, connected there-
with, occurring at the same time.”

B. Heat and particle flow

Continuing with the assumption that _W ¼ 0, we now
assume that the environments also allow for particle flow.
The first law (8) is modified to

dHS

dt
¼ − _Qh − _Qc þ μh _Nh þ μc _Nc; ð16Þ

where μi are the chemical potentials of each bath and _Ni are
the corresponding particle fluxes from bath to system (i.e.,
Ni > 0 when particles enter the system). The last two terms
represent chemical work.
Particle conservation implies that, in the steady state,

_Nc ¼ − _Nh. But this does not mean that _Qh ¼ − _Qc.
Indeed, their mismatch is precisely,

_Qh ¼ − _Qc þ ðμh − μcÞ _Nh;

which is nonzero whenever there is a chemical potential
difference. Using this to eliminate _Qh allows us to write
Eq. (9) as

_Σ ¼
�
1

Tc
−

1

Th

�
_Qc þ

μh − μc
Tc

_Nh: ð17Þ

If we assume that Tc ¼ Th, then the second law implies that if
μh > μc, one must have _Nh > 0; that is, a particle flows from
high chemical potential to low chemical potential.
We see in Eq. (17) the appearance of both a gradient of

temperature and a gradient of chemical potential. These are
called thermodynamic affinities, or generalized forces, as they
are responsible for driving the system out of equilibrium. Each
current has a corresponding conjugated affinity; heat _Qc is
conjugated to the affinity 1=Tc − 1=Th, while particle current
_Nh is conjugated to ðμh − μcÞ=Tc. The entropy production in
Eq. (17) is thus simply the product of currents and affinities.
For concreteness, suppose that ðTc; μcÞ ¼ ðT; μÞ and

ðTh; μhÞ ¼ ðT þ δT; μþ δμÞ, where δT and δμ are small.
Equation (17) then becomes

_Σ ¼ δT
T2

_Qc þ
δμ

T
_Nh: ð18Þ
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Intuitively, we expect the currents to be zero when the
affinities are zero. Moreover, if the affinities are small, the
currents should also be proportionally small. Hence, in
macroscopic systems it is natural to expect a linear depend-
ence of the form (de Groot and Mazur, 1961)

� _Qc

_Nh

�
¼ 1

T

�
Lqq Lqn

Lnq Lnn

��
δT=T

δμ

�
; ð19Þ

where Lij are called the Onsager transport coefficients
(Onsager, 1931a, 1931b). This kind of relation is not a
consequence of the second law (18): it is an additional
assumption that relies on the underlying dynamics of the
system.
The coefficient Lqq represents Fourier’s law of heat con-

duction. Similarly, Lnn represents either Fick’s law of dif-
fusion in the case of particle transport (e.g., chemical
solutions) or Ohm’s law in the case of electric transport.
The cross coefficients Lqn and Lnq are the Peltier and Seebeck
coefficients, which are the basis for thermoelectrics. They
describe the flow of heat due to a chemical potential gradient
and the flow of particles due to a temperature gradient.
Onsager showed that, due to the underlying time-reversal
invariance of the dynamics, the cross coefficients actually
coincide (Lqn ¼ Lnq). As a consequence, the matrix L is
symmetric.
Inserting Eq. (19) into Eq. (18), we find that in the linear

response regime the entropy production will be in the
following quadratic form in the vector of affinities
x ¼ ðδT=T2; δμ=TÞ:

_Σ ¼ xTLx ≥ 0: ð20Þ

Since this must be true for all x, it then follows that L must be
positive semidefinite. Thus, even though the second law does
not predict the linear response relations (19), it places strict
restrictions on the values that the transport coefficients
may take.

C. Landauer’s erasure

Consider again the Clausius inequality (3), but focus on the
following case of a single bath at a temperature T:

QE ≥ −TΔSS: ð21Þ

It is important to realize how this bound relates quantities from
two different systems: It bounds the heat absorbed by the bath
to a quantity related to the entropy change of the system. It
turns out that, while initially constructed within the realm
of macroscopic thermodynamics, this same inequality also
holds true when the system is microscopic, with the entropy
now being the system’s information-theoretic entropy (either
Shannon’s or von Neumann’s, as later defined).2 In this
context, Eq. (21) places restriction on the heat cost of

erasing information, which is called Landauer’s principle
(Landauer, 1961).
We say information is erased when ΔSS < 0 (Shannon and

Weaver, 1949). This is a bit counterintuitive at first because
large entropy means little information, so ΔSS < 0 means that
the information after interacting with a bath is larger than what
we initially had (it looks like information is acquired, not
erased). But what is acquired is information about the final
state of the system, not the initial state. Before interacting with
the bath the system had some information stored in it, which
the experimenter simply did not know about (hence the large
entropy). The act of interacting with a bath irreversibly erases
this information (Plenio and Vitelli, 2001).
Landauer’s erasure therefore fits naturally within the

entropy production framework since erasing information is
an inherently irreversible operation. In fact, it is suggestive to
interpret Landauer’s principle as a direct consequence of the
second law (1), written as Σ ¼ βQE þ ΔSS ≥ 0. This con-
nection is subtle: In the second law, SS is the thermodynamic
entropy (see Sec. IX for a more precise definition), whereas in
Eq. (21) it is the information-theoretic entropy. Despite this, it
turns out that Landauer’s principle can be rederived using the
more modern formulation of the second law, which is the
subject of this review. This connection was firmly established
by Esposito, Lindenberg, and Van Den Broeck (2010) and
Reeb and Wolf (2014) and is one of the hallmarks of the
modern formulation of quantum thermodynamics. It is
reviewed in detail in Secs. III and IV.A.

D. Thermodynamic uncertainty relations

In the previous examples, all thermodynamic quantities
were treated as simple numbers that could not fluctuate. In
macroscopic systems this is usually a good approximation due
to the large number of particles involved. But in mesoscopic
and microscopic systems, fluctuations play an important role.
It was recently discovered that some properties of the
fluctuations are also largely bounded by the average entropy
production. Consider the transport of heat from a hot to a cold
system and let _Q denote the average heat rate. In addition, we
define Δ2

Q as the time-averaged variance of the heat current.
Barato and Seifert (2015) and Pietzonka, Barato, and Seifert
(2016) showed that, for certain classical Markovian systems,
the signal-to-noise ratio Δ2

Q=Q
2 satisfies a thermodynamic

uncertainty relation (TUR)

Δ2
Q= _Q

2 ≥ 2= _Σ; ð22Þ

where _Σ is the average entropy production rate. The TUR
shows that fluctuations are bounded by the average entropy
production. Albeit simple, this bound is actually counterin-
tuitive: Since _Σ appears in the denominator, in order to curb
fluctuations (reduce the left-hand side) one must actually
increase the entropy production. More irreversible processes
therefore fluctuate less.
A TUR can also be adapted to autonomous engines

(Pietzonka and Seifert, 2018). In this case one instead studies
the average output power P ¼ − _W, as well as its correspond-
ing variance Δ2

P. A TUR of the same shape as Eq. (22) also

2Landauer’s principle is often stated in terms of the heat cost to
erase 1 bit of information, which is QE ≥ T ln 2. This is actually a
particular case of Eq. (21) for dichotomic (binary) variables.
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holds for P. That is, Δ2
P=P

2 ≥ 2= _Σ. However, in this case one
can go further and relate P and _Σ using Eq. (13). Writing
P ¼ −η _Qh (which simply follows from the definition of
efficiency as η ¼ _W= _Qh), one then finds that

Δ2
P ≥ 2TCP

η

ηC − η
. ð23Þ

Hence, we see that, for the fixed average power P, as one
approaches Carnot’s efficiency the fluctuations in the power
must diverge.3 This therefore reflects a fundamental trade-off
between operation efficiency and fluctuations. In real devices,
particularly at the nanoscale, fluctuations could have a
deleterious effect in the engine’s operation. Equation (23)
therefore provides guidelines on how to curb them. For a
recent overview on the latest developments in TURs, see
Horowitz and Gingrich (2020).

E. Fluctuation theorems

TURs illustrate the benefits of looking at fluctuations of
thermodynamic quantities. Such benefits are even more
evident owing to fluctuation theorems (FTs) (Evans,
Cohen, and Morriss, 1993; Gallavotti and Cohen, 1995;
Jarzynski, 1997; Crooks, 1998; Esposito, Harbola, and
Mukamel, 2009; Campisi, Hänggi, and Talkner, 2011), which
have been a central topic of research over the last two decades.
FTs address the probability distribution of thermodynamic
quantities such as work (Jarzynski, 1997; Crooks, 1998) and
heat (Jarzynski and Wójcik, 2004) and can be framed in a
unifying language in terms of entropy production, which is
thus placed at the center of investigations of the thermody-
namics of microscopic systems.
The basic idea is to study the probability distribution PFðσÞ

of the entropy production in a certain process, such as work
extraction or heat exchange (the subscript F stands for
“forward”). This is to be compared with the corresponding
time-reversed (“backward”) distribution PBðσÞ. FTs reflect a
symmetry of these two distributions, constraining the forward
and backward distributions, which usually have the form

PFðσÞ
PBð−σÞ

¼ eσ : ð24Þ

This is known as a detailed FT. And it immediately implies
that

he−σi ¼
X
σ

PFðσÞe − σ ¼ 1; ð25Þ

which is called an integral FT. In turn, Eq. (25), combined
with Jensen’s inequality, implies that

hσi ≥ 0: ð26Þ

Thus, on average the entropy production is always non-
negative. The idea, therefore, is that, when the entropy
production is described as a fluctuating quantity, the second
law is valid only on average and may eventually be violated at
the stochastic level. In this sense, FTs contain the second law.
FTs were addressed in detail by Esposito, Harbola, and

Mukamel (2009), Campisi, Hänggi, and Talkner (2011),
Jarzynski (2011), and Seifert (2012). In Sec. III.E we focus
on reviewing some more recent developments, particularly
those concerned with quantum processes. We also discuss
some subtleties raised by Manzano, Horowitz, and Parrondo
(2018) regarding how to define the backward process.
An intuition into what Eq. (24) entails is gathered by

considering the scenario of Jarzynski and Wójcik (2004),
which consists of two thermal systems, prepared at temper-
atures TA and TB, which are then put into contact and allowed
to exchange heat. As discussed in Sec. III.E, the entropy
production in this case is given by σ ¼ βAQA þ βBQB; see
also Eq. (11). If one assumes that there is no work involved,
QA ¼ −QB ≡Q and we may write σ ¼ ΔβQA, where
Δβ ¼ βA − βB. Moreover, in this scenario it turns out that
the forward and backward processes are actually the same
(this would not be case, for instance, if an external agent
were explicitly performing work). Equation (24) therefore
reduces to

PðQÞ
Pð−QÞ ¼ eΔβQ: ð27Þ

The FT therefore directly compares the probability of
exchanging heat Q or −Q. Suppose that TB > TA so that
Δβ ¼ βA − βB > 0. In this case we expect heat to flow from B
to A, so we expect Q ¼ QA ≥ 0. Owing to fluctuations,
however, it is possible to eventually observe Q < 0. What
Eq. (27) says is that the probability of observing negative
heats is exponentially smaller than that of observing a flow in
the “right” direction: Pð−QÞ ¼ e−ΔβQPðQÞ. Note also that
heat is an extensive quantity. Hence, for macroscopic systems,
the exponent e−ΔβQ tends to be extremely small; only in
mesoscopic and nanoscopic systems, where fluctuations are
significant, will Pð−QÞ be non-negligible.

F. Stochastic thermodynamics

Consider a system interacting with one or more reservoirs
and undergoing a generic thermodynamic process. At the
microscopic level, the system is described by a stochastic
trajectory that is different each time the dynamics of the
system is considered. Hence, one may construct a probability
distribution for each individual trajectory. For classical sys-
tems, the sole knowledge of such trajectories is sufficient to
formulate the entropy production resulting from the stochastic
dynamics (Seifert, 2005). This is a significant feature in the
description of classical microscopic processes. The reason for
this is that often one does not have a physical model for the
global dynamics, but only an effective reduced description.
Being able to express the entropy production solely through
this effective description thus provides a major advantage.

3Strictly speaking, the divergence never actually occurs since P
implicitly depends on η and, in particular, is zero for a Carnot engine
(since a Carnot engine must operate quasistatically and hence will
have zero output power). Notwithstanding, there will in general be
ranges of the engine’s parameter space where one can vary η for a
fixed P.
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This approach, called stochastic thermodynamics, has been
reviewed in detail in a substantive body of literature, including
Seifert (2012) and Van den Broeck and Esposito (2015) ; see
also Secs. V.F and V.G. In contrast, a major difficulty in the
formulation of entropy production for quantum processes is
that, in general, the reduced description does not suffice to
unambiguously determine the entropy production. In other
words, the latter can be defined only with knowledge of the
global system-environment interaction, whose lack might lead
to inconsistencies, including the apparent violation of the
second law (Levy and Kosloff, 2014). Note that a reduced
description may well provide a good approximation for the
dynamics, but this does not imply that it also well approx-
imates the thermodynamics. A major theme of this review,
particularly in Sec. V, is to address in detail under which
conditions a reduced description suffices, as far as the second
law is concerned.

G. Maxwell, Szilard, and information thermodynamics

In his famous treatise The Theory of Heat (Maxwell, 1888),
Maxwell describes a thought experiment where a demon,
capable of knowing the precise position and moment of all
particles in a gas, uses that information to violate the second
law. It does that by inserting a partition in a box and selectively
opening a small hatch when a hot particle comes through.
After a sufficient time, all hot particles will be on one side and
all cold ones on the other. Szilard (1929) used the same idea to
make an engine cyclically extract work from a single
reservoir, thus apparently violating Carnot’s statement
(Sec. II.A). Recently these ideas attracted a surge of interest,
with several experiments providing physical implementations
of Maxwell’s demon (Toyabe et al., 2010; Camati et al., 2016;
Peterson et al., 2016; Elouard, Herrera-Martí, Huard, and
Auffèves, 2017; Masuyama et al., 2018; Naghiloo et al.,
2020) and proof-of-principle demonstrations of Szilard’s
engine (Koski et al., 2014, 2015; Paneru et al., 2018).
The problem can be phrased in terms of information gain

and feedback control. That is, information is acquired about
the system through measurements, which is in turn used to
perform some action on it (the feedback). To “exorcise” the
demon (i.e., reinstate the validity of the second law), this
information has to be included in a description of the entropy
production. This was first done by Bennett (1973), who used
Landauer’s principle (Sec. II.C) to show that the heat cost
associated with erasing information exactly counterbalances
the work extracted by the demon.
A stochastic description of these ideas, in terms of fluc-

tuation theorems, was first put forth in a series of seminal
papers by Sagawa and Ueda (2009a, 2009b, 2010). The basic
idea is that the stochastic entropy production σ must now be
modified to σ → σ þ I, where I is an information-theoretic
term accounting for how much information was gained about
the system during the process. Equation (25) is then changed
to he−σ−Ii ¼ 1, which in turn implies hσi ≥ −hIi. For hIi > 0,
the average entropy production may thus be negative.
When extending these ideas to the quantum domain, the

inevitable backaction caused by quantum measurements
should be considered. Acquiring information about the system
is no longer without consequences and may, in fact, severely

degrade the system. The recent developments in such interplay
between information and thermodynamics is reviewed
in Sec. IV.

III. ENTROPY PRODUCTION IN QUANTUM PROCESSES

A. Global unitary dynamics for system + environment

A unified formulation for entropy production in open
quantum systems, which holds for arbitrary nonthermal
environments and arbitrary dynamics, can be made by
analyzing the global system-environment unitary evolution.
We consider the interaction of a system Swith an environment
E, prepared in arbitrary states ρS and ρE, by means of a global
unitary U. The final state of the composite SE system after the
interaction is given by

ρ0SE ¼ UðρS ⊗ ρEÞU†: ð28Þ

This map is general. All information about the types of
interactions involved is encoded in U, which therefore may
enable us to contemplate both weak and strong coupling, as
well as time-dependent Hamiltonians and work protocols. The
map also makes no assumptions about the structure of E,
which does not need to be macroscopic and may well have
dimensions comparable to those of S. One could therefore
have S and E be two qubits or have S be a hot pan and E a
large bucket of water. Both cases can be described by the same
map (28) (although, admittedly, in the latter the unitary U
would be a bit more complicated).
The reduced state of the system can be obtained by tracing

over the environment, which leads to the quantum operation

ρ0S ¼ EðρSÞ ¼ trEρ0SE ¼ trEfUðρS ⊗ ρEÞU†g: ð29Þ

On a conceptual level, tracing over the degrees of freedom of
the environment can be pinpointed as the origin of irrevers-
ibility in this process. After all, the map (28) is unitary, and
hence reversible by construction. But tracing over (discarding)
the environment embodies the assumption that after the
interaction one no longer has access to its degrees of freedom
or is able to perform on it any local operation. Irreversibility
thus emerges from discarding any information contained
locally in the state of E, as well as the nonlocal information
shared between S and E.
The entropy production separately quantifies these two

contributions and is given by

Σ ¼ Iρ0SE
ðS∶EÞ þ Sðρ0EkρEÞ: ð30Þ

To our knowledge, Eq. (30) was first put forth by Esposito,
Lindenberg, and Van Den Broeck (2010). Its justification and
ramifications are the central topic of this section. This
culminates with a description in terms of fluctuation theorems,
first discussed by Manzano, Horowitz, and Parrondo (2018),
which is reviewed in Sec. III.E.
The first term in Eq. (30) is the mutual information

developed between system and environment due to their
interaction, where the mutual information of any bipartite
system AB is defined as
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IρABðA∶BÞ ¼ SðρABkρA ⊗ ρBÞ ¼ SðρAÞ þ SðρBÞ − SðρABÞ;
ð31Þ

with SðρÞ ¼ −trðρ ln ρÞ the von Neumann entropy. Iρ0SE
ðS∶EÞ

thus quantifies the amount of shared information that is lost if
one no longer has access to the state of E. The second term in
Eq. (30), on the other hand, is the quantum relative entropy,
defined as

SðρkσÞ ¼ trfρ ln ρ − ρ ln σg; ð32Þ

which is a type of distance between two density matrices.4 The
term Sðρ0EkρEÞ thus quantifies how the environment was
pushed away from equilibrium, a process that is irreversible
since we are assuming that one can no longer perform local
operations on it. In both formulas ρ0E ¼ trSρ0SE is the reduced
density matrix of the environment after the map (28).
Combining the definitions in Eqs. (31) and (32), it is also
possible to rewrite Eq. (30) as

Σ ¼ Sðρ0SEkρ0S ⊗ ρEÞ: ð33Þ

Notice the asymmetry in this formula: the quantity on the right
is a tensor product between the final state ρ0S of the system and
the initial state ρE of the bath. The interpretation for this is
discussed in Sec. III.E.
For a generic environment, the entropy production in

Eq. (30) will no longer be given by the Clausius expression (4).
Notwithstanding, it is still reasonable to define a similar
splitting and write

Σ ¼ ΔSS þΦ; ð34Þ

where Φ is called the entropy flux from the system to the
environment. Equation (34) can actually be viewed as the
definition of Φ. As we later see, for thermal systems one
recovers Φ ¼ QE=T. But in general the expression for Φ will
be different.
The reason why it makes sense to callΦ a flux is as follows.

Since the system and environment are initially uncorrelated,
one has that Sðρ0SEÞ ¼ SðρSÞ þ SðρEÞ. Thus, the mutual
information may be expressed as

Iρ0SE
ðS∶EÞ ¼ ΔSS þ ΔSE; ð35Þ

where ΔSS ¼ Sðρ0SÞ − SðρSÞ and the approach is similar for
ΔSE. Equation (30) can then be written as

Σ ¼ ΔSS þ trEfðρE − ρ0EÞ ln ρEg: ð36Þ

Comparing Eq. (36) with Eq. (34), one finds that the entropy
flux is

Φ¼Sðρ0EÞ−SðρEÞþSðρ0EkρEÞ¼ trEfðρE−ρ0EÞ lnρEg: ð37Þ

The entropy flux thus depends solely on the local state of the
environment. The entropy production is thus split into two
terms: ΔSS, which refers only to the system, and Φ, which
refers only to the bath.
Equation (30) can be viewed as a general proposal for the

entropy production in any system-environment interaction. It
is clearly non-negative as both terms are individually non-
negative. But that does not suffice for it to be considered a
physically consistent definition. To do so this formula must
acquire operational significance, which can be done by
specializing it to specific contexts. This is our focus in
Secs. III.B–III.E.

B. Thermal environments

We assume that the environment is thermal, ρE ¼
ρthE ¼ e−βHE=ZE. Again, we do not assume that it is neces-
sarily macroscopic, only that it is initially in a thermal state.
Inserting this into Eq. (36), but only in the logarithm, leads to

Σ ¼ ΔSS þ βQE; ð38Þ

where

QE ¼ trfHEðρ0E − ρthE Þg ð39Þ

is the total change in energy of the environment during the
unitaryU. Equation (38) thus coincides with the standard form
of the second law [Eq. (4)]. This is noteworthy: ρthE is the only
assumption required to convert the general, and fully infor-
mation-theoretic, expression [Eq. (30)] into the traditional
thermodynamic expression in Eq. (38).
There is a subtlety, however. Namely, that the heat entering

Eq. (38) refers to the change in energy of the environment
[Eq. (39)]. This hides the fact that the process may also
involve work, which is encoded in the unitary U. The heat QE
will therefore in general not coincide with the change in
system energy ΔHS. This allows us to define work as their
mismatch as follows:

W ≔ ΔHS þQE: ð40Þ

Equation (40) is valid whether or not the Hamiltonian of the
system changed during the process. For simplicity, we are
assuming that it remains the same, but the results also hold if it
does not. Substituting this for QE into Eq. (38) then leads to
the second law in the form of Eq. (6); viz.,

Σ ¼ βðW − ΔFSÞ; ð41Þ

where ΔF ¼ Fðρ0SÞ − FðρSÞ is the change in nonequilibrium
free energy

FðρSÞ ¼ trðHSρSÞ − TSðρSÞ ¼ Feq þ TSðρSkρthS Þ; ð42Þ

which is defined for any state ρS, with ρthS ¼ e−βHS=ZS

referring to a thermal state of the system at the same
temperature T as the bath [if the final Hamiltonian is H0

S,
then Fðρ0SÞ should be defined with respect to H0

S]. We thus

4Strictly speaking it is not a distance, since it does not satisfy the
triangle inequality. Notwithstanding, it is such that SðρkσÞ ≥ 0 and
SðρkσÞ ¼ 0 if and only if ρ ¼ σ.
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conclude that the general proposal (30) for the structure of the
entropy production reduces exactly to the expected thermal
results whenever the bath is assumed to start in thermal
equilibrium. Even the form (42) remains the same, provided
one now works instead with the nonequilibrium free energy.
Equation (36) can also be specialized to the case where E is

composed of multiple parts E1; E2;…, with ρE ¼ ρE1
⊗

ρE2
⊗ � � � and each part prepared in a thermal state ρEi

¼
e−βiHEi =ZEi

at different inverse temperatures βi. In this case an
identical calculation leads to

Σ ¼ ΔSS þ
X
i

βiQEi
; ð43Þ

which is Eq. (4). Even though Eq. (43) involves only the local
changes in energy of each bath, the map (28) will still generate
correlations between the different Ei since they all interact
with a common system. To see how these correlations affect Σ,
one may start with Eq. (30) and add and subtract a termP

i SðρEi
Þ. This then allows us to write

Σ ¼ Iρ0SE
ðS∶E1∶E2∶ � � �Þ þ

X
i

Sðρ0Ei
kρEi

Þ; ð44Þ

where Iρ0SE
ðS∶E1∶E2∶ � � �Þ ¼ Sðρ0SÞ þ

P
i SðρEi

Þ − Sðρ0SEÞ is
the so-called total correlation (Goold et al., 2015) between the
system and the individual environmental components. This
quantity captures not only the correlations between S and E
but also the correlations between Ei and Ej. This therefore
shows that entropy is also produced due to the accumulation
of multipartite correlations between the different parts of the
bath as a consequence of their common interaction with the
system.

C. Maps with global fixed points

Next we specialize to a different scenario. We consider once
again the map in Eq. (28) and no longer assume that ρE is
thermal. Instead, we look into those cases where the map has a
global fixed point, that is, a special state ρ�S satisfying

Uðρ�S ⊗ ρEÞU† ¼ ρ�S ⊗ ρE: ð45Þ

Notice that this condition is much stronger than ρ�S ¼ Eðρ�SÞ,
which would be a local fixed point (global implies local, but
the converse is seldom true). An example of maps with global
fixed points are the so-called thermal operations, which are
reviewed in Sec. III.D.
We now focus on the entropy flux (37). Expanding the trace

over E to be over Sþ E allows us to write it as Φ ¼
trSEfðρSρE − ρ0SEÞ ln ρEg (we omit the tensor product symbol
for simplicity). Next we take the logarithm on both sides of
Eq. (45), which allows us to write

U†ðln ρEÞU − ln ρE ¼ −U†ðln ρ�SÞU þ ln ρ�S:

Plugging this into the expression for Φ and then carrying out
the trace over E, one then finally finds that

Φ ¼ trSfðρ0S − ρSÞ ln ρ�Sg: ð46Þ

For systems with a global fixed point, the entropy flux can
thus be written solely in terms of system-related quantities.
Plugging this into Eq. (36) then allows us to express the

entropy production as

Σ ¼ SðρSkρ�SÞ − Sðρ0Skρ�SÞ: ð47Þ

Equation (47) is written solely in terms of local quantities of
the system. This is possible only for systems with global fixed
points; for local fixed points, the entropy production is an
intrinsically nonlocal quantity.5

The positivity of Eq. (47) is guaranteed by its definition in
Eq. (30). But from the optics of Eq. (47), positivity can also be
viewed as a consequence of the data processing inequality:

S(EðρÞkEðσÞ) ≤ SðρkσÞ; ð48Þ

which holds for any quantum channel E. But since ρ�S is a fixed
point of E, it follows that

Sðρ0Skρ�SÞ ¼ S(EðρSÞkEðρ�SÞ) ≤ SðρSkρ�SÞ; ð49Þ

which therefore implies Σ ≥ 0. Entropy production can thus
be viewed as quantifying the map’s ability to process
information and hence reduce the distinguishability between
the initial state ρS and the fixed point ρ�S. This result
emphasizes the interpretation of the entropy production (30)
as a purely informational quantity, defined without any
reference to the energetics of the system, such as the
separation between heat and work.

D. Strict energy conservation and thermal operations

Thermal operations, first introduced by Janzing et al.
(2000) and later popularized by Brandão et al. (2013,
2015) and Horodecki and Oppenheim (2013), are maps that
involve a thermal environment and have a global fixed point
(thus combining the results of Secs. III.B and III.C). One way
to ensure that the map has a global fixed point when
interacting with a thermal bath is to impose the requirement
that the unitary global U in Eq. (28) should satisfy the so-
called strict energy conservation condition

½U;HS þHE� ¼ 0 ð50Þ

(note that in general U does not commute with HS and HE
individually, only with their sum). This implies that

Ue−βðHSþHEÞU† ¼ e−βðHSþHEÞ; ð51Þ

so ρthS is a global fixed point of the dynamics, provided that it
is defined with the same β as the environment. As a

5At first glance, Eq. (41) also seems to be written solely in terms of
local quantities of the system. But that is not true because the work
W, as defined in Eq. (40), still involves quantities pertaining to the
environment.
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consequence, the entropy production reduces as follows to
Eq. (47):

Σ ¼ SðρSkρthS Þ − Sðρ0SkρthS Þ: ð52Þ

Naively, one may think that any map involving a thermal
environment would necessarily have the thermal state ρthS ¼
e−βHS=ZS as a fixed point. This, however, is in general not
true. But when strict energy conservation holds, it is. Thermal
operations enjoy a wide range of good properties and have
been extensively studied in the literature within the context of
quantum resource theories. These are reviewed in Sec. VI.
It is important to clarify the meaning of Eq. (50). Its key

implication is that all energy that leaves the system enters the
environment and vice versa (nothing stays “trapped” in the
interaction); viz.,

ΔHS ¼ −ΔHE ≡QE: ð53Þ

This kind of condition is seldom met in practice6 and should
thus be viewed as an idealized scenario where drawing
thermodynamic conclusions is much easier. Despite this
apparent artificiality, Eq. (50) is actually incredibly similar
to the weak-coupling approximation present in the vast
majority of open quantum system studies [a discussion on
how violations of this condition affect thermodynamics of
strongly coupled systems was given by Hilt et al. (2011)].
Weak coupling assumes that the interaction energy is small.
Equation (50) assumes that the interaction can be arbitrarily
large, but nothing stays trapped in it. To a great extent, this is
essentially the same thing. The major difference is that weak
coupling is imposed as an approximation, whereas Eq. (50) is
postulated a priori.
Comparing Eq. (53) with Eq. (40) also shows that in a

thermal operation there is no work involved (W ¼ 0). Indeed,
Eq. (52) can be rewritten in terms of the nonequilibrium free
energy (42) as

Σ ¼ −βΔF: ð54Þ

The expenditure of work does not have to be associated with a
work protocol but may simply be related to the cost of turning
the system-environment interaction on and off. To elucidate
this point, we suppose that the unitary U was generated by
turning on an interaction VSE for a certain length of time τ.
Rigorously speaking, since we turn this interaction on and off
the total Hamiltonian must be time dependent and has the
form HSEðtÞ ¼ HS þHE þ λðtÞVSE, where λðtÞ is the unit-
box function between t ∈ ½0; τ�. Since the composite Sþ E
system evolves unitarily, any work that is performed can be
unambiguously associated with the total change in energy of
Sþ E as follows:

W ¼
Z

∞

−∞
dt

�∂HSEðtÞ
∂t

�
¼ hVSEi0 − hVSEiτ: ð55Þ

We therefore see that, in general, there is a work cost
associated with turning the interaction on and off. But when
strict energy conservation holds, ΔHS ¼ −ΔHE and hence
W ¼ 0.
This on-off work is usually negligible for macroscopic

systems, so classical studies never really worry about it. This
is because the energies HS and HE are proportional to the
number of atoms in the bulk, whereas the interaction VSE is
usually proportional to the number of atoms on the surface,
which is typically negligible relative to the bulk. In most of
statistical mechanics, the system is therefore always assumed
to be weakly coupled to a bath. But in microscopic systems
this may easily break down since VSE may be of the same
order as HS (even if it is still much smaller than HE). As a
consequence, the on-off work may be significant. For in-
stance, the SWAP engine, which was analyzed by Campisi,
Pekola, and Fazio (2015), operates with two qubits and is
based precisely on the extraction of on-off work; see
Sec. VII.A for more details.
Properly accounting for all sources and sinks of energy is an

important part of thermodynamics at the quantum level. It has
also been the source of significant debate. Additional methods
for dealing with this are reviewed in Sec. VI.D.

E. Fluctuation theorems

The proposal of a general form of the entropy production in
Eq. (30) gains solidity by analyzing it from multiple per-
spectives. In this sense, insight can be gained by analyzing the
corresponding fluctuation theorem at the quantum trajectory
level. This problem was solved by Manzano, Horowitz, and
Parrondo (2018), who also showed how the two terms in
Eq. (30) are related to the definition of the backward stochastic
process. Shattering previous beliefs, the backward process is
not unique. Different choices of backward processes lead to
different expressions for the entropy production, which
quantifies the information that is assumed to be lost between
forward and backward protocols (Manzano, Horowitz, and
Parrondo, 2018). This therefore attributes a clear operational
significance to the entropy production.
We consider here the same map as in Eq. (28). No

assumptions are made about either the environment or the
unitary. Let ρS ¼

P
n pnjnihnj and ρE ¼ P

ν qνjνihνj denote
the eigendecompositions of the initial states of S and E.
We introduce bases for the final reduced states ρ0S ¼P

m p0
mjψmihψmj and ρ0E ¼ P

μ q
0
μjϕμihϕμj, which will in

general differ from the bases jni and jνi. At the stochastic
level, we now consider the following protocol. We first
measure both S and E in their respective eigenbasis
jni ⊗ jνi. Next we evolve them according to a global unitary
U and finally measure them in the bases jψmi ⊗ jϕμi. The last
measurement is performed in the eigenbases of the reduced
density matrices ρ0S and ρ0E. This choice ensures that the
ensemble entropy of ρ0S remains unaffected by the measure-
ment backaction (Elouard, Herrera-Martí, Clusel, and
Auffèves, 2017; Santos et al., 2019), even though it kills

6Unitaries of the form of Eq. (50) can be generated by resonant-
type interactions. For instance, if S and E are qubits with Hi ¼
Ωiσ

z
i =2 (here i ¼ S; E) and if the interaction is generated by a

potential V ¼ gðσþS σ−E þ σ−S σ
þ
E Þ, then the unitary will be energy

conserving only when ΩE ¼ ΩS.
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any quantum correlations present in ρ0SE. For other choices of
the final measurement scheme, see Manzano, Horowitz, and
Parrondo (2018) and also Park, Kim, and Vedral (2017).
The quantum trajectory is specified by the four measure-

ment outcomes γ ¼ fn; ν; m; μg, which occur with path
probability

PF½γ� ¼ jhψm;ϕμjUjn; νij2pnqν: ð56Þ

To build a fluctuation theorem one must now establish the
backward process, corresponding to the time-reverse evolu-
tion with unitary U†. The key observation of Manzano,
Horowitz, and Parrondo (2018), however, is that this back-
ward process is not unique. The arbitrariness comes from the
choice of initial state ρ̃SE for the backward evolution; see
Fig. 1. Different choices, as we now show, lead to different
expressions for the entropy production. This is also intimately
related to the notion of the Petz recovery map, a systematic
way to build reverse processes for general quantum channels
considered by Kwon and Kim (2019).
For the moment, we leave ρ̃SE unspecified. We consider a

backward process where ρ̃SE is first measured in the basis
jψmi ⊗ jϕμi, then allowed to evolve with U†, and finally
measured one more time, now in the basis jni ⊗ jνi. The
corresponding backward trajectory probability will thus be

PB½γ� ¼ jhn; νjU†jψm;ϕμij2ρ̃mμ; ð57Þ

where ρ̃mμ ¼ hψm;ϕμjρ̃SEjψm;ϕμi.
Armed with PF and PB, the entropy production is then

defined as usual as (Evans, Cohen, and Morriss, 1993;
Gallavotti and Cohen, 1995; Crooks, 1998)

σ½γ� ¼ ln
PF½γ�
PB½γ�

: ð58Þ

By construction, this quantity satisfies an integral fluctuation
theorem he−σ½γ�i ¼ 1. Using Eqs. (56) and (57) the dynamical
terms cancel out, leaving us with only the following boundary
term:

σ½γ� ¼ ln
pnqν
ρ̃mμ

: ð59Þ

As we now discuss, depending on the choice of ρ̃SE, Eq. (59)
will unravel differently.

First, suppose that we choose ρ̃SE ¼ ρ0S ⊗ ρE. This means
that the system is taken at the final state (29), whereas the bath
is reset to the initial state ρE. In this case ρ̃mμ ¼ p0

mqμ and
Eq. (59) becomes

σ½γ� ¼ ln
pnqν
p0
mqμ

:

The average entropy production is computed as hσi ¼P
γ σ½γ�P½γ�. Carrying out the sum, one finds

hσi ¼ Iρ0SE
ðS∶EÞ þ Sðρ0EkρEÞ ¼ Sðρ0SEkρ0S ⊗ ρEÞ; ð60Þ

which is precisely the definition of Σ in Eq. (30). Notice how
hσi is simply the relative entropy between the final state ρ0SE of
the forward process and the initial state ρ0S ⊗ ρE of the
backward process. This provides a solid physical basis for
Eq. (60) as being related to the act of tracing over the
environment: The two terms in Eq. (60) appear because we
reset E in the backward process, meaning we lost all access to
both the correlations developed between S and E and the
changes that were made to the state of E.
As a second choice, suppose that ρ̃SE ¼ ρ0S ⊗ ρ0E. That is, S

and E are initialized in the backward process at the final states
of the forward process but marginalized to destroy any
correlations between them. Correlations are arguably the most
difficult part to access since they require global opera-
tions on Sþ E. In this case Eq. (59) becomes σ½γ� ¼
lnðpnqνÞ=ðp0

mq0μÞ, which upon averaging yields

hσi ¼ Iρ0SE
ðS∶EÞ ¼ ΔSS þ ΔSE: ð61Þ

Hence, irreversibility stems solely from the SE correlations
that are no longer accessible.
As a third choice, one may take the postmeasurement state

ρ̃SE ¼ Δðρ0SEÞ ≔
X
mμ

jψm;ϕμihψm;ϕμjρ0SEjψm;ϕμihψm;ϕμj

¼
X
m;μ

ρ0mμjψmihψmj ⊗ jϕμihϕμj; ð62Þ

which is obtained from the final state ρ0SE after measurements
in the jψmi ⊗ jϕμi basis. Thus, it corresponds to the max-
imally dephased state in the basis jψm;ϕμi (note that, albeit
dephased, this state is still classically correlated). The entropy
production (59), upon averaging, reduces in this case to

hσi ¼ S(Δðρ0SEÞ) − Sðρ0SEÞ ¼ Cðρ0SEÞ; ð63Þ

which is the relative entropy of coherence (Streltsov, Adesso,
and Plenio, 2017). We thus conclude that, for this choice of
backward protocol, the irreversibility stems solely from the
decoherence of the measurement backaction in the final
basis jψm;ϕμi.
To perform a final measurement with absolutely no back-

action, one would have to measure Sþ E in the global basis
diagonalizing ρ0SE. In this case the entropy production would,
on average, be identically zero and the process would be
reversible. However, this would require assessing fully

FIG. 1. General schematics for the forward and backward
trajectories for the fluctuation theorems. The solid red line shows
the forward trajectory, while the dashed blue curve shows the
backward one.
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nonlocal degrees of freedom of S and E, which would quickly
become prohibitive even for small quantum systems.
As a final choice of measurement, we can assume that both

system and environment are completely reset, so ρ̃SE ¼ ρS ⊗
ρE is exactly the initial state. Equation (59) then becomes
σ ¼ lnðpnqνÞ=ðpmqμÞ, which upon averaging becomes

hσi ¼ Iρ0SE
ðS∶EÞ þ Sðρ0SkρSÞ þ Sðρ0EkρEÞ: ð64Þ

The first and last terms are exactly the same as in the original
definition of Σ in Eq. (30). However, we now get the
additional term Sðρ0SkρSÞ, quantifying how much the system
was pushed away from equilibrium. This is a consequence of
the fact that in the backward process we also reset the system
to its original thermal state, thus introducing an additional
degree of irreversibility.
In the case where both system and environment start in

thermal states but at different temperatures ρS ¼ e−βSHS=ZS

and ρE ¼ e−βEHE=ZE, Eq. (64) reduces to

hσi ¼ βSΔHS þ βEΔHE; ð65Þ

where ΔHSðEÞ are the changes in energy in the system and
environment, respectively. This choice of ρ̃SE therefore
corresponds to the famous exchange fluctuation theorem
(Jarzynski and Wójcik, 2004). If in addition the unitary
satisfies strict energy conservation [Eq. (50)], then we may
define QE ≔ ΔHE ¼ −ΔHS, in which case the entropy
production reduces to

hσi ¼ ðβE − βSÞQE; ð66Þ

which is the expression used by Jarzynski and Wójcik (2004).
A summary of these results is presented in Table I. The

main message of this section is that the definition of entropy
production is actually not unique but depends on the assump-
tions about which aspects of the system-environment dynam-
ics become inaccessible or irretrievable. The definition (30),
which we have focused on in most of this section, enables us
to contemplate the most general scenario in which everything
pertaining to the environment is assumed to be lost after the
interaction. If the environment is macroscopic, highly chaotic,
etc. (as in a bucket of water), this will inevitably be the case, so
Eq. (30) will become the only relevant definition of entropy

production. But in the quantum domain comparing the
different definitions may be relevant.
One may also attempt to compare the relative importance of

each term in these expressions. We assume that the bath is
much larger than the system so that the process only pushes it
slightly away from equilibrium, that is, such that ρ0E ¼ ρE þ
OðϵÞ for some small parameter ϵ. Using standard perturbation
theory one then finds that ΔSE ∝ ϵ while Sðρ0EkρEÞ ∝ ϵ2

(Rodrigues et al., 2019). Thus, it becomes irrelevant whether
or not to include the relative entropy term since the mutual
information tends to dominate. This, however, is not always
the case, as recently elucidated by Ptaszynski and Esposito
(2019). As they discussed, the mutual information is actually
bounded by the Araki-Lieb inequality as follows:

Iρ0SE
ðS∶EÞ ≤ 2 minfSðρ0SÞ; Sðρ0EÞg:

For small S and large E, I will be essentially capped by Sðρ0SÞ.
On the other hand, the relative entropy Sðρ0EkρEÞ is
unbounded and can thus increase indefinitely over time.
This will be the case, for instance, in nonequilibrium steady
states of systems connected to multiple baths.
This discussion can also be extended to multiple measure-

ments. One way to accomplish this is through a collisional
model approach, as discussed in Sec. V.A. This will simply
lead to a composition of the results presented in this section.
Alternatively, one may also analyze it from the perspective of
stochastic master equations describing continuously measured
systems. This was done by Horowitz and Parrondo (2013) and
Horowitz and Sagawa (2014) and yields the entropy produc-
tion as a function of the entire trajectory of quantum jumps.
The exploration of different choices for the reverse trajectory,
however, is not discussed as the framework is based solely on
the reduced description of the system in terms of a master
equation. However, at the ensemble level they obtained an
entropy production consistent with Eq. (52) that should thus
correspond to the bath reset choice (the first line in Table I).

F. Nonequilibrium lag

A scenario that is deeply related to the previous one, and
that has been the subject of considerable research, is the
nonequilibrium lag that occurs when an isolated quantum
system undergoes a work protocol. This was covered in detail
by Campisi, Hänggi, and Talkner (2011). Here we focus only
on the most recent developments.
We consider a system S that was initially prepared in the

equilibrium state ρthi ¼ e−βHi=Zi at temperature β and
Hamiltonian Hi. The system is then driven by a work protocol
λðtÞ that changes the Hamiltonian from Hi ¼ H(λð0Þ) to
Hf ¼ H(λðτÞ), where τ is the duration of the protocol. The
drive causes the system to evolve unitarily to a nonequilibrium
state ρ0 ¼ Vρthi V

†, where V is the time-evolution operator
generated by H½λðtÞ�. After the protocol is applied, the system
is placed in contact with a bath and allowed to fully thermalize
toward a new equilibrium state ρthf ¼ e−βHf=Zf; see Fig. 2.
The unitary drive produces no entropy since the dynamics is

closed. Irreversibility stems solely from the thermalization
step. The entropy production for this relaxation process will be

TABLE I. Different choices for the initial state ρ̃SE of the backward
process and the corresponding formula for the average entropy
production hσi.
ρ̃SE hσi
ρ0S ⊗ ρE Iρ0SE

ðS∶EÞ þ Sðρ0EkρEÞ≡ Σ
(bath reset) [Eq. (30)]
ρ0S ⊗ ρ0E Iρ0SE

ðS∶EÞ
(correlations destroyed) ð¼ ΔSS þ ΔSEÞ
Δðρ0SEÞ Cðρ0SEÞ
(postmeasurement state) (relative entropy of coherence)
ρS ⊗ ρE Iρ0SE

ðS∶EÞ þ Sðρ0SkρSÞ þ Sðρ0EkρEÞ
¼ ðβS − βEÞQE

(both reset) (Jarzynski and Wójcik, 2004)

Gabriel T. Landi and Mauro Paternostro: Irreversible entropy production: From classical …

Rev. Mod. Phys., Vol. 93, No. 3, July–September 2021 035008-12



given, in the simplest scenario, by Eq. (52). Since the
thermalization is total, the second term vanishes, leaving us
with

Σ ¼ Sðρ0kρthf Þ. ð67Þ

Despite being associated with the thermalization process, it
turns out that Eq. (67) is also of significance to the unitary
evolution in itself. In fact, this is usually defined without even
mentioning the thermalization. The reason for this is that
Eq. (67) is also directly associated with the irreversible work
produced by the unitary V:

Σ≡ βWirr ¼ βðhWi − ΔFÞ; ð68Þ

where hWi ¼ trðHfρ
0Þ − trðHiρ

th
i Þ is the average work and

ΔF ¼ −T lnZf=Zi is the change in equilibrium free energy.
For this reason, Eq. (67) is also called the nonequilibrium lag.
For all intents and purposes, nonequilibrium lag can be taken
as a synonym of entropy production. The reason to introduce
this terminology is simply to emphasize that it refers to the
unitary protocol, for which no entropy is produced. In recent
years, significant attention has been given to the nonequili-
brium lag, particularly in the context of quantum phase
transitions. These are reviewed in Sec. VII.E.
The nonequilibrium lag can also be studied from a

stochastic perspective using the two-point measurement
scheme: the first measurement is done in the eigenbasis
jnii of Hi, and the second in the eigenbasis jmfi of Hf.
The stochastic entropy production associated with this process
is then (Campisi, Hänggi, and Talkner, 2011)

σ½ni; mf� ¼ lnpth
ni=p

th
mf

¼ βðEf
mf − Ei

ni − ΔFÞ; ð69Þ

where EiðfÞ are the energies of HiðfÞ and ΔF ¼ Ff − Fi ¼
−T lnZf=Zi is the change in nonequilibrium free energy.

Moreover, pth
ni ¼ e−βE

i
ni =Zi is the initial thermal probability

and pth
mf

¼ e−βE
f
mf =Zf is the thermal probability associated

with the final Hamiltonian Hf. The probability distribution of
σ is thus

PðσÞ ¼
X
ni;mf

pðmfjniÞpniδðσ − σ½ni; mf�Þ; ð70Þ

where pðmfjniÞ ¼ jhmfjVjniij2 is the transition probability
from jnii → jmfi. By construction, this is such that hσi ¼
Σ [Eq. (67)].
It is convenient to study the cumulant generating function

KðλÞ ¼ lnhe−λσi, which can be conveniently written as
(Talkner, Lutz, and Hänggi, 2007; Esposito, Harbola, and
Mukamel, 2009)

KðλÞ ¼ ln trfV†e−βλðHf−FfÞVeβλðHi−FiÞρthi g: ð71Þ

The cumulants may be computed from KðλÞ through

κnðσÞ ¼ ð−1Þn ∂
nK
∂λn

����
λ¼0

: ð72Þ

The first cumulant is the average and is given by Eq. (67).
Similarly, the second cumulant is the variance and can be
written as

varðσÞ ¼ trfρ0ðln ρ0 − ln ρthf Þ2g − Sðρ0kρthf Þ2; ð73Þ

which is sometimes called the relative entropy variance.
The cumulant generating function (CGF) (71) can also be

expressed in terms of the so-called Rényi divergences, which
are further discussed in Sec. VI and are defined as

SλðρkσÞ ¼
1

λ − 1
ln trfρλσ1−λg. ð74Þ

Equation (74) corresponds to a generalization of the relative
entropy (32) that is recovered from SλðρkσÞ in the limit λ → 1.
Comparing Eq. (74) to Eq. (71) one then sees that (Guarnieri,
Landi et al., 2019)7

KðλÞ ¼ ðλ − 1ÞSλðρthf kρ0Þ; ð75Þ

Equation (75) was used in several recent studies. Following
Guarnieri, Ng et al. (2019), we review in Sec. VI.E how
Eq. (75) can be used as a connection to the resource-theoretic
formulation of thermodynamics, which is the subject of
Sec. VI. In Sec. VII.E we review the work of Miller et al.
(2019) and Scandi et al. (2020), which use Eq. (75) as a tool to
extract the contribution from quantum coherence in slow
processes.

IV. INFORMATION-THEORETIC ASPECTS

A. Corrections to Landauer’s principle

Landauer’s principle was introduced in Sec. II.C and is
based on the idea that information erasure is an irreversible
process, with a fundamental heat cost associated with it. This
is synthesized by Eq. (21), representing a lower bound on the
heat QE dissipated to the environment in terms of the change
in entropy ΔSS of the system. Being a lower bound, one can
then conclude that changes in entropy must be accompanied
by a fundamental heat cost.

FIG. 2. Typical nonequilibrium lag scenario. A system initially
prepared in a thermal state ρthi is driven unitarily by a work
protocol to a nonequilibrium state ρ0. After the protocol, the
system is allowed to thermalize from ρ0 to ρf.

7This can be equivalently written as KðλÞ ¼ −λS1−λðρ0kρthf Þ.
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In Sec. II.C we hinted at the subtle nature of Landauer’s
principle: in classical thermodynamics, Eq. (21) is a direct
consequence of the second law, but with SS as the thermo-
dynamic entropy of the system. Landauer’s original bound, on
the other hand, concerns the information-theoretic entropy.
The framework put forth in Sec. III, however, unifies both
views, as it reformulates the second law in terms of the
system’s von Neumann entropy. Indeed, Eqs. (30) and (38)
imply that

Σ ¼ Iρ0SE
ðS∶EÞ þ Sðρ0EkρEÞ ¼ ΔSS þ βQE: ð76Þ

The second law Σ ≥ 0 then yields QE ≥ −TΔSS, which is
precisely Landauer’s bound (21). Equality is achieved when
Σ ¼ 0, i.e., for reversible processes. These results were
already presented by Esposito, Lindenberg, and Van Den
Broeck (2010), but the link with Landauer’s principle was
strengthened by Reeb and Wolf (2014), who greatly popu-
larized this subject.
Equation (21) is important because it is universal. The only

hypothesis is that the bath is initially thermal (and uncorre-
lated from the system). Other than that, the bath may have an
arbitrary dimension and arbitrary Hamiltonian, the system
may be prepared in any initial state, and the interaction U can
be any unitary whatsoever.
This universality, however, has a downside in that the bound

is in general loose. Tighter bounds can be obtained by
assuming additional information about the environment
and/or the process. We now discuss several such formulations,
taking care to properly state which additional pieces of
information are assumed in each case. First, we consider
the case where the only additional piece of information one
has is that the environment is finite dimensional, with a Hilbert
space dimension dE. In this case, when ΔSS < 0, the follow-
ing correction to Eq. (21) holds (Reeb and Wolf, 2014):

QE ≥ −TΔSS þ
2TðΔSSÞ2

4þ ln2ðdE − 1Þ : ð77Þ

Equation (77) shows that finite dimensions impose more strict
constraints on heat dissipation. The correction vanishes when
dE → ∞; however, notice that the dependence is logarithmic
and therefore extremely slow. Additional finite-size bounds
were also presented by Reeb and Wolf (2014), although they
depend on more complicated functions.
The original bound (21) or its finite-size correction (77)

becomes trivial in the limit T → 0. This is unsatisfactory: can
erasure really be performed with zero dissipation when
T → 0? The bound trivializes in this case due to the term
Sðρ0EkρEÞ in Eq. (76), which diverges when T → 0. To bypass
this difficulty, Timpanaro, Santos, and Landi (2020) showed
how to derive a tighter bound starting only with the mutual
information term Iρ0SE

ðS∶EÞ. The bound in this case acquires
the form

QE ≥ Q(S−1ð−ΔSSÞ); ð78Þ

where the functions QðT 0Þ and SðT 0Þ are defined as

QðT 0Þ ¼
Z

T 0

T
CEðτÞdτ; SðT 0Þ ¼

Z
T 0

T

CEðτÞ
τ

dτ; ð79Þ

with CEðTÞ the equilibrium heat capacity of the environment.
In Eqs. (79) T is the actual initial temperature of the
environment, whereas T 0 is merely the argument of the
functions. This bound requires only one additional piece of
information, namely, the environment’s heat capacity CEðTÞ.
This is to be compared with Eq. (21), which requires only a
single number T, or with Eq. (77), which requires two
numbers T and dE. Knowing an entire function CEðTÞ is
definitely more difficult, although the heat capacity is in
general an easy quantity to measure experimentally, even at
extremely low temperatures. However, one can also show that
the bound is always tighter than both Eqs. (21) and (77). To
provide an example, if we have CE ¼ aT for some constant a,
Eq. (78) becomes

QE ≥ −TΔSS þ ΔS2S=2a: ð80Þ

As in Eq. (77), the correction also involves a term proportional
to ΔS2S, but with a coefficient that is temperature independent.
Thus, in the limit T → 0 the last term still survives, showing
that a fundamental heat cost exists even when T ¼ 0.
Tighter bounds can also be derived when information about

the SE unitary U and the system initial state ρS are available
(Goold, Paternostro, and Modi, 2015; Lorenzo et al., 2015;
Guarnieri et al., 2017). Here we review the approach of Goold,
Paternostro, and Modi (2015), which derives a bound using
the fluctuating properties of heat. The key idea is to interpret
the global map (28) as a quantum channel for the environment,
instead of the system, as described by the Kraus map

ρ0E ¼ TrS½UðρS ⊗ ρEÞU†� ¼
X
l

AlρEA
†
l ; ð81Þ

where Al¼jk ¼
ffiffiffiffi
λj

p hskjUjsji, with fλjg and fjsjig the eigen-
values and eigenstates of ρS. Trace preservation impliesP

l A
†
l Al ¼ 1E. Letting En and jrni denote the eigenvalues

and eigenvectors of HE, the heat distribution of the environ-
ment (via a two-point measurement) can then be written as
(Talkner, Campisi, and Hänggi, 2009)

PðQEÞ ¼
X
l;m;n

hrnjAljrmiðρEÞmmhrmjA†
l jrniδ(QE − ðEn −EmÞ);

ð82Þ

with ðρEÞnm ¼ hrnjρEjrmi. From this one may then show that
he−βQi ¼ Tr½MρS�, where M ¼ TrE½U†ð1S ⊗ ρEÞU�. Using
Jensen’s inequality then leads to

hQEi ≥ −T lnðTr½MρS�Þ: ð83Þ

This result establishes a bound on hQEi that depends on both
the state of the system and the unitary U. It therefore also
encompasses a dependence on the size of E, which is in line
with Eq. (77).
Using the formalism of full counting statistics (Esposito,

Harbola, and Mukamel, 2009), one can also extend these
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results to obtain an entire single-parameter family of bounds
(Guarnieri et al., 2017). We first introduce the following
cumulant generating function of PðQEÞ:

Θðη; βÞ≡ lnhe−ηQEi ¼ ln
Z

PðQEÞe−ηQEdQE: ð84Þ

Hölder’s inequality then implies that, for η > 0,

βhQEi ≥ −
β

η
Θðη; βÞ ðη > 0Þ; ð85Þ

which contains Eq. (83) as a particular case. Conversely, for
η < 0 we obtain the upper bounds βhQEi ≤ βΘðη; βÞ=jηj. In
the limit jηj → 0 both bounds coincide with βhQEi.

B. Conditional entropy production

We consider once again the general map (28) of Sec. III.
But now we suppose that after the map we measure the
environment, or at least part of it. Funo, Watanabe, and Ueda
(2013) studied how the information acquired from this
measurement affects the entropy production. Since it is only
the bath that is measured, there can be no backaction to the
system, as this would violate no signaling. As a consequence,
one would expect that learning the outcomes of the measure-
ments would always make the process more reversible; that is,
part of the ignorance captured by the entropy production
should be resolved.
To formalize this idea, we consider a generalized meas-

urement on E described by Kraus operators fMkg and labeled
with a set of outcomes k. We denote the local states of S and E
after the map, conditioned on an outcome k, by

ρ0Ejk ¼
Mkρ

0
EM

†
k

pk
; ρ0Sjk ¼

1

pk
trEðMkρ

0
SEM

†
kÞ; ð86Þ

where pk ¼ trðMkρ
0
EM

†
kÞ is the probability of outcome k (as

before primed quantities always refer to states after the map).
One may also verify that

P
k pkρ

0
Sjk ¼ ρ0S, thus confirming

that the measurement in E causes no backaction in S. But there
may be a backaction in E, so ρ̃E ≔

P
k pkρ

0
Ejk ≠ ρ0E.

We now ask how to construct the entropy production
conditioned on a given outcome. The goal is to define, in
analogy with Eq. (34), a conditional entropy production Σk
and a conditional flux Φk, which are related by

Σk ¼ Sðρ0SjkÞ − SðρSÞ þΦk: ð87Þ

Equation (87) is still merely a definition and will acquire
meaning only once Σk and Φk are defined. Averaging over all
outcomes k then yields the following relation between the
conditional average entropy production and flux:

Σc ¼
X
k

pkSðρ0SjkÞ − SðρSÞ þΦc; ð88Þ

where Σc ¼
P

k pkΣk and we follow a similar approach
for Φc. The entropy difference on the first two terms of the

right-hand side is known as the Ozawa-Groenewold quantum-
classical information (Groenewold, 1971; Ozawa, 1986;
Funo, Ueda, and Sagawa, 2018). Notice also that Σk and
Φk are not necessarily linear functions of ρ0SE, so in general
their averages Σc and Φc do not have to coincide with the
unconditional quantities Σ and Φ.
Equation (87) is merely a definition of Σk and Φk. The

relevant question is how to properly define these quantities in
a way that is physically consistent. We first analyze the flux.
An examination of Eq. (37) shows that a natural generalization
to the case of conditional states is Φk ¼ Sðρ0EjkÞ − SðρEÞþ
Sðρ0EjkkρEÞ, which therefore simply amounts to replacing ρ0E
with ρ0Ejk. Averaging over all pk and using the second line in

Eq. (37), one then finds that

Φc ≔
X
k

pkΦk ¼ trfðρE − ρ̃EÞ ln ρEg; ð89Þ

where ρ̃E ¼ P
k pkρ

0
Ejk. If the measurement is performed on

the initial eigenbasis of ρE, it then follows that Φc ¼ Φ (even
though ρ̃E ≠ ρ0E). This result has a clear physical interpreta-
tion: the entropy flux refers only to the flow of information to
the environment. It should therefore be independent of
whether we place a condition on any measurement outcomes.
The flux should therefore only change if there is backaction
from the measurement. In other words, the difference Φc −Φ
has nothing to do with the system or the SE interaction, but
rather only with the backaction caused by the measurement.
For this reason, we henceforth assume that the measurement is
such that Φc ¼ Φ. This assumption was also used implicitly
by Breuer (2003), who defined entropy production from the
perspective of quantum jump trajectories.
Using Φc ¼ Φ in Eq. (88) and comparing it to Eq. (34)

allows one to conclude that

Σc ¼ Σ − χMðρ0SÞ; ð90Þ

where

χMðρ0SÞ ¼ Sðρ0SÞ −
X
k

pkSðρ0SjkÞ ¼
X
k

pkSðρ0Sjkkρ0SÞ ð91Þ

is the Holevo quantity (Nielsen and Chuang, 2000), which is
always non-negative. Equation (90) illustrates the idea of
reducing irreversibility through measurement: Conditioning
on the measurement outcomes reduces, on average, the
entropy production by an amount proportional to the
Holevo quantity, an object with numerous applications in
information theory.
The Holevo quantity χM is a basis-dependent version of the

classical information used in quantum discord theory (Modi
et al., 2012). It thus follows that, for any choice of measure-
ment operators fMkg, one should have χMðρ0SÞ ≤ Iρ0SEðS∶EÞ.
Comparing this to the definition of Σ in Eq. (30), one then
concludes from Eq. (90) that

Σc ¼ Iρ0SEðS∶EÞ þ Sðρ0EkρEÞ − χðρ0SÞ ≥ Sðρ0EkρEÞ:
Hence, even though Σc ≤ Σ it is nonetheless still strictly non-
negative. This occurs because the interaction irreversibly

Gabriel T. Landi and Mauro Paternostro: Irreversible entropy production: From classical …

Rev. Mod. Phys., Vol. 93, No. 3, July–September 2021 035008-15



pushes the bath away from equilibrium, so that, even if all
possible information were to be acquired, the dynamics would
still be irreversible.

C. Heat flow in the presence of correlations

Another key manifestation of information in thermody-
namics is the influence of initial correlations in the heat flow
between two bodies. According to the second law, if we put
into contact two systems A and B, initially prepared in
equilibrium at different temperatures, heat will always flow
from hot to cold [Eq. (15)]. This assumes, however, that the
two bodies are initially uncorrelated. If that is not true, heat
may eventually flow from cold to hot. This problem was first
considered in the quantum scenario of Partovi (2008), who
discussed only the case where the global state of AB is pure.
This was then generalized by Jennings and Rudolph (2010)
and Bera et al. (2017), who also addressed some of the
information-theoretic aspects of the problem. An experimental
demonstration of this effect was recently performed in a
nuclear magnetic resonance setup (Micadei et al., 2019). In a
broader sense, these ideas are ultimately related to the use of
mutual information to reduce entropy, as first discussed in the
seminal paper by Lloyd (1989).
We consider two systems with Hamiltonians HA and HB,

prepared in a global (generally correlated) state ρAB. We
assume, however, that the reduced density matrices of A and B
are still thermal, ρA ¼ trBρAB ¼ e−βAHA=ZA and ρB ¼
e−βBHB=ZB at different temperatures βA and βB. The two
systems are then made to interact with a unitary U satisfying
strict energy conservation ½U;HA þHB� ¼ 0; see Eq. (50).
The state after the interaction is thus ρ0AB ¼ UρABU†, from
which one can compute the corresponding marginals ρ0A
and ρ0B.
The correlations between A and B are characterized by the

mutual information IρABðA∶BÞ defined in Eq. (31). Since the
dynamics is unitary it follows that Sðρ0ABÞ ¼ SðρABÞ, which
allows one to show that

ΔIðA∶BÞ ¼ ΔSA þ ΔSB; ð92Þ

where ΔIðA∶BÞ ¼ Iρ0ABðA∶BÞ − IρABðA∶BÞ is the change in
mutual information between A and B.
Next consider the quantity

S ¼ Sðρ0AkρAÞ þ Sðρ0BkρBÞ ≥ 0; ð93Þ

which is non-negative because the relative entropies are non-
negative. This quantity is a part of the entropy production
when cast in terms of the Jarzynski-Wójcik scenario; see
Eq. (64). What is important for our purposes is that this
quantity is purely local, depending only on the reduced
density matrices of A and B before and after the interaction.
Substituting the initial thermal forms of ρA and ρB, together
with Eq. (92), then leads to (Jennings and Rudolph, 2010)

S ¼ βAΔHA þ βBΔHB − ΔIðA∶BÞ ≥ 0: ð94Þ

We assume that TA > TB. Because of strict energy conserva-
tion, the average heat exchanged is simply defined as

QB ¼ ΔHB ¼ trfHBðUρABU† − ρABÞg ¼ −ΔHA; ð95Þ

so Eq. (94) becomes

ðβB − βAÞQB ≥ ΔIðA∶BÞ: ð96Þ

Equation (96) can be viewed as a generalization of the
bound (15) to take into account initial correlations.
If A and B are initially uncorrelated then ΔIðA∶BÞ ¼

Iρ0ABðA∶BÞ ≥ 0, which implies that QB must have the same
sign as βB − βA (i.e., heat flows from hot to cold). But if they
are initially correlated and the process is such that this
correlation is consumed [ΔIðA∶BÞ < 0], then it is possible
for heat to flow from cold to hot. This is thus an example of a
situation where an information-theoretic resource is being
consumed to perform a thermodynamic task that would not
naturally occur. This is akin to refrigerators, where heat also
flows from cold to hot, but the resource being used is work
from the electrical plug. The result can also be formulated in
the language of Maxwell’s demons. A demon, in this context,
has access to additional information in the form of global
correlations shared between A and B. These correlations can
then be consumed as a thermodynamic resource.
Correlations will not always make heat flow from cold to

hot. They may well have the opposite effect, accelerating the
heat from hot to cold. An illustrative example is the problem
studied experimentally by Micadei et al. (2019). Consider two
qubits with Hi ¼ Ωjeiheji (i ¼ A; B) and initially prepared in
a correlated state of the form

ρAB ¼ ρthA ⊗ ρthB þ χ; ð97Þ

where ρthi ¼ð1−fiÞjgihgjþfijeihej, with fi ¼ ðeΩ=Ti þ 1Þ−1,
are the local thermal states of each qubit and χ ¼
αeiθjg; eihe; gj þ αe−iθje; gihg; ej represents the correlations,
with α and θ real parameters. The two qubits are then
made to interact with an energy-preserving unitary U¼
expf−igtðeiϕjg;eihe;gjþe−iϕje;gihg;ejÞg, where ϕ is an arbi-
trary phase and g is the interaction strength. The heat QB ¼
ΔHB that enters system B at time t is given by

QBðtÞ ¼ Ω sinðgtÞ½ðfA − fBÞ sinðgtÞ − 2α sinðθ − ϕÞ cosðgtÞ�:
ð98Þ

We again assume that TA > TB for concreteness. Since fi is
monotonically increasing with Ti, when α ¼ 0 we always get
QB ∝ ðfA − fBÞ > 0 so that heat will flow from hot to cold.
But when α ≠ 0, the direction of the heat flow will actually
depend on a fine interplay between the phases θ and ϕ
appearing in χ and U, respectively. These phases may
combine either constructively, reversing the heat flow, or
destructively, accelerating the already natural flow direction.

Gabriel T. Landi and Mauro Paternostro: Irreversible entropy production: From classical …

Rev. Mod. Phys., Vol. 93, No. 3, July–September 2021 035008-16



D. Fluctuation theorem under classical and quantum
correlations

The problem treated in Sec. IV.C can also be analyzed from
a quantum trajectory perspective, which will serve to highlight
the nontrivial role of quantum versus classical correlations.
We begin by considering the case of two-point measurements
(TPM), where both A and B are measured at the beginning and
the end of the process. Jevtic et al. (2015) discussed the
implications of measuring in the local energy bases jnAi
and jnBi of the Hamiltonians HA and HB. A quantum
trajectory will be specified by four quantum numbers γ ¼
ðnA; nB;mA;mBÞ and occurs with the probability

P½γ� ¼ jhmAmBjUjnAnBij2pnAnB ; ð99Þ

where pnAnB ¼ hnAnBjρABjnAnBi. Since ρAB is not a product
state, in general pnAnB ≠ pnApnB .
The probability that a heat qB½γ� ¼ EmB

− EnB enters the
system B will then be given by PðqBÞ ¼

P
γ δðqB−

qB½γ�ÞP½γ�. Using this to compute the average heat hqBi,
we find that

hqBi ¼ trfHB½UΔðρABÞU† − ΔðρABÞ�g; ð100Þ

where ΔðρABÞ ¼
P

nA;nB jnAnBihnAnBjρABjnAnBihnAnBj is
the operation of fully dephasing ρAB in the basis jnAnBi.
The important point to realize now is that Eq. (100) is in

general different from the average heat in Eq. (95). The
difference is due to the presence of the dephasing operator Δ
and is thus a consequence of the measurement backaction,
which dephases ρAB. The two quantities will coincide only
when ρAB is already diagonal in jnAnBi. Stated differently,
when ρAB is not diagonal, the TPM scheme used here will
fundamentally change the amount of heat exchanged between
the two systems, producing an entirely different dynamics
when compared with the bare unitary evolution. The entropy
production is thus extrinsic, that is, dependent not only on the
systems A and B but also on the details of how one performs
the experiment.
This highlights the fundamental difference between corre-

lations present in the populations (i.e., those that are diagonal
in jnAnBi) and correlations that are present in the coherences
(off diagonals). The latter can be viewed as a basis-dependent
quantum discord, i.e., as the amount of discord present in the
energy basis (the energy basis appears as a preferred basis due
to the energy-conserving nature of the unitary U, as reviewed
in Sec. V.B).
Returning to Eq. (99), we introduce the reverse

process, where A and B start at the same state but
one applies the unitary U† instead (this is the Jarzynski-
Wójcik scenario of Sec. III.E). The probability for the back-
ward trajectory γ� ¼ ðmA;mB; nA; nBÞ is given by P½γ�� ¼
jhnAnBjU†jmAmBij2pmAmB

. The ratio of the two processes
reduces to P½γ�=P½γ�� ¼ pnAnB=pmAmB

since the dynamical
term cancels out (as usual). To make the physics of this ratio
more evident, we introduce the stochastic mutual information
InAnB ¼ lnpnAnB=pnApnB , where pnA ¼ P

nB pnAnB (and like-
wise for pnB ) are the marginal distributions of the initial state,

which we chose to be thermal (pnA ¼ e−βAEnA =ZA). The
average of InAnB over pnAnB yields the mutual information
of the dephased state

hInAnBi ¼
X
nA;nB

pnAnB ln
pnAnB

pnApnB

¼ IΔðρABÞðA∶BÞ; ð101Þ

where IρðA∶BÞ is as defined in Eq. (31).
Writing pnAnB¼pnApnBe

InAnB allows us to express
P½γ�=P½γ�� ¼ ðpnApnB=pmA

pmB
Þe−ΔI½γ�, where ΔI½γ� ¼

ImAmB
− InAnB . But since the reduced states are thermal

(pnα=pmα
¼ eβαðEmα−Enα Þ), we may finally write

P½γ�=P½γ�� ¼ eðβB−βAÞqB½γ�−ΔI½γ�; ð102Þ

where we also used the fact that EmA
− EnA ¼ −ðEmB

− EnBÞ.
Equation (102) represents a modified exchange fluctuation

theorem generalizing the results of Jarzynski and Wójcik
(2004) to the case where A and B have initial correla-
tions. Equation (102) implies a nonequilibrium equality
heðβB−βAÞqB½γ�−ΔI½γ�i ¼ 1, which yields the bound

ðβB − βAÞhqB½γ�i ≥ hΔI½γ�i: ð103Þ

This is structurally similar to Eq. (96). However, as previously
discussed they cannot be directly compared since they pertain
to different processes due to the dephasing action of the first
measurement.
These results show that, when constructing fluctuation

theorems, quantum correlations are fundamentally hampered
by the backaction of the two-point measurement scheme. A
way to circumvent this is to use the notion of augmented
trajectories, first discussed by Dirac (1945) and used more
recently by Park, Kim, and Vedral (2017) and Micadei, Landi,
and Lutz (2020). We decompose the initial (correlated) state of
AB as ρAB ¼ P

s psjsihsj, where jsi are eigenvectors living on
the composite Hilbert space of AB. Before the dynamics, we
perform instead a measurement in the basis jsi. The second
measurement can be in the energy basis, as in Sec. IV.D, since
it does not matter whether we destroy the correlations after the
end of the protocol.
The quantum trajectory will therefore be described in this

case by the quantum numbers γ ¼ ðs;mA;mBÞ and the
corresponding path probability will be given, instead of by
Eq. (99), by P½γ� ¼ jhmAmBjUjsij2ps. Knowing the outcome
s of the first measurement, however, does not uniquely specify
which energy eigenstates jnAnBi the two systems were
initially in. To account for this, we augment the trajecto-
ries by considering the conditional probability pnAnBjs ¼
jhnAnBjsij2 that AB are found in jnAnBi given that glo-
bally they are in jsi. The augmented trajectory γ̃ ¼
ðs; nA; nB;mA;mBÞ will then have a path probability

P̃½γ̃� ¼ jhmAmBjUjsij2pspnAnBjs: ð104Þ

This formulation addresses the issues that arise from the
backaction of the first measurement. For instance, as Micadei,
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Landi, and Lutz (2020) showed, it leads to the full identity (96)
and not its dephased version (103).
Equation (104) also well illustrates a recurring problem in

extending thermodynamics to the quantum regime.
Thermodynamics deals not with states but with processes,
i.e., with transformations between states. Assessing these
transformations therefore touches on the inevitable measure-
ment backaction. Equation (104) circumvents this by con-
structing a distribution free from any backaction. This
distribution, however, has to be constructed using full state
tomography. An alternative approach put forth by Levy and
Lostaglio (2019) formulates the problem by instead using the
notion of quasiprobabilities, that is, probabilities that can take
on negative values. As they showed, these negativities are
directly related to the notion of contextuality.

V. QUANTUM DYNAMICS AND THE CLASSICAL LIMIT

The global unitary map (29) is extremely general and
represents the basic structure behind most open-system
dynamics (the only assumption in it is that S and E are
initially uncorrelated). To make it practical, however, this map
has to be specialized to specific paradigms. The usual
paradigm in open quantum systems (Gardiner and Zoller,
2004; Breuer and Petruccione, 2007; Rivas and Huelga, 2012)
is to assume that the environment is macroscopically large and
the unitary is left turned on for an arbitrary time. Equation (28)
is then naturally reinterpreted as the continuous-time map

ρSðtÞ ¼ Et(ρSð0Þ) ¼ trEfUðtÞ½ρSð0Þ ⊗ ρE�U†ðtÞg: ð105Þ

Common questions in the theory of open quantum systems,
such as whether the map will be divisible, are all contained in
the properties of ρE and UðtÞ.
All results derived in Sec. III for the entropy production

remain valid in this case, although it becomes more natural to
study the entropy production rate _Σ ¼ dΣ=dt. An important
observation is that even though Σ ≥ 0 by construction, this is
not in general guaranteed for _Σ. This is expected to happen for
macroscopic environments but has to be analyzed on a case-
by-case basis. In fact, temporary negativities in _ΣðtÞ can be
used as a measure of non-Markovianity (Breuer et al., 2016;
de Vega and Alonso, 2017), as they represent instances of time
where information backflows to the system (which fits well
with the interpretation of _Σ as a measure of irreversibility).
This is reviewed in Sec. VII.H.
More serious difficulties arise, however, when one is

interested in quantum master equations derived from the
map (105). The problem is that master equations use several
approximations to describe the dynamics solely from the
optics of the reduced state of the system. They therefore have
no information about the global Sþ E state, which is para-
mount for quantifying entropy production. Thus, while these
approximations may be reasonable for describing the dynam-
ics, they can be disastrous for the thermodynamics. For
instance, Levy and Kosloff (2014) showed how local master
equations seem to violate the second law (such as by allowing
heat to flow from cold to hot). If one also has access to the
global dynamics, this would never happen by construction.

This was used by De Chiara et al. (2018) to reconcile local
master equations with thermodynamics.
The thermodynamics of quantum master equations has to

be analyzed on a case-by-case basis. Instead, we focus in this
review on an alternative paradigm of the open system called
collisional models (also referred to as “repeated interactions”).
These models, which are detailed later, have been used for a
long time in different contexts (Rau, 1963; Englert and
Morigi, 2002; Scarani et al., 2002). However, they recently
gained a surge in popularity (Karevski and Platini, 2009;
Giovannetti and Palma, 2012; Landi et al., 2014; McCloskey
and Paternostro, 2014; Barra, 2015; Lorenzo et al., 2015;
Pezzutto, Paternostro, and Omar, 2016; Cusumano et al.,
2018), largely because they allow full control over the
approximations employed. We review here the thermodynam-
ics of collisional models, which were laid out on firm ground
by Strasberg et al. (2017) and then connected with master
equations by Barra (2015) and De Chiara et al. (2018). We
later show how some of the results for the thermodynamics of
master equations can actually be derived as limiting cases of
such models. This includes the result by Spohn (1978), as well
as the formulation of continuous measurements given by
Horowitz and Parrondo (2013). We also show how collisional
models can be used to see the emergence of a classical limit
and the classical rules of stochastic thermodynamics
(Cwiklinski et al., 2015).

A. Collisional models

Collisional models have drawn inspiration from
Boltzmann’s original Stosszahlansatz (molecular chaos
hypothesis). The open-system dynamics is envisioned as a
series of sequential interactions, where in each time interval
the system interacts with only a small fraction of the
environment (which we henceforth refer to as an ancilla).
After this interaction the ancilla is discarded and a fresh new
one is introduced, again prepared in a thermal state. This is
what happens in classical Brownian motion: at each moment
the particle interacts with only a small number of molecules.
Moreover, after they interact, the molecules return to the bath
and never interact with the system again.
The collisions may be assumed to happen at random times

or be sequential. We focus on the latter for concreteness and
assume that each event lasts for a time τ. If we let ρAn

denote
the density matrix of the nth ancilla, then the collisional model
can be described by the map

ρnþ1
S ¼ trAn

fUSAn
ðρnS ⊗ ρAn

ÞU†
SAn

g ≔ EnðρnSÞ; ð106Þ

where ρnS ¼ ρSðnτÞ is the state of the system before interacting
with the nth ancilla. As can be seen, this map is simply a
composition of the original map (29). Hence, all thermody-
namic properties derived in Sec. III also hold for each stroke
of the collisional model. Moreover, since the ancillas are
assumed to be independent, it is trivial to compose the
properties of multiple strokes. From a thermodynamic per-
spective, this offers a monumental advantage.
We can also increment the collisional model with the

additional assumption that in between each SA stroke, the
system also undergoes a unitary evolution; see Fig. 3(a).
The map (106) is then updated to
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ρnþ1
S ¼ Un(EnðρnSÞ) ð107Þ

where UnðρSÞ ¼ UnρSU
†
n is a unitary stroke described by an

arbitrary unitary Un acting only on S. The situation where the
system is always close to equilibrium was recently analyzed
by Scandi et al. (2020). Since the unitary strokes Un involve
no heat by construction, this kind of map composition is a
useful way of separating heat and work, a quantum gener-
alization of the type of splitting used by Crooks (1998). As
discussed in Sec. III.D, the ancilla strokes En may also contain
a contribution due to work, depending on whether USAn

satisfies strict energy conservation [Eq. (50)].
The states of the ancillas in the collisional model (107) do

not have to be identical. This can be used to implement
nontrivial limit cycles. The basic idea is illustrated in Fig. 3(b).
It consists of setting the ancillas to cycle through an alphabet
ofm states, such as ρA, ρB, ρC, ρA, ρB, ρC,… in the example of
the figure. If the composite map

ΦðρSÞ ¼ Um ∘ Em ∘ � � � ∘U1 ∘ E1ðρSÞ ð108Þ

is applied for a sufficiently long time, any transients related to
the system’s initial conditions will vanish and the system will
reach a limit cycle, characterized by ρ�S ¼ Φðρ�SÞ. Because the
ancillas are always changing, however, this limit cycle will not
be a fixed point of the individual maps (107), only of the
composite map (108). As a consequence, the system will
never reach a steady state but will instead keep bouncing back
and forth within the limit cycle. This can be used to generate a
diverse set of rich dynamics describing enginelike behavior.
For concreteness, we assume that within the system-ancilla

strokes the system Hamiltonian remains fixed at Hn
S. During

the subsequent unitary stroke, on the other hand, it changes
from Hn

S to Hnþ1
S . The precise way through which this change

takes place is encoded in the unitary Un. Heat is then defined,
as in Sec. III, as the change in energy of the ancillas [see
Eq. (39)], i.e., QAn

≔ trfHAn
ðρ0An

− ρAn
Þg. This is to be

compared with the total change in energy of the system,

ΔHn
S ¼ trðHnþ1

S ρnþ1
S −Hn

Sρ
n
SÞ: ð109Þ

The mismatch between QAn
and ΔHn

S is then attributed
entirely to work. This work, however, may have a contribution
from the on-off work of the system-ancilla interaction and the
following contribution from the unitary Un:

Won-off
n ¼ trfHn

S½EnðρnSÞ − ρnS�g þQAn
; ð110Þ

Wu
n ¼ trfHnþ1

S ρnþ1
S −Hn

SEnðρnSÞg: ð111Þ

The first law therefore decomposes as

ΔUn
S ¼ Wu

n þWon-off
n þQAn

: ð112Þ

Notice how ΔHn
S in Eq. (109) is a function of state, whereas

QAn
and Wn are not.

As for the second law, based on the results of Sec. III we
have the following three tiers of possible expressions for the
entropy production:

Σn ¼ Iρ0SAn
ðS∶AnÞ þ Sðρ0An

kρAn
Þ ð113Þ

¼ ΔSnS þ βnQAn
ð114Þ

¼ SðρnSkρn;thS Þ − Sðρnþ1
S kρn;thS Þ; ð115Þ

where ΔSnS ¼ Sðρnþ1
S Þ − SðρnSÞ is the change in the entropy of

the system in the map (107). The first line is the general
definition (30) and holds for any ancillary state. The second
line is true only if the ancillas are thermal, although not
necessarily at the same temperature [Eq. (38)]. Finally, the
third line is true only for thermal operations [i.e., if the ancillas
are thermal and the unitary satisfies the strict energy con-
servation condition (52)]. If the ancillas are identical, some of
the indices n may be dropped and the expressions simplify
a bit.

B. The emergence of a preferred basis

The classical limit is usually associated with the emergence
of a preferred basis in which coherence among the basis
elements tend to be suppressed. In the so-called einselection
paradigm (Zurek, 1981), this basis emerges due to the contact
with a heat bath. Thermal operations (Sec. III.D) provide an
illustration of this principle and also highlight some of the
subtle issues that arise in the classical limit.
We consider here the collisional model in Eq. (107) and

assume that the ancillary stroke (106) is a thermal operation
(Sec. III.D). During the unitary stroke, the Hamiltonian is
assumed to change from Hn

S ¼ HSðλnÞ to Hnþ1
S ¼ HSðλnþ1Þ,

where λ represents a generic work parameter. For simplicity,

(a)

(b)

FIG. 3. (a) Diagramatic illustration of the collisional model in
Eq. (107). (b) Scheme for studying NESSs obtained when a
system is coupled to multiple reservoirs. In this case the ancillas
cycle through an alphabet of states ρA, ρB, ρC, ρA, ρB, …, so the
system never reaches equilibrium, even when Un ¼ 1 (no unitary
strokes).
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however, we assume that this change is much faster than the
system-ancilla stroke so that we may set Un ≃ 1.
Let Hn

S ¼
P

i E
n
i jinihinj denote the spectral decomposition

of Hn
S in terms of the eigenvalues En

i and the corresponding
eigenstates jini at each given time n. We assume that the
eigenvalues En

i are nondegenerate. As shown by Cwiklinski
et al. (2015), if the map (106) is a thermal operation, the
populations hinjρnSjini at the instantaneous eigenstates will
evolve according to the classical Markov chain

hinjρnþ1
S jini ¼

X
j

MnðijjÞhjnjρnSjjni; ð116Þ

where MnðijjÞ ¼
P

μ;ν q
n
ν jhinμnjUSAn

jjnνnij2, with qnν and
jνni, jμni the initial populations and eigenstates of ancilla
An, i.e., ρAn

¼ e−βH
n
E=Zn

E ¼ P
ν q

n
ν jνnihνnj. We call attention

to the fact that, in order to make sure that each step is a thermal
operation, the states of the ancillas and the unitaries USAn

have
to change to adjust to the strict energy conservation con-
dition (50); this makes Eq. (116) difficult to realize exactly,
although it is realizable approximately, as we now discuss.
Notice how the left-hand side of Eq. (116) contains

hinjρnþ1
S jini, which differs in general from hinþ1jρnþ1

S jinþ1i.
This highlights a unique property of quantum dynamics,
namely, that the action of the work agent may not only
change the populations En

i of the system but also rotate the
eigenbasis jini. The notion of “population and coherences” in
Eqs. (116) and (119) should thus be interpreted with care, as
they change with each step. As a consequence, even slow
dynamics, which is usually somewhat dull for classical
systems, may present interesting and highly nontrivial effects
that are of a genuine quantum nature. This was recently
explored by Miller et al. (2019) and Scandi et al. (2020) and is
reviewed in Sec. VII.E.
In the remainder of this section, we focus on the case where

½Hn
S;H

m
S � ¼ 0 for all n andm. This means that during the work

strokes the energy levels of the system may change, but the
orientation of the eigenbasis jii remains fixed. One may then
define the populations pn

i ¼ hijρnSjii so that Eq. (116) is
converted into the classical Markov chain

pnþ1
i ¼

X
j

MnðijjÞpn
j : ð117Þ

MnðijjÞ are simply transition probabilities (their time depend-
ence comes from the fact that the Hamiltonian may be
changing in time). Moreover, as the ancillas are thermal, they
satisfy the detailed balance condition

MnðijjÞ ¼ MnðjjiÞe−βðE
n
i −E

n
j Þ: ð118Þ

Thus, by all standards, the populations evolve according to an
entirely classical evolution. Notably, the evolutions of pop-
ulations and coherences are completely decoupled. Indeed, the
latter are found to evolve according to

hijρnþ1
S jji ¼ Rn

ijhijρnSjji; ð119Þ
where Rn

ij ¼
P

μ;ν q
n
νhiνnjUSAn

jiμnihjνnjU†
SAn

jjμni. One may
verify that jRn

ijj < 1 (Cwiklinski et al., 2015), so the off

diagonals are suppressed further and further with each
collision, until eventually vanishing.
This example shows the emergence of a preferred basis.

Because of the strict energy conservation property of thermal
operations, the energy basis of the system is selected as a
preferred basis by the environment, a process called “envi-
ronment-induced” selection, or einselection. This effect is
clearly manifested in the entropy production. The entropy
produced at each stroke will be given by Eq. (115), with
ρn;thS ¼ e−βH

n
S=Zn

S. We may now split the relative entropy as

SðρnSkρn;thS Þ ¼ Sðpnkpn;thÞ þ CðρnSÞ; ð120Þ

where Sðpnkpn;thÞ is the classical relative entropy between
the probability distributions pn

i and pn;th
i ¼ e−βE

n
i =Zn

S; the
classical relative entropy is defined as

SðpkqÞ ¼
X
i

pi lnpi=qi: ð121Þ

The second term in Eq. (120), on the other hand, is the relative
entropy of coherence in the energy eigenbasis jii:
CðρnSÞ ¼ SðpnÞ − SðρnSÞ. Plugging this into Eq. (115) allows
us to split the entropy production of each step into the
following two parts (Santos et al., 2019; Mohammady,
Aufféves, and Anders, 2020):

Σn ¼ Σcl
n þ Σqu

n ; ð122Þ

where

Σcl
n ¼ Sðpnkpn;thÞ − Sðpnþ1kpn;thÞ; ð123Þ

Σqu
n ¼ CðρnSÞ − Cðρnþ1

S Þ: ð124Þ

The term Σcl
n is a purely classical contribution and coincides

with the formulation used in classical stochastic processes
(Schnakenberg, 1976). It describes the irreversibility associ-
ated with the system having to adapt its populations to those
imposed by the environment. In addition to the formulation,
however, we have an extra term Σqu

n describing the irrevers-
ibility due to the way the environment process quantum
coherences. This thus represents a genuinely quantum con-
tribution to the entropy production. Both terms are also
individually non-negative (Santos et al., 2019).

C. Continuous-time limit

When the interaction time τ of each collision is small, the
stroboscopic dynamics in Eq. (107) can usually be converted
into a continuous-time master equation for the system (Englert
and Morigi, 2002; Strasberg et al., 2017). In view of the
importance of quantum master equations, we review the basic
procedure here. The idea is to construct a generator L
according to

dρS
dt

≔ lim
τ→0

ρnþ1
S − ρnS

τ
¼ LðρSÞ; ð125Þ
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where ρnþ1
S and ρnS are separated by the collision time τ. The

limit process in Eq. (125), however, has to be interpreted with
care: Strictly speaking, one cannot take τ → 0, as this would
imply no interaction at all. Instead, this is to be interpreted as a
leading order contribution to a series expansion. In a nutshell,
the main idea is to take τ sufficiently small to ensure that
dρS=dt becomes a smooth function. Ultimately, this is a
coarse-graining argument, which is actually ubiquitous in
stochastic processes. It also arises, for instance, in the classical
Langevin equation describing Brownian motion; see Cresser
and Facer (2017) for a critical assessment of the coarse-
graining approach.
We focus here on two distinct scenarios. We first assume

that the Hamiltonian is time independent but that the collisions
are not energy preserving. We then consider the case where the
Hamiltonian is time dependent and the collisions are thermal
operations (which is the same scenario as that discussed in
Sec. V.B). The starting point for both cases is actually the
same. We thus remain general here and specialize the results
in Sec. V.D.
We focus on a single system-ancilla collision, where the

Hamiltonian is given by H ¼ HS þHA þ V and the initial
states are ρS and ρA for system and ancilla (all indices n are
omitted for now). The evolution of the system in this single
collision is given by

ρ0S ¼ trAfe−iτHðρS ⊗ ρAÞeiτHg:

Expanding the exponentials in a power series and dividing by
τ on both sides leads to

ρ0S − ρS
τ

¼ −i½HS þ trAðVρAÞ; ρSÞ� −
τ

2
trA½V; ½V; ρS ⊗ ρA��:

ð126Þ

Equation (126) illustrates the physical meaning of the
limit (125). If we naively take τ → 0, only the first term
survives. But this term contains only the original system
Hamiltonian plus a unitary contribution (Lamb shift)
trAðVρAÞ. Moreover, this Lamb shift is often zero for most
choices of ancilla states and interactions; see Rivas and
Huelga (2012) for more details and Rodrigues et al. (2019)
for a counterexample. Indeed, we henceforth assume
that trAðVρAÞ ¼ 0.
The actual dissipative contribution, which is what we are

interested in, corresponds to the second term in Eq. (126). But
this is still of the order of τ and hence would vanish if τ → 0.
The limit (125) should therefore correspond to a limit where
ðρ0S − ρSÞ=τ is sufficiently smooth to be interpreted as a
derivative, but the last term is nonetheless not vanishingly
small. A more systematic way of implementing this is to
introduce a fictitious scaling of the potential by changing
V → V=

ffiffiffi
τ

p
. This means that, while we take the interaction

time to be short, we also take it to be strong in the same
proportions. This scaling is not physical but helps us to
identify the terms to neglect in the series expansion. An
identical situation also appears in classical Brownian motion:
the white noise entering the Langevin equation can be seen as
resulting from a sequence of independent kicks, each

occurring for an infinitesimal time Δt and for whom the
magnitude scales as 1=

ffiffiffiffiffiffi
Δt

p
.

With such rescaling Eq. (126) becomes

ρnþ1
S ¼ ρnS − iτ½Hn

S; ρ
n
S� þ τDnðρnSÞ; ð127Þ

where we have already reintroduced all indices n. We also
defined

DnðρSÞ ¼ −1
2
trAn

½Vn; ½Vn; ρS ⊗ ρAn
��: ð128Þ

Taking the limit τ → 0 then finally leads to

dρS
dt

¼ −i½HSðtÞ; ρS� þDtðρSÞ; ð129Þ

where HSðt ¼ nτÞ ¼ Hn
S, and likewise for Dt.

Equation (128) can always be put in Lindblad form (Breuer
and Petruccione, 2007) by decomposing the interaction
as Vn ¼

P
k MkFk ¼

P
k F

†
kM

†
k, where Mk and Fk are

Hermitian operators of the system and ancilla, respectively.
This leads to

DðρSÞ ¼
X
k;q

hF†
qFkin½MkρSM

†
q − 1

2
fM†

qMk; ρSg�; ð130Þ

where hF†
qFkin ¼ trðF†

qFkρAn
Þ is, by construction, positive

semidefinite. The evolution is thus Markovian and can always
be put in canonical form.
To provide another example, we consider an interaction

appearing often in the literature, i.e.,

V ¼
X
k

gkðL†
kAk þ LkA

†
kÞ; ð131Þ

where Lk and Ak are operators for the system and
ancilla, respectively. We assume that hAkAqi ¼ 0; hA†

kAqi ¼
δk;qhA†

kAki. Equation (128) then acquires the familiar form

DðρSÞ ¼
X
k

fγþk D½Lk� þ γ−k D½L†
k�g; ð132Þ

where D½L� ¼ LρSL† − ð1=2ÞfL†L; ρSg and γþk ¼ g2khAkA
†
ki,

γ−k ¼ g2khA†
kAki.

A further specialization is to the case where the Ak are
eigenoperators of the ancilla Hamiltonian. That is, they satisfy
½HA; Ak� ¼ −ωkAk for some set of Bohr (transition) frequen-
cies ωk. If the state of the ancillas is a thermal state
ρthA ¼ e−βHA=ZA, then this property will ensure that the
coefficients γ�k satisfy the detailed balance

γ−k =γ
þ
k ¼ e−βωk : ð133Þ

When one considers the Fermi-Dirac distribution
with fk ≔ hA†

kAki ¼ ðeβωk þ 1Þ−1 ¼ 1 − hAkA
†
Ki, Eq. (132)

becomes DðρSÞ ¼
P

k g
2
kfð1 − fkÞD½Lk� þ fkD½L†

k�g. We
might instead take the Bose-Einstein distribution
with nk ≔ hA†

kAki ¼ ðeβωk − 1Þ−1 ¼ hAkA
†
ki − 1 to get

Gabriel T. Landi and Mauro Paternostro: Irreversible entropy production: From classical …

Rev. Mod. Phys., Vol. 93, No. 3, July–September 2021 035008-21



DðρSÞ ¼
P

k g
2
kfðnk þ 1ÞD½Lk� þ nkD½L†

k�g. The entropy
production in this case must be computed using Eq. (114)
since the reservoirs are assumed to be thermal, but V is not
necessarily a thermal operation. Since we are interested in the
continuous-time limit, we instead compute the entropy pro-
duction rate

_Σ ¼ lim
τ→0

ΔSnS
τ

þ βQAn
: ð134Þ

The first term tends to dSðρSÞ=dt, the rate of change of the
system’s von Neumann entropy. But the last term still involves
a quantity related to the ancillas. We now discuss under which
conditions Eq. (134) can be recast solely in terms of quantities
related to the system.

D. On-off work and Spohn’s separation

Equation (134) highlights the need for addressing under
which conditions the entropy production can be written solely
in terms of system-related quantities. This was already broadly
discussed in Sec. III. However, here it acquires additional
significance since master equations are often used as phe-
nomenological models of open-system dynamics without
knowledge of the baths and system-bath interactions.
To gain insight into this nontrivial question, first consider

the case where the system Hamiltonian is time independent
(Hn

S ¼ HS) and the ancillas are identically prepared
(ρAn

¼ ρA). The change in energy of the system and ancilla
in one collision can be determined as follows from Eq. (127)
and the corresponding analogous equation for the evolution of
ρAn

:

ΔHn
S ¼ −

τ

2
trf½V; ½V;HS��ρnS ⊗ ρAg; ð135Þ

ΔHAn
¼ −

τ

2
trf½V; ½V;HA��ρnS ⊗ ρAg≡QAn

; ð136Þ

where QAn
is precisely the quantity appearing in Eq. (134).

In general, the violation of strict energy conservation ½V;
HS þHA� ≠ 0 implies thatΔHn

S ≠ −QAn
, and hence there will

be a finite amount of on-off work (Sec. III.D).
This is where the difficulties in dealing with the thermo-

dynamics of master equations start. If one has access only to
Eq. (129), it is not clear how to split ΔHn

S into heat and work.
According to Eq. (129), one should have

dhHSi
dt

¼ trSfHSDðρSÞg; ð137Þ

and it is not at all obvious which part of this expression is heat
and which part is work (something that is evident from the
global dynamics). The problem is that in general QAn

simply
cannot be written in terms of quantities pertaining solely to the
system.
There is, however, an important case where this turns out to

be possible, namely, when the violation of strict energy
conservation is caused by an operator of the system, not
the ancilla. That is, in this case it is possible to decompose the
system Hamiltonian as HS ¼ HS;0 þHS;1 such that

½V;HS;0 þHA� ¼ 0 but ½V;HS;1� ≠ 0: ð138Þ

If this is true, then we may substitute ½V;HA� ¼ −½V;HS;0�
into Eq. (136), leading to

QAn
¼ τ

2
trf½V; ½V;HS;0��ρnS ⊗ ρAg: ð139Þ

As a consequence, we can now split Eq. (142) as

dhHSi
dt

¼ trSfHS;0DðρSÞg þ trSfHS;1DðρSÞg ð140Þ

¼ − _QA þ _W; ð141Þ

hence allowing us to unambiguously identify the first term as
heat and the second as on-off work. In this case, Eq. (132) may
therefore be written as

_Σ ¼ dSS
dt

− _QA ¼ dSS
dt

þ trSfHS;0DðρSÞg; ð142Þ

which is thus expressed solely in terms of quantities of the
system. Note that these results also hold if the ancillas are not
prepared in thermal states. This was used by Rényi (1960) to
study collisional models with weakly coherent ancillas. We
also mention that the approach taken here starts with a discrete
model and eventually reaches a coarse-grained, continuous-
time limit for the entropy production rate. The opposite route
can also be taken. That is, the entropy production rate of a
continuous process can also be discretized in small time steps,
which will then be depicted by a collisional model. This was
used by Monsel, Elouard, and Auffèves (2018) to construct a
method for measuring the entropy production of a driven
autonomous system.
The previously described situation often happens when the

system is composed of multiple interacting parts, but with
only one of the parts coupled to the ancillas (Barra, 2015; De
Chiara et al., 2018; Pereira, 2018). For instance, suppose that
the system is composed of two subsystems S1 and S2 with a
total Hamiltonian HS ¼ HS1 þHS2 þ VS1;S2 , where VS1;S2 is
the interaction between them. Moreover, suppose that there is
only one bath and it is coupled only to S1. The interaction
VA;S1 between S1 and the ancillas An is assumed to be locally
energy preserving (½VA;S1 ; HS1 þHA� ¼ 0). Notwithstanding,
in general ½VA;S1 ; VS1;S2 � ≠ 0. Thus, albeit locally energy
preserving the collision may not be globally energy preserving
due to the interaction between S1 and S2. The term VS1;S2 will
therefore play the role of HS;1 in Eq. (140) and will be
responsible for the on-off work.
To provide a concrete example, consider a minimal

model consisting of two qubits, with HS ¼ ω1σ
1
z þ ω2σ

2
z þ

λðσ1þσ2− þ σ1−σ
2þÞ (Barra, 2015). For simplicity, we assume

that only qubit 1 is coupled to a bath. The extension to two
baths, one coupled to each qubit, is straightforward. We also
take the bath to be described by a collisional model, where
the ancillas are made of thermal qubits with frequency
ω1 (i.e., resonant with qubit 1). The system will then evolve
according to
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dρS
dt

¼ −i½HS; ρS� þ g2ð1 − fÞD½σ1−� þ g2fD½σ1þ�: ð143Þ

[see the discussion following Eq. (133)]. Equation (138) will
be satisfied in this case, with HS;0 → ω1σ

1
z þ ω2σ

2
z and

HS;1 ¼ λðσ1þσ2− þ σ1−σ
2þÞ. As a consequence, there will be

work involved. The heat exchanged with the ancillas is going
to be −QA ¼ ω1trS½σ1zDðρSÞ�, while the work will be
W ¼ λtr½ðσ1þσ2− þ σ1−σ

2þÞDðρSÞ�. It is the heat QA that should
enter Eq. (142). If this is done, then one is guaranteed to find
_Σ ≥ 0 at all times. Conversely, if one instead uses tr½HSDðρSÞ�
as a definition of heat, this will lead to violations of the second
law, as discussed by Levy and Kosloff (2014).
We now change the scenario and consider Eq. (129) when

HSðtÞ is explicitly time dependent, but with the interactions
engineered to be thermal operations. This means there is no
on-off work involved, and ½Vn;HAn

� ¼ −½Vn;Hn
S�. As a

consequence, the heat exchanged to the ancillas [Eq. (136)]
becomes

QAn
¼ τ

2
trf½Vn; ½Vn;Hn

S��ρnS ⊗ ρAn
g; ð144Þ

which is written solely in terms of system-related quantities.
From the master equation (129) we now find the energy
balance

dhHSi
dt

¼ tr

�∂HS

∂t ρS

	
þ trfHSðtÞDtðρSÞg: ð145Þ

Comparing Eqs. (144) and (145) then leads to the celebrated
Spohn separation of work and heat (Spohn, 1978)

_QA ¼ −trfHSðtÞDtðρSÞg; _W ¼ trf _HSðtÞρSg: ð146Þ

Spohn’s separation is usually employed phenomenologically:
it is used when one has access to a master equation of the form
of Eq. (129) and wants to split the changes in energy into heat
and work. Equation (146) shows that this separation is not at
all universal. Quite the contrary: notice that for it to hold we
had to assume that, even though the Hamiltonian is changing
at each time step, the system-ancilla interaction and the state
of the ancilla were adjusted to guarantee that the map was
always a thermal operation. This would require considerable
fine-tuning and is difficult to realize in practice.

E. Pauli master equations and Schnakenberg’s approach

The Markov chain (116) can be viewed as the classical
dynamics emerging from the quantum collisional model (107)
in the case of thermal operations. Similarly, one may also
consider the classical limit of the continuous-time master
equation (129). All issues discussed in Sec. V.B also remain in
this case, in particular, the nontrivial distinction between
population and coherences in the case where the eigenbasis of
HSðtÞ is time dependent.
To simplify the problem, we thus consider the scenario

where only the eigenvalues of HSðtÞ are allowed to depend on
time: HSðtÞ ¼

P
i EiðtÞjiihij. The populations will then

evolve according to Eq. (117). To obtain the short-time limit,

we assume that USAn
¼ expf−iτðHn

S þHAn
þ Vn=

ffiffiffi
τ

p Þg and
expand it in a power series in τ. This leads to

MnðijjÞ ¼ δij þ τ

�
Wij − δij

X
k

Wkj

�
; ð147Þ

where we have introduced the transition probabilities
WijðtÞ ¼

P
μ;ν q

n
ν jhi; μjVnjj; νij2 and its time dependence will

be omitted for clarity when possible. Plugging this into
Eq. (117) and taking τ → 0 then leads to the classical Pauli
master equation (Breuer and Petruccione, 2007)

dpi

dt
¼

X
j

fWijpjðtÞ −WjipiðtÞg: ð148Þ

This procedure shows how, under specific conditions, one can
recover the classical master equation evolution from the
underlying quantum dynamics.
We now proceed to study the entropy production solely

from the perspective of the Pauli master equation (148). We
review the framework put forth by Schnakenberg (1976). This
approach is interesting because it also contemplates scenarios
beyond the standard thermal-bath interaction. Master equa-
tions of the form of Eq. (148) also find a plethora of
applications, from biomolecular processes to financial mar-
kets. And Schnakenberg’s approach allows one to construct
the entropy production rate and an entropy flux rate, irre-
spective of what physical system the master equation repre-
sents. The physical interpretation of _Σ and _Φ is not necessarily
evident in general. Notwithstanding, it reproduces the thermal
results as a particular case, as one would expect. This is an
advantage of classical systems that cannot be extended to the
quantum case.
The starting point is to consider the evolution of the

Shannon entropy

SðpÞ ¼ −
X
i

pi lnpi: ð149Þ

Differentiating with respect to time and inserting Eq. (148)
yields

dS
dt

¼ 1

2

X
i;j

ðWijpj −WjipiÞ lnpj=pi: ð150Þ

Schnakenberg then proposed that the following quantity be
associated with an entropy production:

_ΣðtÞ ¼ 1

2

X
i;j

ðWijpj −WjipiÞ ln
Wijpj

Wjipi
: ð151Þ

Equation (151) is always non-negative as it has the form
ðx − yÞ lnðx=yÞ ≥ 0. That is in principle not enough to label a
quantity as the entropy production. To scrutinize the correct-
ness of this formula, one must analyze it from different
perspectives.
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The difference between _Σ and dS=dt is associated with an
entropy flux rate _Φ according to Eq. (7). Using Eqs. (150)
and (151) one then arrives at

_ΦðtÞ ¼ 1

2

X
i;j

ðWijpj −WjipiÞ ln
�
Wij

Wji

�
: ð152Þ

The entropy flux is thus seen to be linear in the probabil-
ities pi.
Additional justification for Eqs. (151) and (152) can be

given if we assume that the dynamics satisfies the detailed
balance (van Kampen, 2007; Gardiner, 2010; Tomé and de
Oliveira, 2014), viz.,

Wijp�
j ¼ Wjip�

i ; ð153Þ

where p�
i is the steady-state distribution of Eq. (148) (not

necessarily a thermal state). In this case, Eq. (151) may be
rewritten in terms of the classical Kullback-Leibler diver-
gence (121) as

_Σ ¼ −
dSðpkp�Þ

dt
; ð154Þ

which is the continuous-time and classical analog of Eq. (47).
The entropy flux (152), on the other hand, can be rearranged
as

_Φ ¼
X
i

dpi

dt
lnp�

i : ð155Þ

In the case where the steady-state distribution is also the
thermal equilibrium state (p�

i ¼ e−βEi=Z), this becomes

_Φ ¼ −β
X
i

Ei
dpi

dt
¼ −β _Q ð156Þ

so that we recover the well-known thermodynamic result (7).
Returning to the general expression (151), it is also

interesting to define the probability current

Jij ¼ Wijpj −Wjipi; ð157Þ

which represents the current of probability flowing from j to i.
If we then define the following so-called conjugated force:

Xij ¼ ln
Wijpj

Wjipi
; ð158Þ

then the entropy production can be cast as

_Σ ¼ 1

2

X
ij

JijXij; ð159Þ

which is a stochastic version of Onsager’s form (18); i.e., the
entropy production is a product of fluxes times forces. The
difference is that here these are not macroscopic fluxes (like

the flow of energy), but rather microscopic currents of
probability.

F. Pauli master equation for multiple baths

When extending the Pauli master equation (148) to multiple
baths, one usually assumes that the transition rates Wij from
different reservoirs contribute additively (Maguire, Iles-Smith,
and Nazir, 2019; McConnell and Nazir, 2019). That is, they
can be split as

Wij ¼
X
α

Wα
ij; ð160Þ

where α represents the different reservoirs present in the
problem. Thus, for instance, if each reservoir is thermal, at
temperature Tα each rate in Eq. (160) would individually
satisfy the detailed balance

Wα
ij=W

α
ji ¼ e−βαðEi−EjÞ: ð161Þ

This assumption is known to describe a broad range of
mesoscopic systems well, from biological engines to nano-
scale junctions (Van den Broeck and Esposito, 2015).
However, when viewed as a limiting case of quantum
processes it is extremely strong. First and foremost, the
Liouvillian of the master equation will, itself, not be separable
in general. But even if it is (such as in the case of local master
equations), this does not mean that the corresponding Pauli
equation will have additive rates, since the preferred basis of
one bath may not coincide with the preferred basis of the other.
As a consequence, understanding under which conditions
Eq. (160) can be viewed as the limiting case of a quantum
process is not trivial and, to our knowledge, is still an open
problem.
Notwithstanding these difficulties, Eq. (160) provides an

interesting platform for characterizing entropy production.
Starting with Eq. (150) and plugging it into Eq. (160) leads to

dS
dt

¼ 1

2

X
i;j;α

ðWα
ijpj −Wα

jipiÞ lnpj=pi: ð162Þ

Following Esposito and Van Den Broeck (2010) the correct
way of identifying the entropy production is to add and
subtract lnWα

ij=W
α
ji in each term of the sum. The entropy

production rate is then identified as

_Σ ¼ 1

2

X
i;j;α

ðWα
ijpj −Wα

jipiÞ ln
Wα

ijpj

Wα
jipi

: ð163Þ

Notice that Eq. (163) is not equivalent to Eq. (151), which we
would have obtained if we had added and subtracted
lnWij=Wji instead. Equation (163) is the correct expression,
as it yields proper thermodynamic expressions for the fluxes.
Indeed, as shown by Esposito and Van Den Broeck (2010), if
this identification is not properly made one will in general be
underestimating the entropy produced. More details on the
formulation of entropy production in this scenario were given
by Van den Broeck and Esposito (2015). An extension to
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account for information flows was done by Horowitz and
Esposito (2014).

G. Classical phase space

Stochastic thermodynamics can also be formulated for
systems described by continuous degrees of freedom (such
as position and momenta). In this case Eq. (148) is replaced by
a Fokker-Planck equation. The formulation of the second law
for such systems was recently reviewed in detail by Seifert
(2012). Here, with Sec. V.H in mind we focus on two
illustrative examples.
The first is the so-called colloidal particle (Seifert, 2012),

which is described by a single random variable x evolving
according to the Langevin equation

_x ¼ fðxÞ þ B_ξðtÞ; ð164Þ

where fðxÞ ¼ −∂xVðxÞ is a conservative force stemming from
a potential VðxÞ, B is a constant, and ξðtÞ is a standard Wiener
(i.e., Gaussian) process. One may equivalently describe the
dynamics in terms of a Fokker-Planck equation for the
probability density PtðxÞ, which in this case reads

∂PtðxÞ
∂t ¼ −

∂J
∂x ¼ −

∂
∂x



fðxÞPtðxÞ −Dc

∂PtðxÞ
∂x

�
; ð165Þ

where Dc ¼ B2=2 is the diffusion constant. The Fokker-
Planck equation can be viewed as a continuity equation for
PðxÞ, with JðxÞ ¼ fðxÞPtðxÞ −Dc∂xPtðxÞ representing a
probability current. The noise in Eq. (164) is ascribed to a
thermal bath at a temperature T. As a consequence, one may
verify that, in order for the system to properly thermalize, one
must choose Dc ∝ T. In this case, the unique steady state of
Eq. (165) will be the thermal state Pth ¼ e−βVðxÞ=Z, where Z is
the partition function.
The definition of the entropy production associated with the

Fokker-Planck equation (165), including its stochastic for-
mulation and the associated fluctuation theorems, was dis-
cussed extensively by Seifert (2012). Extensions to more
general Fokker-Planck equations were discussed by Qian
(2001b) and Tomé and de Oliveira (2010), and a more robust
framework based on path integrals was given by Spinney and
Ford (2012). Here we point out a complementary approach,
namely, that with Eq. (154) in mind one may propose to define
the entropy production as

_Σ ¼ −
d
dt

SðPtkPthÞ; ð166Þ

where SðPtkPthÞ ¼
R
dxPtðxÞ lnPtðxÞ=PthðxÞ is the continu-

ous analog of Eq. (121). Inserting Eq. (165) into Eq. (166),
one finds

_Σ ¼
Z

dx
∂J
∂x lnPtðxÞ=Pth: ð167Þ

Next we integrate by parts. Boundary terms are assumed to
vanish as PtðxÞ → 0 for x → �∞. Moreover, using the

definition of JðxÞ together with the fact that Pth ∝ e−βVðxÞ,
one may verify that

∂
∂x lnPtðxÞ=Pth ¼ −

JðxÞ
DcPtðxÞ

: ð168Þ

Therefore Eq. (166) becomes

_Σ ¼ 1

Dc

Z
dx

JðxÞ2
PtðxÞ

; ð169Þ

which is the same result as given by Seifert (2012). This has a
clear physical interpretation: the quantity vðxÞ ¼ JðxÞ=PðxÞ
can be interpreted as a velocity in phase space. The entropy
production (169) is thus seen to be associated with a mean-
squared velocity. Thus, by construction it is always non-
negative and null if and only if the current itself vanishes. A
method for estimating _Σ using machine learning on the
stochastic trajectory xðtÞ was recently put forth by Seif,
Hafezi, and Jarzynski (2021).
Finally, it is worth mentioning that this approach, where

Eq. (166) is taken as the starting point for defining the entropy
production, is not always possible, in particular, when the
system is connected to multiple baths. We chose to present it
here nonetheless because it attributes a clear information-
theoretic meaning to the entropy production, specially in light
of the discussion in Sec. III.
Next we consider a generalization of Eq. (164) to the case

of multiple modes so that x ¼ ðx1;…; xnÞ is now a vector of
random variables. This could indicate, for instance, a collec-
tion of position and momenta. The vector x continues to be
described by a Langevin equation of the form of Eq. (164).
However, now fðxÞ is an n-dimensional vector and ξðtÞ is an
m-dimensional vector of independent Wiener processes. As a
consequence, B is taken to be an n ×m matrix. We assume
that B is independent of x, thus making this a problem with
additive noise [multiplicative noise introduces significant
mathematical complications (Spinney and Ford, 2012)].
We now focus on the special case of linear forces

fðxÞ ¼ −Ax, where A is an n × n matrix. We no longer
assume that fðxÞ is a conservative force, but it may well
contain damping terms. We do assume, though, that its
eigenvalues have positive real parts, thus guaranteeing the
stability of the problem. Linear systems of Langevin equations
of this form often appear in quantum optical experiments as a
semiclassical description of fluctuations in optical fields.
For such systems, it is more convenient to recast the

dynamical equation in terms of the first moments x̄ and the
covariance matrix (CM), defined as Θ ¼ hxxTi − hxihxTi.
One may verify that Θ evolves according to a Lyapunov
equation

_Θ ¼ −ðAΘþ ΘATÞ þ 2D; ð170Þ

where we have introduced the diffusion matrix
D ¼ BBT=2 ≥ 0. The equilibrium solution of Eq. (170)
satisfies the condition AΘþ ΘAT ¼ 2D. Continuous-time
Lyapunov equations of this form have found significant
applications in the fields of linear systems, control theory,
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and quantum optics (Brogan, 1991). The formulation of the
entropy production for this kind of problem can be constructed
by introducing the distinction between even or odd functions
under time reversal. Intuitive instances of even variables
include the positioning of mechanical systems and voltages
in circuits, with their odd counterparts being velocities and
currents.
It is then possible to identify the reversible parts of

Eq. (170), that is, the part that is even under time reversal,
from the irreversible one that changes sign upon inversion of
the sign of time. We call Airr the irreversible part of A such that
A ¼ Arev þ Airr. Convenient expressions for the entropy pro-
duction and flux rates [see Eq. (7)] were derived for this
scenario by Landi, Tomé, and de Oliveira (2013) and Brunelli
et al. (2018) under the assumption of Gaussian states and
dynamics. As mentioned, this is often the case in many
quantum optical experiments. Indeed, such expressions have
been instrumental to the interpretation of the experiments
reported on by Brunelli et al. (2018), which are reviewed in
Sec. VIII.D.

H. Quantum phase space

Many aspects of the transition from quantum to classical
can be neatly visualized by moving to quantum phase space.
The role of quantum effects in the entropy production is one of
them. In this section, we consider semiclassical formulations
of the entropy production problem based on quantum phase
space. The idea is to replace the von Neumann entropy with a
generalized entropy function associated with the distribution
in phase space. This yields a semiclassical formulation that
coincides with standard thermodynamics at high temperatures
but leads to valuable new insights otherwise. The approach, as
we show, can also be naturally extended to nonequilibrium
reservoirs, such as dephasing and squeezed baths (which are
also reviewed in Sec. VII.C).
We consider a system of n in general interacting har-

monic oscillators (bosonic modes) whose positions and
momenta (quadratures) we label as qi and pi, respectively
(i ¼ 1;…; n). We arrange them in the 2n-dimensional vector
XT ¼ ðq1; p1; q2; p2;…; qn; pnÞ. We also define the corre-
sponding annihilation operators as ai ¼ ðqi þ ipiÞ=

ffiffiffi
2

p
.

Moreover, in this section we assume for simplicity units such
that ℏ ¼ kB ¼ 1.
We discuss here two of the most widely used approaches for

quantum phase space: the Wigner and the Husimi function
(Lee, 1995). Given a density matrix ρ, the former is defined as

WðxÞ ¼ 1

π2n

Z
d2nλe−

P
i
ðλiα�i−λ�i αiÞtrfρe

P
i
ðλia†i−λ�i aiÞg; ð171Þ

where the integral is over the entire complex plane of each λi,
i.e., d2nλ ¼ Q

i dReðλiÞdImðλiÞ. Moreover, the argument x of
the Wigner function stands for a 2n-dimensional vector with
entries x2i−1 ¼ ðαi þ α�i Þ=

ffiffiffi
2

p
and x2i ¼ iðα�i − αiÞ=

ffiffiffi
2

p
. One

could equivalently interpret W to be a function of the 2n
complex variables ðαi; α�i Þ. We use the two representations
interchangeably in what follows.

An alternative, equivalent formulation is in terms of the
Husimi-Q function, which is defined as

QðαÞ ¼ 1

πn
hαjρjαi; ð172Þ

where jαi ¼⊗n
i¼1 jαii and each jαii is a coherent state of mode

i, i.e., aijαii ¼ αijαii. The Husimi function is interpreted as
the probability distribution for the outcome of a homodyne
measurement; that is, simultaneous (but noisy) measurements
of both position and momentum (Arthurs, 1965; Braunstein,
Caves, and Milburn, 1991).
While W can be negative for certain states, Q is always

strictly non-negative. The relation between the Wigner and
Husimi functions is via a Gaussian convolution

QðαÞ ¼ 2n

πn

Z
d2nλWðλÞe−2

P
i
jαi−λij2 : ð173Þ

This therefore shows howQ can be viewed as a type of coarse-
grained version of the Wigner function, which has often been
used to explore the classical-quantum boundary (Takahashi
and Saitô, 1985). This coarse graining is just enough to make
Q ≥ 0 for all ρ. The Wigner function is in one-to-one
correspondence with the state ρ. Despite this coarse graining,
the same is also true of Q. This is a consequence of the
overcompleteness of the coherent state basis.
A particularly important class of states in the context of

quantum phase space involves those that are Gaussian
(Ferraro, Olivares, and Paris, 2005). Gaussian states are
completely characterized by their first moments xi ¼ hXii
and CM, whose elements we rewrite for convenience as

Θij ¼ 1
2
hfXi; Xjgi − hXiihXji: ð174Þ

Thus, for Gaussian states the correspondence between ρ and
the Wigner or Husimi function is extended to the first
moments and the covariance matrix, which now fully char-
acterize the properties of the system. The Wigner function for
Gaussian states has the form of a multivariate normal

WðxÞ ¼ e−ð1=2Þðx−x̄ÞTΘ−1ðx−x̄Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2πÞn detðΘÞp ; QðxÞ ¼ e−ð1=2Þðx−x̄Þ
TΘ−1

Q ðx−x̄Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2πÞn detðΘQÞ
p ;

ð175Þ

where ΘQ ¼ Θþ I=2 is the original CM, incremented by
vacuum fluctuations. This is directly associated with the
coarse-grained nature of Q, which causes the CM associated
with Q to be larger by a factor of 1=2.
Gaussian states are useful for systems undergoing Gaussian

processes, that is, processes that preserve the Gaussian
character of a given input state. This in turn implies that
the operation is linear in the phase-space variables, and thus
generated by a Hamiltonian that is a bilinear form of position
and momentum. Such a class of states and operations is
particularly useful for illustrating the general context that we
aim to address. It plays a crucial role in quantum optics and
quantum information processing as an important resource
for quantum communication protocols (Braunstein and van
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Loock, 2005; Cerf, Leuchs, and Polzik, 2007; Serafini, 2017)
and a representation for the ground or thermal equilibrium
states of linear systems. Gaussian states are also routinely
prepared in many experimental settings, from linear optics to
platforms exploiting general light-matter interactions (Cerf,
Leuchs, and Polzik, 2007; Serafini, 2017). The formulation of
entropy production in terms of quantum phase space is greatly
simplified for Gaussian states and operations; the formalism,
however, is not restricted to this case, and we later discuss the
Gaussian and non-Gaussian processes in parallel.
Given the interpretation of W and Q as quasiprobability

distributions in phase space, one may now naturally con-
template the possibility of using their associated Shannon
entropies as quantifiers of information. The following
Shannon entropy of WðxÞ is called the Wigner entropy:

SW ¼ −
Z

d2nxWðxÞ lnWðxÞ: ð176Þ

An operational interpretation for SW was given by Bužek,
Keitel, and Knight (1995), who showed that it can be viewed
as a sampling entropy via homodyne measurements. For
general non-Gaussian states, W may be negative so that
the integral in Eq. (176) delivers a complex-valued entropy,
which is not suitable as a measure of information. For
Gaussian states, however, SW acquires a good interpretation.
First, an explicit calculation using WðxÞ in Eq. (175) leads to
(Bužek, Keitel, and Knight, 1995; Adesso, Girolami, and
Serafini, 2012; Landi, Tomé, and de Oliveira, 2013)

SW ¼ 1

2
ln detðΘÞ þ n

2
logð2πeÞ: ð177Þ

Equation (177) shows that the entropy is determined solely by
the determinant of the CM, therefore providing an extremely
efficient way of evaluating the entropy of the system. It is
notable that, for Gaussian states, SW is directly connected
to the Rényi-2 entropy. Recalling the definition Sα ¼ ð1 −
αÞ−1 ln trρα of the Rényi-α entropy, it was shown by Adesso,
Girolami, and Serafini (2012) that S2 ¼ ð1=2Þ ln detðΘÞ,
hence

SW ¼ S2 þ const: ð178Þ

Equation (178) links the Wigner entropy to S2, an important
information-theoretic quantity (Rényi, 1960) of strong ther-
modynamic relevance (Baez, 2011).
For states whose Wigner functions are not necessarily posi-

tive, one may alternatively study the following Shannon
entropy of the Husimi function:

SQ ¼ −
Z

d2nαQ lnQ; ð179Þ

known as Wehrl’s entropy (Wehrl, 1978; Wehrl, 1979). Since
Q ≥ 0, Wehrl’s entropy is always well defined and real. It can
also be given an operational interpretation as a coarse graining
of the von Neumann entropy, stemming from a convolution of
the system’s state with Gaussian noise induced by a hetero-
dyne measurement (Wódkiewicz, 1984; Bužek, Keitel, and

Knight, 1995). As a consequence, SQ upper bounds the von
Neumann entropy [SQ ≥ SðρÞ] (Lieb, 1978). Another advan-
tage of the Husimi function and the Wehrl entropy is that they
can be extended to spin systems in terms of spin-coherent
states. This is further discussed later.
We are now in the position to introduce the formulation of

entropy production within the context of the Wigner and
Wehrl entropies. The main advantage of moving to quantum
phase space is that any master equation can be mapped into a
quantum Fokker-Planck equation for W or Q. Tools of
classical stochastic processes can then be employed in order
to obtain simple expressions for the entropy production rate
and flux. This can be done for a wide variety of environments
interacting with the system of interest (Santos, Landi, and
Paternostro, 2017), including nonequilibrium baths. In what
follows, we present a account of possible approaches toward
the derivation of explicit expressions for such quantities.
For illustration, we begin by considering a single bosonic

mode described by a standard Lindblad master equation of the
form

∂tρ ¼ −i½H; ρ� þDðρÞ; ð180Þ

where H ¼ ωða†aþ 1=2Þ and

DðρÞ ¼ γðn̄þ 1ÞD½a� þ γn̄D½a†�; ð181Þ

where D½L� ¼ LρL† − ð1=2ÞfL†L; ρg, γ is the damping rate,
and n̄ ¼ ðeβω − 1Þ−1 is the Bose-Einstein distribution. Using
standard correspondence tables (Gardiner and Zoller, 2004)
one can convert Eq. (180) into a quantum Fokker-Planck
equation for eitherW orQ. In the case of the Wigner function,
this becomes

∂tW ¼ UðWÞ þ ∂αJðWÞ þ ∂α�J�ðWÞ; ð182Þ

where UðWÞ ¼ iω½∂αðαWÞ − ∂α� ðα�WÞ� is a differential
operator associated with the unitary part of Eq. (180) and

JðWÞ ¼ γ

2
½αW þ ðn̄þ 1=2Þ∂α�W� ð183Þ

is a complex-valued phase-space current associated with the
irreversible part of the dynamics. Equation (182) can be
viewed as a continuity equation in quantum phase space,
where the changes in W stem from gradients of unitary and
irreversible currents. In particular, the current J vanishes
if and only if W is a thermal state with occupation n̄, that
is, for Weq ¼ e−jαj2=ðn̄þ1=2Þ=½πðn̄þ 1=2Þ�. While Eq. (182)
vanishes for such a thermal state, the fact that the individual
currents vanish is a stronger statement, which in classical
systems is usually attributed to detailed balance. It also
provides an alternative interpretation for the thermal equilib-
rium state as the unique state for which no quasiprobability
currents flow.
The problem can be equivalently expressed as a Fokker-

Planck equation for the Husimi function. The equation will
have the same form as Eq. (182), with small modifications.
For the choice of Hamiltonian in Eq. (180), the unitary part
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turns out to be same, with W replaced by Q. But this is a
coincidence of this simple Hamiltonian, as the unitary parts in
general may differ significantly. The shape of the irreversible
currents JðQÞ will look exactly like Eq. (183) except that n̄þ
1=2 is replaced by n̄þ 1. This reflects the additional vacuum
fluctuations that naturally appear in the Husimi function,
which are similar to what was found in Eq. (175).
The formalism for the calculation of the entropy production

rate set forth in Sec. III, in particular, Eq. (47), suggests that a
meaningful definition for the Wigner entropy production
could be [see Eq. (154)]

_ΣWðtÞ ¼ −
d
dt

SW(WðtÞkWeq). ð184Þ

Here SWðW1kW2Þ ¼
R
d2αW1 lnW1=W2 is the Wigner

analog of the Kullback-Leibler divergence. As Adesso,
Girolami, and Serafini (2012) showed, for Gaussian states
this coincides with the Rényi-2 mutual information. By using
the rhs of Eq. (182) in the definition of _ΣW and integrating by
parts over the phase space, we get (Santos, Landi, and
Paternostro, 2017)

_ΣWðtÞ ¼
4

γðn̄þ 1=2Þ
Z

d2α
jJðWÞj2

W
: ð185Þ

Equation (185) has several good properties and a clear
physical interpretation. First, _ΣW ≥ 0, as expected for any
second law. Second, _ΣW ¼ 0 if and only if the currents vanish,
which happens if and only if W ¼ Weq. Thus, the entropy
production is zero only when the system is in thermal
equilibrium with the bath. Third, Eq. (185) directly links
entropy production with the existence of irreversible currents
in phase space. In particular, one can derive a phase-space
velocity JðWÞ=W (Seifert, 2012) so that _ΣW is interpreted as
the mean-squared phase-space velocity.
Next we turn to the entropy flux, which can be computed

from _ΦW ¼ _ΣW − dSW=dt; see Eq. (7). Using the explicit form
of JðWÞ in Eq. (183) together with Eq. (185), one finds that

_ΦW ¼ γ

n̄þ 1=2
ðha†ai − n̄Þ: ð186Þ

The interpretation of Eq. (186) is straightforward as well.
Starting with Eq. (180), one may compute the energy flow to

the bath, which reads _hHi ¼ ωγðn̄ − ha†aiÞ. For simplicity, we
assume that this can be attributed to heat entering the bath

( _hHi≡ − _QE); see Sec. V.D. As a consequence, comparing this
with Eq. (186), one finds that

_ΦW ¼
_QE

ωðn̄þ 1=2Þ : ð187Þ

Equation (187) can be compared with the standard thermody-
namic result _Φ ¼ _QE=T [Eq. (2)]. We see that formulating the
problem in terms of theWigner function leads to amodification
of the standard thermodynamic result, where the heat flux is
now weighted by a new prefactor ωðn̄þ 1=2Þ instead of the
temperature T. When T ≫ ω, however, a series expansion

leads to ωðn̄þ 1=2Þ ≃ T. Thus, one recovers the standard
thermodynamic results at high temperatures.
A particularly important special case of the previous

formalism is to describe photon losses in optical cavities.
The standard dissipator used to describe this DðρÞ ¼
γ½aρa† − ð1=2Þfa†a; ρg� corresponds to a zero-temperature
(n̄ → 0) limit of Eq. (181). The problem with this is that the
standard formulation of the second law breaks down in this
limit since the relative entropy in Eq. (30) diverges when the
environment is in a pure state. The phase-space approach, on
the other hand, remains perfectly well defined in this limit,
thanks to the factors of 1=2 in Eqs. (185) and (187). The
reason, therefore, is because the phase-space approach also
takes into account vacuum fluctuations, which persist even at
zero temperature.
Equations (185) and (187) provide solid physical grounds

for the choice of Eq. (184) as a basic definition of entropy
production in the context of quantum phase space. Santos,
Landi, and Paternostro (2017)) put forth two additional
approaches to the derivation these results, one of them based
on the complex-plane averaging of stochastic trajectories. The
fact that all approaches agree corroborates the correctness of
the framework. We mention, however, that Eq. (184) is not
expected to hold for all types of phase-space open dynamics. It
fails, for instance, in the case of a linear lattice connected to
multiple baths (Malouf et al., 2019). Hence, the previous
construction should ultimately be performed on a case-by-
case basis.
We also mention that these results remain valid if one

instead uses the Husimi function. The only difference is that
all factors of n̄þ 1=2 should be replaced by n̄þ 1. This
apparent similarity between the two approaches, however, is
deceiving, as it only happens for the simple models considered
here. In more complicated scenarios, the two approaches
may differ significantly. A good example is the case of two-
photon losses described by a Lindblad dissipator a2ρa†2 −
ð1=2Þfa†2a2; ρg (a highly non-Gaussian process). The
Fokker-Planck equation associated with this dissipator is
completely different if one employs either the Wigner or
the Husimi function, as a direct calculation shows. The same is
also true for more complicated unitary contributions. In fact,
due to the coarse-grained nature of the Husimi function,
unitary terms may contribute for the evolution of SQ. These
terms may be particularly important in systems undergoing
dissipative phase transitions (Goes, Fiore, and Landi, 2020),
which are reviewed in Sec. VII.F. But they also persist even in
completely isolated systems undergoing unitary dynamics,
which were studied by Goes et al. (2020).
The previously presented approach can also be flexibly

extended to master equations describing nonequilibrium
reservoirs. We consider two examples. The first is a squeezed
thermal bath that, in addition to the thermal occupation n̄, is
also described by a squeezing parameter z ¼ reiθ. The full
form of the dissipator in this case is presented in Eq. (264).
The calculations in this case are analogous and amount solely
to the substitution

JðWÞ → JðWÞ cosh rþ ½γα�W − J�ðWÞ�eiðθ−2ωstÞ sinh r;

ð188Þ
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where ωs is the central frequency of the broadband bath and
accounts for nonresonant energy exchanges with the system.
Squeezed baths are further reviewed in Sec. VII.C.
The second example we discuss is that of a dephasing bath,

which describes the loss of quantum coherence without the
exchange of excitations. The effects of a dephasing bath can
be accounted for in Eq. (180) by using the superoperator

DdephðρÞ ¼ −
λ

2
½a†a; ½a†a; ρ��; ð189Þ

with λ the dephasing rate. A similar procedure in this case
reveals that the flux is identically zero ( _ΦW ≡ 0). This is in
agreement with the idea that this sort of environmental effect
is not associated with a flux of excitations to or from the
system. As a consequence, one may identify the rate of change
of the Wigner entropy of the system with the entropy
production rate, which takes the form (Santos, Landi, and
Paternostro, 2017)

_Σdeph
W ðtÞ ¼ 2

λ

Z jJdephðWÞj2
jαj2W d2α; ð190Þ

where we have introduced the dephasing current JdephðWÞ ¼
λα½α�∂α�W − α∂αW�=2. We therefore see that a similar
structure emerges, but one now associated with the irreversible
currents generated by the dephasing bath. There is also an
additional factor of jαj2 in the numerator, which tends to favor
currents near the origin of the complex plane.
Santos et al. (2018) extended the formalism of phase-space

approaches to entropy production to the case of spinlike
systems, making use of the useful spin-coherent state repre-
sentation (Radcliffe, 1971; Takahashi and Saitô, 1985).

VI. RESOURCE-THEORETIC APPROACH

Quantum features can be exploited to provide advantages
for a series of applications. Different applications, however,
exploit different features. For instance, quantum communi-
cations may exploit entanglement, while metrological appli-
cations may exploit radiation squeezing. Each of these
features therefore represents a resource, which can be con-
sumed to yield a quantum advantage for certain tasks.
Resource theories provide a mathematical formulation of this
idea. Initially focused on entanglement (Horodecki,
Horodecki, and Horodecki, 2009), they were subsequently
extended to several other resources, including purity
(Horodecki, Horodecki, and Oppenheim, 2003), asymmetry
(Horodecki, Horodecki, and Oppenheim, 2003), and coher-
ence (Streltsov, Adesso, and Plenio, 2017). A recent review
was given by Chitambar and Gour (2019).
Thermodynamics can also be cast in this framework, known

as the resource theory of athermality, which was first
pioneered by Brandão et al. (2013). In this case, the resources
are all quantum states that are not in thermal equilibrium. The
reason is that such states can be used to extract work, which is
the most fundamental task of thermodynamics, hence athe-
rmality (i.e., how “far” a system is from equilibrium) is the
resource that is consumed to extract work.

Earlier works on the resource theory of athermality were
reviewed by Goold et al. (2016). In this section we focus on
some of the more recent developments, as well as on aspects
that pertain specifically to entropy production.
The starting point for any resource theory is the defi-

nition of the allowed free operations, that is, operations that
merely consume a resource and never create it. In the case of
thermodynamics, this indicates no associated work. Moreover,
the idea is to focus on operations that are physically mean-
ingful and endowed with interesting properties. While there is
no unique proposal [see Bera et al. (2017)], the most widely
used thus far have been the thermal operations discussed in
Sec. III.D.
Recall that a thermal operation (TO) is any map T ðρÞ of the

form (Brandão et al., 2013)

T ðρSÞ¼ trEfUðρS⊗ρthE ÞU†g; ½U;HSþHE�¼0; ð191Þ

with ρthE ¼ e−βHE=ZE. That is, a TO is a map where the system
interacts with a thermal environment by means of a unitary
that preserves the total energy; see Eq. (50). As discussed in
Sec. III.D, this kind of operation has a series of good
properties. First, the fixed point of the map is the thermal
state ρthS ¼ e−βHS=ZS. Hence, it describes the partial (or full)
thermalization of the system toward ρthS . Second, ½U;HS þ
HE� ¼ 0 implies that there is no work involved in coupling S
and E, so the change in energy of S coincides with the heat
that flows to E. Third, the entropy production of the process
can be written as follows solely in terms of system-related
quantities as in Eq. (52):

Σ ¼ SðρSkρthS Þ − Sðρ0SkρthS Þ ¼ −βΔF; ð192Þ

where ρ0S ¼ T ðρSÞ is the state of the system after the map and
ΔF ¼ Fðρ0SÞ − FðρSÞ, where FðρSÞ ¼ trðHSρSÞ − TSðρSÞ is
the nonequilibrium free energy of ρS.
In the resource theory of athermality, the state ρthS is called

the free state. Any state that is not ρthS is viewed as a resource
(this includes thermal states at a different temperature β0). The
TOs (191) represent the free operations; they cannot create
resources but instead only consume it. Moreover, they do
nothing to free states. Another key feature of resource theories
is the idea of a monotone, i.e., a c-number function fðρSÞ
satisfying

f(T ðρSÞ) ≤ fðρSÞ: ð193Þ

A natural monotone in this case is the relative entropy
SðρSkρthS Þ. This quantity is a monotone because ρthS is a fixed
point of T , so the data processing inequality implies
Sðρ0SkρthS Þ ≤ SðρSkρthS Þ; see Eq. (49). The entropy produc-
tion (192) and the second law (Σ ≥ 0) therefore naturally
appear as the monotones of the resource theory.
In the case of a system with a zero Hamiltonian (HS ¼ 0),

the free energy simply becomes the von Neumann
entropy of the system FðρSÞ ¼ −TSðρSÞ and one recovers
the resource theory of purity (Horodecki, Horodecki, and
Oppenheim, 2003).
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One of the basic questions of resource theories is: Given
two states ρS and ρ0S, is there an operation T such that
ρ0S ¼ T ðρSÞ? Put differently, is it possible to convert ρS to ρ0S
via thermal operations? This means that one has to search over
all possible maps T (i.e., over all possible environments and
all possible energy-preserving unitaries). The question is
therefore highly nontrivial. Notwithstanding, it is also
extremely important, as it allows one to establish a hierarchy
of resources and thus determine how much more resourceful
one state is with respect to another. As we later show, it turns
out that entropy production plays a fundamental role in
determining state interconversion.
In the context of thermodynamics, state interconversion is

directly associated with the work of Åberg (2013), or, more
specifically, the notions of work extraction and work
of formation (Dahlsten et al., 2011; Horodecki and
Oppenheim, 2013). These tasks can be accomplished, for
instance, by coupling the system to an additional work qubit
(Horodecki and Oppenheim, 2013) or a continuous variable
system (mimicking a classical weight) (Skrzypczyk, Short,
and Popescu, 2014; Chubb, Tomamichel, and Korzekwa,
2018). The maximum amount of work that can be extracted
occurs when the system is taken from a state ρS to the thermal
state ρthS (full thermalization). Work of formation, on the other
hand, refers to the reverse problem: if the system starts in a
thermal state ρthS , what is the minimum amount of energy that
must be invested to take it toward a certain state ρS? Extraction
and formation are therefore two examples of state
interconversion.

A. Thermomajorization

We now turn to the question of state interconversion in the
single-shot scenario. That is, given two states ρ1 and ρ2, we
ask whether it is possible to convert ρ1 → ρ2 using only
thermal operations of the form of Eq. (191). This problem was
first addressed by Horodecki and Oppenheim (2013) and is
based on a criterion called thermomajorization (which is a
variation of the idea of majorization used in probability
theory). Let HS ¼

P
i Eijiihij. For simplicity, we focus on

states that are diagonal in the basis jii, i.e., which are of the
form ρS ¼

P
i pijiihij. The results of Horodecki and

Oppenheim (2013) also hold for states that are block diagonal
[see Eq. (204)], but not for states that have arbitrary off-
diagonal elements. A treatment of the latter was put forth by
Lostaglio, Jennings, and Rudolph (2015) and is later
reviewed.
The criteria of thermomajorization can be formulated as

follows. For each given state ρS ¼
P

i pijiihij, we construct
the so-called thermomajorization curve of ρS. First, we relabel
the probabilities so that

p1eβE1 ≥ p2eβE2 ≥ � � � ≥ pdeβEd ; ð194Þ

where d is the Hilbert space dimension, which we assume to
be finite. This is called β ordering. We then construct a special
curve with points

�Xk
i¼1

e−βEi ;
Xk
i¼1

pi

	
; k ¼ 1;…; d; ð195Þ

as illustrated in Fig. 4(a).
This curve is used to compare different states, as we

exemplify in Fig. 4(b). If the curve for a certain state ρ1 is
always above another, say, ρ2, we say that ρ1 thermomajorizes
ρ2, which is written as

ρ1≻βρ2: ð196Þ

In the example shown in Fig. 4(b) ρ1≻βρ2 but ρ2=≻βρ3. By
construction the thermal state ρβ at temperature β is a straight
line and is majorized by all other states. The majorization
symbol therefore introduces a natural ordering between states.
It is essential to note, however, that this ordering is made with
reference to the temperature β of the bath. In particular, since
any state thermomajorizes ρβ, it follows that this must also be
true for other thermal states with different temperatures β0, i.e,
ρβ0≻βρβ for any β0.
The main result of Horodecki and Oppenheim (2013) can

now be summarized by the following theorem.
Theorem 1.—Given two block-diagonal states ρ1 and ρ2, if

ρ1≻βρ2 then it is possible to convert ρ1 to ρ2 using thermal
operations.
Thermomajorization thus offers an unambiguous way of

ordering states within the context of thermal operations. By
analyzing which curves are above the other, we can say which
states can be converted to others by means of thermal
operations. The proof, as well as the intuition, behind
Theorem 1 is based on the connection with majorization
theory. In addition to the original reference, see Lostaglio,
Jennings, and Rudolph (2015), who summarized the basic
ideas, and Weilenmann et al. (2016), who provided a thorough
discussion on the connection with majorization and the
resource theory of purity.
The basic rationale goes as follows. Given two D-

dimensional probability vectors γ1 and γ2, we say that γ1
majorizes γ2, written γ1≻γ2, when

FIG. 4. Thermomajorization condition determining when two
states are interconvertible using thermal operations. (a) Procedure
for constructing the thermomajorization curve is given in the
main text and summarized in Eq. (195). (b) This curve is then
used to compare different states. The state ρ1 thermomajorizes ρ2,
ρ3, and ρβ. Conversely, ρ2 and ρ3 do not thermomajorize each
other. Adapted from Horodecki and Oppenheim, 2013.
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Xk
i¼1

γ↓1i ≥
Xk
i¼1

γ↓2i ð197Þ

for all k ¼ 1;…; D. Here γ↓ represents the probability γ sorted
in descending order. To link majorization [Eq. (197)] to
thermomajorization [Eq. (196)], consider a system with d
levels and thermal distribution pth

i ¼ e−βEi=Z, where
i ¼ 1;…; d. For simplicity, we assume that the pth

i are
rationals; i.e., they can be written as pth

i ¼ ki=D, where ki
and D are integers such that

P
i ki ¼ D (to ensure normali-

zation). In practice, one can always approximate the pth
i in this

way, with arbitrary accuracy, by using sufficiently large
integers.
Given an arbitrary probability vector p ¼ ðp1;…; pdÞ,

one may then define a mapping γðpÞ that converts the d-
dimensional vector p into the D-dimensional vector

γðpÞ ¼
�
p1

k1
;
p1

k1
;…;

p2

k2
;
p2

k2
;…;

pd

kd
;
pd

kd
;…

�
; ð198Þ

where each term pi=ki occurs ki times. Notice that the ki’s
implicitly depend on β since they are defined from pth

i .
As a particular case, we see that the map in Eq. (198) takes

the thermal state pth into the following uniform distribution:

γðpthÞ ¼ η; ð199Þ
where ηi ¼ 1=D is aD-dimensional uniform distribution. This
is similar in spirit to the mapping between the canonical and
microcanonical ensembles in statistical mechanics, in the
sense that it maps a thermal distribution in a smaller space
to a uniform distribution (with all states equally likely) in a
higher-dimensional space.
Thermal operations have pth as a fixed point. In the larger

space of dimension D, this is then converted into a map RðγÞ
having the uniform distribution η as the fixed point. Maps of
this form are called noisy operations and play a central role in
the resource theory of purity (Horodecki, Horodecki, and
Oppenheim, 2003). The question posed in Theorem 1 can now
be converted to, under which conditions can γðp1Þ be
converted into γðp2Þ by means of noisy operations? As shown
by Ruch, Schranner, and Seligman (1978), this is possible
precisely when γðp1Þ≻γðp2Þ. But because of the structure of
Eq. (198), saying that γðp1Þ≻γðp2Þ is equivalent to saying
that p1≻βp2. Hence, Theorem 1 follows.
This analysis also serves to emphasize the deep connection

between athermality and purity. All results for majorization are
recovered from thermomajorization by setting HS ¼ 0; β
ordering in Eq. (194) simply becomes descending ordering,
etc. Thermomajorization is thus the generalization of majori-
zation theory for “nonzero Hamiltonians.” This acquires a
deeper significance starting in Sec. VI.B, when we discuss
monotones for athermality. In the resource theory of purity, all
that matters are probabilities, so the von Neumann entropy
appears as the natural monotone. For athermality, however,
energy also plays a role. And, as a consequence, the natural
monotones will instead be related to the free energy
F ¼ U − TS, which is precisely a combination of energy
and entropy.

B. The second laws of thermodynamics

The second law (52) says that a transition from ρS to ρ0S is
possible only if the corresponding entropy production is non-
negative. This, however, is only a necessary condition. There
may in principle exist states that cannot be interconverted into
one another despite leading to a positive entropy production.
For general maps, establishing sufficient and necessary con-
ditions is unfeasible. But for the restricted class of thermal
operations this turns out to be possible, as first shown by
Brandão et al. (2015) using the idea of catalytic thermal
operations.
The scenario is the same as before. However, in addition to

the system S, one introduces an ancillary system, called the
catalyst, with Hamiltonian HC and prepared in an arbitrary
state ρC. The joint SC system then undergoes a thermal
operation (conserving the total energy HS þHC þHE). The
thermal operation is necessarily chosen such that the catalyst
is brought back to its original state ρC after the process; see
Fig. 5. Given this setting, one then asks whether it is possible
to convert a state ρS into another state ρ0S.
The usual second law, written in the form of Eq. (52), states

that this is possible when SðρSkρthS Þ ≥ Sðρ0SkρthS Þ, a condition
that is necessary but not sufficient. Instead, as shown by
Brandão et al. (2015) a necessary and sufficient condition is
provided using the following theorem.
Theorem 2.—A state ρS, block diagonal in the energy basis,

can be converted into ρ0S by means of catalytic thermal
operations if

Σα ≔ SαðρSkρthS Þ − Sαðρ0SkρthS Þ ≥ 0 ∀ α ≥ 0; ð200Þ

where

SαðρSkρthS Þ ¼
1

α − 1
ln
X
i

pα
i ðpth

i Þ1−α ð201Þ

is the Rényi-α divergence.
This result thus establishes a family of second laws

(Σα ≥ 0) parametrized by the continuous parameter

(a) (b) (c)

FIG. 5. Illustration of the cyclic protocol based on catalytic
thermal operations used by Brandão et al. (2015) to generalize the
second law of thermodynamics to the microscopic quantum
domain. (a) System S, catalyst C, and reservoir E, each endowed
with their respective Hamiltonians [Hjðj ¼ S; C; EÞ], are pre-
pared in an uncorrelated state. The initial state of the reservoir
consists of the tensor product of n copies of the same thermal
state ρth;E. (b) Parties involved in the protocol evolve jointly via
the catalytic thermal operation U such that ½U;

P
j Hj� ¼ 0.

(c) The process is such that, at the end of the evolution, the
catalyst is brought back to its initial state, while the system S ends
up in a state ρ0S.
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α ∈ ½0;∞Þ. The usual second law in Eq. (52) is a particular
case corresponding to α → 1.
Alternatively, one may cast the second laws in terms of

Rényi-α free energies defined as

FαðρSÞ ¼ Fth þ TSαðρSkρthS Þ; ð202Þ

where Fth ¼ −T lnZS. This represents the Rényi generaliza-
tion of the nonequilibrium free energy (42). Equation (200)
then becomes

FαðρSÞ ≥ Fαðρ0SÞ ∀ α ≥ 0: ð203Þ

Recall from Eq. (41) that in the absence of work, Σ ¼ −βΔF.
Thus, the statement Σ ≥ 0 is tantamount to saying, “In order
for a process to be possible, the free energy must go down.”
But, again, this is only a necessary condition. Conversely, for
quantum systems and thermal operations the appropriate
statement is, “All free energies must go down.”
As in Sec. VI.A, a macroscopic limit can be defined in

which (i) the system’s dimensions d are large and (ii) the state
of the system has an energy distribution sharply peaked
around hHSi. In this case it can be shown that all second
laws stated in Eq. (200) converge to the usual one [Eq. (52)].

C. Coherence and the resource theory of asymmetry

All results in Sec. VI.B hold only for states ρS that are block
diagonal in the energy basis, that is, states of the form

ρS ¼
X
i;j

δðEi ¼ EjÞρijjiihjj; ð204Þ

where δða ¼ bÞ is the Kronecker delta and fjiig and fEig are
the eigenstates and eigenvalues of HS. Coherences of this
form are called nonenergetic and play a much smaller role
than coherences between different energy states (energetic
coherences) due to the special role that energy plays in the
dynamics and because, with the exception of accidental
degeneracies, different energy states are usually associated
with different macroscopic configurations.
In the context of thermodynamics, it was shown by

Lostaglio, Jennings, and Rudolph (2015) and Lostaglio et al.
(2015) that energetic coherences place constraints on the
allowed transformations on top of the second laws (200). This
connection was made by showing that a resource theory of
thermodynamics is actually composed of two parts: athermal-
ity and asymmetry.
The resource theory of asymmetry (also called quantum

reference frames) concerns arbitrary transformations under a
certain group (Gour and Spekkens, 2008). Let G denote a Lie
group and let Vg denote a unitary corresponding to a
representation g ∈ G of the group. A state ρ is called a free
state if VgρV

†
g ¼ ρ. That is, free states are invariant under G.

Similarly, an arbitrary quantum channel EðρÞ is called a free
operation if

EðVgρV
†
gÞ ¼ VgEðρÞV†

g ∀ ρ; g ∈ G: ð205Þ

Such channels are also called covariant.
Thermal operations [see Eq. (191)] are covariant under the

group generated by time translations, i.e., where Vt ¼ e−iHSt,
with HS the generator of the group. This follows from the
fact that ½U;HS þHE� ¼ 0 and e−iHEtρthEe

iHEt ¼ ρthE . After
straightforward manipulations, one has

e−iHStT ðρSÞeiHSt ¼ T ðe−iHStρSeiHStÞ:

Thermal operations are thus also free operations with respect
to asymmetry. The standpoint of this approach is therefore
that, by inducing the emergence of a directional arrow of time,
thermodynamic irreversibility prevents time-translational
invariance in general thermodynamic processes. On the other
hand, the free states will be those that are block diagonal in
the basis of HS since these are the ones that satisfy
e−iHStρSeiHSt ¼ ρS. The free states are therefore those with
no energetic coherences.
A monotone for coherence can be given by the following

relative entropy of coherence (Baumgratz, Cramer, and
Plenio, 2014):

CðρSÞ ¼ S(ρSkΔHS
ðρSÞ) ¼ S(ΔHS

ðρSÞ) − SðρSÞ; ð206Þ

where ΔHS
ðρSÞ is the operation that fully dephases all entries

of ρS that are not block diagonal in the energy basis ofHS; see
the discussion in Sec. V.B. Notice, therefore, thatΔHS

ðρSÞwill
be a free state from the perspective of asymmetry for any ρS.
Equation (206) therefore measures the entropic distance
between the state ρS and its incoherent version, which is
time translation invariant, hence it provides a measure of the
breakdown of time-translation invariance (Rodríguez-Rosario,
Frauenheim, and Aspuru-Guzik, 2013).
Moreover, since thermal operations are free operations, they

can reduce only the amount of coherence in a state so that

CðρSÞ ≥ Cðρ0SÞ; ð207Þ

where ρ0S ¼ T ðρSÞ. This statement therefore implies that
thermal operations cannot generate additional time-translation
asymmetry in a system. Further, it characterizes the depletion
of coherence and the tendency of the system to equilibrate
onto time-translation invariant states, thus elevating coherence
to the role of a second important resource in thermodynamics
complementing athermality.
One may now draw a parallel here with the distinction made

in Sec. VI.B between the second law and the second laws:
Eq. (207) is only a necessary criteria for ρS to be intercon-
vertible into ρ0S. Instead, Lostaglio, Jennings, and Rudolph
(2015) proved the following stronger result.
Theorem 3.—The set of thermal operations on a quantum

system is a subset of the set of time-translation invariant
operations. Moreover, for all α > 0 any thermal operation
results in
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Sα(ρSkΔHS
ðρSÞ) ≥ Sα(ρ0SkΔHS

ðρ0SÞ) ≥ 0 ∀ α ≥ 0: ð208Þ

These conditions are independent of the second laws (200)
and therefore represent additional constraints that must be
satisfied in systems having coherence. It is also important to
note that Theorems 2 and 3 cannot be combined into a single
family of inequalities. For α ¼ 1, as discussed in Sec. V.B, one
may split

SðρSkρthS Þ ¼ S(ΔHS
ðρSÞkρthS )þ CðρSÞ: ð209Þ

The first term represents the quantity entering Eq. (200), that
is, the block-diagonal part of the state. The second term, on the
other hand, is the quantity appearing in Eq. (208). Hence, the
case of α ¼ 1 can be combined into the following single
statement:

SðρSkρthS Þ ≥ Sðρ0SkρthS Þ; ð210Þ

which is simply the data processing inequality. Theorems 2
and 3, however, require that the inequalities be satisfied for
all α ≥ 0. For α ≠ 1, there is no simple way of combining
Eqs. (200) and (208).

D. Fluctuating work in the resource theory context

The concept of work is not easily defined within a resource
theory context. The reason for this is that one of the main
paradigms in resource theories is to completely account for all
processes. For instance, the notion of an external agent, which
changes the system Hamiltonian through a work protocol,
must be internalized within the description of the process, as
this is the only way to guarantee that all changes in energy are
accounted for. The same difficulties arise for the storage of
work. The goal is therefore twofold: First, to allow for the
Hamiltonian of the system to change during the process,
starting at HS and ending at H0

S and, second, to provide a
physical mechanism to store the work extracted from the
process (the battery). These two problems were addressed by
Alhambra et al. (2016). The former is solved using the notion
of a switch X and the latter is solved using a continuous
variable work storage ancilla, called a weight W.
The thermodynamic processes in question therefore

involves four parts: the system (S), weight (W), switch (X),
and environment (E). The allowed operations are unitaries on
SWXE satisfying, as before, the strong energy conservation

½USWXE;HSWXE� ¼ 0; ð211Þ

where HSWXE is the total Hamiltonian (which is specified
later). We now discuss how the switch and weight have to be
constructed in order to yield consistent thermodynamic
results.
We begin with the switch. It is chosen as a qubit with

computational basis fj0i; j1ig and initially prepared in j0ih0j.
We assume that the total Hamiltonian of SWXE has the
special form

HSWXE¼HS⊗ j0ih0jXþH0
S⊗ j1ih1jXþHWþHE; ð212Þ

where HS and H0
S are the initial and final Hamiltonians of the

system and HW and HE are the Hamiltonians of the weight
and environment, respectively. In addition, one also assumes
that all unitaries USWXE have the following form of controlled
operations on the switch:

USWXE ¼ USWE ⊗ j1ih0jX þ U†
SWE ⊗ j0ih1jX; ð213Þ

where USWE is a unitary acting only on SWE.
Given an arbitrary initial state ρSWE of SWE, this will

therefore produce the map

USWXEðρSWE ⊗ j0ih0jXÞU†
SWXE ¼ ρ0SWE ⊗ j1ih1jX; ð214Þ

where

ρ0SWE ¼ USWEρSWEU
†
SWE: ð215Þ

The switch therefore internalizes the idea of a changing
Hamiltonian. In particular, it solves the issue of how to
express strong conservation in the case in which HS changes
during the process: namely, at the level of SWXE, the
condition remains in the usual form (211). Conversely, at
the level of SWE, plugging Eqs. (212) and (213) into
Eq. (211) leads to

USWEðHS þHW þHEÞ ¼ ðH0
S þHW þHEÞUSWE; ð216Þ

which can be viewed as a statement of strong energy
conservation for the case where the system Hamiltonian
changes. In the particular case where H0

S ¼ HS, we recover
the usual condition ½USWE;HS þHW þHE� ¼ 0.
As the changes in the switch are trivial [see Eq. (214)], one

may henceforth focus only on SWE and its corresponding
map. That is, the switch is in practice no longer necessary. We
therefore now turn to the batteryW. Instead of using a discrete
battery, Alhambra et al. (2016) discussed the use of a
continuous degree of freedom. That is, the battery is assumed
to be described by an operator x̂W having continuous spectra
(exactly like the position operator) x̂W ¼ R

dxxjxihxjW . This
is intended to mimic a classical weight, which can be pulled
up and down continuously. A similar approach is used in the
resource theory of coherence (Åberg, 2014). The Hamiltonian
of the system is then taken to beHW ¼ ϵx̂, where ϵ is simply a
scaling factor. For simplicity, we henceforth set ϵ ¼ 1, thus
making x̂W have units of energy instead of position.
An immediate critique for such a Hamiltonian is that its

spectrum is not lower bounded. This, however, is usually not
an issue: while most of the time the ground-state energy is not
involved, when it is one can always consider a regularized
version of HW . For instance, one can instead picture HW as a
displaced harmonic oscillator, but with a large mass and small
frequency. The large mass makes inertial effects irrelevant and
the small frequency represents a loose trap, which has
virtually no influence in the system. The spectrum of a
displaced oscillator, however, is always lower bounded.
Since the weight of the Hamiltonian is proportional to x̂W ,

displacements of the weight are generated by the corres-
ponding conjugated momentum p̂W (defined such that
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½x̂W; p̂W � ¼ i). Based on this, Alhambra et al. (2016) postu-
lated that, in addition to Eq. (216), the unitary USWE should
also be constrained to satisfy

½USWE; p̂W � ¼ 0: ð217Þ

Physically, this implies translation invariance for the weight:
Pulling the weight before the process does not affect the
dynamics. Under the constraints in Eqs. (216) and (217), the
family of unitaries USWE is drastically simplified, as shown in
the following lemma (Åberg, 2014; Alhambra et al., 2016).
Lemma 4.—A unitaryUSWE satisfying Eqs. (216) and (217)

can always be parametrized as

USWE ¼ eiðH0
SþHEÞp̂WVSEe−iðHSþHEÞp̂W ; ð218Þ

where VSE is an arbitrary unitary acting only on SE.
It is important to note that the remaining unitary VSE is now

completely arbitrary; that is, it does not have to comply with
any energy conservation requirements. In other words, VSE
may perform an arbitrary amount of work on SE because now
this is appropriately stored in the weight W. This therefore
represents a significant improvement in flexibility.
Using the representation p̂W ¼ R

dppjpihpjW , we can also
write

USWE ¼
Z

dpASEðpÞjpihpjW; ð219Þ

where

ASEðpÞ ¼ eiðH
0
SþHEÞpVSEe−iðHSþHEÞp ð220Þ

are a family of unitaries parametrized by p (note how both HS
and H0

S appear in this expression). We now assume that the
initial state of SWE is of the form ρSE ⊗ ρW . We also assume
for concreteness that ρW ¼ jψihψ jW is pure. Plugging
Eq. (219) into Eq. (215) and tracing over W lead to the map

ρ0SE ¼
Z

dpASEðpÞρSEA†
SEðpÞjhpjψij2: ð221Þ

At the level of SE, the dynamics is therefore given by a
mixture of unitaries, weighted by probabilities jhpjψij2
(Masanes and Oppenheim, 2017). Channels of this type are
called unital. A special property of unital maps is that they
always increase the entropy of SE. The presence of the weight
W therefore causes the dynamics of SE to be unital instead of
unitary, introducing additional noise on SE.
To proceed, we consider a slightly simpler scenario. First,

note that, since VSE is arbitrary, the distinction between S and
E becomes somewhat arbitrary. One may therefore label SE as
a new system. Or, put differently, Eq. (221) also holds when
there is no environment present, in which case it can be written
more explicitly as

ρ0S ¼
Z

dpeiH
0
SpVSe−iHSpρSeiHSpV†

Se
−iH0

Spjhpjψij2; ð222Þ

where we used Eq. (220). This is now the exact usual
Jarzynski-Crooks scenario: a system S, prepared in ρS,

undergoes a work protocol characterized by a unitary VS
and a change in the system Hamiltonian from HS to H0

S. To
make this connection even stronger, we also assume that
ρS ¼ e−βHS=ZS. Equation (222) then simplifies further to

ρ0S ¼
Z

dp eiH
0
SpVSρSV

†
Se

−iH0
Spjhpjψij2: ð223Þ

We now introduce the eigendecompositions HS ¼P
n Enjnihnj and H0

S ¼
P

m E0
mjmihmj, where in general

the bases fjnig and fjmig need not be the same. The evolution
of the diagonal entries p0

m ¼ hmjρ0Sjmi is then found to be

p0
m ¼

X
n

jhmjVSjnij2pn; ð224Þ

where pn ¼ hnjρSjni ¼ e−βEn=Z. This is thus independent of
the weight and also exactly as one would intuitively hope. For
the off diagonals, however, one finds that

hm1jρ0Sjm2i ¼ hm1jVSρSV
†
Sjm2i

Z
dp eiðEm1

0−Em2
0Þpjhpjψij2:

ð225Þ

The “pure” evolution VSρSV
†
S is thus dephased by an amount

that depends on the initial state jψi of the weight and the
energy differences E0

m1
− E0

m2
.

For concreteness, we take as an example a Gaussian wave
function jψi ¼ R

dxψðxÞjxi, with

ψðxÞ ¼ e−x
2=4δ2=ð2πδ2Þ1=4; ð226Þ

where δmeasures how localized ψðxÞ is in position space. The
integral in Eq. (225) can be carried out exactly, leading to

hm1jρ0Sjm2i ¼ hm1jVSρSV
†
Sjm2ie−ðE0

m1
−E0

m2
Þ2=8δ2 : ð227Þ

If δ → 0, the exponential makes all terms in the right-hand
side vanish, except those where E0

m1
¼ E0

m2
. As a conse-

quence, the dynamics takes ρS to ΔH0
S
ðVSρSV

†
SÞ, where ΔH0

S
is

the full dephasing operator in the eigenbasis of H0
S, i.e., the

operator that makes VSρSV
†
S block diagonal. It is also

important to bear in mind that δ → 0 corresponds to an ideal
weight since this is the scenario where the “pointer” of the
weight is perfectly localized at x ¼ 0.
Conversely, when δ → ∞ the exponential in Eq. (227)

vanishes, leading to ρ0S ¼ VSρSV
†
S. In this limit the evolution

of the system is therefore completely unaffected by the weight.
However, the weight itself is now useless since it is initially
spread around all positions x, so there is no way of knowing
how much work was extracted. This type of scenario appears
in voltage-biased Josephson junctions (Lörch et al., 2018).
It is therefore interesting to note that, as far as the diagonal

entries are concerned, the initial state of the weight has no
effect on the dynamics. Conversely, for the coherences there is
a trade-off between dephasing and the precision with which
one can use the weight to extract work. This is ultimately a
consequence of the fact that the weight is performing a von
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Neumann measurement on the system and therefore decoheres
it in a preferred basis (Zurek, 1981).
Finally, if the initial state ρS of the system is not diagonal,

similar conclusions also hold. In this case Eq. (222) becomes,
componentwise,

hm1jρ0Sjm2i ¼
X
n1;n2

hm1jVSjn1ihn1jρSjn2ihn2jV†
Sjm2i

× e−ðE
0
m1

−E0
m2

−En1
þEn2

Þ2=8δ2 : ð228Þ

The effect of the weight will be invisible only to those states
for which E0

m1
− E0

m2
¼ En1 − En2 .

E. Reconciliation with the stochastic approach

We are now in the position to use the framework of
Sec. VI.D to define work at the stochastic level. This will
serve to reconcile the resource theory approach with the usual
work statistics in the Jarzynski-Crooks scenario. We discuss
this reconciliation using two complementary approaches, one
based on the distribution of work (Alhambra et al., 2016) and
the other on the cumulant generating function (Guarnieri,
Ng et al., 2019).
The scenario is still the same as in Sec. VI.D. We take ρS to

initially be thermal and consider a two-point measurement
scheme. The system is first measured in the basis jni and the
weight is prepared in jψi. One then applies the unitary USW ¼
eiH

0
Sp̂WVSe−iHSp̂W [Eq. (218)] and, finally, measures the system

in the new energy basis jmi and the weight in the position
basis jxi. The reason for measuring W in jxi is because the
weight of the Hamiltonian is HW ¼ x̂W . The position x
therefore directly determines the work stored in the weight.
The conditional probability of obtaining ðm; xÞ given that
initially the system was in n is then

Pðm; xjnÞ ¼ jhm; xjUSW jn;ψij2: ð229Þ

This is also conditional on jψi, but we do not write this
explicitly, since jψi is fixed. Equation (229) can be simplified
further using USW ¼ eiH

0
Sp̂WVSe−iHSp̂W . In terms of

qðxÞ ¼ jψðxÞj2, it becomes

Pðm; xjnÞ ¼ jhmjVSjnij2qðxþ E0
m − EnÞ. ð230Þ

We therefore see that the transition probability factors as a
product of a standard transition pertaining only to the system
and a term associated with the initial spread of the weight.
The work distribution can now be computed by multiplying

Eq. (230) by the initial probability pn ¼ e−βEn=ZS and
summing over n and m, giving

PFðxÞ ¼
X
n;m

Pðm; xjnÞpn;

where the suffix F stands for forward protocol (an identical
construction can also be made for the backward case). To
match the standard notation, we henceforth write w instead of
x, even though in our construction of the weight the two are
the same. Substituting Eq. (230) we then arrive at

PFðwÞ ¼
X
n;m

jhmjVSjnij2pnqðwþ E0
m − EnÞ: ð231Þ

This result can now be directly compared to the following
standard expression for the work distribution in a unitary
protocol (Talkner, Lutz, and Hänggi, 2007):

Pid
F ðwÞ ¼

X
n;m

jhmjVSjnij2pnδðwþ E0
m − EnÞ: ð232Þ

We see that the only difference is that the delta function is
replaced by the probability distribution q of the initial state of
the weight. In fact, the two distributions are related by the
convolution

PFðwÞ ¼
Z

dw0Pid
F ðw0Þqðw − w0Þ: ð233Þ

These results illustrate some of the fundamental limitations of
thermodynamics in the quantum regime. By internalizing the
work storage device, one pays the price of obtaining a noisy
work distribution, where the outcomes Pid

F ðwÞ are convoluted
with the noise qðwÞ stemming from the initial state of the
battery. Thus, while Pid

F satisfies a Crooks fluctuation theorem
(Crooks, 1998), the same is not true for PF.
To take an example, again consider the Gaussian wave

function in Eq. (226). In this case qðxÞ ¼ e−x=2δ
2

=
ffiffiffiffiffiffiffiffiffiffi
2πδ2

p
,

which approximates a delta function when δ is small. But what
enters Eq. (231) is qðwþ E0

m − EnÞ. Thus, we reach the
conclusion that, in order for the weight to faithfully capture
the work statistics, the value of δ must be much smaller than
the typical energy spacings E0

m − En entering the process.
This makes intuitive sense: the precision of the weight must be
compatible with the typical energetic transitions entering the
process.
These results help us to gain intuition into the resource-

theoretic formulation of the weight as an explicit part of the
composite system. They also show us how to reconcile the
resource theory and stochastic approaches. Note, however,
that the results summarized by Eq. (221) cover a much broader
set of scenarios since they encompass (i) the presence of a
bath, (ii) arbitrary initial systemþ bath states, and (iii) arbi-
trary unitaries VSE. This framework thus also covers joint
fluctuation theorems for heat and work, as well as quantum
coherent and correlated scenarios, where the two-point meas-
urement scheme becomes invasive.
Another way of reconciling the resource-theoretic and

stochastic approaches is by means of the cumulant generating
function (Guarnieri, Ng et al., 2019); We again consider a
closed system (no bath) undergoing a work protocol. The
cumulant generating function associated with the ideal work
distribution (232) is defined as

Φη ≡ lnhe−ηWi ¼ ln
Z

Pid
F ðWÞe−ηWdW. ð234Þ

The mth cumulant of Pid
F ðWÞ is then found from

ð−1Þmð∂m=∂ηmÞΦηjη¼0. Following lines akin to those pre-
sented in Sec. IV.A [see Eq. (85)], one can use Hölder’s
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inequality to obtain a family of lower bounds for the average
work (first cumulant), which read

βhWi ≥ −
β

η
Φη; η ≥ 0; ð235Þ

and

βhWi ≤ β

jηjΦη; η ≤ 0: ð236Þ

We now connect this family of bounds to the notions of work
extraction and work of formation. To this end, we assume that
ρS ¼ ρthS ¼ e−βHS=ZS. The scenario will thus be akin to that of
the work of formation since we want to form the final state
ρ0S ¼ VSρSV

†
S from an initially thermal state. There is one

difference, though, which is that here we are also changing the
Hamiltonian from HS to H0

S during the process.
Using Eq. (232) we may write Φη as (Esposito, Harbola,

and Mukamel, 2009)

Φη¼ ln trS½e−ðη=2ÞH0
SVSeðη=2ÞHSρSeðη=2ÞHSV†

Se
−ðη=2ÞH0

S �: ð237Þ

Defining also ρ0S
th ¼ e−βH

0
S=Z0

S as the thermal state at the final
Hamiltonian H0

S, one may show that Φη can be written as

Φη ¼ −
η

β
S1−η=βðρ0Skρ0SthÞ − ηΔF; ð238Þ

where ΔF ¼ −T lnZ0
S=ZS is the difference in equilibrium free

energies. The cumulant generating function is thus directly
associated with the Rényi divergences [Eq. (201)], which are
the central objects in the resource theory of thermodynamics
(recall the discussion in Sec. III.F).

VII. APPLICATIONS

A. The SWAP engine

One of the prime applications of entropy production is in
the description of quantum heat engines. Four-stroke engines
are reviewed in Sec. VII.B. Here we begin by describ-
ing a particularly simple model called the SWAP engine
(Allahverdyan, Hovhannisyan, and Mahler, 2010; Campisi,
2014; Uzdin and Kosloff, 2014; Campisi, Pekola, and Fazio,
2015). The basic idea is summarized in Fig. 6. The working
fluid comprises two nonresonant qubits, with energy gaps ϵa
and ϵb. The machine operates in two strokes, as depicted in
Fig. 6(a). In the first stroke each qubit interacts with its own
environment, kept at temperatures Ta and Tb, respectively.
During this stroke the qubits do not interact. Moreover, it is
assumed that this step is a thermal operation so that the change
in energy of each qubit is entirely associated with the heat that
flows to each bath (Sec. III.D). In the second stroke, the baths
are uncoupled and the qubits are put to interact by means of a
partial SWAP. No heat is involved. However, since the qubits
are not resonant, the partial SWAP will have an associated
work cost.
In the simplest case, one can assume that the thermalization

in the first stroke is complete and that the SWAP in the second
stroke is full. Since thermalization is complete, after the first
stroke the state of the system will be ρthA ⊗ ρthB . The partial
SWAP then changes this to ρthB ⊗ ρthA . The work associated with
this process is the total change in energy of both qubits
W ¼ ΔHa þ ΔHb, which can be written as

W ¼ −ðϵa − ϵbÞðfa − fbÞ; ð239Þ

where fi ¼ ðeβiϵi þ 1Þ−1 is the probability of finding each
qubit in the excited state (the Fermi-Dirac function). The
swapped state ρthB ⊗ ρthA is then made to interact with the baths
at temperatures Ta and Tb, causing the system to go back to

FIG. 6. (a) The two strokes of a SWAP engine. (b) Average thermodynamic quantities and entropy production as a function of ϵb=ϵa for
Tb=Ta ¼ 1=2. All energetic quantities are plotted in units of ϵa ¼ 1. (c) Operation regimes of the SWAP engine.
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the original state ρthA ⊗ ρthB . The heat exchanged with each bath
in this case will then be

Qa ¼ ϵaðfa − fbÞ; ð240Þ

Qb ¼ ϵbðfb − faÞ: ð241Þ

Since the process is cyclic, one can verify that
W þQa þQb ¼ 0.
The values of W, Qa, and Qb are plotted in Fig. 6(b). We

define heat and work as positive when energy enters the
system. Depending on the relation between ϵb=ϵa and Tb=Ta,
the engine can offer three regimes of operation: refrigerator,
engine, and accelerator. The meaning of the different regimes
is diagrammatically explained in Fig. 6(c).
Since the thermalization strokes are thermal operations, the

entropy produced in each cycle will be simply given by
Eq. (4), with ΔSS ¼ 0, as

Σ ¼ −βaQa − βbQb ¼ −ðβaϵa − βbϵbÞðfa − fbÞ: ð242Þ

Equation (242) is always non-negative since it has the form
−ðx − yÞ½fðxÞ − fðyÞ�, where fðxÞ ¼ ðex þ 1Þ−1 is monoton-
ically decreasing in x. As a consequence fðxÞ − fðyÞ will
always have the opposite sign of x − y for any x and y. Hence,
Σ ≥ 0. Equation (242) is plotted in black in Fig. 6(b).
Taking Ta > Tb, for concreteness we can characterize the

efficiency of the engine in each operating regime by (Callen,
1985)

COP ¼ jQbj
W

¼ ϵb
ϵa − ϵb

;
ϵb
ϵa

<
Tb

Ta
; ð243Þ

η ¼ jWj
Qa

¼ 1 −
ϵb
ϵa

;
Tb

Ta
<

ϵb
ϵa

< 1; ð244Þ

COPh ¼
Qa

W
¼ ϵa

ϵb − ϵa
;

ϵb
ϵa

> 1; ð245Þ

where COP stands for coefficient of performance. The
machine thus always operates at Otto efficiency. As
Molitor and Landi (2020) recently showed, there is an entire
class of two-stroke engines for which this turns out to be
the case.
The Carnot point corresponds to ϵb=ϵa ¼ Tb=Ta. This

point is special because, even though we get Σ ¼ 0, we also
get Qa ¼ Qb ¼ W ¼ 0. Thus, at the Carnot point nothing
happens; see Fig. 6(b). Another special point is at ϵb ¼ ϵa,
where W ¼ 0 but Qa ¼ −Qb ≠ 0. At this point all heat that
flows from the hot bath is converted into heat for the cold bath,
so that no net output work occurs.
For ϵb=ϵa > 1 heat continues to flow from hot to cold and,

in addition, one also has to provide a finite work input
(W > 0). This regime is called an accelerator. In the refrig-
erator regime, work is consumed to make heat flow from cold
to hot. In an accelerator, work is consumed to make heat flow
from hot to cold, but “faster.” From a thermodynamical point
of view accelerators are interesting because their performance
is directly related to the existence of an excess entropy

production, which turns out to have a clear interpretation.
The following argument is general and not restricted to the
SWAP engine. We begin by substituting Qb ¼ −W −Qa into
Eq. (4) for the entropy production, which yields
Σ ¼ ðβb − βaÞQa þ βbW. In an accelerator Qa > 0 and
W > 0. Hence, there is a minimum entropy production
associated with it, which is when W ¼ 0, which reads
Σmin ¼ ðβb − βaÞQa. This is thus the entropy production
associated with the natural flow of heat from hot to
cold. The coefficient of performance of the accelerator is
defined as the amount of heat that can be extracted from the
hot bath divided by the associated work cost (COPh ¼ Qa=W)
as in Eq. (245). With some rearrangement, we can write
this as

COPh ¼
βbQa

Σ − Σmin
: ð246Þ

Thus, we see that the efficiency of an accelerator actually
depends on the excess entropy production Σ − Σmin, which
represents the extra irreversibility introduced by the additional
work used to pump the heat.

B. Stroke-based engines

We now turn to a description of more general, four-stroke
engines. We focus on how to apply the framework of Sec. III,
and, in particular, the basic SEmap in Eq. (28), to this specific
problem. We consider a four-stroke engine, where unitary
(work only) maps in the system are riffled between dissipative
interactions with a hot and a cold bath (which may involve
both heat and work). The corresponding circuit diagram is
depicted in Fig. 7.
We consider the engine’s operation in a collisional model

sense (Sec. V.A). The system is initially prepared in an
arbitrary state ρS. In each stroke, it interacts with two baths
H and C prepared in states ρH and ρC. For ease of mind, we
imagine that these represent a hot and cold bath, respectively.
The following results, however, are actually true for any bath
state, not just a thermal one. Each cycle of the engine is
divided into four strokes, as follows. The first and third strokes
involve unitary interactions V1 and V3 acting only on the
system. The second stroke refers to the interaction with the hot
bath by means of a unitary USH. Similarly, the fourth stroke is
between S and C, with a unitary USC. The global state of SHC
after each stroke will then be given by

FIG. 7. Circuit diagram of a four-stroke heat engine composed
of two unitaries V1 and V3 interlaced with two dissipative
interactions with a hot and a cold bath, respectively.
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ρð1ÞSHC ¼ ½V1ρSV
†
1�ρHρC ¼ ρð1ÞS ρHρC;

ρð2ÞSHC ¼ USH½ρð1ÞS ρH�U†
SHρC ¼ ρð2ÞSHρC;

ρð3ÞSHC ¼ ½V3ρ
ð2Þ
SHV

†
3�ρC ¼ ρð3ÞSHρC;

ρð4ÞSHC ¼ USCρ
ð3Þ
SHρCU

†
SC; ð247Þ

where care was taken in highlighting at each step which
Hilbert spaces the unitaries act in and what the structure of the
resulting state is. Combining all strokes, the state at the end of
the cycle will thus be

ρð4ÞSHC ¼ USCV3USHV1ðρSρHρCÞV†
1U

†
SHV

†
3U

†
SC: ð248Þ

Notice that all unitaries have a common support on S and
therefore in general do not commute. Tracing over H and C
leads to the following stroboscopic map for the system:

ρ0S ≔ ΦðρSÞ ¼ trHCfUSCV3USHV1ðρSρHρCÞV†
1U

†
SHV

†
3U

†
SCg:
ð249Þ

This state is then to be used as input state for the next cycle,
which is constructed with fresh new baths ρH and ρC.
Proceeding in this way, one can construct finite-time

engines operating under arbitrary conditions. The state of
the system after each complete cycle is obtained from the
previous one by applying the map Φ. After many cycles are
performed, the system will usually reach a limit cycle ρ�S
satisfying ρ�S ¼ Φðρ�SÞ. Once the limit cycle is reached, the
engine’s operation becomes periodic and any function of state,
which may include the system energy or entropy, no longer
changes. The limit cycle shares many similarities with NESSs.
In fact, the limit cycle can be viewed as a stroboscopic NESS,
in the sense that if viewed only at integer steps the system no
longer changes. Internally, however (i.e., inside each cycle),
its state is constantly changing.
The entropy production in each stroke is given by the

general expression (30). The first and third strokes are unitary
and no entropy is produced. Thus, Σ ¼ ΣH þ ΣC, which can
be further split into

Σ ¼ I
ρð2ÞSH

ðS∶HÞ þ Sðρð2ÞH kρHÞ þ I
ρð4ÞSC

ðS∶CÞ þ Sðρð4ÞC kρCÞ:
ð250Þ

Equation (250) is useful if one is interested in analyzing the
individual contributions of the mutual information and entro-
pies relative to the total entropy production. Instead, if one is
interested only in Σ itself, it is simpler to use Eq. (34) to
express it in terms of the entropy flux Φ, which in this case
becomes

Σ ¼ ΔSS þΦH þΦC; ð251Þ

where ΔSS ¼ Sðρð4ÞS Þ − SðρSÞ is the net change in entropy of
the system in a full cycle and

Φi ¼ trifðρi − ρ0iÞ ln ρig; i ¼ H;C; ð252Þ

is the entropy flux to bathsH and C, with ρ0i denoting the state
of the bath after it interacts with the system.
Equation (251) shows that the familiar structure for the

entropy production, in terms of changes in entropy of the
system and fluxes to the bath, also holds quite generally for
any stroke-based engine with the structure of Fig. 7. What is
important to realize is that this also includes arbitrary initial
states for the environments that are not necessarily thermal. In
fact, note that no mention has to be made of heat and work or
the associated conundrums. Equation (250) or (251) thus
provides a fully information-theoretic definition of irreve-
rsibility for a cyclic engine. If the bath happens to be
thermal, then Eq. (251) reduces to the familiar result
Σ ¼ ΔSS þ βHQH þ βCQC.
In the limit cycle the first term in Eq. (251) vanishes and we

are left only with Σ ¼ ΦH þΦC. It is crucial, however, to
notice that this does not imply ΣH ¼ ΦH and ΣC ¼ ΦC. This
would in fact be inconsistent, as one of the two fluxes is in
general negative. The net entropy production rate Σ coincides
in the limit cycle with the net flux ΦH þΦC. But individually
they do not. The individual contributions ΣH and ΣC are
interesting, as they quantify the contribution of each dissipa-
tion channel to the system’s irreversibility. But the only way to
assess them is through Eq. (250).

C. Squeezed baths

In this section we discuss the thermodynamics of squeezed
reservoirs. These types of baths can be used, for instance, as a
resource to operate heat engines above Carnot efficiency, as
discussed theoretically by Abah and Lutz (2014) and
Roßnagel et al. (2014) and as implemented experimentally
by Klaers et al. (2017). Here we focus on how to formulate the
entropy production for this problem, which was first put forth
by Manzano et al. (2016).
We begin by reviewing the basics of squeezing. Consider a

single bosonic mode b with Hamiltonian H ¼ Ωðb†bþ 1=2Þ.
We say b is prepared in a squeezed thermal state when its
density matrix has the form

ρ ¼ SðzÞρthS†ðzÞ; ð253Þ

where ρth ¼ e−βH=Z is the thermal state and

SðzÞ ¼ eð1=2Þðz�b2−zb†2Þ; z ¼ reiθ; ð254Þ

is the squeezing operator, with complex parameter z. The
action of SðzÞ on annihilation operators is given by

SðzÞbS†ðzÞ ¼ b coshðrÞ þ eiθb† sinhðrÞ: ð255Þ
From this, one may readily compute the expectation values of
the second moments in the state of Eq. (253) as

hb†bi þ 1=2 ¼ ðn̄þ 1=2Þ coshð2rÞ; ð256Þ

hbbi ¼ ðn̄þ 1=2Þeiθ sinhð2rÞ; ð257Þ

where n̄ ¼ eβΩ − 1 is the Bose-Einstein distribution related
to the thermal part of Eq. (253). In terms of quadratures
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q ¼ ðbþ b†Þ= ffiffiffi
2

p
and p ¼ iðb† − bÞ= ffiffiffi

2
p

, if θ ¼ 0 we get
hq2i ¼ e2rðn̄þ 1=2Þ and hp2i ¼ e−2rðn̄þ 1=2Þ, so the vari-
ance of q is stretched by e2r, while that of p is squeezed by
e−2r. When θ ≠ 0 something analogous happens, but in a
different direction of the ðq; pÞ plane.
From a thermodynamic perspective, the squeezed state in

Eq. (253) can be viewed as a generalized Gibbs ensemble
(GGE) akin to the grand-canonical state e−βðH−μN̂Þ (where μ is
the chemical potential and N̂ is the particle number operator).
This can be made more transparent by noting that, from
Eq. (255), one has SðzÞHS†ðzÞ ¼ coshð2rÞH þ sinhð2rÞA,
where A ¼ Ωðeiθb†2 þ e−iθb2Þ=2 is what we henceforth refer
to as asymmetry (Manzano et al., 2016) (in the sense that hAi
measures how asymmetric, or compressed, the compressed
Gaussian in phase space is). Equation (253) can then be
written in the GGE form

ρ ¼ 1

Z
e−β½coshð2rÞHþsinhð2rÞA�: ð258Þ

There is, though, one fundamental difference with respect to
the usual grand-canonical state, namely, that, unlike H and N̂,
the operators H and A do not commute. GGEs of this form are
called non-Abelian (Manzano, Parrondo, and Landi, 2020).
We now use the results developed in Sec. III to formulate

the entropy production of a system interacting with a squeezed
thermal bath. We do so using the standard von Neumann
entropy. This therefore represents an alternative to the phase-
space approach discussed in Sec. V.H. The system is assumed
to be arbitrary (it does not have to be bosonic) and the bath is
taken to be a collection of bosonic modes bk, with
Hamiltonian HE ¼ P

k Ωkðb†kbk þ 1=2Þ and prepared in a
squeezed thermal state of the form (253), viz.,

ρE ¼
Y
k

ρk ¼
Y
k

SkðzkÞρthk S†kðzkÞ; ð259Þ

where ρthk ¼ ð1 − e−βΩkÞe−βΩkb
†
kbk is the thermal state and

SkðzkÞ is the squeezing operator (254) for mode bk, with
parameter zk ¼ rkeiθk. For now we allow each rk to be
different.
The system and bath are then put to interact via an arbitrary

unitary U, according to the map (28). The entropy produced in
the process is given by Eq. (36). This can be simplified by
inserting Eq. (258) for ln ρE, leading to

Σ ¼ ΔSS þ β
X
k

�
Ωk coshð2rkÞΔhb†kbki

þ Ωk

2
sinhð2rkÞðΔhb†kb†kieiθk þ Δhbkbkie−iθkÞ

	
; ð260Þ

where ΔhOEi ¼ trfOEðρ0E − ρEÞg is the change in the expect-
ation value of a bath observable during the process. It is
essential to note that, in line with what was discussed in
Sec. III, all terms except the first actually refer to changes in
quantities of the bath, not the system. For this reason, the
entropy production cannot in general be computed solely from

knowledge of the changes that take place in S (as we
discuss later).
Since the bath is not thermal, Eq. (260) cannot be

written in the Clausius form Σ ¼ ΔSS þ βΔQE. We
assume for concreteness that all modes are squeezed by the
same amount: rk ¼ r and θk ¼ θ. The second term in
Eq. (260) then becomes proportional to the heat flux
(ΔQE ¼ P

k ΩkΔhb†kbki). Moreover, the last term becomes
proportional to the change in asymmetry as follows:

ΔAE ¼
X
k

Ωk

2
ðeiθΔhb†kb†ki þ e−iθΔhbkbkiÞ: ð261Þ

Equation (260) thus becomes

Σ ¼ ΔSS þ β½coshð2rÞΔQE þ sinhð2rÞΔAE�: ð262Þ

Equation (262) resembles the entropy produced during an
interaction with a grand-canonical bath. The last two terms
represent the changes in the corresponding thermodynamic
charges ΔQE and ΔAE, each multiplied by the corresponding
thermodynamic affinities β coshð2rÞ and β sinhð2rÞ. This
matches the previously discussed intuition of the squeezed
state as a GGE. For instance, one could have a situation where
no heat flows to the bath (ΔQE ¼ 0), but entropy is still
produced due to a flow of asymmetry.
For generic system Hamiltonians and system-environment

interactions, it is not possible to write Eq. (262) solely in terms
of system quantities. The situation is entirely analogous to that
of strict energy conservation [Eq. (50)]. For a concrete
example, suppose that the system is a single bosonic mode
described by annihilation operator a and HS ¼ ωa†a, while
the bath is also comprised of a single mode, with operator b
and HE ¼ ωb†b (i.e., resonant with S). As Manzano,
Parrondo, and Landi (2020) showed, the only Gaussian
unitary that preserves both energy and asymmetry for two
modes is of the form

USE ¼ expfgtða†b − b†aÞg: ð263Þ

The choice of phase here is crucial. A generic interaction of
the form ga†bþ g�b†a preserves the number of quanta (and
hence the energy since S and E are assumed to be resonant).
But in general it does not preserve the asymmetry. Only for the
specific choice of phase in Eq. (263) will we have both
½USE; a†aþ b†b� ¼ 0 and ½USE; aaþ bb� ≠ 0. In this case
ΔQE ¼ −ΔQS and ΔAE ¼ −ΔAS, so Eq. (262) can be
expressed solely in terms of system-related quantities.
Alternatively, we can write Σ as in Eq. (47), with ρ�S now
being the GGE (258), which will be a global fixed point
(Sec. III.A) of the map.
Last, we discuss the continuous-time version of this

process, where the system evolves instead according to the
Lindblad master equation

dρS
dt

¼ γðNþ1Þ½aρSa†− 1
2
fa†a;ρSg�þγN½a†ρSa− 1

2
faa†;ρSg�

−γM½a†ρSa†− 1
2
fa†2;ρSg�−γM�½aρSa− 1

2
fa2;ρSg�:

ð264Þ
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Here γ ≥ 0 is the damping rate and N þ 1=2 ¼ ðn̄þ
1=2Þ coshð2rÞ and M ¼ ðn̄þ 1=2Þeiθ sinhð2rÞ are the
parameters imposed by the squeezed thermal bath; see
Eqs. (256) and (257). Equation (264) can be derived using
the usual Born-Markov-secular approximations (Breuer and
Petruccione, 2007) or using a collisional model, exactly as
described in Sec. V.C. From knowledge only of the master
equation (264), it is not possible to define the entropy
production. But if one assumes that the master equation
was derived via interactions that are both energy and asym-
metry preserving (at least approximately), then we can use a
continuous-time version of Eq. (47), i.e.,

_Σ ¼ −
d
dt

S(ρSðtÞkρ�S): ð265Þ

It was shown byManzano (2018) that, if the strong fixed-point
hypothesis does not hold, Eq. (265) will nonetheless still
describe a part of the entropy production, namely, the so-
called nonadiabatic component associated with the entropy
production needed to reach the stationary state.

D. Quantum heat

We now turn to another application of thermodynamics
beyond standard thermal systems. Elouard, Herrera-Martí,
Clusel, and Auffèves (2017) considered a generalization of the
first and second laws of thermodynamics for a situation where
the interaction with a heat bath is replaced by a set of quantum
measurements. In its simplest formulation, the process can be
described as follows. The system starts in a pure state jψ0i. At
evenly spaced times nΔt, n ¼ 0; 1;…, one applies a projective
measurement described by an orthonormal basis fjknig. These
sets may be different at different times, which is left implicit in
the additional index n in jkni.
On the other hand, in between jumps from nΔtþ to

ðnþ 1ÞΔt− the system evolves unitarily from jkni to
jψ−

nþ1i ¼ Unþ1;njkni, where Unþ1;n is the unitary generating
this evolution. At time ðnþ 1ÞΔt it then undergoes another
quantum jump to one of the states jknþ1i. The probability
associated with this jump is

pðknþ1jknÞ ¼ jhknþ1jψnþ1ij2 ¼ jhknþ1jUnþ1;njknij2; ð266Þ

which thus depends only on the previous state jkni. A
quantum trajectory for this process up to time nΔt is then
specified by the set of quantum numbers γn ¼ ðk0;…; knÞ.
Using Eq. (266), the corresponding path probability reads

PF½γn� ¼ pðknjkn−1Þpðkn−1jkn−2Þ � � �pðk1jk0Þpðk0Þ; ð267Þ

where pðk0Þ ¼ jhk0jψ0ij2. If the initial state is an element of
fjk0ig, then pðk0Þ becomes deterministic.
From Eq. (267) one can readily compute the probability of

the final state, which reads

pðknÞ ¼
X

k1;…;kn−1

PF½γn�: ð268Þ

Equation (268) can then used to define the reverse process,
where the system starts in jkni with probability pðknÞ, then

evolves backward by applying the time-reversed unitaries
U†

n;nþ1. Since jhknjU†
n;nþ1jknþ1ij2 ¼ jhknþ1jUnþ1;njknij2 ¼

pðknþ1jknÞ, the time-reversed path probability becomes

PB½γ� ¼ pðk1jk0Þ � � �pðkn−1jkn−2Þpðknjkn−1ÞpðknÞ: ð269Þ

The entropy production is defined as in Eq. (58), which
simplifies in this case to

σ½γn� ¼ ln
PF½γn�
PB½γn�

¼ ln
pðk0Þ
pðknÞ

ð270Þ

since all conditional terms in PF and PB cancel out.
The two terms in Eq. (270) are interpreted as follows. The

contribution lnpðknÞ is the entropy production associated
with the randomness that is built up by the stochastic jumps
caused by the projective measurements. The term lnpðk0Þ, on
the other hand, is related to the fact that even the first
measurement is nondeterministic; this randomness is of purely
quantum origin, as it is associated with the fact that jψ0i has
some finite coherence in the basis fjk0ig. The exact result,
however, could also be obtained if we were to assume that the
initial state of the system were an incoherent mixture. Thus,
the term lnpðk0Þ refers to the general randomness stemming
from the first measurement, irrespective of whether this
randomness is classical or quantum.
The stochastic entropy production (270) satisfies a fluc-

tuation theorem by construction. Moreover, averaging it over
the forward distribution (267) one finds

hσ½γn�i ¼ S(pðknÞ) − S(pðk0Þ) ≥ 0; ð271Þ

where SðpÞ ¼ −
P

n pn lnpn is the classical Shannon
entropy. The positivity of Eq. (271) is actually a subtle feature
of projective measurements related to the fact that pðknÞ and
pðk0Þ are linked through a doubly stochastic matrix (Nielsen
and Chuang, 2000). Specifically, from Eqs. (267) and (268),
we can write pðknÞ ¼

P
k0 Mðkn; k0Þpðk0Þ, where

Mðkn; k0Þ ¼
X

k1;…;kn−1

pðknjkn−1Þpðkn−1jkn−2Þ � � �pðk1jk0Þ

ð272Þ

is doubly stochastic [
P

kn Mðkn; k0Þ ¼
P

k0 Mðkn; k0Þ ¼ 1].
Owing to the data processing inequality, it then follows that
the entropy of pðknÞ is always larger than or equal to that of
pðk0Þ, which thus implies the positivity of the average entropy
production in Eq. (271).
Although Eq. (270) provides a consistent definition of

entropy production, it is not possible to expect any relation
between σ and thermodynamic quantities such as heat and
work, which appears in the original Clausius inequality (4)
(Mohammady, Aufféves, and Anders, 2020). While notions of
heat and work can still be defined (Elouard, Herrera-Martí,
Clusel, and Auffèves, 2017) since the states in question are
never thermal in shape, entropy production and heat have no
straightforward relation to each other. We also mention that
such notions of heat and work do not take into account the
energy cost itself of performing a projective measurement,
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something that has recently been put under scrutiny
(Guryanova, Friis, and Huber, 2020).

E. Infinitesimal quenches

We continue here our review of the nonequilibrium lag,
which was first discussed in Sec. III.F. But now we focus on
the specific scenario of infinitesimal quenches. All ideas and
notations are the same as in Sec. III.F. One of the difficulties in
characterizing the nonequilibrium lag is its dependence on the
form of the work protocol H(λðtÞ). Or, equivalently, the form
of the unitary V in Fig. 2. This can be simplified by
considering quantum quenches (Fusco et al., 2014). That
is, one assumes that the protocol taking Hi → Hf is much
faster than the typical timescales of the system, so the
evolution can be taken as instantaneous. This therefore
amounts to setting V ≃ 1 so that the final state coincides
with the initial one (ρ0 ¼ ρthi ). The basic idea is therefore that
the changes in the Hamiltonian are so fast that the system has
no time to respond, so even though Hi → Hf the system stays
frozen at ρthi . After the quench, many things can happen. If the
system is isolated, it will evolve according to the new
Hamiltonian Hf (Calabrese and Cardy, 2005). And if it is
coupled to a bath, it will eventually thermalize, changing
from ρthi → ρthf .
All equations in Sec. III.F are simplified in this case. In

particular, Eq. (67) becomes

Σ ¼ Sðρthi kρthf Þ; ð273Þ

while the CGF (75) transforms to

KðλÞ ¼ ðλ − 1ÞSλðρthf kρthi Þ ¼ −λS1−λðρthi kρthf Þ: ð274Þ

The two expressions for KðλÞ coincide due to the properties of
the Rényi divergences.
In the quantum quench scenario, the nonequilibrium lag

depends only on the initial and final work parameters λi and
λf; it becomes independent of the specific protocol λðtÞ taking
one to the other. An additional simplification can be obtained
for infinitesimal quenches. That is, when λi ¼ λ and
λf ¼ λþ δλ, with δλ taken to be small. In this case
Eqs. (273) and (274) can be expanded in a power series in
δλ, greatly simplifying the problem.
We start with Eq. (273). It is convenient to write it in terms

of the average work and equilibrium free energy [Eq. (68)]. In
the quench scenario this becomes

Σ ¼ βtrfðHf −HiÞρthi g − βΔF: ð275Þ

We can now series expand each term in powers of δλ. We
write Hi ¼ HðλÞ≡H and Hf ¼ Hðλþ δλÞ, leading to
Hf −Hi ¼ ð∂H=∂λÞδλþ ð1=2Þð∂2H=∂λ2Þδλ2 þ � � �. We ex-
pand ΔF in a similar way. From equilibrium statistical
mechanics, however, it follows that for thermal states

�∂H
∂λ

�
¼ ∂F

∂λ : ð276Þ

Hence, the terms of the order of δλ in Eq. (275) cancel out,
meaning that the first nonzero contribution will be of the order
of δλ2 (as it must since Σ ≥ 0):

Σ ¼ βδλ2

2

��∂2H
∂λ2

�
−
∂2F
∂λ2

	
: ð277Þ

Note how hWi ∼ δλ, while Σ ∼ δλ2. That is, the first order
contribution to the average work is exactly canceled out by the
contribution from ΔF.
One can always choose the work protocol such that it

appears linearly in the Hamiltonian, that is, such that
HðλÞ ¼ H0 þ λH1. In this case the first term in Eq. (277)
vanishes and one is left with the simpler expression

Σ ¼ −
βδλ2

2

∂2F
∂λ2 ; ð278Þ

which shows that the nonequilibrium lag is simply the thermal
susceptibility to λ, a concept widely studied in equilibrium
statistical mechanics.
The relation to the susceptibility makes it particularly

inviting to study infinitesimal quenches in systems presenting
a quantum phase transition as a function of λ. This problem
was first studied by Dorner et al. (2012), who analyzed the
transverse-field Ising model. A quantum phase transition
strictly occurs only at T → 0, while the nonequilibrium lag
scenario involves a thermal state at finite temperature.
Notwithstanding, reflections of the T ¼ 0 critical point can
still be felt at low temperatures. This is precisely what was
observed by Dorner et al. (2012), who found that the entropy
production diverges logarithmically at the critical point in the
limit T → 0 (while showing a sharp peak for finite T).
In the ensuing years, there have been several papers

dedicated to an understanding of the critical properties of
the nonequilibrium lag. An extension to the general XY model
was given by Bayocboc and Paraan (2015), and the more
exotic XZY-YZX model was studied by Zhong and Tong
(2015) Recently a general group-theoretic framework suitable
for arbitrary quadratic Hamiltonians was introduced by Fei
and Quan (2019), who generalized the previous results. An
analysis of the related Lipkin-Meshkov-Glick model (which
can be viewed as the long-range analog of the transverse-field
Ising model) was given by Campbell (2016). All of these
papers referred to continuous transitions. The extension to
discontinuous transitions was discussed by Mascarenhas et al.
(2014). Finally, the extension to consider the full statistics
[instead of just the first moment (273)] was recently put forth
by Fei et al. (2020).
To shed further light on the physics behind Eq. (278), it is

necessary to determine whether Hi and Hf commute or,
equivalently, whether H and ∂H=∂λ commute (Fusco et al.,
2014). The reason why this matters is that differentiating F ¼
−T ln trðe−βHðλÞÞ with respect to λ is not trivial if H and
∂H=∂λ do not commute. In fact, this can be readily seen from
the following Baker-Campbell-Hausdorff expansion, which is
applicable to an arbitrary operator MðλÞ:
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∂λeMðλÞ ¼
�
M0 þ 1

2
½M;M0� þ 1

3!
½M; ½M;M0�� þ � � �

	
eMðλÞ;

ð279Þ

where M0 ¼ ∂λM. Thus, if H and ∂λH commute, one can
readily write ∂λe−βH ¼ −βð∂λHÞe−βH. But if they do not one
must use Eq. (279) instead, where new terms appear that are
associated with the commutator ½M;M0�. Because of the cyclic
property of the trace, this effect turns out to be irrelevant when
computing the first derivative ∂F=∂λ, which is why Eq. (276)
is actually always true. But for the second derivative in
Eq. (278), this is crucial.
Another way to deal with this is to introduce the following

Feynman integral representation:

∂
∂λ e

−βH ¼ β

Z
1

0

dye−βyHð∂H=∂λÞe−βð1−yÞH: ð280Þ

Using Eq. (280) to compute −∂2F=∂λ2, one eventually finds
the following result for Eq. (278) (Scandi et al., 2020):

Σ ¼ β2

2

Z
1

0

dy covyi ðδH; δHÞ; ð281Þ

where δH ¼ Hf −Hi ¼ δλð∂H=∂λÞ and

covyi ðA; BÞ ¼ tr½Aðρthi ÞyBðρthi Þ1−y� − trðAρthi ÞtrðBρthi Þ ð282Þ

is the so-called y covariance. Equation (282) represents a
generalization of the notion of covariance to the case of
noncommuting operators. When ½H; δH� ¼ 0, the y covari-
ance simplifies to the usual covariance. In this case the integral
in y can be performed explicitly, leading to

Σ ¼ β2

2
varðδHÞ: ð283Þ

Conversely, when ½H; δH� ≠ 0, this is no longer true.
This commutativity issue can also be analyzed from the

perspective of the probability distribution PðσÞ defined in
Eq. (70). The transition probabilities in the case of quenches
simplify to pðmfjniÞ ¼ jhmfjniij2. If ½H; δH� ¼ 0, they there-
fore trivialize. But if ½H; δH� ≠ 0, one may still find nontrivial
transitions.
The relevance of these results lies in their connection with

quantum coherence (Miller et al., 2019). The case of
½H; δH� ¼ 0 represents a quench that changes the energy
levels of the system but keeps the same eigenbasis.
Conversely, ½H; δH� ≠ 0 indicates that, in addition to the
change in energy, the eigenbasis is also rotated so that ρthi will
be coherent in the basis ofHf. As a consequence, there will be
an additional entropy production associated with the loss of
coherence in the thermalization process (Santos et al., 2019).
This can be made more patent by introducing the

Wigner-Yanase-Dyson skew information (Hansen, 2008)
Iyðρ; AÞ ¼ −ð1=2Þtrf½ρy; A�½ρ1−y; A�g, which quantifies the
coherence between A and ρ, in the sense that it gauges the
degree with which ρ and A fail to commute. Iyðρ; AÞ is always

non-negative and 0 if an only if ½ρ; A� ¼ 0. In terms of this,
one can rewrite Eq. (281) as

Σ ¼ β2

2
varðδHÞ −Q; ð284Þ

where Q ¼ ðβ2=2Þ R 1
0 dy Iyðρthi ; HfÞ is a new contribution

measuring the incompatibility of the final Hamiltonian with
the initial state of the system. Compared with Eq. (283), the
result in Eq. (284) shows how a lack of commutativity
modifies the average entropy production.
The same analysis can also be made for the full CGF (274),

as done by Scandi et al. (2020). The result is compactly
expressed as

KðλÞ ¼ −
β2

2

Z
λ

0

dx
Z

1−x

x
dy covyi ðδH; δHÞ: ð285Þ

When ½H; δH� ¼ 0, Eq. (285) reduces to

KcommðλÞ ¼ −
β2λð1 − λÞ

2
varðδHÞ: ð286Þ

From Eq. (286), one appreciates that K satisfies the Jarzynski
equation Kðλ ¼ 1Þ ¼ lnhe−σi ¼ 0. In addition, it satisfies the
stronger Gallavotti-Cohen symmetry KðλÞ ¼ Kð1 − λÞ, which
implies that PðσÞ obeys an exchange fluctuation theorem
PðσÞ=Pð−σÞ ¼ eσ , or, put differently, that the probability
distribution of the time-reversed process is the same as that of
the forward one. This is a consequence of the infinitesimal or
slow nature of this process and does not happen for non-
infinitesimal quenches.
Since Eq. (286) is quadratic in λ, PðσÞ must be a Gaussian

distribution whose mean is Eq. (283), while the variance reads

varðσÞ ¼ β2varðδHÞ: ð287Þ

Comparing Eq. (287) to Eq. (283), we arrive at the fluctuation-
dissipation theorem (Callen and Welton Theodore, 1951)
relating the mean and variance of the entropy produc-
tion hσi ¼ ð1=2ÞvarðσÞ.
When ½H; δH� ≠ 0, however, the fluctuation-dissipation

relation (FDR) no longer holds. Equation (287) for the
variance turns out to remain unchanged, but the mean is
modified to Eq. (284), hence the two quantities are now
related by

hσi ¼ 1
2
varðσÞ −Q: ð288Þ

The FDR is therefore broken due to the presence of the
coherent term (Miller et al., 2019). We mention in passing that
the FDR for general quantum processes was also recently
discussed by Mehboudi, Sanpera, and Parrondo (2018), who
showed the nontrivial role of the so-called symmetric loga-
rithmic derivative, a concept widely used in quantum
metrology.
Returning now to the noncommuting case [Eq. (285)], it is

also possible to rewrite the CGF as
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KðλÞ ¼ KcommðλÞ þ
β2

2

Z
λ

0

dx
Z

1−x

x
dy Iyðρthi ; HfÞ:

This shows how the presence of coherence makes PðσÞ non-
Gaussian, as the last term makes K nonpolynomial in λ.
Another consequence of this result concerns cumulants of the
order of 3 or higher. Since Kcomm is quadratic, it will
contribute only to the first two cumulants. All higher order
cumulants will therefore come from the second term. In
fact, using Leibniz’ integral rule together with Eq. (72),
one arrives at

κn ¼ −ð−1Þnβ2 ∂n−2

∂λn−2 Iλðρ
th
i ; HfÞ; n ≥ 3: ð289Þ

Using this result, Scandi et al. (2020) showed that all higher
order cumulants are actually positive (κn > 0 for n ≥ 3).
The previous discussion refers to a single quench from Hi

to Hf. However, this can now be used as a building block to
study coherence in more general slow processes. We imagine
a process where HðtÞ is changed slowly, with the system
permanently in contact with a heat bath at fixed temperature.
Following Nulton et al. (1985) and Crooks (1998), we can
divide this process into a series of discrete, infinitesimal steps.
At each stepH changes slightly fromHi toHiþ1 (the quench).
After this quench, the system is allowed to relax back to
thermal equilibrium, but now at the new Hamiltonian Hiþ1.
Using this construction, one may build a slow process where
the system is in thermal equilibrium throughout but, notwith-
standing, the entropy production can still be quantified. In
fact, the net entropy production will simply be the sum of the
entropy produced in each quench: σ ¼ σ1 þ � � � þ σN . And
since the system fully thermalizes at each step, σi’s are
statistically independent. The full CGF is hence KσðλÞ ¼P

N
i¼1 KσiðλÞ, and the intuition from a single quench directly

carries over to a slow (noninfinitesimal) process.

F. Dissipative phase transitions: Basic models

We recall the notion of NESSs discussed in Sec. I; they
occur when a system is coupled simultaneously to multiple
reservoirs. The hallmark of such states is a finite entropy
production rate _Σ. In certain situations, NESSs can also
present phase transitions. In the classical literature these
usually go by the name of “nonequilibrium transitions” and
in the quantum literature by the name of “dissipative phase
transitions” (for concreteness, we henceforth use the latter).
Since NESSs are characterized by a finite _Σ, it is therefore
only natural to ask how _Σ behaves across a dissipative
transition. This is the issue that we explore in this section.
For classical systems the situation is somewhat well under-
stood. Conversely, in the quantum case there are dramatically
few studies on the topic. Here we will try to discuss both
scenarios together. Before discussing the thermodynamics,
though, we begin by reviewing some of the prototypical
models of dissipative phase transitions, as these may not be as
widely known by the community working in stochastic and
quantum thermodynamics.

Classically, dissipative phase transitions are usually studied
in lattice models described by stochastic thermodynamics.
This is well illustrated by the model studied by Tomé and de
Oliveira (2012), corresponding to a 2D classical Ising model
coupled to two baths at different chemical potentials. One bath
couples only to the even sites of the lattice and the other to the
odd sites (thus forming a checkerboard pattern). The lattice
has a total of N sites, each described by a classical spin
variable σi ¼ �1. The configurations of the system are
described by the vector σ ¼ ðσ1;…; σNÞ, where σi ¼ �1
and the spins interact with the typical nearest-neighbor
Ising energy E ¼ −J

P
hi;ji σiσj, where hi; ji means a sum

over nearest neighbors. The probability distribution pðσÞ is
assumed to evolve according to the Pauli equation

dpðσÞ
dt

¼
XN
i¼1

fwiðσiÞpðσiÞ − wiðσÞpðσÞg; ð290Þ

where σi ¼ ðσ1;…;−σi;…; σNÞ and wiðσÞ is the single spin-
flip transition rate σi → −σi at site i, each characterized by a
temperature Ti and a chemical potential μi. Tomé and de
Oliveira (2012) assumed all Ti ¼ T and used an alternating
chemical potential pattern of μi ¼ μ for odd sites and μi ¼ −μ
for even sites.
In the quantum domain, lattice models can be constructed

with unusual types of dissipation. This acquires particular
relevance in the context of ultracold atoms in optical lattices.
For instance, Diehl et al. (2008) considered a 2D bosonic
lattice, with each site characterized by a annihilation operator
ai and evolving according to the Lindblad master equation

dρ
dt

¼ −i½H; ρ� þ
X
l

κl½LlρL
†
l −

1
2
fL†

lLl; ρg�; ð291Þ

where H ¼ −J
P

hi;ji a
†
i aj þ ðU=2ÞPi a

†
i a

†
i aiai is the Bose-

Hubbard Hamiltonian. Diehl et al. (2008) discussed the
nontrivial effects that come about from using jump operators
acting on nearest-neighbor sites of the form Ll ¼ Lij ¼
ða†i þ a†jÞðai − ajÞ. These operators do not change the number
of particles. Instead, they cause only a phase-sensitive
decoherence: the term ai − aj annihilates antisymmetric

superpositions of the pair ði; jÞ, whereas ða†i þ a†jÞ recycles
it toward a symmetric state. This dissipator therefore induces
phase locking, which is characteristic of Bose-Einstein con-
densates. It thus represents a novel type of dissipation with a
clear quantum signature.
Notwithstanding this bout of interest in lattice systems, it

turns out that quantum models of dissipative phase transitions
have actually been around for many decades, particularly in
the quantum optical community. The reason is that they often
occur in nonlinear optical systems coupled to optical cavities,
such as the Dicke model (Dicke, 1954) or the optical para-
metric oscillator (Drummond, McNeil, and Walls, 1981).
These models are dissipative due to the characteristic photon
losses of optical cavities. The transition in this case is driven
by an external pump laser, which increases the number of
photons in the cavity and thus the rate at which the nonlinear
processes take place. Criticality is marked by a threshold
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pump intensity at which the quantum state of the cavity
changes abruptly. This class of models is called driven
dissipative. The simplest such model is that of Kerr bistability
(Drummond and Walls, 1980; Casteels, Fazio, and Ciuti,
2017), which is defined as follows by a single bosonic model
a evolving according to the Lindblad equation in a rotating
frame at the frequency of the pump:

dρ
dt

¼ −i½H; ρ� þ κ½aρa† − 1
2
fa†a; ρg�; ð292Þ

where H ¼ Δa†aþ ðU=2Þa†a†aaþ iϵða† − aÞ. Here Δ is
the cavity detuning, U is the nonlinear interaction,
and ϵ is the external pump. For certain parameters, this model
may exhibit a discontinuous transition as a function of the
pump ϵ, which is reminiscent of the phenomenon of optical
bistability. This is illustrated in Fig. 8(a). For the transition to
take place, one must define an appropriate thermodynamic
limit, which corresponds to U → 0 and ϵ → ∞ while keeping
Uϵ2 finite or, equivalently, one could introduce a fictitious
integer N such that U → U=N and ϵ → ϵ

ffiffiffiffi
N

p
. The curves in

Fig. 8(a) were computed numerically for different values of N.
From a statistical mechanical point of view, driven-dissipative
models are mean-field models since the strong confinement of
the optical cavity makes the interactions between the atoms in
the nonlinear medium long ranged (“everyone interacts with
everyone”).
Dissipative phase transitions share many similarities with

quantum phase transitions, as well as important differences;
see Table II. As with any transition, they stem from a
competition between different drives. Thus, just as quantum
phase transitions are driven by the competition between two
noncommuting terms in the Hamiltonian, the drives in
dissipative phase transitions can be any two (or more) terms
generating the open-system dynamics. Now, however, there
are more possibilities. Not only can there be a competition
between two dissipative mechanisms, such as two reservoirs at

different temperatures, but also a competition between a
dissipative and a unitary (and hence coherent) term, as is
the case in Eqs. (291) and (292).8 A simple but elegant
example is a macrospin of size S described by spin operators
Sx, Sy, and Sz and evolving according to the Lindblad master
equation

dρ
dt

¼ −ih½Sx; ρ� þ
2κ

S



S−ρSþ −

1

2
fSþS−; ρg

�
: ð293Þ

This describes a competition between a dissipative term
favoring the south pole (lowest eigenstate of Sz) and a unitary
contribution corresponding to a transverse field. This model is
reminiscent of the Dicke model for collective atom inter-
actions and has been studied since the 1970s; see Schneider
and Milburn (2002) and references therein.9 In the thermo-
dynamic limit (which in this case indicates that S → ∞) the
model presents a phase transition at a critical field hc ¼ 2κ.
This is illustrated in Fig. 8(b), where we plot the order
parameter hSziss as a function of h. For h < hc the dissipative
part wins and the system tends to align toward the south pole,
making hSziss nonzero and negative (when h ¼ 0 the steady
state is precisely the south pole). Conversely, for h > hc the
two terms mix together to produce a disordered state with
hSziss ¼ 0.

G. Dissipative phase transitions: Entropy production

Having introduced some of the basic models and features of
dissipative phase transitions, we now turn to the question of
how the entropy production behaves as one crosses the critical
point. We begin with classical systems. In this case much more
is known since the entropy production can be more readily
computed. For systems described by a Pauli master equation
such as Eq. (148), the entropy production can be computed
from the general formula in Eq. (163), which contemplates the
presence of multiple heat baths; see Sec. V.F for more details.
The entropy production rate in classical transitions is found

to be always finite but becomes nonanalytic at the critical
point. For continuous transitions, it always presents a kink,
meaning its derivative with respect to the driving parameter is

(a) (b)

FIG. 8. Examples of dissipative transition. (a) Average photon
number for the Kerr bistability model (292), with κ ¼ 1=2,
Δ ¼ −2, and U ¼ 1=N, where N is a parameter used to tune
the thermodynamic limit. The various curves correspond to
N ¼ 1, 5, and 20 (long-dashed green curve, short-dashed red
curve, and solid black curve, respectively) and were computed by
numerically finding the steady state of Eq. (292). We also show as
a dashed light gray curve the semiclassical result expected for
optical bistability, showing that there is a region where there are
two possible solutions. (b) Steady-state magnetization of the
macrospin model (293) computed for S ¼ 10, 50, and 100
(dashed, dotted, and solid curves, respectively).

TABLE II. Dissipative phase transitions compared to quantum
phase transitions. Adapted from Kessler et al., 2012.

Quantum Dissipative

Operator Hamiltonian HðgÞ Liouvillian LðgÞ
Spectra Energy eigenvalues

HðgÞjψ ii ¼ EiðgÞjψ ii
Eigenvalues LðgÞρ ¼ λiðgÞρ

State Ground state
HðgÞjψ0i ¼ E0ðgÞjψ0i

NESS LðgÞρss ¼ 0

Gap Energy gap
ΔðgÞ ¼ E1ðgÞ − E0ðgÞ

Liouvillian gap ℜ½λ1�

8This is not a quantum effect and may well occur in classical
stochastic systems, such as those governed by a Fokker-Planck
equation.

9The steady state ρss can actually be found analytically, as Puri and
Lawande (1979) showed.
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discontinuous. This is illustrated in Fig. 9(a). The derivative
can also diverge logarithmically, as shown in Fig. 9(b) (the
critical exponent of this divergence is associated with the
equilibrium specific heat of the system). Notwithstanding, _Σ
itself is always finite. This behavior was found in both
analytical and numerical Monte Carlo simulations in a variety
of models (Crochik and Tomé, 2005; Tomé and de Oliveira,
2012; Shim, Chun, and Noh, 2016; Zhang and Barato, 2016;
Herpich and Esposito, 2019; Noa et al., 2019).
For discontinuous transitions, on the other hand, _Σ is finite

but has a discontinuity at the phase coexistence region. This
was encountered in numerous models (Zhang and Barato,
2016; Herpich, Thingna, and Esposito, 2018; Noa et al., 2019)
and is exemplified by Fig. 10. Figure 10(a) corresponds to the
same model used in Fig. 9(a), which can actually be tuned to
present both continuous and discontinuous transitions across
the critical point. Figure 10(b), on the other hand, was based
on Zhang and Barato (2016) and corresponds to a classical
Ising model subject to an oscillating magnetic field. This is
therefore somewhat different from the NESS scenario that we
have been discussing, as there is only one bath. But the
explicit time-dependent drive yields similar physics.

The underlying mechanisms that lead to this kind of
behavior were established recently by Noa et al. (2019).
They involve the stochastic fluctuations of the entropy
production close to criticality, which, due to the central limit
theorem, can be approximated by a sum of Gaussians. These
results show that the previously mentioned behaviors for both
continuous and discontinuous transitions are in fact universal
for systems described by Pauli equations breaking a discrete
Z2 symmetry. Whether they extend to other types of discrete
symmetries remains to be proved. The results of Herpich and
Esposito (2019), who studied a q-state Potts model, seem to
indicate that they do.
Next we turn to the quantum case. Little is known about the

behavior of the entropy production in quantum dissipative
phase transitions. Not only are the models difficult to simulate
or experiment with, but computing _Σ presents an additional
challenge. As discussed in Sec. III, the definition of entropy
production requires knowledge of the specific system-bath
interactions involved. With the exception of standard thermal
baths, it is not possible to estimate _Σ solely from the reduced
dynamics. This acquires additional relevance in light of the
fact that most dissipators studied in the context of dissipative
phase transitions are actually not thermal. This is the case in
Eq. (291). It is also true for driven-dissipative systems, such as
for Eqs. (292) and (293), which are effectively equivalent to
zero-temperature baths.
To our knowledge, the only studies on this issue have been

in driven-dissipative systems (the driven optical cavity is
loaded with a nonlinear medium) (Brunelli et al., 2018; Goes,
Fiore, and Landi, 2020). In such systems, even though the
standard formulation of _Σ is not available (since the baths are
at zero temperature) one can approach the problem using the
phase-space formulation discussed in Sec. V.H.
What is found is that the entropy production rate can be

decomposed into two terms as

_Σ ¼ _Σu þ _Σd: ð294Þ

The first term is related to the unitary dynamics and behaves
exactly like the entropy production in classical systems; see
Figs. 9 and 10. The reason why this is so is not yet fully
understood. The second term _Σd, on the other hand, is related
to the dissipative part and behaves like a susceptibility. As a
consequence, it can diverge at the critical point. These results
therefore indicate that the entropy production in the quantum
domain may have contributions that behave fundamentally
differently than their classical counterparts.
We review two specific models of entropy production in

dissipative phase transitions that were studied by Goes, Fiore,
and Landi (2020). We first look at the discontinuous transition
of the Kerr model in Eq. (292). Figure 11 shows both
contributions in Eq. (294) as a function of the pump ϵ for
several values of N (the parameter controlling the thermody-
namic limit; see Fig. 8). The curves have been plotted so as to
yield a data collapse whose properties can help one to infer the
nature of each contribution. The horizontal axes are rescaled
to Nðϵ=ϵc − 1Þ, whereas the vertical axis is rescaled not for _Σu

but instead by 1=N for _Σd. This means that _Σu is intensive,

(a) (b)

FIG. 10. Similar to Fig. 9 but exemplifying _Σ across discon-
tinuous transitions. (a) Majority vote model. This is the same
model used in Fig. 9(a), which can be tuned from a continuous to
a discontinuous transition depending on the parameter range.
From Noa et al., 2019. (b) Ising model subject to an oscillating
field. Adapted from Zhang and Barato, 2016.

(a) (b)

FIG. 9. Example of behavior of _Σ across a continuous dis-
sipative transition. (a) Mean-field majority vote model given by
Noa et al. (2019), where f is the so-called misalignment
parameter. (b) Two-bath Ising model of Tomé and de Oliveira
(2012), where the transition is driven by the temperature T. In
both cases _Σ is continuous across the transition but has a kink at
the critical point, implying that the derivative of _Σ is discon-
tinuous. It is also possible, as shown in (b), that the derivative
presents a logarithmic discontinuity.
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while _Σd is extensive. As a consequence, for large N the
dominant contribution will be from _Σd.
The behavior of _Σu matches exactly what is found in

classical sytems [see Fig. 10(b)] and can be understood using
the phenomenological two-Gaussian model of Noa et al.
(2019). Conversely, the behavior of _Σd follows the variance of
the order parameter hδa†δai, where δa ¼ a − hai. This con-
tribution therefore behaves like a susceptibility. As it is a
direct consequence of quantum fluctuations, it corresponds to
an additional contribution to _Σ of pure quantum origin.
The other model, which was studied by Goes, Fiore, and

Landi (2020), was the driven-dissipative Dicke model,
described by a master equation identical to Eq. (292) but
with the Hamiltonian

H ¼ ωsSz þ ωa†aþ 2λ

N
ðaþ a†ÞSx; ð295Þ

where Si are macrospin operators of size S ¼ N=2. The Dicke
model describes an optical cavity with mode a and loss κ
coupled to a nonlinear medium, modeled as a macrospin S.
In this model the driving stems from the Dicke interaction

ðaþ a†ÞSx, which is related to the field generating the optical
lattice and whose effect is to populate the cavity with a finite
number of photons; see Baumann et al. (2010) for more
details. The entropy production of this model was also studied
experimentally by Brunelli et al. (2018), which is reviewed in
Sec. VIII.D. The theoretical predictions for this model are
shown in Fig. 12. As one can see, once again _Σu behaves
exactly as in the classical case [see Fig. 9(a)], whereas _Σd
behaves like a susceptibility and therefore diverges at the
critical point.

H. Effects of non-Markovian dynamics on entropy production

In this section we aim to explore potential connections
between entropy production and the possible non-Markovian
character of the system-environment dynamics. The flavor of
such potential connections is provided by Eq. (30). First, the
assumptions that underlie it involve a certain degree of control
over the environment E, which, as remarked in Sec. III.A,
might well have the same dimensions as S. This is entailed by
the finite-size corrections to these expressions discussed in
Sec. IV.A. Second, Eq. (30) implies the possibility that, due to

the globally unitary system-environment interaction, both S
and E are affected. These features are strongly suggestive of
influences of a potential backflow of information, from the
environment back to the system, that has been pinpointed as
one of the fundamental mechanisms for the emergence of non-
Markovianity in the reduced dynamics of S (Breuer et al.,
2016; de Vega and Alonso, 2017).
Specifically, Breuer, Laine, and Piilo (2009) defined a

process as non-Markovian if there is a pair of initial states
ρ1;2S ð0Þ of the system and a time t of its dynamics such that

d
dt

D(ρ1SðtÞ; ρ2SðtÞ) > 0: ð296Þ

Here Dðρ1; ρ2Þ ¼ kρ1 − ρ2k=2 is the trace distance between
two states ρ1;2 (with k · k the trace-1 norm of a matrix). The
framework set by Breuer, Laine, and Piilo (2009) was based
on the contractivity of the trace distance under positive trace-
preserving maps: a breakdown of contractivity makes the
distance between the two states grow [and thus Eq. (296)
hold], signaling non-Markovianity in the ensuing evolution.
The identification of the reasons for the nonmonotonic

behavior of the trace distance under non-Markovian dynamics
is evidently key for the characterization of open-system
dynamics. In this regard, one can demonstrate the following
theorem (Mazzola et al., 2012).
Theorem 5.—For any quantum process described by a

completely positive map with an associated system-environ-
ment interaction ruled by the propagator U ¼ e−iHt, we have

d
dt

D(ρ1SðtÞ; ρ2SðtÞ) ≤
EðtÞ þ CðtÞ

2
; ð297Þ

with EðtÞ ¼ mink¼1;2kTrEfH; ρkSðtÞ ⊗ ½ρ1EðtÞ − ρ2EðtÞ�gk
and CðtÞ¼kTrEfH;½χ1SEðtÞ−χ2SEðtÞ�gk. Here ρkSðEÞðtÞ¼
TrEðSÞ½UρkSEU

†� are the reduced states of the system (envi-
ronment) at time t and χkSEðtÞ ¼ ρkSEðtÞ − ρkSðtÞ ⊗ ρkEðtÞ are
matrices that encode the correlations between S and E.
Equation (297) identifies the two mechanisms that underpin

the occurrence of the backflow responsible for non-Markovian
dynamics, namely, the possibility that, in light of the dynami-
cal nature of the environment (as previously remarked), the
state of E changes in time (as encompassed by E), and the
potential setting of system-environment correlations (here
quantified by the boundary term C). Compare this result with

(a) (b)

FIG. 11. The two contributions in Eq. (294) to the entropy
production for the Kerr bistability model (292). The points
correspond to different values of N and have been plotted so
as to yield a data collapse; see the text for more details.

(a) (b)

FIG. 12. The two contributions in Eq. (294) to the entropy
production for the driven-dissipative Dicke model in Eq. (295).
The critical point occurs at λc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0ðκ2 þ ω2Þ=ω

p
.
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the entropy production rate, which is obtained by differ-
entiating Eq. (30) with respect to time as follows:

_Σ ¼ d
dt

Iρ0SE
ðS0∶E0Þ þ d

dt
Sðρ0EkρEÞ: ð298Þ

While Σ ≥ 0, the same is not necessarily true for the rate _Σ.
Theorem 6 resonates directly with this result for _Σ. The
quantity E is in close correspondence to dSðρ0EkρEÞ=dt and C
with dIρ0SE

ðS0∶E0Þ=dt. This therefore shows that, even though
the trace distance measure (296) and the entropy produc-
tion (30) are defined in terms of different information-
theoretic quantities, the mechanisms that underlie both are
similar in spirit; put differently, negativities in the entropy
production rate can be viewed as a witness of non-
Markovianity (Strasberg and Esposito, 2019). Contrast this
with the contractivity property of Markov processes, which
enjoys a good physical interpretation in the context of
quantum (and indeed stochastic) thermodynamics, as it entails
the positivity of the entropy production rate.
Next consider a time-dependent system-bath interaction

Hamiltonian iven by HtotðλtÞ ¼ HðλtÞ þ V þHE, with HðλtÞ
a driving term for the system, HE the Hamiltonian of the bath,
V their mutual coupling term, and λt a work parameter. Owing
to the coupling between system and bath, which may well be
strong, the equilibrium state of the system is not necessarily of
the Gibbs form with respect to HðλÞ. Moreover, the initial
state of the system-bath compound might not be factorized,
thus entailing the potential emergence of non-Markovianity.
Yet we need to characterize such an equilibrium state in

order to be able to define the entropy production and its rate.
To do so, it is convenient to introduce the following so-called
Hamiltonian of mean force (Kirkwood, 1935):

HmfðλtÞ ¼ −
1

β
ln
TrB½e−βHtotðλtÞ�

ZB
; ð299Þ

with ZB the partition function of the equilibrium state of the
bath. Equation (299) describes the energy of the reduced state
of the system if the global system-bath state is in equili-
brium. Following Strasberg and Esposito (2019), we can
introduce the nonequilibrium free energy FðtÞ ¼ hHmfðλtÞþ
ð1=βÞ ln ρSðtÞi, with ρSðtÞ an arbitrary state of the system at
time t. This leads to the following formal definition of work:

WðtÞ ¼
Z

t

0

dt0TrS



dHðλt0 Þ
dt0

ρSðt0Þ
�
; ð300Þ

which is structurally identical to the definition in the classical
case. Using the previous definitions, we have

WðtÞ ¼ TrSE½ρSEðtÞHtotðλtÞ� − TrSE½ρSEð0ÞHtotðλ0Þ�; ð301Þ

where ρSBðtÞ is the instantaneous state of the total system-bath
compound.
If we now take the following coarse-grained, mean-force

version of the equilibrium state of the system:

πSðλtÞ ¼
e−βH

mf ðλtÞ
ZmfðλtÞ

; ð302Þ

the entropy production rate may be defined as _ΣðtÞ ¼
−∂tS(ρSðtÞkπSðλtÞ), which is equivalent to

ΣðtÞ ¼ β½WðtÞ − ΔFðtÞ� ¼ δSðtÞ − δSð0Þ; ð303Þ

with δSðtÞ¼ S(ρSEðtÞkπSEðλtÞ)−S(ρSðtÞkπSðλtÞ). The varia-
tion in quantum relative entropy at a generic time t, with and
without the inclusion of the bath [here πSEðλtÞ is the total
system-bath Gibbs state and πS ¼ TrBðπSEÞ] (Strasberg and
Esposito, 2019). The monotonicity of the quantum relative
entropy entails that δSðtÞ ≥ 0 ∀ t. Therefore, ΣðtÞ ≥ 0 pro-
vided that δSð0Þ ¼ 0, which happens in two noticeable cases:
(a) if the system-bath compound is initially prepared in the
global Gibbs state πSEðλ0Þ and (b) for the class of zero-discord
system-bath states (mathematically implying the condition
½Hðλ0Þ; V� ¼ 0).
The entropy production rate thus cannot be expressed as the

relative entropy associated with the irreversible relaxation of
the state of the system toward equilibrium. As a result, a
relation between the sign of the entropy production rate and
the occurrence of non-Markovian effects is not immediately
apparent, even for undriven systems. Notice that this is in
contrast to the case of undriven classical open-system dynam-
ics, for which it is possible to establish that the negativity of
the entropy production rate directly implies the non-
Markovian nature of the dynamics under scrutiny. The fact
that Eq. (303) requires the consideration of the bath with
which the system interacts is a testament to the view,
according to which a self-consistent formulation of the second
law of thermodynamics for general (i.e., in principle non-
Markovian) open quantum systems should not be based on the
sole reduced-state dynamics of the system, as illustrated by
Marcantoni et al. (2017). The relation between the conditions
for the observation of non-Markovianity and the achieve-
ment of negative entropy production is currently an open
question (Bhattacharya et al., 2017; Popovic, Vacchini, and
Campbell, 2018)
A different approach to the inclusion of the global system-

bath compound in the description of the thermodynamics of
the system can be taken when considering the case of weak yet
non-negligible S-E couplings (Rivas and Huelga, 2012; Rivas,
2019). In these conditions, the dynamics of the system might
exhibit non-Markovian features in light of the breakdown of
divisibility conditions. We assume the initial system-bath state
to be the tensor product of the equilibrium states ρthE ¼
e−βHE=ZE and ρthS ¼ e−βHS=ZS, i.e., ρSEð0Þ ¼ ρthS ⊗ ρthE , and
a time-independent system Hamiltonian. Under the assu-
mption of negligible system-bath coupling, the total Gibbs
state of the compound is well approximated by such an initial
state, that is, ρthSE ≃ ρSEð0Þ. As the global Gibbs state is a
stationary state of the dynamics, the Gibbs state of the system
ρthS would be a steady state of the reduced dynamics in the
refined weak-coupling limit. However, this is not true at a
finite time t. We call ΛR

t the map propagating the initial state
of the system in the refined weak-coupling limit. Following an
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argument similar to that pursued when introducing the mean-
force Hamiltonian, one can set

ΛR
t ðρthS Þ ¼ e−βH

R
S ðtÞ=e−βH

R
S ðtÞ; ð304Þ

with ZR
S ðtÞ ¼ ZS, in light of the trace-preserving nature of the

dynamical map. Moreover, HR
S is the refined Hamiltonian of

the system given by

HR
S ðtÞ ¼ −

1

β
lnΛR

t ðe−βHSÞ: ð305Þ

In analogy with the standard formulation in the weak-coupling
limit, we define the refined average instantaneous energy
ERðtÞ ¼ TrS½ρSðtÞHR

S ðtÞ�, which reduces to the standard
weak-coupling value at t ¼ 0 and approaches EðtÞ ¼
TrS½ρSðtÞHS� as t → ∞, when ΛR

t approaches a Davies
semigroup and HR

S ðtÞ → HS. As we are considering a time-
independent process, the change in energy of the system
equals the amount of refined heat QRðtÞ flowing to and from
the system, so

QRðtÞ ¼
Z

t

0

dt0 _ERðt0Þ

¼
Z

t

0

dt0TrS½_ρSðt0ÞHR
S ðt0Þ þ ρSðt0Þ _HR

S ðt0Þ�: ð306Þ

As the map at hand is completely positive, the quantum
relative entropy will satisfy contractivity upon application of
ΛR
t so that

S(ΛR
t ½ρSð0Þ�kΛR

t ðρthS Þ) ≤ S(ρSð0ÞkρthS ); ð307Þ

which gives

ΣRðtÞ ¼ ΔSðtÞ − βQRðtÞ ≥ 0; ð308Þ

with ΔSðtÞ ¼ SðtÞ − Sð0Þ. The integral form of Eq. (307) is
not accidental: as the map under scrutiny is in general
nondivisible, the differential form of the second law is in
general not valid, thus preventing a definite sign of the entropy
production rate of the process (Rivas, 2019). Albeit resulting
from a much more intricate derivation, the same conclusion
can be drawn for a general time-dependent process entailing
the performance of work.
More recent work has elaborated on this approach, provid-

ing a way to address the general case of a system coupled to a
thermal bath through arbitrarily strong coupling rates (Seifert,
2016; Jarzynski, 2017; Miller and Anders, 2017; Strasberg
and Esposito, 2017). In particular, Rivas (2020) proposed a
framework encompassing general initial states (including
correlated ones of system and bath) through which it is
possible to show that, in a completely positive divisible
map induced by a time-independent Hamiltonian, the entropy
production rate is always positive. This plants the seed for the
clear-cut link between thermodynamics and Markovianity in
the quantum regime suggested in Theorem 5.

VIII. EXPERIMENTAL ASSESSMENT OF QUANTUM
ENTROPY PRODUCTION

In recent years there have been many experiments on
nonequilibrium thermodynamics in the microscopic domain.
In this section we opt to review some representative results,
with a focus on those contributions that specifically character-
ize the entropy production.

A. Assessment at the level of quantum trajectories

To investigate the physical origin of irreversibility, Batalhão
et al. (2015) addressed the dynamics of a nuclear spin-1=2
system (13C-labeled chloroform molecule in a liquid sample)
that is initially prepared in a thermal state and driven out of
equilibrium by a fast quench generated by a time-modulated
radio-frequency (rf) field producing a time-dependent
Hamiltonian HF

t . A backward process was also realized by
driving the system with the time-reversed Hamiltonian
(HB

t ¼ HF
τ−t) with the system prepared in an equilibrium state

of HB
0 . The work probability distributions of the forward and

backward processes PF;BðWÞ are related via the Tasaki-
Crooks fluctuation relation (Crooks, 1999; Tasaki, 1999)

PFðWÞ=PBð−WÞ ¼ eβðW−ΔFÞ: ð309Þ

Equation (309) characterizes the positive and negative fluc-
tuations of the quantum work W along single realizations. It
holds for arbitrary driving protocols, especially beyond
the linear response regime, and is a generalization of the
second law, to which it reduces on average as hΣi ¼
βðhWi − ΔFÞ ≥ 0.
The Hamiltonian driving the forward process was taken to

be HF
t ¼ 2πℏνðtÞ½σx cosϕðtÞ þ σy sinϕðtÞ�, with ϕðtÞ ¼

πt=2τ and σx;y;z the Pauli spin operators and νðtÞ ¼
ν0ð1 − t=τÞ þ ντt=τ the linear modulation of the rf-field
frequency over time τ from value ν0 ¼ 1.0 kHz to
ντ ¼ 1.8 kHz. Figure 13 reports some of the trajectories
followed by the system in both the forward and backward
processes.
The degree of irreversibility arising from such dynamics

was quantified by measuring the probability distribution PðΣÞ
of the irreversible entropy production using the Tasaki-Crooks
relation in Eq. (309). This was assessed using nuclear
magnetic resonance (NMR) spectroscopy (Oliveira et al.,
2007) and the method described by Dorner et al. (2013),
Mazzola, De Chiara, and Paternostro (2013), and Batalhão
et al. (2014). From this the forward and backward work
distributions PF;BðWÞ can be determined and from them β,W,
and ΔF; hence, the entropy produced during each process can
be extracted. The measured nonequilibrium entropy distribu-
tion is shown in Fig. 14. Both positive and negative values
occur owing to the stochastic nature of the problem. However,
the mean entropy production is positive (red arrow), which is
in full agreement with the second law (hΣi ≥ 0).

B. Assessment of the effects of quantum measurements

The experimental tracking of individual trajectories probed
by continuous measurements allowed Harrington et al. (2019)
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to assess the irreversibility of a system affected by continuous
weak measurements. A scheme of principle of the employed
setting is shown in Fig. 15. The experimental platform

involved a superconducting transmon two-level system
coupled to a microwave cavity through the dispersive-cou-
pling interaction term Hint ¼ −χa†aσz. Here a and a† are the
annihilation and creation operators of the cavity field, while σz
is the z-Pauli pseudospin operator for the two-level system.
The rate χ determines a pseudo-spin-dependent phase shift
2jχj, acquired with a microwave tone used to probe the field’s
resonance, which in turn is used to acquire information on the
two-level system. The signal collected from the cavity field is
probed in n time steps tkðk ¼ 0; 1;…; n − 1Þ, which provide
the set of records frkg that allow for the piecewise
reconstruction of individual trajectories of the two-level
system. Formally, the statistics of the measurement records
and the corresponding measurement dynamics can be
described through the action of a generalized measure-
ment, defined by the operators Mrk that update the density
matrix of the two-level system at step k, from ρk to
ρkþ1 ¼ MrkρkM

†
rk=tr½MrkρkM

†
rk �. A time-reversed measure-

ment process is realized by reversing the dynamics for a
single measurement update step. Formally, this is described by
the time-reversed measurement operators M̃rk , defined such

that M̃rkMrkρkM
†
rkM̃

†
rk ¼ dðrkÞρk, where dðrkÞ is a depletion

coefficient, dependent on the value of the measurement record
rk and entailing the effect of the irreversibility, that unbalances
the forward and time-reversed trajectories. The corresponding
statistical arrow of time has a length given by

A ¼
X
k

ln
PðrkjρkÞ

Pð−rkjρkþ1Þ
; ð310Þ

with PðrkjρkÞdrk ¼ tr½MrkρkM
†
rk �drk the probability density

of measurement rk achieved when the system is prepared in
ρk. The stochastic variable A is distributed according to a
probability distribution PðAÞ that satisfies the fluctuation
theorem (Harrington et al., 2019) PðAÞ ¼ eAPð−AÞ. A
related result, aimed at quantifying the information-theoretic
contribution to entropy production resulting from the con-
tinuous measurement process (Belenchia et al., 2019) and
implemented over a mesoscopic optomechanical system, was
reported on by Rossi et al. (2020).

(a)

(b)

(c)

FIG. 13. (a) [(b)] Evolution of the Bloch vector of the forward
(backward) spin-1=2 state ρFt (ρBτ−t) during a quench of the
transverse magnetic field in the experiment reported on by
Batalhão et al. (2015) that was obtained via quantum state
tomography. A sampling of 21 intermediate steps was used. The
initial magnetization (gray arrow) is parallel to the external driven
rf field, aligned along the positive x (y) axis for the forward
(backward) process. The final state is represented as a red (blue)
arrow pointing nearly to the north pole of the sphere. (c) Polar
projection (indicating only the magnetization direction) of the
Bloch sphere with the trajectories of the spin. Green lines
represent the path followed in a quasistatic (τ → ∞) process.
From Batalhão et al., 2015.

FIG. 14. Distribution of irreversible entropy production. Black
dots represent the measured negative and positive values of the
entropy production Σ of the spin-1=2 system after a quench of the
transverse magnetic field of duration τ ¼ 100 μs. The mean
entropy production (dashed red arrow) is positive, which is in
agreement with the second law. From Batalhão et al., 2015.

FIG. 15. Scheme of principle of the experiment reported on by
Harrington et al. (2019). A two-level system whose states
fj↑i; j↓ig differ in frequency by ωq is coupled through the
dispersive Hamiltonian Hint to a harmonic oscillator of frequency
ωc ≠ ωq. The interaction term correlates the states of the two-
level system to a quadrature of the oscillator. The state of the two-
level system is measured by probing the oscillator resonance with
a microwave pulse that acquires a phase shift that depends on
whether the two-level system is prepared in j↑i or j↓i.
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C. Assessment of the nonequilibrium Landauer principle

Recent experiments have addressed erasurelike processes
involving individual classical and quantum systems (Bérut
et al., 2012; Orlov et al., 2012; Jun, Gavrilov, and Bechhoefer,
2014; Yan et al., 2018; Peterson et al., 2019). These experi-
ments have contributed substantially to the resurgence of
interest on the implications of Landauer’s principle and its
extension to general quantum contexts; see Sec. IV.A, par-
ticularly Eq. (76).
At the classical level, the space of physical configurations

physically accessible to a colloidal particle has been restricted
to only two, thus implementing a de facto 1-bit system, via the
use of a modulated double-well potential (Bérut et al., 2012)
or a feedback-based trapping mechanism (Jun, Gavrilov, and
Bechhoefer, 2014). This was used to show that the mean
dissipated heat resulting from a stochastic erasure process
saturates at the standard Landauer bound. Details of these
experiments are provided in the captions of Figs. 16 and 17.

The nonequilibrium quantum scenario was addressed by
Peterson et al. (2016) and Yan et al. (2018). Peterson et al.
(2019) studied a NMR system comprising trifluoroiodoethy-
lene molecules in acetone, whose 19F nuclear spins are used to
encode three two-level systems. Two of them represent the
system and environment of a nonequilibrium erasure process,
while the third is used as an ancilla that was instrumental in the
reconstruction of the statistics of the dissipated heat (Fig. 18).
The system is prepared in the maximally mixed state ρS ¼

1S=2 through a suitable set of rf pulses, thus carrying 1 bit of
information and embodying a proper memory that we want to
reset. The environment is instead initialized in a thermal state
ρE ¼ exp½−βHE�=ZE (with ZE ¼ Tr½e−βHE �) at an inverse
temperature β that can be experimentally controlled. Here
HE is the environment Hamiltonian. Finally, the ancilla is
prepared in the logical state j0iA. Following the approach put
forward by Goold, Poschinger, and Modi (2014), which was
adapted to the statistics of heat PðQÞ, a method first devised
for the reconstruction of the work probability distribution
(Dorner et al., 2013; Mazzola, De Chiara, and Paternostro,
2013), it is possible to show that PðQÞ ¼ R

ΘðtÞe−iQtdt, with

ΘðtÞ ¼ Tr½UρEv
†
t ⊗ ρSU†vt� ¼ hσxðtÞiA − ihσyðtÞiA: ð311Þ

This offers an operational method to infer PðQÞ via mea-
surements performed on the ancilla. The latter are operated by
amplifying, digitalizing, and filtering the free induction decay

(a) (b)

(c) (d)

FIG. 16. Scheme of the 1-bit erasure process reported on by
Bérut et al. (2012). An overamped colloidal particle (a silica bead
2 μm in diameter) is trapped at the focus of a laser beam by an
optical tweezer. The laser is focused at two distinct but closely
spaced places, alternately and at a high switching rate. This
provides the effective double-well potential into which the bead
moves. Initially, due to thermal fluctuations the bead is equally
likely to be in either one of the two wells. The erasure process
always takes the particle to the rightmost well, which corresponds
to the logical state 1 of a classical bit. The initial entropy of the
system is thus Si ¼ ln 2. The erasure process where the particle is
moved from the left to the right well is displayed. (a) The barrier
is initially high , (b),(c) then lowered and tilted to push the
particle to the right well, thus switching the bit to the logical 1
state, which erases the memory. Raising the barrier again
completes the erasure process. The particle is now in the right
well with certainty, so the initial side that it was on has been
irreversibly erased. As the process occurs in a finite time, it is
stochastic in nature and the heat dissipated along a given
trajectory xðtÞ [with xðtÞ the instantaneous position of the particle
in the potential] is given by Q ¼ −

R τcycle
0 dt_xðtÞ∂Uðx; tÞ=∂x,

where Uðx; tÞ is the analytical form of the trapping potential
and τcycle is the time taken to close an erasure cycle. The average
dissipated heat is obtained by averaging Q over 600 cycles, with
each started by randomly choosing the initial configuration.

(a) (b)

(c) (d)

x

F(x)
F(x)

FIG. 17. Scheme of the experimental assessment of Landauer
principle reported on by Jun, Gavrilov, and Bechhoefer (2014).
(a) A 200 nm fluorescent particle moves in an aqueous solution
(blue-shaded area) while (b) being monitored by a camera. A
computer (c) reconstructs the position x̄ from the images and
(d) generates a feedback electric force Fðx̄Þ, applied via two
electrodes. The force is chosen so as to create a virtual potential
Vðx̄Þ rather than an actual one, as in Fig. 16, imposed by a
computer algorithm and calculated at the estimated position x̄
rather than x itself. This is not a limiting feature of this
implementation since, for feedback updates that are fast enough,
the dynamics in such virtual potentials is known to converge
asymptotically to the corresponding actual one (Jun and Bech-
hoefer, 2012). In the experiment reported on by Jun, Gavrilov,
and Bechhoefer (2014), the virtual potential and the erasure
process are both along the lines of Fig. 16; see Dillenschneider
and Lutz (2009).
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signal collected from the NMR sample through a pickup coil
(Peterson et al., 2019). Needless to say, the features of PðQÞ
depend on the joint dynamics encompassed by U, while the
validity of Landauer principle does not. Peterson et al. (2019)
have chosen both a controlled-NOT and a SWAP gate as
significant instances of U, with the latter providing a reali-
zation of the paradigmatic erasure process where the state of
the system is changed into the initial state of E at every
application of the protocol. By tomographically reconstruct-
ing the change of entropy in the state of the system following
the erasure, Peterson et al. (2019) thus demonstrated the
validity of the Landauer bound in a genuinely quantum
mechanical nonequilibrium scenario.
Despite addressing quantum dynamics, such an experiment

was unable to quantitatively address the information-theoretic
contributions to the dissipated heat arising from the non-
equilibrium quantum evolution and highlighted in Eq. (76).
The reason for this is simply because such contributions were
negligible in the NMR sample used by Peterson et al. (2019).
Such an assessment was instead made possible by the tight
control of the trapped-ion experiment reported on by Yan
et al. (2018).
In such an implementation, the system is encoded in two

hyperfine internal energy levels of a 40Caþ ion confined in a
linear Paul trap, while the environment is provided by one of
the vibrational modes of the particles in the trapping parabolic
pseudopotential (say, the one along the z direction of the
reference frame associated with the axes of the trap). Figure 19
shows a diagram of the physical configuration and the relevant
part of the energy spectrum of the ion. As in the experiment of
Peterson et al. (2019), the experiment starts with the system
being prepared in a classical mixture of its logical state ρS ¼
αj↓ih↓jS þ ð1 − αÞj↑ih↑jS (with α ∈ ½0; 1� experimentally
adjustable) achieved by combining a rotation in the space
of states of S and spin dephasing (with no population loss).
The vibrational zmode is instead left to relax to a thermal state
with an average phonon number n0 by switching off the
cooling lasers for an adjustable time. The joint S-E evolution
that provides the core part of the erasure protocol is given by
the arrangement of a red-sideband coupling induced by a laser

field driving the 729 nm 42S1=2; 1=2 ↔ 32D5=2; 3=2 transition
and ruled by the Hamiltonian (Leibfried et al., 2003)

HSE ¼ ηℏΩðaσþeiϕ þ a†σ−e−iϕÞ=2: ð312Þ

HereΩ is the Rabi frequency of the coupling, ϕ is the phase of
the driving field, η ≃ 0.09 is the Lamb-Dicke parameter
(Leibfried et al., 2003), a (a†) is the annihilation (creation)
operator of the z vibrational mode, and σ� are the two-level
ladder operators. Equation (312) associates the creation of a
phonon with the j↑iS → j↓iS transition. The erasure protocol
U ¼ e−iHSEt thus consists of the transformation ρS → j↓iS
accompanied by an increase in the energy of the environment
E, which is interpreted as a process of heat dissipation from S.
The setup allows for the experimental inference of the phonon
number change, which gives direct access to the amount of
dissipated heat and the Sðρ0EkρEÞ term in Eq. (76). Similarly,
the change of entropy in the state of the system can be directly
assessed by straightforward measurements of the population
of the pseudospin states. The mutual information Iρ0SEðS0∶E0Þ,
on the other hand, is not directly accessible but can none-
theless be estimated, as discussed by Yan et al. (2018). While
such an estimation affects the uncertainty associated with the
evaluation of the right-hand side of Eq. (76), resulting in
relatively large error bars, the experiment was successful in
demonstrating the compatibility between the amount of
entropy produced in the erasure process and the joint con-
tribution coming from the information-theoretic terms.

D. Assessment of entropy production in
nonequilibrium steady states

Recent efforts have been deployed to the assessment of
entropy production in nonequilibrium steady states of meso-
scopic quantum systems (Brunelli et al., 2018). In particular,
settings based on cavity optomechanics and ultracold atom
systems have been used as paradigm of situations leading to
nontrivial nonequilibrium steady states.

(a) (b)

FIG. 18. (a) Quantum circuit for the reconstruction of the heat
probability distribution in Eq. (311); see also Eq. (82). Here h ¼
ðσz þ σxÞ=

ffiffiffi
2

p
is the Hadamard gate on the ancilla A, while vt ¼

exp½iHEt� is the free evolution of the environment E. Finally, U
embodies the Sþ E unitary governing the heat-dissipation
process. (b) 3D chemical structure of the trifluoroiodoethylene
molecule (C2F3I) accommodating the nuclear spins encoding the
ancilla, system, and environment. Suitably arranged rf pulses are
employed to prepare and manipulate the state of such a tripartite
system.

FIG. 19. Schematic diagram of the system used for the verifi-
cation of the information-theoretic contributions to quantum
erasure. A 40Caþ ion is confined in a linear Paul trap that
provides an axial z pseudopotential of frequency ωz. The ion is
subjected to a magentic field that Zeeman splits the 42S1=2 and
32D5=2 atomic states into manifolds of hyperfine levels. Among
them, the j42S1=2; 1=2i and j32D5=2; 3=2i ones are chosen to
encode the logical j↓iS and j↑iS pseudospin states of a two-level
system embodying S in the erasure protocol. The vibrational z
mode of the ion is used to encode the environment E, which is
thus an infinite-dimensional system. From Yan et al., 2018.
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In cavity optomechanics, the position of a mechanical
oscillator accommodated in an externally driven cavity is
displaced by an amount directly proportional to the number of
photons in the field of the cavity itself; see Fig. 20(a). This
brings the state of the mechanical system to an out-of-
equilibrium steady state resulting from the competition
between the coupling of the cavity field to the zero-
temperature electromagnetic environment and the equilibrium
phononic reservoir that affects the mechanical system
(Aspelmeyer, Kippenberg, and Marquardt, 2014).
The second experimental platform that has been studied in

this context comprises a Bose-Einstein condensate (BEC)
loaded into a high-finesse optical cavity and illuminated by a
transverse laser field; see Fig 20(b). The off-resonant photon
scattering from the laser field into an initially empty cavity
field mode couples the zero-momentum mode of the BEC to
an excited momentum mode. The process mediates effective
and tunable-in-strength (via the transverse laser beam) long-
range atom-atom interactions (Mottl et al., 2012). Such
interaction can be brought to competition with the kinetic
energy of the atoms, resulting in a structural phase transition
(Landig et al., 2015) akin to a Dicke phase transition
(Baumann et al., 2010). The cavity light field leaks through
the mirrors with a heterodyne detection setup. The spectral
analysis of this signal is used to infer the diverging amount of
atomic density fluctuations accompanying the structural phase
transition (Landig et al., 2015).
In both cases, the effective interaction between the fluctua-

tions of the field operators of the matterlike subsystems and
their optical counterpart can be shown to be that of two
harmonic oscillators coupled via the Hamiltonian as follows
[see Fig. 20(c)]:

Ĥ ¼ ℏωa

2
ðδq̂2a þ δp̂2

aÞ þ
ℏωb

2
ðδq̂2b þ δp̂2

bÞ þ ℏgabδq̂aδq̂b:

ð313Þ

Here δq̂a;b and δp̂a;b are the position and momentum
fluctuation operators around the mean-field values of the
two oscillators (a and b refer to the optical and mechanical
and atomic oscillators, respectively), ωp is the frequency of
the driving pump fields, the oscillators have frequencies

ωa ¼ ωc − ωp and ωb, ωc is the frequency of the cavity
field, and gab is the coupling strength between the modes
(Brunelli et al., 2018). The cavity mode is coupled to the
surrounding electromagnetic vacuum with a decay rate κa. On
the other hand, the nature of the mechanical or atomic bath is
specific to the setup being considered. The optomechanical
system considered by Brunelli et al. (2018) consisted of a
Fabry-Perot cavity with one of its mirrors a doubly clamped,
highly reflective mechanical cantilever. The mechanical sup-
port of the cantilever thus provided a local heat bath at room
temperature responsible for the quantum Brownian motion of
the mechanical system. In the cavity-BEC system, dissipation
is due to the collection of excited Bogoliubov modes,
which provides a bath for the condensate. In both cases,
we assume that oscillator b is in contact with a bath at
temperature Tb and rate γb. The average number of exci-
tations in the equilibrium state of oscillator b is thus
nTb

¼ ðeℏωb=kBTb − 1Þ−1.
The linear dynamics undergone by the coupled oscillators

allows for the use of the framework for the quantification of
entropy production in phase space illustrated in Sec. V.H. The
entropy production rate in the nonequilibrium steady state of
such respective systems thus takes the form

Π≡ _Σ ¼ 2γb

�
nb þ 1=2
nTb

þ 1=2
− 1

�
þ 4κana ¼ μb þ μa; ð314Þ

where na ¼ hðδq̂2a þ δp̂2
a − 1Þis=2 and nb ¼ hðδq̂2b þ δp̂2

b −
1Þis=2 are the average numbers of excitations in the non-
equilibrium steady state of the two oscillators in excess of the
zero-point motion of the respective harmonic oscillators. In
the cavity optomechanics expression for μb, instead of the full
phonon number nb only the momentum variance hδp̂2

bis
enters, as we assume Brownian motion damping.
Equation (314) quantifies the entropic contribution of

quantum fluctuations that the system has to pay to remain
in its nonequilibrium steady state. The contribution is directly
determined by the individual entropy flows μjðj ¼ A; BÞ from
the mechanical or atomic and optical oscillator to their
respective environments.
Brunelli et al. (2018) separately reconstructed the two terms

μa and μb; see Fig. 21, which displays the experimental data

(a) (b) (c)

FIG. 20. (a) Optomechanical setup. A micromechanical oscillator (δq̂b) is coupled to the field mode of an optical Fabry-Perot cavity
(δq̂a). For this setup only the cavity is pumped. (b) Cavity-BEC setup. The external degree of freedom of a BEC (δq̂b) is coupled to the
field mode of a cavity (δq̂a). For this setup only the atoms are pumped. Red and blue jagged lines indicate heating or cooling of the
subsystems via coupling to the baths. In both setups the number of excitations in the optical bath is 0, i.e., nTa

¼ 0. (c) Both systems can
be modeled as two quantum harmonic oscillators at frequencies ωa and ωb, linearly coupled with a strength gab. Each oscillator is
coupled to independent local baths at temperatures Ta and Tb, respectively. The corresponding coupling rates are κa and γb. The
oscillators can be pumped by an external field (purple and orange arrows). From Brunelli et al., 2018.
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together with the theoretical model. The behavior of μb
observed for the optomechanical system is a signature of
cooling: the entropy flow from the mechanical resonator to the
cavity field grows with gab as the effective temperature of the
resonator decreases. As for the cavity-BEC system, the
divergent behavior of the entropy production rate at gab ¼
gcrab ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðκ2a þ ω2

aÞωb=4ωa

p
reflects the occurrence of the

Dicke phase transition: at gcrab the populations of the two
oscillators at the steady state diverges, resulting in the
singularity of μa and μb.

IX. CONCLUSIONS

The second law has always been intimately linked with
information theory. The underlying laws of physics are time-
reversal invariant. Thus, how can the ensuing macroscopic

dynamics be irreversible? This is perhaps one of the deepest
questions in physics, and a major source of confusion. The
answer is that irreversibility is an emergent property: It
emerges from the fact that information easily becomes
irretrievable, when the number of degrees of freedom involved
is large. A classical thermodynamic argument goes as follows:
suppose that one has a gas of 1023 particles but can monitor
the position and momenta of only 1023 − 1 of them. Since the
motion of the gas is highly chaotic, even this minuscule loss of
information can lead to dramatic effects on the description of
the remaining 1023 − 1 particles, causing their dynamics to be
irreversible.
This argument, however, conceals a much more dramatic

effect, which becomes clear only in the full quantum treat-
ment. To properly account for multiple degrees of freedom, it
is not enough to monitor them individually; one must monitor
them globally. Consider a system with N particles and density
matrix ρ1;…;N (mixed or pure). Local measurements on each
subsystem explore only the local corners of ρ1;…;N and are not
enough to reconstruct the full state. To do that, one would also
have to perform global measurements (such as Bell-like ones).
Such measurements are difficult, even for two qubits. For a
handful of degrees of freedom, it already easily becomes
surreal. In this quantum picture, therefore, information
spreads not only from 1 degree of freedom to another but
also from the local to the global corners of a many-body
density matrix. The basic definition (30) naturally encompass
both aspects: The mutual information accounts for the spread-
ing of information to the various corners of ρSE, while the
relative entropy accounts for the local transfer of information
from the degrees of freedom of the system to those of the bath.
Compared to the approach of Eq. (30), the historical

formulations of Clausius, Carnot, and Kelvin (Sec. II) were
much more pragmatic, stating the second law solely in terms
of heat and work, which are palpable quantities. But, although
pragmatic, their scope is much less evident at first sight. For
instance, demonstrating that the various principles are equiv-
alent requires complicated constructs, involving thermal
machines operating in different ways (Fermi, 1956).
A more general statement of the second law thus comes at

the expense of introducing the notion of entropy. At the
thermodynamic level, entropy is defined as an abstract
function of state, with the property that changes in entropy
for reversible processes close to equilibrium satisfy
ΔS ¼ Q=T, where Q is the heat exchanged. The second
law can then be formulated as “the entropy of the Universe
never decreases.” For instance, if the Universe comprises a
system and bath only, which interact and exchange an amount
of heat Q, then ΔSS þ ΔSE ≥ 0. If in addition the bath is kept
close to equilibrium, then ΔSE ¼ QE=T and the second law
becomes ΔSS þQE=T ≥ 0, which is Eq. (4). For this reason,
historically the entropy production Σ was often stated as
representing the change in entropy of the Universe.
The same reasoning also appears in other contexts, such as

Boltzmann’s famous H theorem. For instance, Tolman (2010)
analyzed a scenario of an isolated gas (the Universe) where the
molecules may undergo collisions with each other, descri-
bed phenomenologically using Boltzmann’s equation. The
entropy in this case is given in terms of the gas’ phase-space

(a)

(b)

FIG. 21. Experimental assessment of the irreversible entropy
production rate Πs at the nonequilibrium steady state for (a) the
cavity optomechanical system and (b) the cavity-BEC system.
For the cavity-BEC setup, gcrab ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðκ2a þ ω2

aÞωb=4ωa

p
is the

critical parameter of the model. Insets: behavior of μb. The solid
black lines show the theoretical predictions based on parameters
extracted from experiment (Brunelli et al., 2018). The blue and
red dots show the experimental data for the optomechanical and
cavity-BEC experiments, respectively. In (a), the vertical error
bars represent statistical errors extracted from the fit, while the
horizontal ones show the experimental error on the values of the
parameter. In (b), the vertical and horizontal error bars represent
the statistical errors from the fit and the determination of the
critical point, respectively (Landig et al., 2015). From Brunelli
et al., 2018.
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density. And, as a consequence of the choice of rules used for
describing the collisions, it always increases.
A natural question then would be to ask whether one can

carry this interpretation of Σ over to the microscopic realm.
This could be called a top-down approach, where one starts
with a macroscopic principle and then adapts it to the
microworld. And it is the opposite of the bottom-up approach
that we have followed in this review, where we started with a
fully microscopic definition of Σ in terms of information-
theoretic quantities, from which the classical principles
emerged as particular cases.
In addition to the progress on the bottom-up approach

reported on in this review, in recent years there have been
significant advances in the top-down formulation of the
second law. The main challenge is in the definition of
thermodynamic entropy, something that the bottom-up for-
mulation avoids since it does not interpret entropy production
as the change in entropy of the Universe. The von Neumann
entropy is not a good candidate for thermodynamic entropy,
since it is constant under unitary evolution. In statistical
mechanics one often uses the Boltzmann entropy S ¼ lnΩ,
where Ω is the number of microstates associated with a given
macrostate. But this quantity is reasonable only close to
equilibrium and defined only for macroscopic systems. For
microscopic and mesoscopic systems, it fluctuates violently
(Gupta, 1951; Pathria and Beale, 2011) and is also awkward to
explicitly define. Most advances in the top-down approach
have therefore focused on alternative definitions of thermo-
dynamic entropy, such as the diagonal entropy (Polkovnikov,
2011) or, more generally, coarse-grained entropies (Šafránek,
Deutsch, and Aguirre, 2019). Recently a general formalism
based on an observational entropy was constructed, starting
with a coarse graining of the system-bath dynamics (Strasberg
and Winter, 2021).
One of the basic features of the thermodynamic entropy is

that it is extensive. This is what allows one to write the entropy
of the Universe as the sum of the entropies of its parts. In this
regard, taking the local von Neumann entropy works well.
Consider a system of N particles with the generic density
matrix ρ1;…;N . The sum of the von Neumann entropies of the
reduced states ρi can be written as

X
i

SðρiÞ ¼ Sðρ1;…;NÞ þ Sðρ1;…;Nkρ1 ⊗ � � � ⊗ ρNÞ; ð315Þ

where the last term indicates the total correlations [see
Eq. (44)] measuring the distance between the global and
maximally marginalized states. Now suppose initially that the
N particles are in a product state but are then made to interact
according to a global unitary U, leading to a final correlated
state. The first term on the right-hand side of Eq. (315) does
not change, since the dynamics is unitary. The second term
was initially zero but evolves into something non-negative.
Hence, one concludes that for any initially uncorrelated
system under closed evolution

P
i ΔSðρiÞ ≥ 0. Thus, if one

takes as the thermodynamic entropy the local von Neumann
entropy of each subsystem, we then return to the classical
statement that the entropy of the Universe cannot decrease.
Most studies attempting to define a microscopic analog of the
thermodynamic entropy follow somewhat similar lines.

The previous discussion emphasized some of the basic
principles involved in a general formulation of the second law.
Often, however, one does not have access to such “luxuries”;
that is, one has access not to the full global dynamics but only
to an effective description in terms of a master equation. As a
consequence, Eq. (30) and the top-down approaches may not
be applicable. In situations such as this, several principles
have been applied in the past to define entropy production.
The most widely used by far is to postulate that the entropy

flux should be Φ ¼ QE=T, from which one then recovers Σ ¼
ΔSS þΦ [Eq. (4)]. This approach is both simple and effective.
It also has a neat interpretation at the trajectory level (Breuer,
2003). But it has two shortcomings. First, it holds only for
thermal baths and it is not obvious how to extend it to
nonequilibrium reservoirs. Second, one may run into diffi-
culties concerning what is in fact the heat QE, as discussed
in Sec. V.
Fluctuation theorems greatly resolve these difficulties. In

this case, entropy production is defined as the ratio between
the path probabilities of a forward and time-reversed (back-
ward) trajectory (Crooks, 1998). These definitions are usually
regarded as fundamental. However, they require knowledge of
the full path probability, which is not always available and can
be hard to obtain (Spinney and Ford, 2012). Moreover, as
discussed in Sec. III.E, the backward trajectory is not uniquely
defined, contrary to what was initially believed.
Finally, there is also the more pragmatic approach of simply

manipulating ΔS and trying to identify a term that resembles
an entropy production, such as the Schnakenberg approach
discussed in Sec. V.E, which is extremely popular in stochastic
thermodynamics. This may seem rather ad hoc at first but can
lead to interesting results because often the “correct” formula
really stands out. Moreover, it allows one to define entropy
production for arbitrary open-system dynamics, even those
that are not generated by physical processes.
Many open questions still remain. However, as we have

shown in this review, in the last two decades there has been
substantial progress in our understanding of the basic ingre-
dients and principles that should be involved in this endeavor.
In particular, the community’s appreciation of what the second
law should represent, as well as the questions that it should
address, has evolved significantly. In light of the exciting
advances on the experimental manipulation of coherent
quantum systems, we believe that these new foundations will
play a significant role in our understanding of many potential
future applications, as well as in the explanation of funda-
mental questions.
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59.

Mottl, R., F. Brennecke, K. Baumann, R. Landig, T. Donner, and T.
Esslinger, 2012, Science 336, 1570.

Naghiloo, M., D. Tan, P. M. Harrington, J. J. Alonso, E. Lutz, A.
Romito, and K.W. Murch, 2020, Phys. Rev. Lett. 124, 110604.

Nielsen, M. A., and I. L. Chuang, 2000, Quantum Computation and
Quantum Information (Cambridge University Press, Cambridge,
England).

Noa, C. E. F., P. E. Harunari, M. J. de Oliveira, and C. E. Fiore, 2019,
Phys. Rev. E 100, 012104.

Nulton, J., P. Salamon, B. Andresen, and Q. Anmin, 1985, J. Chem.
Phys. 83, 334.

Oliveira, I. S., T. J. Bonagamba, R. S. Sarthour, J. C. C. Freitas, and
R. R. de Azevedo, 2007, NMR Quantum Information Processing
(Elsevier, New York).

Onsager, L., 1931a, Phys. Rev. 37, 405.
Onsager, L., 1931b, Phys. Rev. 38, 2265.
Orlov, A. O., C. S. Lent, C. C. Thorpe, G. P. Boechler, and G. L.
Snider, 2012, Jpn. J. Appl. Phys. 51, 06FE10.

Ozawa, M., 1986, J. Math. Phys. (N.Y.) 27, 759.
Paneru, G., D. Y. Lee, T. Tlusty, and H. K. Pak, 2018, Phys. Rev. Lett.
120, 020601.

Park, J. J., S. W. Kim, and V. Vedral, 2017, arXiv:1705.01750.
Parrondo, J. M. R., C. Van den Broeck, and R. Kawai, 2009, New J.
Phys. 11, 073008.

Partovi, M. H., 2008, Phys. Rev. E 77, 021110.
Pathria, R. K., and P. D. Beale, 2011, Statistical Mechanics, 3rd ed.
(Elsevier, Amsterdam).

Pereira, E., 2018, Phys. Rev. E 97, 022115.
Peterson, J. P. S., T. B. Batalhão, M. Herrera, A. M. Souza, R. S.
Sarthour, I. S. Oliveira, and R. M. Serra, 2019, Phys. Rev. Lett. 123,
240601.

Peterson, P. S., R. S. Sarthour, A. M. Souza, I. S. Oliveira, J. Goold,
K. Modi, D. O. Soares-Pinto, and L. C. Céleri, 2016, Proc. R. Soc.
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