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Recent years have seen tremendous progress in the theoretical understanding of quantum systems
driven dissipatively by coupling to different baths at their edges. This was possible because of
concurrent advances in the models used to represent these systems, the methods employed, and the
analysis of the emerging phenomenology. A comprehensive review of these three integrated research
directions is given. First provided is an overarching view of the models of boundary-driven open
quantum systems, in both the weak- and strong-coupling regimes. This is followed by a review of
state-of-the-art analytical and numerical methods that are exact, perturbative, and approximate.
Finally, the transport properties of some paradigmatic one-dimensional chains are discussed, with an
emphasis on disordered and quasiperiodic systems, the emergence of rectification and negative
differential conductance, and the role of phase transitions, and an outlook on further research options
is given.
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I. INTRODUCTION

A piece of material placed in contact with two baths at
different temperatures can reach a nonequilibrium steady
state (NESS) characterized by a current of heat from one
bath to the other. This corresponds to the simplest scenario
of nonequilibrium systems most of us are aware of. The
currents are generated by differences in the baths, and the
type of current that emerges depends on the properties of
the bath, of the system, and of their coupling. The ability
to control the transport properties of a system can result in
devices such as diodes, transistors, and energy converters,
which are at the core of a broad range of applications;
cf. Li et al. (2012) for a review on “phononics” and Dubi
and Di Ventra (2011) and Benenti et al. (2017) for reviews
on thermoelectricity. A deeper understanding of transport
at the quantum scale can lead the way to significant
progress in nanotechnology.
Recent years have witnessed significant advances in the

study of quantum systems coupled, at their edges, to
different baths, as depicted in Fig. 1. We refer to these as
boundary-driven systems. The possibly different temper-
atures or chemical potentials of the baths can cause a
current, and the basic question to be addressed regards
the transport properties of the NESS, such as the properties
of the currents generated. This review focuses on this type of
scenario in the quantum regime. This is particularly relevant
in light of experimental advances, which make setups like
the one in Fig. 1 directly accessible in the laboratory. The
review is split into three fundamental questions: finding the
equations of motion, the development of analytical and
numerical tools to study them, and the classification of the
phenomenology that emerges, especially for strongly corre-
lated quantum systems.

To give an idea of the problems that are reviewed here,
we consider heat transport between two baths at different
temperatures through a bulk material. It was found by
Fourier (1822) that the heat current I often reads

I ¼ −κc
ΔT
L

; ð1Þ

where L is the length of the material in the direction of
the current, ΔT is the temperature difference, and κc is the
thermal conductivity (often considered a constant). One
notices that in Eq. (1), known as Fourier’s law, the current
decays as I ∼ 1=L, which is referred to as diffusive transport.
However, digging deeper one finds that transport can

be a much richer field. The conductivity is actually a function
of both the temperature T and the system size L. The
temperature dependence of the conductivity causes the current
to change nonlinearly with temperature. Microscopically, this
may result from reservoir modes controlling occupations at
the boundaries. A nonlinear response may cause the current to
be significantly different in magnitude (and not just in sign) if
one flips the temperature gradient ΔT to −ΔT (Benenti et al.,
2016). This means that the system can be used as a diode or
rectifier (Terraneo, Peyrard, and Casati, 2002; Li, Wang, and
Casati, 2004). For the dependence on the system size, often
one finds that the current follows an algebraic dependence

I ∼ 1=Lα: ð2Þ

For α ¼ 0, the current is independent of the system size,
known as ballistic transport. As observed with Fourier’s
law, the case α ¼ 1 is called diffusive. For 0 < α < 1 the
transport is called superdiffusive, and for α > 1 subdiffu-
sive. In the limit α → ∞ the current goes to zero, which
implies that the system is an insulator. In this case the
current decays faster than algebraically with the system
size, such as I ∼ exp ð−L=L0Þ, where L0 is referred to as
the localization length.1 For a summary of transport
exponents, see Table I in Sec. IV.

FIG. 1. Boundary-driven systems are composite open systems
that are locally coupled to external baths (yellow left and blue
right) and internally via a Hamiltonian. This enables nonequili-
brium steady states (NESSs) characterized by stationary currents.

1In other contexts, the transport scenarios are sometimes defined by
focusing on the thermodynamic limit L → ∞ and looking at the
conductivity κc ≔ −IL=ΔT [Eq. (1)]. Subdiffusiveness would then
lead to κc → 0 (when L → ∞) and hence be referred to as insulating.
Similarly, superdiffusivenesswould lead to κc → ∞ and thus be referred
to as ballistic. In this review,we focuson finiteL, as this allows for deeper
insights on the scaling behavior of transport mechanisms (Tritt, 2004).
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The techniques to derive the dependence of the con-
ductivity on the system size are also relevant. If one
considers transport due to phonons, it is natural to model
the system as a chain of coupled harmonic oscillators,
which often works well to describe the heat capacity of
bulk materials. However, this turns out to result in a
ballistic current (Rieder, Lebowitz, and Lieb, 1967; Aoki
and Kusnezov, 2001). In classical systems it is found that
nonlinearities in the Hamiltonian describing the system are
a key ingredient for recovering a size-independent con-
ductivity in Fourier’s law in Eq. (1) (Casati et al. (1984);
see also Dhar, 2008 for a review. It is thus crucial to use
the correct models to study the transport properties of a
system, as models with different characteristics can result
in extremely different dependencies of the currents on the
system and bath parameters. This is the essence of
boundary-driven systems.
Given the complexity of the systems studied, researchers

typically face the following three important questions:
(i) How can one model the dynamics of the system

and baths?
(ii) Which analytical or numerical methods could

one use?
(iii) What different transport properties can one expect?

Each of these questions could be the focus of a review.
However, we aim to give enough breadth and depth of
information so that someone starting in the field, or
focusing on only some of these questions, can have a
more comprehensive perspective. We thus hope to foster
more research and advances in the field of boundary-driven
systems. We provide answers to the previous questions in
Secs. II–IV, respectively.
Given the structure of the review, a reader who is already

familiar with some of the questions should be able to fully
explore the other issues. The theme of transport is extremely
vast and has been studied for more than 200 years. It is thus
important that we specify not only what we decided to
review but also what we chose not to. Our focus on quantum
systems coupled at the their extremities to baths (i.e.,
dissipative boundary-driven ones) implies that we do not
address classical systems; for a review, see Dhar (2008).
Regarding the models and methods, we chose not to review
linear response theory, Landauer-Büttiker theory, or Green’s
functions, as they have already been reviewed by Caroli
et al. (1971), Meir and Wingreen (1992), Prociuk, Phillips,
and Dunietz (2010), Aeberhard (2011), Dhar, Saito, and
Hänggi (2012), Nikolić et al. (2012), and Wang, Agarwalla,
and Thingna (2014) or in works given by Economou (2006),
Haug and Jauho (2008), and Ryndyk (2016). Similarly,
although some of our methods apply to non-Markovian
systems, most of our focus will be on Markovian (time-
local) quantum dynamics. For reviews specific on non-
Markovianity, see Rivas, Huelga, and Plenio (2014), Breuer
et al. (2016), and de Vega and Alonso (2017). As for recent
experimental works, prominent results on strongly interact-
ing systems were reviewed by Bertini et al. (2021),
and hence we mention only those experiments closer to

the phenomenology discussed in Sec. IV. We also focus
exclusively on systems without explicit external time
dependence, and as such we do not touch on studies of
periodically driven systems and their thermodynamic prop-
erties (Grifoni and Hänggi, 1998; Kohler, Lehmann, and
Hänggi, 2005; Kosloff, 2013; Van den Broeck and Esposito,
2015; Millen and Xuereb, 2016; Vinjanampathy and
Anders, 2016; Benenti et al., 2017).

II. MODELS FOR BOUNDARY-DRIVEN OPEN SYSTEMS

A. Paradigms of open quantum system dynamics

We begin by discussing mathematical models of
quantum transport. The natural framework for this is the
theory of open quantum systems. In standard treatments
it is assumed that the global density matrix of the system
and its surrounding baths evolves unitarily, according
to the Liouville–von Neumann equation (we set ℏ ¼ 1

throughout),

dρSB
dt

¼ −i½Htot; ρSB�; ð3Þ

where Htot ¼ HS þHB þHI is the total Hamiltonian,
encompassing system HS, bath HB, and their interaction
HI. This includes the case of multiple baths.
The initial conditions are usually taken such that S and B

are uncorrelated; that is, in a product state ρSBð0Þ ¼ ρSð0Þ ⊗
ρBð0Þ. The global state at time t is then

ρSBðtÞ ¼ UðtÞρSBð0ÞU†ðtÞ; UðtÞ ¼ e−iHtott: ð4Þ

The main goal in open quantum systems is to obtain
the evolution of the system’s reduced density matrix
ρSðtÞ ¼ trBfρSBðtÞg, where trBf� � �g stands for the partial
trace over the bath. This can be done at the level of
the map (4) or the differential equation (3). The former
leads to the so-called Kraus maps and the latter to master
equations.2

Considering first the map (4), it has been shown that the
most general open dynamics is given by (Kraus, 1971)

ρSðtÞ ¼
X
α

Kα;tρSð0ÞK†
α;t; ð5Þ

where Kα;t are time-dependent operators satisfyingP
α K

†
α;tKα;t ¼ 1. For any choice of such operators Kα, the

map (5) is said to be completely positive and trace preserving
(CPTP). This means that it maps density matrices to density
matrices [preserving Hermiticity, normalization, and positivity

2The name “master equation” was first coined in a paper about
cosmic ray showers (Nordsieck, Lamb, and Uhlenbeck, 1940), where
it played the role of a central equation from which all other results
could be derived, i.e., a “master key.”
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even for extensions of the map over ancillas (Nielsen and
Chuang, 2000)].3

In practice, the Kraus form can be inconvenient, and it is
preferable to write the evolution of ρSðtÞ as a differential
equation, in general one of the form of (Nakajima, 1958;
Zwanzig, 1960)

dρS
dt

¼
Z t

0

dt0Kt−t0 ½ρSðt0Þ�; ð6Þ

where Kt−t0 is a linear superoperator called the memory
kernel. Equation (6) must be linear in ρS since Eq. (5) is
also linear. But it will in general be nonlocal in time; i.e., the
evolution at time t will depend on the history of the system, a
notion of non-Markovianity.
Equation (6) is usually complicated to derive and to solve

(de Vega and Alonso, 2017). Instead, we usually search for
simpler time-local equations of the form of (Weiss, 1993;
Mandel and Wolf, 1995; Breuer and Petruccione, 2002;
Schlosshauer, 2007; Rivas and Huelga, 2012)

dρS
dt

¼ −i½HS; ρS� þDðρSÞ; ð7Þ

which we refer to as quantum master equations (QMEs).
The last term, usually called the dissipator, is a linear
superoperator that takes into account the effects of the
reservoir. Additionally, one may encounter corrections
to the Hamiltonian part that are discussed in Sec. II.C.
The precise form of DðρSÞ depends on the situation at
hand. This emphasizes the importance of a microscopic
derivation, where DðρSÞ is derived from a physical model
of system-bath interactions. This will be the main topic of
this section.
For example, consider a single spin 1=2 (qubit) with a

Hamiltonian HS ¼ −hσz=2 and a Pauli matrix σz. A popular
QME for this system describing the contact with a bath at an
inverse temperature β ¼ 1=T (we also set kB ¼ 1 throughout)
is (see Sec. II.C)

dρS
dt

¼ −i½HS; ρS� þ γð1 − fÞD½σ−�ðρSÞ þ γfD½σþ�ðρSÞ; ð8Þ

where the last two terms form the dissipator DðρSÞ. Here
γ > 0 is the coupling strength to the bath, f ¼ ðeβh þ 1Þ−1 is
the Fermi-Dirac distribution, and

D½L�ðρSÞ ¼ LρSL† − 1
2
fL†L; ρSg ð9Þ

is called a Lindblad dissipator with jump operators L. The
dynamics reflects the interplay between the termD½σ−�, which
annihilates an excitation with rate γð1 − fÞ, and the term
D½σþ�, which creates an excitation with rate γf. Equation (8)
accurately describes many setups, from quantum optics to
condensed matter (often with different parametrizations for γ
and f). It also has many simple and nice properties: e.g., it
relaxes with rate γ to a unique fixed point, which is the thermal
state

ρeqS ¼ e−βHS

trfe−βHSg ¼ fj1ih1j þ ð1 − fÞj − 1ih−1j; ð10Þ

with an average occupation hσþσ−ith ¼ f.
One of the most powerful features of the Kraus represen-

tation (5) is that it establishes the basic structure that any map
should satisfy in order to be CPTP. Similarly, one could ask,
given a time-local QME of the form of Eq. (7), what is the
most general structure that the dissipator DðρSÞ may have to
ensure that the dynamics is CPTP? For such a QME and any
valid density matrix ρSð0Þ, the evolved state ρSðtÞ will
continue to be a valid physical state for all times t.
The answer was given independently by Lindblad (1976)

and Gorini, Kossakowski, and Sudarshan (1976). Namely, if
the master equation has the form

dρS
dt

¼ −i½HS; ρS� þ
X
k

D½Lk�ðρSÞ ð11Þ

for any set of operators fLkg and D½Lk� defined in Eq. (9),
then it is guaranteed that the dynamics will be CPTP.
Equations of this form [such as Eq. (8)] are called Gorini-
Kossakowski-Sudarshan-Lindblad (GKSL) QMEs.
The GKSL form ensures only that physical states are

mapped to physical states. It says nothing about which kinds
of jump operators should be used to model actual thermal
baths. To do that, one must derive GKSL equations from
models of system-bath reservoirs, for which there is no unique
optimal route. Different methods require different approxi-
mations and are accurate only in different regimes. A thorough
appreciation of the limitations and advantages of each method
is therefore crucial to properly tackle boundary-driven sys-
tems. This is the overarching theme of this section.

B. Setting the stage through the lens of local master equations

We begin by discussing some prototypical Hamiltonians
that we deal with, such as lattices with spins or fermions or
bosons. We often consider here 1D lattices containing L sites.
This could be a spin chain, where each site i is associated with
Pauli operators σαi , α ∈ fx; y; z;þ;−g. A typical Hamiltonian
is the XXZ model in the presence of a magnetic field, which is
described by

3The specific form of the operators Kα can be obtained from the
global map (4) (Stinespring, 1955). We mention two ways to do this.
First, if we decompose the bath’s initial state as ρBð0Þ¼

P
nqnjnihnj,

then one may verify that Knm ¼ ffiffiffiffiffi
qn

p hmjUjni (which is still an
operator acting on the system). The index α in Kα is then a collective
one α ¼ ðn;mÞ. Alternatively, one may decompose the unitary as
U ¼Pj Aj ⊗ Bj, where Aj and Bj are operators acting only on S
and B, respectively. Taking the partial trace of Eq. (4) then leads to
ρSðtÞ ¼

P
j;k CjkAjρSð0ÞA†

k, where Cjk ¼ trBfB†
kBjρBð0Þg is pos-

itive semidefinite. Normalization now implies that
P

jk CjkA
†
kAj ¼ 1.

This is not yet in Kraus’s form (5), but it can be made so by first
diagonalizing Cjk as Cjk ¼

P
α ujαξαu

�
kα, with eigenvalues ξα and

eigenvectors ujα. Defining new operators Kα ¼
ffiffiffiffiffi
ξα

p P
j u

�
jαAj then

yields the form (5).
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HS ¼ −J
XL−1
i¼1

ðσxi σxiþ1 þ σyi σ
y
iþ1 þ Δσziσ

z
iþ1Þ þ

XL
i¼1

hiσ
z
i ; ð12Þ

where the first term describes local nearest-neighbor inter-
actions, hi are local magnetic fields, and Δ is the anisotropy.
When Δ ¼ 1 Eq. (12) is called the Heisenberg model and
when Δ ¼ 0 it is called the XX model,

HS ¼ −J
XL−1
i¼1

ðσxi σxiþ1 þ σyi σ
y
iþ1Þ þ

XL
i¼1

hiσ
z
i : ð13Þ

The XXZ chain is said to be an interacting model, while the
XX model is said to be noninteracting. Although the spins
interact in both cases, this terminology can be understood
through the Jordan-Wigner transformation (Jordan and
Wigner, 1928; Lieb, Schultz, and Mattis, 1961), which maps
spin operators onto a set of fermionic operators fcig, such as
via the mapping

ci ¼ ð−σz1Þð−σz2Þ � � � ð−σzi−1Þσ−i : ð14Þ

Equation (14) is designed to satisfy the canonical algebra
fci; c†jg ¼ δij and satisfies σþi σ

−
i ¼ c†i ci such that σzi ¼

2c†i ci − 1. To apply this to the XX chain (13), we note that
σxi σ

x
iþ1 þ σyi σ

y
iþ1 ¼ 2ðσþi σ−iþ1 þ σ−i σ

þ
iþ1Þ. Up to a constant,

this yields the tight-binding model4

H ¼ −2J
XL−1
i¼1

ðc†i ciþ1 þ c†iþ1ciÞ þ
XL
i¼1

2hic
†
i ci: ð15Þ

The tight-binding model describes free fermions hopping
through a lattice, which is why the XX chain is regarded
as noninteracting. Conversely, for the XXZ chain we get an
additional term Δð2c†i ci − 1Þð2c†iþ1ciþ1 − 1Þ, which is quartic
in the c’s.
The typical boundary-driven scenario is to couple this 1D

chain to a bath at sites i ¼ 1 and i ¼ L. The most naive way to
do this is to use dissipators like those in Eq. (8), which leads to
the local master equation (LME)

dρS
dt

¼ −i½HS; ρS� þD1ðρSÞ þDLðρSÞ; ð16Þ

where

DiðρSÞ ¼ γið1 − fiÞD½σ−i �ðρSÞ þ γifiD½σþi �ðρSÞ ð17aÞ

¼ γi

�
1 − ηi
2

�
D½σ−i �ðρSÞ þ γi

�
1þ ηi
2

�
D½σþi �ðρSÞ;

ð17bÞ

with γi describing the coupling strength to each bath
i ∈ f1; Lg. Here ηi and fi ¼ ð1þ ηiÞ=2 are simply two

equivalent parametrizations. If fi ¼ hσþi σ−i ith, then ηi ¼
hσzi ith. For instance, fi ¼ 0 (ηi ¼ −1) corresponds to a bath
that tries to impose the contact site to a spin-down state, fi ¼
1 (ηi ¼ 1) imposes spin-up, and fi ¼ 1=2 (ηi ¼ 0) imposes an
infinite-temperature (maximally mixed) state. This would
happen, however, only if that site were isolated. Owing to
the internal coupling between all sites in the chain, there will
be a competition between fi (ηi) and the Hamiltonian
couplings. As a consequence, the steady state will generally
differ from what the baths are trying to impose.
Interest is usually in the NESS obtained as the long-time

solution of Eq. (16). For different f1 and fL, this NESS is
characterized by the magnetization current (see Sec. II.D for a
discussion)

IM ¼ −2Jhσxi σyiþ1 − σyi σ
x
iþ1i: ð18Þ

In the NESS, IM is actually independent of the site since the
current entering one site is the same as that leaving the other.
The question, therefore, is how IM depends on the system
parameters and what kinds of transport regimes emerge.
For instance, the XX model (13) with hi ¼ 0 can be solved

analytically (Karevski and Platini, 2009; Žnidarič, 2010b;
Asadian et al., 2013), as reviewed in Sec. III.B. Assuming that
γ1 ¼ γL ¼ γ, one finds that IM ¼ ½16γJ2=ð16J2 þ γ2Þ�×
ðf1 − fLÞ. There will thus be a flow whenever there is a bias
between f1 and fL. Moreover, the fact that IM is independent
of L shows that transport in the XX chain is ballistic. In
addition, the average magnetization in each site will be

hσz1;Li ¼ m� � γ

16J2
IM; hσz2;…;L−1i ¼ m�; ð19Þ

where m� ¼ f1 þ fL − 1. This constant magnetization profile
also indicates that transport is ballistic.
These results illustrate some features of LMEs well. In a

nutshell, they correspond to using local dissipators in spatially
extended systems and are thus simple to construct. They also
have some appealing properties. First, they are GKSL equa-
tions by construction, so the dynamics is always guaranteed to
be physical, in the sense that it always yields valid density
matrices. Second, the dissipators Di act only locally on the
first and last sites, greatly simplifying numerical and analyti-
cal calculations. Third, they provide a straightforward recipe
for building other configurations, such as different chain
geometries or multiple baths acting on multiple sites. For
these reasons, LMEs are often used as the starting point in
transport studies with quantum chains.
Even though LMEs produce a CPTP dynamics, they need

not reproduce the behavior of standard thermal baths [in the
literature, they have been referred to as nonequilibrium or
“magnetization” baths (Schuab, Pereira, and Landi, 2016;
Žnidarič et al., 2017; Varma and Žnidarič, 2019)]. For
instance, Eq. (16) does not properly thermalize the system
when the two baths have f1 ¼ fL ¼ f. Indeed, Eq. (19)
predicts that hσzi i ¼ m� ¼ 2f − 1, while for a thermal state
e−βH we have hσzi i ¼ 0 since we set hi ¼ 0. Such a discrep-
ancy also appears at the level of the full density matrix. For
example, Eq. (16) with f1 ¼ fL predicts that all sites should
be uncorrelated (Asadian et al., 2013), which is again not the

4Instead of fermions, we often work with the bosonic version of
the tight-binding model [Eq. (15)]. In this case the Hamiltonian is
identical, but the operators satisfy ½ci; cj� ¼ 0 and ½ci; c†j � ¼ δij.
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case for the thermal state e−βH. These limitations motivate the
search for better models for describing the system-bath
dynamics, which is the focus of Secs. II.C and II.H.
Notwithstanding these deficiencies, LMEs are still

extremely useful in transport studies since they provide a
convenient tool for describing the injection and extraction of
excitations. Moreover, it is often found that the transport
regime (ballistic, diffusive, etc.) is independent of the choice
of the boundary driving. This cannot be proven in general, but
rigorous results for diffusive systems were derived by Žnidarič
(2019). This is important because one is often interested in
knowing how different ingredients in a Hamiltonian affect the
ensuing transport. Quasiperiodic and disordered systems,
which are reviewed in Sec. IV.D, are a good example. In this
case, different types of disorder lead to dramatically different
transport regimes. Andwhile LMEsmay not faithfully describe
actual heat baths, they may suffice to determine the latter.

C. Weak system-bath coupling

1. Redfield master equation

The usual starting point in the derivation of a master
equation for the system density matrix is the partition of
the Hamiltonian H ¼ HS þHI þHB into a system part HS, a
bath (reservoir) part HB, and an interaction part HI. The first
two act on different Hilbert spaces (and thus commute),
whereas HI can generally be decomposed as

HI ¼
X
α

Aα ⊗ Bα; ð20Þ

with system and bath coupling operators Aα and Bα, respec-
tively. Such a tensor product decomposition can always
be obtained. Additionally, it may prove to be convenient
to choose the coupling operators Aα and Bα as individually
Hermitian, but we proceed without this assumption. Altogether
the system and reservoir constitute the full universe, which
evolves unitarily according to the von Neumann equation (3).
Since we aim for weak-coupling representations, it is useful to
switch to an interaction picture with respect to HS þHB by
defining ρSBðtÞ≡ eþiðHSþHBÞtρSBe−iðHSþHBÞt (in the following,
we use boldface symbols to represent operators in the inter-
action picture). The von Neumann equation is then changed to

_ρSB ¼ −i½HIðtÞ; ρSBðtÞ�; ð21Þ

whereHIðtÞ¼
P

αAαðtÞ⊗BαðtÞ, with AαðtÞ ¼ eþiHStAαe−iHSt

and BαðtÞ ¼ eþiHBtBαe−iHBt. This equation is still exact but
involves all the reservoir degrees of freedom. Integrating
both sides in time and solving formally for ρSBðtÞ, we get
ρSBðtÞ ¼ ρSBð0Þ − i

R
t
0½HIðt0Þ; ρSBðt0Þ�dt0, which we can

reinsert into Eq. (21). Tracing out the reservoir degrees of
freedom, we then obtain the following for the system density
matrix in the interaction picture ρS ≡ trBfρSBg:

_ρS ¼ −i trBf½HIðtÞ; ρSBð0Þ�g

−
Z

t

0

dt0trBf[HIðtÞ; ½HIðt0Þ; ρSBðt0Þ�]g: ð22Þ

Equation (22) is still exact but not yet closed, as the rhs still
depends on the density matrix ρSBðtÞ of the full universe. At the
initial time, the system and reservoir are assumed in a product
state ρ0 ¼ ρ0S ⊗ ρ̄B. Here ρ̄B is typically an equilibrium
reservoir state (such as a Gibbs state), and we assume that
½HB; ρ̄B� ¼ 0. For many reasonable interaction Hamiltonians
and reservoir density matrices, we also have trBfBαρ̄Bg ¼ 0,
such that only the second term on the rhs of Eq. (22) remains.5

To proceed, we assume the system-reservoir interaction
to be small: HI ¼ Ofλg, where λ is a dimensionless book-
keeping parameter that is later set to unity. We can thus close
Eq. (22) by inserting the Born approximation for all times
ρSBðtÞ ¼ ρSðtÞ ⊗ ρ̄B þOfλg. Owing to the double commu-
tator in Eq. (22), the error in doing this is ofOfλ3g. The partial
trace on the rhs of Eq. (22) can be expressed as follows in
terms of the reservoir correlation functions:

Cαβðt1; t2Þ ¼ trBfBαðt1ÞBβðt2Þρ̄Bg
¼ trBfBαðt1 − t2ÞBβρ̄Bg≡ Cαβðt1 − t2Þ; ð23Þ

which depends only on the time difference since ½HB; ρ̄B� ¼ 0.
For Gibbs states of the reservoir, at inverse temperature β the
correlation functions also obey the Kubo-Martin-Schwinger
(KMS) relations

CαᾱðτÞ ¼ Cᾱαð−τ − iβÞ; ð24Þ

which eventually imprint the thermal properties of the
reservoir onto the system (Kubo, 1957; Martin and
Schwinger, 1959).
When one makes the correlation functions explicit, the

following non-Markovian master equation in integro-differ-
ential form results:

_ρs ¼ −
X
αβ

Z
t

0

dt0fCαβðt − t0Þ½AαðtÞ;Aβðt0ÞρSðt0Þ�

þ Cβαðt0 − tÞ½ρSðt0ÞAβðt0Þ;AαðtÞ�g: ð25Þ

Equation (25) preserves both the trace and the Hermiticity
of the system density matrix but can be solved efficiently
only for sufficiently simple reservoir correlation functions
[such as exponentially decaying ones (Kleinekathöfer, 2004)].
Positivity of ρS is also no longer guaranteed, except in special
cases (Maniscalco, 2007).
The integrand on the rhs of Eq. (25) is a typically product of

rapidly decaying correlation functions with the slowly varying
system density matrix. This allows one to perform the Markov
approximation in two steps. The first step renders the equation
time local by replacing ρSðt0Þ → ρSðtÞ, thereby yielding the
Redfield-I master equation (Redfield, 1965)

5This condition can always be met by the transformation HS →
HS þ

P
α gαAα and Bα → Bα − gα with a suitably chosen gα ¼

trfBαρ̄Bg ∈ C that leaves the total Hamiltonian invariant but re-
defines the system and interaction Hamiltonians.
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_ρs ¼ −
X
αβ

Z
t

0

dt0fCαβðt − t0Þ½AαðtÞ;Aβðt0ÞρSðtÞ�

þ Cβαðt0 − tÞ½ρSðtÞAβðt0Þ;AαðtÞ�g: ð26Þ

The coefficients still depend on time (even after transforming
back to the Schrödinger picture). Therefore, using the same
reasoning (fast decay of the correlation functions) the upper
integration bounds can, after the substitution τ ¼ t − t0, be
sent to infinity. This yields the Redfield-II master equation

_ρs ¼ −
X
αβ

Z
∞

0

dτfCαβðτÞ½AαðtÞ;Aβðt − τÞρSðtÞ�

þ Cβαð−τÞ½ρSðtÞAβðt − τÞ;AαðtÞ�g: ð27Þ

Back in the Schrödinger picture, this has the advantage of not
only being time local but also having constant coefficients:

_ρS ¼ −i½HS; ρSðtÞ�

−
X
αβ

Z
∞

0

CαβðþτÞ½Aα; e−iHSτAβeþiHSτρSðtÞ�dτ

−
X
αβ

Z
∞

0

Cβαð−τÞ½ρSðtÞe−iHSτAβeþiHSτ; Aα�dτ: ð28Þ

The remaining integrals can be explicitly computed by
inserting Fourier transforms of the reservoir correlation
functions, as done in Eq. (34), and invoking the Sokhotski-
Plemelj theorem

1

2π

Z
∞

0

eþiωτdτ ¼ 1

2
δðωÞ þ i

2π
P
1

ω
; ð29Þ

where P denotes the Cauchy principal value. It is straightfor-
ward to show that Redfield versions I and II both uncondi-
tionally preserve the trace and Hermiticity of the system
density matrix. But they do not necessarily preserve the
positivity, which has led to extensive efforts to correct for
this shortcoming (Gaspard and Nagaoka, 1999; Kiršanskas,
Franckié, and Wacker, 2018; Farina and Giovannetti, 2019;
Ptaszyński and Esposito, 2019). Additionally, they may not
exactly thermalize the system with the reservoir temperature,
but when the perturbative assumptions employed in the
derivation are valid, one may show that violations of both
the positivity and the thermodynamic consistency of Ofλ3g
will also be small (Thingna, Wang, and Hänggi, 2012). One
also finds that the so-called fluctuation relations (Esposito and
Mukamel, 2006) are not necessarily obeyed by the Redfield
master equation (Hussein and Kohler, 2014).

2. Global GKSL master equation

The Redfield-II QME is not in GKSL form [Eq. (11)] and
generally does not relax the system to its local equilibrium
state. To arrive at a GKSL generator, an additional approxi-
mation is necessary. We return to Eq. (27) and make the
interaction-picture time dependence of the coupling operators
explicit,

AαðtÞ ¼
X
ab

hajAαjbieþiðEa−EbÞtjaihbj; ð30Þ

with the system energy eigenbasis defined by

HSjai ¼ Eajai: ð31Þ

Neglecting all terms that oscillate in t amounts to applying the
secular approximation, which generally yields a dissipator of
GKSL form (even in the presence of degeneracies). This
approximation generally differs from the similar rotating wave
approximation that is performed on the level of the initial
Hamiltonian instead (Mäkelä and Möttönen, 2013). After
some algebra, the result is, in terms of Lab ≡ jaihbj,
_ρS ¼ −i

X
ab

σab½Lab; ρS�

þ
X
abcd

γab;cd

�
LabρSL

†
cd −

1

2
fL†

cdLab; ρSg
�
≡ LðρSÞ;

ð32Þ
which is usually referred to as a global master equation
(GME), as it leads to dissipators that act globally on the
system. An alternative term is Born-Markov-secular master
equation. We have also used the calligraphic notation for the
superoperator L and defined the coefficients6

γab;cd ¼ δEb−Ea;Ed−Ec

X
αβ

γαβðEb − EaÞhajAβjbihcjA†
αjdi�;

σab ¼ δEa;Eb

X
αβ

X
c

σαβðEa − EcÞ
2i

hcjAβjbihcjA†
αjai�:

ð33Þ
In Eq. (33) γab;cd and the Lamb-shift Hamiltonian elements
σab are defined in terms of the even and odd Fourier trans-
forms of the reservoir correlation functions in Eq. (23),

γαβðωÞ ¼
Z

CαβðτÞeþiωτdτ;

σαβðωÞ ¼
Z

CαβðτÞsgnðτÞeþiωτdτ ¼ i
π
P
Z

γαβðω0Þ
ω − ω0 dω

0;

ð34Þ

where the relation between the two follows from Eq. (29). The
secular approximation leads to the Kronecker-δ functions in
Eqs. (33). Transforming back to the Schrödinger picture
simply amounts to the system Hamiltonian HS reappearing in
the commutator term. The proof that Eq. (32) is in GKSL form
relies only on proving the positive definiteness of the
dampening matrix γab;cd and the Hermiticity of the Lamb-
shift Hamiltonian.
Since σab ∝ δEa;Eb

, the Lamb shift in Eq. (32) commutes
with the system Hamiltonian ½HS;

P
ab σabLab� ¼ 0. For

6Note that when one demands the coupling operators Aα in
Eq. (20) to be individually Hermitian (Breuer and Petruccione,
2002), which can always be achieved, Eq. (32) falls back to the
known results.
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nondegenerate HS, this term will merely affect the dynamics
of the coherences in the energy eigenbasis. Beyond the secular
approximation, however, it may become important for near or
exact degeneracies of HS, where it can select a preferred
pointer basis (Schultz and von Oppen, 2009; Trushechkin,
2021). For thermal reservoirs, the KMS relations (24) can be
used to show that the thermal state ρss ∝ e−βHS is a stationary
state of the GME (32).
This becomes even more apparent in the case when not only

is the spectrum of HS nondegenerate (δEa;Eb
¼ δab), the set of

Bohr (transition) frequencies fωab ¼ Ea − Ebg is also. Then,
Eq. (32) completely decouples populations and coherences in
the system energy eigenbasis. The coherences ρij ≡ hijρSjji
with i ≠ j simply decay (γai;ai ≥ 0) according to

_ρij ¼
�
−
1

2

�X
a

γai;ai þ
X
a

γaj;aj

�
− iðσii − σjjÞ

�
ρij; ð35Þ

while the populations obey the classical Pauli master equation

_ρaa ¼
X
b

fWabρbb −Wbaρaag; ð36Þ

with transition rates from eigenstate jbi to eigenstate jai
given by Wab ¼ γab;ab ≥ 0. Thermalization then follows from
the fact that the transition rates obey detailed balance,
Wab=Wba¼e−βðEa−EbÞ, which is a consequence of the KMS
condition (24). Thermalization is also found for grand-
canonical bath states (Cuetara, Esposito, and Schaller, 2016).
Despite this, we stress that a GKSL form ensures only

positivity, not that the dynamics is in fact physically accurate
(Strasberg, 2022). Moreover, having the thermal state as a
fixed point grants compliance with thermodynamics only in
the parameter regime that allows one to perform the necessary
approximations (Spohn, 1978; Dümcke and Spohn, 1979). It
may fail, e.g., beyond weak coupling or when the system
energy splittings are small in comparison to the system-
reservoir coupling, which can happen when the system
consists of many components; see the discussion around
Eq. (41). Beyond GKSL generators, exact thermalization is
a feature expected only for vanishing coupling strength (Mori
and Miyashita, 2008; Fleming and Cummings, 2011;
Thingna, Wang, and Hänggi, 2012; Xu, Thingna, and
Wang, 2017). Higher-order perturbative expansions (Laird,
1991; Jang, Cao, and Silbey, 2002; Schröder, Schreiber, and
Kleinekathöfer, 2007; Thingna, Zhou, and Wang, 2014) are
required to see the effects of the system-reservoir coupling
strength in a steady-state solution.

3. Additivity for multiple reservoirs

The previous derivation considered only one reservoir at
equilibrium. When multiple reservoirs (labeled with the index
ν) are present, the bath Hamiltonian may be decomposed as

HB ¼Pν H
ðνÞ
B , with the individual contributions acting on

different Hilbert spaces. Usually it is assumed that each bath is

held in a local equilibrium state ρ̄B ¼⊗ν ρ̄B
ðνÞ, with ρ̄B

ðνÞ ¼
e−βνðH

ðνÞ
B −μνN

ðνÞ
B Þ=ZðνÞ

B characterized by local inverse temper-
atures βν and chemical potentials μν. The system-bath cou-
pling in Eq. (20) can now be written as HI ¼

P
α Aα ⊗

P
ν B

ðνÞ
α , where Aα may be a complete set of operators for the

system and the possibility BðνÞ
α → 0 allows one to consider

reservoir-specific couplings. With this, one can follow the
same steps in the derivation of a master equation for weak
couplings.
Since we are working in a frame where the first-order

correlation function vanishes (trfBðνÞ
α ρ̄B

ðνÞg ¼ 0), this also
applies to product terms between different reservoirs, such

that trBfBðνÞ
α ðt1ÞBðν0Þ

β ðt2Þρ̄Bg ¼ δνν0C
ðνÞ
αβ ðt1; t2Þ. Consequently,

a weak-coupling treatment yields an additive decomposition
of the dissipators _ρS ¼ −i½HS; ρS� þ

P
ν DνρS, with one dis-

sipator for each reservoir ν. Notice that to define additivity
strictly, each dissipator Dν should also depend only on
the parameters of the reservoir ν, as is the case here. For
instance, in the case of thermal reservoirs, each GME
dissipator will thermalize the system with its associated
reservoir Dνe−βνðHS−μνNSÞ ¼ 0.
The additivity property has important consequences: First,

from a practical point of view it enables one to split the
problem into smaller pieces, i.e., to derive the dissipator by
treating the system as if it were coupled to only one reservoir.
Second, it allows one to properly define the currents entering
or leaving the system (Sec. II.D.1). Additivity is not preserved
for stronger system-reservoir coupling (see Sec. II.H) and the
definition of currents may require microscopic approaches, as
explained in Sec. II.I.2.

4. Local GKSL master equation

For multiple reservoirs, the interaction Hamiltonian typically
couples the reservoirs only to finite portions of the system. In
regimes where the system–internal coupling strengths are
smaller than the system-reservoir coupling strengths, the
LME approach is often more applicable than the GME; see
also Sec. II.G.We therefore now turn to themore detailed look at
how to derive LMEs that is introduced in Sec. II.B. We first
show how they can be derived from collisional models (also
called repeated interactions) (Rau, 1963; Englert and Morigi,
2002; Scarani et al., 2002),where the open dynamics is replaced
by a series of sequential collisions with small bath units. We
proceed to show how themethods put forth in Sec. II.C.1 can be
adapted to yield LMEs instead.

a. Derivation based on collisional models

The basic idea of a collisional model is to describe the open
dynamics as a series of unitary collisions, which involve only
the system and a small piece of the bath (often called ancillas).
The ancillas are independent and identically prepared, usually
in thermal states. Each interaction lasts for a short period of
time, after which the ancilla is discarded and never participates
again in the dynamics. In the next step a fresh new ancilla is
introduced and the process starts anew. This therefore gen-
erates a stroboscopic dynamics whose continuous-time limit
can be shown to be a LME. The refreshing of the ancillas is
consistent with the idea of a Markovian bath. And the
sequential nature of the collisions fits with Boltzmann’s
molecular chaos hypothesis (Stosszahlansatz), where at any
given time the system interacts with only a fraction of the
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environment (which is subsequently reset due to the bath’s
inherent complexity).
This connection, within the context of boundary-driven

systems, was first established by Karevski and Platini (2009).
Since then collisional models have experienced a revival
of interest. This is partially because they allow one to con-
struct thermodynamically consistent models (Barra, 2015;
Strasberg et al., 2017; De Chiara et al., 2018; Pereira, 2018;
Strasberg, 2019).
For illustration, following Landi et al. (2014) we consider

the derivation of Eq. (16) with a system spin Hamiltonian HS
containing L sites, as in Eq. (12). We start by focusing on a
single collision. In addition to the L sites of the chain, we use
two extra spins as ancillas, labeled 0 and Lþ 1, such that the
total Hamiltonian becomes

HT ¼ HS þ h0σ
z
0 þ hLþ1σ

z
Lþ1 þ

ffiffiffi
γ

p ðV0;1 þ VL;Lþ1Þ; ð37Þ

where Vi;j ¼ σ−i σ
þ
j þ σþi σ

−
j . The system starts in an arbitrary

state ρS, whereas the two new spins are prepared in the thermal
states ρ0 and ρLþ1 as in Eq. (10), but with Fermi-Dirac
occupations f0 and fLþ1 given by fi ¼ ðeβihi þ 1Þ−1 and
i ¼ 0; Lþ 1. The joint system then evolves for a time τ,
resulting in e−iHTτðρ0 ⊗ ρS ⊗ ρLþ1ÞeiHTτ. We are interested
only in the reduced state of the system, which is found by
tracing out 0 and Lþ 1, that is,

ρ0S ¼ tr0;Lþ1fe−iHTτðρ0 ⊗ ρS ⊗ ρLþ1ÞeiHTτg: ð38Þ
This can be viewed as the basic building block of a collisional
model since after this interaction the ancillas are discarded and
fresh new ones are introduced. One then simply reapplies the
same map of Eq. (38), but with ρ0S as the input. Repeating the
procedure leads to a set of states ρ0S; ρ

1
S; ρ

2
S;… that describe the

stroboscopic open evolution of the system in steps of τ.
The previous construction applies to collisions of arbitrary

duration. To obtain the LME, we now consider the continu-
ous-time limit τ → 0 such that the unitaries e�iHTτ can be
expanded in a Taylor series. Owing to the partial trace in
Eq. (38), many terms vanish and, to leading order in τ, we are
left with

ρ0S ¼ ρS − iτ½HS; ρS� þ τ2½D1ðρSÞ þDLðρSÞ�; ð39Þ
where D1ðρSÞ ¼ −ðγ=2Þtr0;Lþ1f[V01; ½V01;ρ0 ⊗ ρS ⊗ ρLþ1�]g
and a similar approach is followed for DL. Using the specific
form of Vi;j, together with the fact that the initial states of sites
0 and Lþ 1 are thermal, one finds for i ∈ f1; Lg the
dissipators

Di ¼ γð1 − fiÞD½σ−i � þ γfiD½σþi �; ð40Þ

where f1 ≔ f0 and fL ≔ fLþ1. These are the exact GKSL
dissipators appearing in the LME (17a).
As the last step, we now rewrite Eq. (39) to form the time

derivative dρS=dt ≃ ðρ0S − ρSÞ=τ. Upon taking the limit τ → 0,
however, we encounter a problem. The dissipative term is of
the order of τ2 and would thus vanish if this limit were taken
naively. The continuous-time limit corresponds to a small τ,
but the limit τ≡ 0 would mean no interaction at all. One

should therefore interpret the continuous-time limit as a
physical limit where ðρ0S − ρSÞ=τ is sufficiently smooth to
be interpreted as a derivative, but the last term in Eq. (39) is
nonetheless finite. One way to implement this mathematically
is to rescale the interaction strengths

ffiffiffi
γ

p
in Eq. (37) to

ffiffiffiffiffiffiffi
γ=τ

p
.

That is, the interaction is taken to be short, but also strong.
This idea is also used in classical Brownian motion to
introduce the δ-correlated noise in the Langevin equation
(Coffey, Kalmykov, and Waldron, 2004). With this proviso,
we precisely obtain Eq. (16). Thus, LMEs can indeed be
viewed as the continuous-time limit of collisional models.
In the literature, LMEs of the form of Eq. (16) are often said

to represent magnetization baths (Schuab, Pereira, and Landi,
2016; Žnidarič et al., 2017; Varma and Žnidarič, 2019). This is
used to emphasize that they are not describing actual thermal
baths, but instead act so as to force the magnetization of the
boundary sites to point in certain directions. The previously
mentioned collisional model derivation provides a clear
interpretation of this idea. At each collision, the spins 0
and Lþ 1 tend to polarize the magnetization of the boundary
sites (1 and L). But since the interaction time τ is short, this
effect cannot propagate deeply within the chain after just one
collision, and thus remains confined to the first and last sites.
This is ultimately the reason why collisional models with local
ancillas yield local jump operators. In principle, the same idea
can be used to derive GMEs, but then the ancillas have to
interact with multiple parts of the chain. Recently it was
shown (Cattaneo et al., 2021) that one may algorithmically
reproduce any Markovian evolution through a suitably chosen
collisional model.

b. Derivation based on weak internal couplings

It is tempting to ask whether LMEs can somehow be viewed
as a special limit of GMEs. Indeed, Eq. (32) is formulated in
terms of the global system energy eigenbasis equation (31).
Consider what happens if the system is composed of different
subsystems (for now we consider only two, but this will be
straightforwardly generalized)

HS ¼ H1
S þH2

S þ ξH12
S ; ð41Þ

with the local Hamiltonians Hμ
S and the intrasystem interac-

tion Hμν
S , quantified by the dimensionless bookkeeping

parameter ξ. In the limit ξ → 0, the system energy eigen-
basis equation (31) factorizes as jai → ja1i ⊗ ja2i while
Ea → Ea1 þ Ea2 , where Hμ

Sjaμi ¼ Eaμ jaμi. With this limit,
one may often retrieve a LME from the GME (provided that
the coupling operators Aα in the Hamiltonian are local).
However, this does not always work. In particular, when the

subsystems are identical, HS becomes degenerate when
ξ → 0. Whereas superpositions of global eigenstates with
the same eigenvalue are still global eigenstates, they need not
be given by tensor products of local eigenstates if global
symmetries are conserved. An example for this is the master
equation for superradiant decay (Gross and Haroche, 1982).
Although here one has a cloud of noninteracting atoms (i.e.,
ξ ¼ 0 from the beginning), the jump operators remain global
due to a globally conserved symmetry (the collective coupling
induces angular momentum conservation), and hence do not
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reduce to local jump operators.7 It is therefore advisable to
retrieve the LME from the Redfield master equation (27) by
performing the limit ξ → 0 on it.
Alternatively, one may also derive the LME by treating

the system-bath interactions HI and the internal system
interactions Hμν

S on equal footing, as we now outline. We
start with the usual decomposition of the universe
Hamiltonian Htot ¼ HS þHB þHI. The system is assumed
to have an internal structure such that HS can be written as

HS ¼ H0
S þH1

S ¼
X
ν

Hν
S þ

X
μ<ν

Hμν
S ; ð42Þ

where the free parts of the system Hν
S act on different Hilbert

spaces, such that ½Hν
S; H

μ
S� ¼ 0, and Hμν

S represents pair
interactions between these parts. In addition, we assume
multiple reservoirs HB ¼Pν H

ν
B, with each bath Hν

B coupled
only locally to subsystem ν according to the interaction
[cf. Eq. (20)]

HI ¼
X
ν

Hν
I ¼

X
ν

X
α

Aν
α ⊗ Bν

α: ð43Þ

We can choose some of the Hν
I ¼ 0, allowing for boundary-

driven setups with internal parts not directly coupled to any
reservoir, as in Fig. 2. By construction, the system coupling
operators Aν

α act only on their respective sites, such that
½Hν

S; A
μ≠ν
α � ¼ 0, and similarly for the reservoir couplings.

The problem now involves the interplay between two small
couplings HI ¼ Ofλg and Hμν

S ¼ Ofξg, with small dimen-
sionless bookkeeping parameters λ and ξ. These terms may be
of similar strength, but they are both small in comparison to
the other parts of the Hamiltonian. We therefore use an
interaction picture with respect to the free part of the system
Hamiltonian and the reservoirs

H0 ¼
X
ν

Hν
S þ

X
ν

Hν
B: ð44Þ

In this picture (marked as bold symbols in the following), the
exact von Neumann equation for the full universe reads

_ρ ¼ −i½H1
SðtÞ; ρðtÞ� − i½HIðtÞ; ρðtÞ�; ð45Þ

which is analogous to Eq. (22). The rhs is small
(Ofξg þOfλg) and we can use an equivalent perturbative
treatment as for the derivation of the global master equation in
Secs. II.C.1 and II.C.2, with only small modifications. We
formally integrate Eq. (45), but in contrast to the treatment
there we insert the solution only in the second commutator
term. Performing the partial trace over the reservoir degrees of
freedom then yields the exact equation

_ρS ¼ −i½H1
SðtÞ; trBfρðtÞg� − i trBf½HIðt0Þ; ρ0�g

−
Z

t

0

trBf[HIðtÞ; ½H1
Sðt0Þ þHIðt0Þ; ρðt0Þ�]gdt0: ð46Þ

First, when a factorizing initial condition ρð0Þ ¼ ρ0S ⊗ν ρB
ν

and the assumption that trBfHIðtÞρ̄Bg ¼ 0 is used, the second
commutator term on the first line in Eq. (46) vanishes
identically. Second, we extend this assumption to all times
with the Born approximation ρðtÞ ¼ ρSðtÞ ⊗ν ρ̄B

ν þ
Ofλg þOfξg. Considering that ρSðtÞ is only an approxima-
tion of the exact reduced density matrix trBfρðtÞg, neglecting
the remainder terms in the first commutator and in the nested
double commutator leads to

_ρS ¼ −i½H1
SðtÞ;ρSðtÞ�

−
X
ν

Z
t

0

trνf[Hν
I ðtÞ; ½Hν

I ðt0Þ;ρSðt0Þ⊗ ρ̄B
ν�]gdt0

þOfλξgþOfξ2gþOfλ2ξgþOfλξ2gþOfλ3g; ð47Þ

where we have neglected the mixed terms between system and
reservoir and also between different reservoirs. Furthermore,
we have already performed all the trivial partial traces. The
step in going from Eq. (46) to Eq. (47) highlights the terms
that are discarded in a local approach. The first line contains
the intrasystem interactions. Upon transforming back to the
Schrödinger picture, it restores together with H0

S the full
system Hamiltonian. In addition, the double commutator term
involves only system operators acting on the specific

FIG. 2. Sketch of the considered setup. Small gray spheres
correspond to sites with Hamiltonians Hν

S, and connecting black
lines correspond to couplings (either bonds Hμν

S or system-
reservoir couplings Hν

I ). GMEs are obtained by treating only
system-reservoir couplings (traversing the green short-dashed
sphere) perturbatively. Conversely, LMEs result from treating
both system-reservoir couplings and system-internal couplings
(such as traversing the blue dotted sphere) perturbatively.
Currents through various interfaces (dashed and/or dotted curves)
can be meaningfully defined by balance equations of locally
conserved observables (Sec. II.D). For instance, we discuss the
global energy balance of the system (green short-dashed sphere)
in Eq. (50) and the local energy current entering a boundary site
(blue dotted circle) from the reservoir in Eq. (68). Local balances
of internal sites and internal bonds (orange dash-dotted spheres)
are discussed in Eqs. (56) and (62), respectively. The energy
balances of the reservoir (red long-dashed sphere) are treated
using the full counting statistics discussed in Sec. II.I.

7In this model, one has for N two-level atoms in total 2N energy
eigenstates, but due to the globally conserved angular momentum
only at most N þ 1 of them couple to each other. If one performs the
secular approximation in the local energy eigenbasis, couplings to
coherences between degenerate energy eigenstates must be kept in
the global master equation. By contrast, choosing the angular
momentum eigenstates as the eigenbasis (which also diagonalizes
the Hamiltonian), one obtains a simple rate equation in each angular
momentum subspace.
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subsystem ν since, due to a different interaction picture, we
have Hν

I ðtÞ ¼
P

α e
þiHν

StAν
αe−iH

ν
St ⊗ eþiHν

BtBν
αe−iH

ν
Bt. It in fact

yields the same (LME) dissipator that one would obtain if
subsystem ν were exclusively coupled to its adjacent reser-
voir; see Schaller et al. (2022) for an application in the Fermi-
Hubbard model. Hence, the previous equation generates a
local non-Markovian master equation, and following the
standard Markov approximations discussed in Sec. II.C.1
one can also derive local versions of the Redfield-I and
Redfield-II equations (26) and (27). Accordingly, the final
secular approximation only requires the splittings of the local
system parts Hν

S to be large, and it is not invalidated by
possibly many degeneracies of

P
ν H

ν
S. Eventually, one

obtains the sum of local dissipators, but the commutator from
the first line of Eq. (47) will mediate an interaction between
distant system sites (and reservoirs). Upon transforming back
to the Schrödinger picture, the full system Hamiltonian
(anything inside the green short-dashed circle in Fig. 2) is
restored, but dissipative contributions (also Lamb-shift terms)
are the same as if one had derived the master equation from
Sec. II.C.2 for the coupled parts only. It hence always
generates LMEs; see Wichterich et al. (2007) for specific
applications. Here the term “local” refers to the chosen
partition of the system, for which a suitable choice is dictated
by the relation between coupling strengths. Often Hν

S are
thought of as individual bosonic or fermionic modes, but they
can also be complicated interacting systems themselves, and
in this sense there may be varying degrees of locality
depending on the context. We also point out approaches that
effectively provide interpolations between LMEs and GMEs,
such as those followed by Lidar, Bihary, and Whaley (2001)
and Seah, Nimmrichter, and Scarani (2018).

c. Derivation for a negligible system Hamiltonian

Yet another derivation, the singular coupling limit that leads
to LMEs, arises in the limit where the system Hamiltonian is
small in comparison to the system-reservoir coupling. The
Born and Markov approximations are applied as before, with
the only difference being that, due to the small system
Hamiltonian, one can neglect the time dependence of the
system coupling operators in the interaction picture, rendering
a secular approximation unnecessary. The simple outcome of
this procedure is an equation ofGKSL form that can technically
also be obtained from Eq. (32) by setting all system energies
zero (Palmer, 1977). In the Schrödinger picture it reads
(assuming Hermitian coupling operators Aα ¼ A†

α)

_ρS ¼ −i½HS; ρS� − i
X
αβ

σαβð0Þ
2i

½AαAβ; ρS�

þ
X
αβ

γαβð0Þ
�
AβρSAα −

1

2
fAαAβ; ρSg

�
; ð48Þ

where the Fourier transforms of the reservoir correlation
functions of Eq. (34) are evaluated at vanishing arguments.
Since it follows from the KMS relation (24) that γααð0Þ ¼
γᾱαð0Þ, one finds that the completely mixed (infinite-temper-
ature) state ρS ∝ 1 is one (not necessarily unique) stationary
solution of the previous master equation. As the Lindblad

operators coincidewith those in the coupling Hamiltonian (20),
phenomenological approaches to boundary-driven systems like
Eq. (17a) may actually be microscopically motivated in the
singular coupling limit. The interaction with further (non-
singular) reservoirs may nevertheless introduce interesting
stationary nonequilibrium properties as may also be obtained
by combining the singular coupling limit with conventional
GME treatments (Schultz and von Oppen, 2009).

D. Transport properties and currents

The usual boundary-driven scenario consists of a system
coupled to multiple baths, which is left to evolve until it
reaches a steady state. The latter, being out of equilibrium, is
characterized by stationary currents from one bath to another
(Dhar, Saito, and Hänggi, 2012). It is therefore essential to
correctly determine these currents for each model. This
includes not only the currents of energy but also other
observables like particle number or magnetization and spin.
The crucial aspect when dealing with transport is to

correctly account for all possible sources and sinks of the
quantity in question. Take energy, for instance. It makes sense
to talk about energy transport only if the amount of energy
leaving one region is the same as the amount entering the
other. If in between energy is spontaneously created (such as
by an external work agent) or if some energy is trapped in the
interaction potential, this must be properly taken into account.
This introduces the idea of continuity equations. That is,
equations that identify how the changes in a given quantity are
linked to fluxes of that quantity to other regions of space.
There are two types of continuity equations that one may
consider: system resolved, which look only at net currents
from the bath to the system, and site resolved, which analyze
the flows within the system.

1. System-resolved continuity equations

Consider a master equation of the form

dρS
dt

¼ −i½HS; ρS� þ
X
ν

DνðρSÞ; ð49Þ

where HS describes all internal energies of the system and Dν

summarizes the net effect of bath ν (which may also contain
Lamb-shift contributions). In the case of Redfield equations or
GMEs,Dν has support over the entire system, while for LMEs
it acts only on specific sites.
The following system-resolved continuity equation for

hHSi is readily found using Eq. (49):

dhHSi
dt

¼
X
ν

trfHSDνðρSÞg ≔
X
ν

IνE: ð50Þ

Each term on the rhs of Eq. (50) can be identified by the flow
of energy entering the system (inside the short-dashed green
circle in Fig. 2) from reservoir ν. Changes in energy of the
system are thus entirely due to the fluxes arriving from each
bath. At steady state, dhHSi=dt ¼ 0 and all fluxes balance out:P

ν I
ν
E;ss ¼ 0. For just two baths, this becomes I1E;ss ¼ −I2E;ss,

meaning that all energy entering from bath 1 leaves for bath 2.
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Next we consider another operator O of the system. From
Eq. (49), we determine that its rate of change will be given by

dhOi
dt

¼ ih½HS;O�i þ
X
ν

trfODνðρSÞg: ð51Þ

The last term in Eq. (51) is associated with the “flow of O” to
each bath, but now we also have the term ½HS;O�. When this is
nonzero, O can be spontaneously created or destroyed even if
the system is isolated. We therefore typically speak of trans-
port of O only when ½HS;O� ¼ 0, in which case we get

dhOi
dt

¼
X
ν

trfODνðρSÞg ¼
X
ν

IνO: ð52Þ

For example, if the Hamiltonian HS conserves the total
particle number ½HS; NS� ¼ 0, we can define the particle
current via

dhNSi
dt

¼
X
ν

trfNSDνðρÞg ¼
X
ν

IνN: ð53Þ

Similarly, we can consider the transport of magnetization
M ¼Pi σ

i
z in spin chains. However, some Hamiltonians may

not conserve M. One such example is the following XYZ
chain:

HS ¼ −
XL−1
i¼1

ðJxσxi σxiþ1 þ Jyσ
y
i σ

y
iþ1 þ Jzσ

z
iσ

z
iþ1Þ þ

XL
i¼1

hiσ
z
i .

ð54Þ
One may verify that M is only conserved in the XXZ limit
[Jx ¼ Jy; Eq. (12)]. Thus, one may study magnetization
transport in XXZ or XX chains, but not in the full XYZ model.

2. Site-resolved continuity equations: Unitary components

Equation (51) can also be employed in the case whereO is a
local operator, associated with either a site or a bond. This will
give rise to site-resolved continuity equations. In this case, the
unitary term i½HS;O� is crucial. And since it is independent of
the type of QME used, we treat it separately in this section. For
concreteness we assume that the system has a 1D nearest-
neighbor Hamiltonian

HS ¼
XL
k¼1

Hk
S þ

XL−1
k¼1

Hk;kþ1
S : ð55Þ

The indices for each term clarify in which Hilbert space it has
support. For instance, H2;3

S acts only on sites 2 and 3, and thus
commutes with any operator that does not pertain to these two
sites. LetOk denote a generic local operator with support only
over site k. Therefore, ½HS;Ok� ¼ ½Hk

S;O
k� þ ½Hk−1;k

S ;Ok� þ
½Hk;kþ1

S ;Ok�. This helps one to identify what is required for a
proper site-resolved continuity equation forOk. One must first
assume that Ok is “locally conserved,” in the sense that
½Hk

S;O
k� ¼ 0. Equation (51) then gives (without the dissipa-

tive part)

dhOki
dt

¼ ih½Hk−1;k
S ;Ok�i þ ih½Hk;kþ1

S ;Ok�i: ð56Þ

It is tempting to associate ih½Hk−1;k
S ;Ok�i with the flow from

site k − 1 to k, and −ih½Hk;kþ1
S ;Ok�iwith the flow leaving k for

kþ 1. But this makes sense only if it agrees with the flow
entering kþ 1 from k, which is obtained by looking at Okþ1:

dhOkþ1i
dt

¼ ih½Hk;kþ1
S ;Okþ1�i þ ih½Hkþ1;kþ2

S ;Okþ1�i:

The term that we are looking for is ih½Hkþ1;k
S ;Okþ1�i.

However, in general −ih½Hk;kþ1
S ;Ok�i ≠ ih½Hk;kþ1

S ;Okþ1�i.
That is, the quantity leaving k for kþ 1 is not necessarily
the same as that entering kþ 1 from k. From this, we conclude
that a site-resolved continuity equation for a set of local
operators Ok is possible only when

½Hk;kþ1
S ;Ok þOkþ1� ¼ 0: ð57Þ

Together with ½Hk
S;O

k� ¼ 0, Eq. (57) implies that

½HS;
X
k

Ok� ¼ 0: ð58Þ

Hence, the condition (58) is seen as equivalent to the one we
used in going from Eq. (51) to Eq. (52), namely, that
½HS;O� ¼ 0, with O ¼Pk O

k. Consequently, both the sys-
tem- and the site-resolved approaches are founded on similar
assumptions. The latter, however, generally provides an
additional level of detail.
When Eq. (57) is satisfied, we may unambiguously define

the current of a given observable Ok leaving k for kþ 1 as

Ik;kþ1
O ¼ −ih½Hk;kþ1

S ;Ok�i; ð59Þ

such that Eq. (56) becomes

dhOki
dt

¼ Ik−1;kO − Ik;kþ1
O : ð60Þ

These definitions hold for all sites, provided that we define
I0;1O ¼ IL;Lþ1

O ¼ 0. For instance, in the XXZ chain Eq. (59)
yields Ik;kþ1

M ¼ −2Jhσxkσykþ1 − σykσ
x
kþ1i, which is Eq. (18). The

structure of Eq. (59) also naturally invites one to define a
corresponding current operator

Ik;kþ1
O ¼ −i½Hk;kþ1

S ;Ok�; ð61Þ

such that hIk;kþ1
O i ¼ Ik;kþ1

O . Current operators find many
uses, especially in unitary dynamics, such as in Kubo’s
formula.
For energy, the situation is a bit more delicate since HS has

contributions from both sites and bonds [Eq. (55)]. In some
cases, such as when Hk;kþ1

S are small, it may be reasonable to
analyze a site-resolved continuity equation for the local
energies Hk

S. However, for this to exist, one must satisfy
Eq. (57); that is, ½Hk;kþ1

S ; Hk
S þHkþ1

S � ¼ 0. For example, take
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Hk;kþ1
S ¼ a†kakþ1 þ a†kþ1ak and suppose that Hk

S ¼ ϵka
†
kak,

with different energies ϵk for each site. This interaction
preserves the number of quanta, so Eq. (57) is satisfied for
Ok ¼ a†kak. However, it will not preserve the local energies
when the ϵk are different.
Instead, we can construct a local energy current via a bond-

resolved continuity equation (Wu and Segal, 2009a). We first
rewrite Eq. (55) as a sum over bonds HS ¼PL−1

i¼1 H̃i;iþ1
S for

some new operators H̃i;iþ1
S . A continuity equation for H̃i;iþ1

S
will then read

dhH̃i;iþ1
S i
dt

¼ ih½H̃i−1;i
S ; H̃i;iþ1

S �i þ ih½H̃iþ1;iþ2
S ; H̃i;iþ1

S �i: ð62Þ

The first term in Eq. (62) is the current entering bond ði; iþ 1Þ
from bond ði − 1; iÞ, and the second term is the current
going from bond ði; iþ 1Þ to ðiþ 1; iþ 2Þ. The latter will
always coincide with the current entering ðiþ 1; iþ 2Þ
from ði; iþ 1Þ, as one may explicitly verify by constructing
an analogous equation for dhH̃iþ1;iþ2

S i=dt. With the proper
boundary conditions, one also finds that the total Hamiltonian
is a constant of motion.

3. Site-resolved continuity equations

We now include the effects of dissipation through Eq. (49).
We first consider the LME case, where each dissipatorDν acts
only on a specific site (such that ν can be linked to k). For a set
of local observables Ok satisfying Eq. (57), Eq. (60) becomes

dhOki
dt

¼ Ik−1;kO − Ik;kþ1
O þ IkO;diss; ð63Þ

where IkO;diss ¼ trfOkDkðρSÞg. In the noteworthy case where
the baths couple to the first and last sites, we get

dhO1i
dt

¼ −I1;2O þ I1O;diss; ð64Þ

dhOki
dt

¼ Ik−1;kO − Ik;kþ1
O ; k ¼ 2;…; L − 1; ð65Þ

dhO1i
dt

¼ IL−1;LO þ ILO;diss: ð66Þ

In the steady state, dhOki=dt ¼ 0 and all currents coincide,

I1O;diss ¼ I1;2O ¼ I2;3O ¼ � � � ¼ IL−1;LO ¼ −ILO;diss ≡ IO; ð67Þ

yielding a unique current IO through the system. For
instance, with Ok ¼ σiz and LME baths [Eq. (17b)] we get
IiM;diss ¼ γiðηi − hσzi iÞ.
A similar analysis can also be done for the energy. Once

again, one must distinguish between a bond- or site-resolved
description. For bonds Eq. (62) is appended with dissipative
currents trfH̃k;kþ1

S ðDk þDkþ1ÞρSg. For LMEs, however, site-
resolved equations for the local energies Hk

S are in a sense
more natural. The reason is that, as reviewed in Sec. II.C.4,
LMEs can be microscopically derived, assuming that the

system-system interactions Hk;kþ1
S are small. In this case,

provided that Eq. (57) is satisfied, the site-resolved continuity
equation will have the form dhHk

Si=dt ¼ Ik−1;kE − Ik;kþ1
E þ

IkE;diss, where Ik;kþ1
E ¼ −ih½Hk;kþ1

S ; Hk
S�i. The last term is thus

interpreted as the local energy current entering site k via the
adjacent reservoir

IkE;diss ¼ trfHk
SDkðρSÞg; ð68Þ

and analogous considerations for the particle current lead to

IkN;diss ¼ trfNk
SDkðρSÞg; ð69Þ

with particle number operator Nk
S of site k. Explicit formulas

for IkE;diss for the XXZ chain in the presence of magnetic fields
were provided by Mendoza-Arenas, Al-Assam et al. (2013).
The local energy current IkE;diss from bath k to site k is
generally different than trfHSDkðρSÞg since the latter has
additional contributions trfHk;k�1

S DkðρSÞg; cf. Eq. (55).
However, using the same bookkeeping notation as in
Sec. II.C.4, where the system-bath couplings are of the order
of λ and the system-system couplings are of the order of ξ, we
see that these extra contributions will be of the order of λ2ξ, so

trfHSDkðρSÞg ¼ IkE;diss þOðλ2ξÞ: ð70Þ

For Redfield equations or GMEs, each dissipator Dν in
Eq. (49) will act on the entire chain, even if the coupling is to a
specific site. Thus, instead of Eq. (63) one will have

dhOki
dt

¼ Ik−1;kO − Ik;kþ1
O þ

X
ν

trfOkDνðρSÞg; ð71Þ

where each term in the sum represents the action of bath ν on
site k. This reflects the nonlocal character of the dissipators.
For this reason, one often does not assess site-resolved
equations for global dissipators, focusing instead only on
system-resolved equations such as Eqs. (50) and (52). In fact,
as pointed out by Wichterich et al. (2007), the local currents
can even be unphysical in GMEs due to the secular approxi-
mation [a workaround was put forth by Kamiya (2015)].

E. Thermodynamics of LMEs and GMEs

Section II.D illustrated how to write consistent expressions
for the first law of thermodynamics in the form of continuity
equations for the energy. Here we show that a similar argu-
ment can also be made concerning the second law. The key
quantity of interest, in this case, is the irreversible entropy
production (Landi and Paternostro, 2021). Unlike energy,
entropy does not satisfy a continuity equation. Part of the
change in the von Neumann entropy of the system S½ρS� ¼
−trfρS ln ρSg can be associated with a flow of entropy to the
reservoirs. But there is also another part (the entropy pro-
duction rate _Σ) associated with the irreversible nature of the
process. From the usual thermodynamic arguments, it follows
that the entropy flux to a thermal reservoir at temperature Tν is
IνQ=Tν, where IνQ is the heat current entering the reservoir. The
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entropy balance equation for the system should therefore read
dS=dt ¼ _ΣþPν I

ν
Q=Tν. While dS=dt may in general have

any sign, the entropy production rate is by construction always
non-negative ( _Σ ≥ 0), which is a mathematical statement of
the second law.
Determining _Σ is thus a relevant task for any open quantum

process. The difficulty is that since the baths are traced out in a
microscopic derivation, the value of IνQ (which is a bath
quantity) can be wrongly assessed from the reduced descrip-
tion of the master equation. In fact, as discussed later, this
might even lead to apparent violations of the second law.
Landi and Paternostro (2021) showed that this is fully resolved
only if one has access to the full system-bath dynamics. Here
we instead discuss how the latter might be approximated in
different types of master equations of the form of Eq. (49) to
arrive at thermodynamically consistent expressions.
We start with GMEs. From the global energy and particle

currents [Eqs. (50) and (53)], we define the heat current
for each bath IνQ;GME ¼ IνE − μνIνN. Additionally, we assume
as in Sec. II.C.2 that each dissipator targets a thermal
state at temperature βν and chemical potential μν; that is,
Dνðρνss;GMEÞ ¼ 0, where ρνss;GME ¼ e−βνðHS−μνNSÞ=Zν. From
classical thermodynamic considerations, the change in entropy
of reservoir ν is related to its energy and particle change via
dUν ¼ TνdSν þ μνdNν, so _Sν ¼ βνðdUν=dt − μνdNν=dtÞ.
Assuming that there is energy and particle conservation
between system and reservoir, which is generally true
under weak-coupling conditions, this can be given as _Sν ¼
−βνIQ;GME ¼ −βνðIνE − μνIνNÞ. The entropy production, com-
puted as the rate of change of the entropy of the full universe, is
thus (Alicki, 1979)

_ΣGME ≈ −
d
dt

trfρS ln ρSg −
X
ν

βν½IνE − μνIνN�

¼ −trf _ρS ln ρSg −
X
ν

βνtrfðHS − μνNSÞðDνρSÞg

¼ −
X
ν

trfðDνρSÞ ln ρSg þ
X
ν

trfðDνρSÞ ln ρνss;GMEg

¼ −
X
ν

trfðDνρSÞ½ln ρS − ln ρνss;GME�g ≥ 0: ð72Þ

On the third line of Eq. (72), we substituted Eq. (49) for _ρS in
the first term and represented the second term as a logarithm
(the partition function does not contribute sinceDν is traceless).
The inequality on the last line follows from Spohn’s inequality
(Spohn, 1978) applied to each term in the sum.
Similar considerations can be made for LMEs. In this case

the second law must be formulated in terms of the local energy
and particle currents IkE;diss and IkN;diss [Eqs. (68) and (69)],
defined in terms of the local Hamiltonians Hk

S for each site k;
cf. Eq. (55). The local heat currents are then IkQ;LME ¼
IkE;diss − μkIkN;diss. With this proviso, we find a similar
inequality

_ΣLME ¼ −
d
dt

trfρS ln ρSg −
X
k

βkIkQ;LME ≥ 0; ð73Þ

now defined in terms of local currents. The derivation is
similar to Eq. (72) but exploits the fact that the local dis-
sipators DLME

k thermalize only the local states ρkss;LME ¼
e−βkðH

k
S−μkN

k
SÞ=Zk. This allows us to write8 _ΣLME ¼P

k trfDkρS½ln ρS − ln ρkss;LME�g ≥ 0.
There are at least two physical arguments explaining why

for LMEs Eq. (73) must be formulated in terms of local heat
currents IkQ;LME. First, in a microscopic derivation the LME is

a good approximation only when Hk;kþ1
S are small, in which

case the local and global currents are approximately the same
[Eq. (70)]. Second, if the LME stems from a collisional model
(Sec. II.C.4), it was shown by Barra (2015) and De Chiara
et al. (2018) that IkQ;LME is the actual heat current flowing to

the ancillas, while the terms associated with Hk;kþ1
S are related

to the work cost of turning the bath interactions on and off.
This is consistent with the fact that the last term in Eq. (73)
should be the change in entropy of the environments.
To summarize, in formulating the second law one should

use global currents for GMEs and local currents for LMEs.
Otherwise, one may arrive at apparent violations of the
second law. An example was discussed by Levy and
Kosloff (2014), who considered two bosonic modes with
frequencies ω1ð2Þ coupled to baths at β1ð2Þ. They used LMEs
but employed global currents to compute the entropy pro-
duction rate, leading to _Σ ∝ ðω1 þ ω2Þðβ2 − β1Þðn1 − n2Þ,
where nk ¼ ðeβkωk − 1Þ−1. As one may verify, it is possible
to tune ω1ð2Þ so as to always induce _Σ < 0, which suggests an
inadequacy of LMEs in describing the second law. This was
reconciled by Barra (2015), De Chiara et al. (2018), and
Pereira (2018) with the help of a collision model. The
resulting entropy production rate, derived in terms of local
currents, now has the form _Σ ∝ ðβ2ω2 − β1ω1Þðn1 − n2Þ,
which depends only on the products βiωi, which are strictly
non-negative and zero if and only if β1ω1 ¼ β2ω2.

F. Local versus global versus Redfield master equations

As illustrated in Sec. II.C, even within the weak-coupling
paradigm there are still many QMEs that one can derive, each
based on different (and sometimes opaque) approximations.
This may lead one to ask which is the best QME to use in a
given situation. In this section, we provide a rough guideline.
LMEs (Secs. II.B and II.C.4) work well if both internal
system-system coupling and system-reservoir couplings are
weak. They do not exactly thermalize the system when the
baths are at the same temperature, but they are easy to use.
GMEs (Sec. II.C.2) rely heavily on the secular approximation,
and thus tend to work better if the internal system-system
interactions are strong, since large energy splittings better
justify the secular approximation. They may also produce
unphysical internal currents (Wichterich et al., 2007), but
global currents are reliable. Finally, Redfield equations
(Sec. II.C.1) often capture the best of both worlds, in that

8This does not require all sites to be connected to a bath. Since the
Dk act locally, the sum is only over those sites that are actually
connected to a bath.
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they compare well with the exact solutions (Sec. II.G). But
they can produce unphysical states, since they are not CPTP.
QMEs are benchmarked by comparing them to models that

allow for exact solutions. Section II.G provides a detailed
example. Rivas et al. (2010) studied LMEs and GMEs in
bosonic systems. They first considered a single harmonic
oscillator coupled to a bath (where LMEs and GMEs coincide)
and found that QMEs work well, except at short times.
Afterward they considered two bosonic modes with opera-
tors a1 and a2 coupled to two baths with operators fbkg and
fckg. The dynamics was modeled with a Hamiltonian of
the form

H ¼ Ωða†1a1 þ a†2a2Þ þ
X
k

ðω1kb
†
kbk þ ω2kc

†
kckÞ

þ ξϑða1; a2Þ þ λ
X
k

½g1kϑða1; bkÞ þ g2kϑða2; ckÞ�;

ð74Þ

where ϑða; bÞ ¼ a†bþ b†a is a shorthand notation and [as in
our discussion near Eq. (41)] ξ gauges the internal system
coupling, while λ gauges the overall system-environment
interaction (with gik an additional, dimensionless parameter).
Comparing the LME and GME resulting from this

Hamiltonian with the exact solution, Karrlein and Grabert
(1997) and Serafini (2017) found that for small ξ the LME
works better than the GME. Conversely, for large ξ the GME
tends to be the better choice. Qualitatively similar results were
found for fermions (Ribeiro and Vieira, 2015; Mitchison and
Plenio, 2018); see also Sec. II.G. Purkayastha, Dhar, and
Kulkarni (2016b) extended these results to Redfield equations
and found that, over a large parameter regime, it yielded
dramatically better results than the LME and GME. The
Hamiltonian (74) assumes a hopping interaction that con-
serves the number of quasiparticles. In contrast, a “position-
position” interaction ðaþ a†Þðbþ b†Þ was studied by
González et al. (2017). The conclusions were similar but
spanned a much wider range of parameter space. Recently
Potts, Kalaee, and Wacker (2021) compared the LME and
GME approaches with a specific emphasis on the first law of
thermodynamics, i.e., on the proper identification of thermal
currents. Mitchison and Plenio (2018) also addressed the
additivity of multiple reservoirs. As discussed in Sec. II.C.3,
LMEs and GMEs have the convenient property that reservoirs
combine additively. Comparing them to the exact solutions,
Mitchison and Plenio found that in general this is not a good
assumption, as also revealed by strong-coupling methods
(Sec. II.H). The previously mentioned studies focused on
the NESS. Transient behavior was studied by Scali, Anders,
and Correa (2021), who showed that LMEs generally perform
better. This is due to the fact that the secular approximation
tends to destroy key dynamical features of GMEs.
All these analyzes address what is the “best QME” by

comparing them to the exact solutions. However, these are
available only for special classes of systems (usually non-
interacting ones). Little is known about interacting systems.
Hartmann and Strunz (2020) studied spin-boson models and
benchmarked the Redfield master equation with a pseudo-
mode approach (Imamoğlu, 1994; Garraway, 1997a, 1997b;

Tamascelli et al., 2018); these were found to agree better than
GKSL equations. These findings can be contrasted with the
results given by McCauley et al. (2020), which showed that,
for systems weakly coupled via a constant spectral density,
one may find GKSL master equations that are superior to the
Redfield approach. Xu, Thingna et al. (2019) compared LMEs
and Redfield master equations with exact solutions for large
spin chains of up to 21 sites (simulated using tensor net-
works). They found that Redfield equations performed sig-
nificantly better than LMEs in the presence of strong
interactions within the system. A comparison with GMEs
was not possible, owing to the computational cost.

G. Connection with exactly solvable systems

Despite the complexity of open quantum systems, there are
some cases where the dynamics is exactly solvable. This
includes the pure-dephasing limit of the spin-boson model
(Leggett et al., 1987; Lidar, Bihary, and Whaley, 2001), where
the dynamics is simple since the interaction commutes with
the system Hamiltonian and thus cannot change the system
energy. Additionally, quadratic models also allow for an exact
solution, which can be obtained through various methods. In
the bosonic case, for example, exact non-Markovian master
equations for systems of coupled oscillators have been studied
(Karrlein and Grabert, 1997). Noninteracting models can also
be treated with nonequilibrium Green’s functions (Caroli
et al., 1971; Meir and Wingreen, 1992; Economou, 2006;
Haug and Jauho, 2008; Prociuk, Phillips, and Dunietz, 2010;
Aeberhard, 2011; Zimbovskaya and Pederson, 2011; Dhar,
Saito, and Hänggi, 2012; Nikolić et al., 2012; Wang,
Agarwalla, and Thingna, 2014), including slowly driven
systems (Bhandari et al., 2021). Complications arise, though,
when interactions are considered (Meir and Wingreen, 1992;
Meir, Wingreen, and Lee, 1993).
In this section we expose a simpler approach, that fully

suffices to treat models with quadratic Hamiltonians.
Although we exemplify the model for fermions, a similar
derivation works for bosons. We focus on reservoirs modeled
by 1D tight-binding chains, but this is not a restriction, since
any chain can be mapped onto a set of noninteracting modes,
and vice versa; see Sec. II.H. The advantage of the homo-
geneous tight-binding chain is that it can be analytically
diagonalized even for finite chain lengths.
We consider two chain reservoirs α ∈ fL; Rg, described by

Nα fermionic operators di;α each and modeled by a tight-

binding Hamiltonian [Eq. (15)] HðαÞ
B ¼ ϵ

PLα
i¼1 d

†
i;αdi;αþ

τ
PLα−1

i¼1 ½d†i;αdiþ1;α þ d†iþ1;αdi;α�, where ϵ ∈ R and τ > 0.
The system, in turn, is described by N noninteracting sites,
with operators di and Hamiltonian HS ¼PN

i;j¼1 hijd
†
i dj. The

coupling to the baths occurs at sites 1 and N, and has the form
HI ¼ τLðd†1;Ld1 þ d†1d1;LÞ þ τRðd†1;RdN þ d†Nd1;RÞ, with tun-
nel amplitudes τα > 0. The reservoirs are diagonalized with
the transformation

di;α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

Lα þ 1

s XLα

k¼1

sin

�
πik

Lα þ 1

�
ck;α
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to a new set of operators ck;α, leading to

HðαÞ
B ¼

XLα

k¼1

ϵkαc
†
k;αck;α; ϵkα ¼ ϵ−2τcos

�
πk

Lαþ1

�
: ð75Þ

In turn, the system-bath interactions change to

HI ¼
XNL

k¼1

tkL½c†kLd1 þ H:c:� þ
XNR

k¼1

tkR½c†kRdN þ H:c:�; ð76Þ

with

tkα ¼ τα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

Lα þ 1

s
sin

�
πk

Lα þ 1

�
.

Diagonalizing HðαÞ
B has the advantage that we can explicitly

eliminate the reservoir operators from the Heisenberg
equations of motion: _d1 ¼ −i

P
jh1jdj − i

P
ktkLckL for

the first site, _da ¼ −i
P

jhajdj for 2 ≤ a ≤ N − 1, _dN ¼
−i
P

jhNjdj − i
P

ktkRckR for the last site, and _ckL ¼
−iϵkLckL − itkLd1 and _ckR ¼ −iϵkRckR − itkRdN for the left
and right reservoir operators, respectively.
An exact solution is possible using nonequilibrium Green’s

functions (Haug and Jauho, 2008). In the Appendix we
provide a more direct exact approach based on Laplace
transforms. It applies to reservoirs in the star representation
(Schaller, 2014) and explicitly incorporates the initial con-
ditions, which complies with generalized formulations of
nonequilibrium thermodynamics (Esposito, Lindenberg, and
den Broeck, 2010). The baths are characterized by the spectral
coupling density ΓαðωÞ ¼ 2π

P
kjtkαj2δðω − ϵkαÞ (also termed

the bare tunneling rate in this context), which in our case
becomes

ΓαðωÞ ¼
2τ2α
τ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ðω − ϵÞ2
4τ2

s
Θ(4τ2 − ðω − ϵÞ2); ð77Þ

which has strict finite support. This is known as the semi-
elliptical, or Newns, spectral density (Newns, 1969; Mitchison
and Plenio, 2018). Nonconstant spectral densities (Schaller,
Zedler, and Brandes, 2009; Topp, Brandes, and Schaller,
2015) can be used to model non-Markovian effects (Zedler
et al., 2009), and finite support can even lead to phenomena
like bound states (Longhi, 2007; Jussiau, Hasegawa, and
Whitney, 2019).
Considering first the simplified case of a single dot coupled

to only one reservoir, we can compare the exact solution for
the dot occupation hd†1d1i, for various bath sizes, to the
solution arising from a GKSL treatment, as shown in Fig. 3.
One can see that finite-size baths (system and reservoir) lead
to backflows of information (here a fermionic particle tunnel-
ing back to the system), which one can use as a non-
Markovianity measure (Breuer, 2012). If the dot energy is
significantly outside the support of ΓαðωÞ, a bound state may
emerge (Longhi, 2007; Jussiau, Hasegawa, and Whitney,

2019), which is not captured by a Markovian master equation
(not shown).
Next we go back to the original two-bath configuration and

consider the steady state. We assume for simplicity the
wideband limit, where ΓαðωÞ → Γα. Formally, this can be
achieved by taking τ; τα → ∞ such that 2τ2α=τ≡ Γα ¼ const.
In this limit, the Green’s function GijðzÞ [defined in the
Appendix following Eq. (A4)] has only isolated poles with a
negative real part. We may thus drop the initial-state depend-
ence and all poles with a negative real part in the inverse
Laplace transform such that the stationary limit eventually
simplifies to

hd†i djit⟶
t→∞

Z
ΓLðωÞG�

i1ð0þ − iωÞGj1ð0þ − iωÞfLðωÞ
dω
2π

þ
Z

ΓRðωÞG�
i2ð0þ − iωÞGj2ð0þ − iωÞfRðωÞ

dω
2π

;

ð78Þ

which coincides with Green’s function approaches (Caroli
et al., 1971; Meir and Wingreen, 1992; Economou, 2006;
Haug and Jauho, 2008; Prociuk, Phillips, and Dunietz,
2010; Aeberhard, 2011; Zimbovskaya and Pederson, 2011;
Dhar, Saito, and Hänggi, 2012; Nikolić et al., 2012; Wang,
Agarwalla, and Thingna, 2014).
We compare this with the LME, GME, and Redfield

equations (Levy and Kosloff, 2014; González et al., 2017;
Hofer et al., 2017; Farina et al., 2020) by considering
a two-site system (double quantum dot), with d1ð2Þ ≡ dLðRÞ,
h11 ¼ hL, h22 ¼ hR, and h12 ¼ h21 ¼ h. The LME from
Sec. II.C.4 becomes in this case
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FIG. 3. Time-dependent occupation of a single dot of energy ε
coupled to a tight-binding chain of different lengths NL. As
NL → ∞, the reservoir drags the system toward a stationary
occupation, but for finite chain lengths recurrences occur. For the
chosen parameters (weak system-reservoir coupling), the QME
(dashed lines) captures the dynamics well, except at small times
(inset). The horizontal dashed line at 0.5 is the long-time steady-
state occupation. The other parameters are h11 ¼ h22 ¼ ϵ≡ ε,
h12¼0, μν ¼ ε, τ¼ε, τν¼0.1ε, and ΓνðεÞβν¼2τ2νβν=τ¼0.02.
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_ρS ¼ −i½HS; ρS�
þ
X
α¼L;R

Γαf½1 − fαðhαÞ�D½dα�ðρSÞ þ fαðhαÞD½d†α�ðρSÞg:

ð79Þ

For the GME (32), we must first diagonalize HS:

HS ¼ðd†L;d†RÞ
�
hL h

h hR

��
dL
dR

�
¼ ϵ−c†−c−þ ϵþc

†
þcþ: ð80Þ

Finally, the Redfield equation (28), assuming that hL ¼ hR ¼
ϵ and dropping the principal values in Eq. (29), becomes

_ρS ¼ −i½HS; ρS�

−
ΓL

4
fLðϵþ hÞf½dL; ðd†L þ d†RÞρS� þ ½ρSðdL þ dRÞ; d†L�g

−
ΓL

4
fLðϵ − hÞf½dL; ðd†L − d†RÞρS� þ ½ρSðdL − dRÞ; d†L�g

−
ΓL

4
f−Lðϵþ hÞf½d†L; ðdL þ dRÞρS� þ ½ρSðd†L þ d†RÞ; dL�g

−
ΓL

4
f−Lðϵ − hÞf½d†L; ðdL − dRÞρS� þ ½ρSðd†L − d†RÞ; dL�g

þ ðL ↔ RÞ; ð81Þ
where f−LðωÞ≡ 1 − fLðωÞ. For small internal couplings
h → 0, this falls back to the LME (79).
In Fig. 4 we compare the trace distance

Dðρ; σÞ ¼ trfjρ − σjg=2; ð82Þ

between the single-particle density matrix

ρ1 ¼
�
hd†1d1i hd†1d2i
hd†2d1i hd†2d2i

�
1

hd†1d1i þ hd†2d2i
; ð83Þ

of the stationary exact solution (EX) to those from the LME,
GME, and Redfield (RED) equations (left, middle, and right

panels of Fig. 4, respectively). The horizontal and vertical axes
are the internal system coupling h and the system bath
coupling Γ (in units of ϵ ¼ 1). We see that the QMEs
complement each other and have their own region of validity
(González et al., 2017; Hofer et al., 2017; De Chiara et al.,
2018). For large h and small Γ, the GME performs well, while
for small h the LME is better. One can also see that the
Redfield equation yields good results throughout, despite not
being in GKSL form. In fact, the superiority of the Redfield
equation has been observed for a number of models where an
exact solution exists. The development of GKSL equations
reaching Redfield accuracy at steady state is therefore cur-
rently an interesting route of research (Kiršanskas, Franckié,
and Wacker, 2018; Kleinherbers et al., 2020; McCauley et al.,
2020; Trushechkin, 2021).
A qualitatively similar picture arises for the currents. For

noninteracting electronic transport, the exact stationary par-
ticle current can be computed using Landauer’s formula
(Landauer, 1957; Büttiker, 1986; Nazarov and Blanter, 2009),

IEXN ¼ 1

2π

Z
TðωÞ½fLðωÞ − fRðωÞ�dω; ð84Þ

where 0 ≤ TðωÞ ≤ 1 is the transmission function (Haug and
Jauho, 2008). The comparison to the LME, GME, and RED
(not shown) is qualitatively similar to Fig. 4. There are
regimes, however, where although the steady state is poorly
approximated both LME and GME happen to give acceptable
results for the currents.

H. Strong system-bath coupling

The physics of strong system-bath coupling has been an
intense research topic in both classical and quantum systems
(Campisi, Hänggi, and Talkner, 2011; Talkner and Hänggi,
2020). In strong coupling, the QMEs of Sec. II.C are not
applicable, the influence of multiple reservoirs no longer
simply adds up (compare to Sec. II.C.3), the currents may
need to be computed using full counting statistics (Sec. II.I)

FIG. 4. Contour plot of the trace distance between the NESS single-particle density matrix [Eq. (83)] of the exact solution and the
perturbative solutions for the LMEDðρEX1 ; ρLME

1 Þ (left panel), GMEDðρEX1 ; ρGME
1 Þ (middle panel), and Redfield equationsDðρEX1 ; ρRED1 Þ

(right panel). Dark (blue) indicates agreement of solutions. The plots are done as a function of the dimensionless internal coupling
h12=ϵ ¼ h21=ϵ≡ h=ε (horizontal axes) and the dimensionless external coupling ΓL=ϵ ¼ ΓR=ϵ ¼ Γ=ϵ (vertical axes) with contours in
steps of 0.01, assuming different chemical potentials and a wideband limit. The parameters are hL ¼ h11 ¼ h22 ¼ hR ≡ ϵ, βνϵ ¼ 1,
and μL ¼ ϵ ¼ −μR.
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since multiple particles may be emitted or absorbed at once
(Schaller et al., 2013), and reservoirs may crosstalk (Talarico,
Maniscalco, and Gullo, 2020). However, strong coupling also
offers possibilities. For example, with nonadditive reservoirs
one may build an autonomous refrigerator with just two levels
(Mu et al., 2017), whereas for additive reservoirs this requires
at least three levels (Linden, Popescu, and Skrzypczyk, 2010).
In this section we review techniques for describing boun-

dary-driven systems in the strong-coupling regime. There are
two main strategies: The first is to extend the system with a
portion of the bath that, after careful transformations, can be
weakly coupled to a residual bath. This includes the reaction-
coordinate (Sec. II.H.1) and polaron approaches (Sec. II.H.3).
The other strategy is to unitarily evolve system and baths
together, which can be done using the star-to-chain and
thermofield transformations (Sec. II.H.2), as well as other
methods reviewed in Sec. II.H.4. The problem can also be
approached with Green’s function (Sec. II.G), higher-order
calculations (Schröder, Schreiber, and Kleinekathöfer, 2007;
Kast and Ankerhold, 2013), generalized thermodynamic
arguments (Aurell, 2018; Perarnau-Llobet et al., 2018),
surrogate Hamiltonians (Katz and Kosloff, 2016), phenom-
enological collective modes (Cabot, Galve, and Zambrini,
2017), Feynman-Vernon influence functionals (Jin et al.,
2010; Yang et al., 2020), etc.

1. Reaction coordinates

The approximations used in the derivation of QMEs can be
easily violated when the system-reservoir coupling strength is
not small, if short timescales are considered or when the system
has near-degenerate levels. Some of these restrictions can be
overcome if the framework is applied in a different frame, where
the boundaries between system and reservoir are shifted.
Transitions between different frames can be realized by
Bogoliubov transforms (Woods et al., 2014). To properly
address the strong-coupling limit, one should make sure to start
from a Hamiltonian that maintains a lower spectral bound. For
example, considering a single bosonic reservoirwith dimension-
less system coupling operator S, this would be guaranteed when

Htot ¼ HS þ
X
k

ωk

�
b†k þ

hk
ωk

S†
��

bk þ
h�k
ωk

S

�
; ð85Þ

whereωk andhk are constants.Uponexpanding the second term,
weget the usual systemand reservoirHamiltonian, togetherwith
a renormalization

ΔHS ¼
X
k

jhkj2
ωk

S2 ¼ 1

2π

Z
∞

0

Γð0ÞðωÞ
ω

S2dω; ð86Þ

where

Γð0ÞðωÞ ¼ 2π
X
k

jhkj2δðω − ωkÞ ð87Þ

is the spectral coupling density (Leggett et al., 1987; Xu, Shen
et al., 2019; Mascherpa et al., 2020).
Beyond weak coupling, a perturbative treatment of the

system-reservoir interaction hk is not applicable. Instead, we

apply a Bogoliubov transform bk ¼
P

qðukqBq þ vkqB
†
qÞ to

new bosonic annihilation operators Bq, where ukq ∈ C and
vkq ∈ C are coefficients that have to ensure proper commu-
tation relations for the Bq. The idea is to choose them so as to
recast Htot in the form

Htot ¼HS þΩ1

�
B†
1 þ

λ1
Ω1

S

��
B1 þ

λ1
Ω1

S

�

þ
X
q>1

Ωq

�
B†
q þHq

Ωq
ðB1 þB†

1Þ
��

Bq þ
H�

q

Ωq
ðB1 þB†

1Þ
�
;

ð88Þ

such that S couples only to a single mode B1 (called the
reaction coordinate) with coupling strength λ1 and energy Ω1.
In turn, B1 couples to the residual reservoir modes Bq>1 via
new coupling constants Hq, which parametrize a residual
spectral density

Γð1ÞðωÞ ¼ 2π
X
k>1

jHkj2δðω − ΩkÞ: ð89Þ

Finding the Bogoliubov coefficients is generally tedious, but
for an infinitely large reservoir with dense level spacing, the
following explicit formulas for λ1, Ω1, and Γð1ÞðωÞ can be
derived (Strasberg et al., 2016; Nazir and Schaller, 2019):

Ω2
1 ¼

R
∞
0 ωΓð0ÞðωÞdωR
∞
0 ½Γð0ÞðωÞ=ω�dω ; ð90Þ

λ21 ¼
1

2πΩ1

Z
∞

0

ωΓð0ÞðωÞdω; ð91Þ

Γð1ÞðωÞ¼ 4λ21Γð0ÞðωÞ
fð1=πÞPRþ∞

−∞ ½Γð0Þðω0Þ=ðω0−ωÞ�dω0g2þ½Γð0ÞðωÞ�2 ;

ð92Þ

where on the last line an analytic continuation as an
odd function ΓðnÞðω0Þ ¼ −ΓðnÞð−ω0Þ is understood under
the integral. Multiple variants of such mapping exist;
cf. Woods et al. (2014) and Nazir and Schaller (2019).
The usefulness of this approach lies in the fact that, even

though the original couplings hk are strong, the new couplings
Hk to the residual bath can be weak. To see this, notice that
Eq. (87) is Oðh2kÞ, while the new spectral density Γð1Þ is Oð1Þ.
Hence, although S and B1 couple strongly, B1 and its residual
bath do not (Martinazzo et al., 2011; Strasberg et al., 2016),
which was benchmarked by Iles-Smith, Lambert, and Nazir
(2014) and Iles-Smith et al. (2016). This has been observed to
hold for even stronger residual couplings (Correa, Xu, and
Adesso, 2019). The effects of system-reservoir correlations
(Iles-Smith, Lambert, and Nazir, 2014) or non-Markovian
dynamics (Iles-Smith et al., 2016) within the original system
also come within reach. The price one has to pay is that the
reaction coordinate needs to be treated explicitly, which for
two bosonic reservoirs can already be challenging (Anto-
Sztrikacs and Segal, 2021).
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The reaction-coordinate mappings can, with slight mod-
ifications, be applied to fermionic systems as well, where the
explicit treatment of a fermionic reaction coordinate is
computationally not as costly as for bosonic ones. This
was used by Schaller et al. (2018), Strasberg et al. (2018),
and Restrepo et al. (2019) to discuss quantum nonequilibrium
thermodynamics of fermionic systems.
The previous mapping is independent of HS such that one

can use these approaches to study interacting systems
(Strasberg, 2019; Tamascelli et al., 2019; Brenes et al.,
2020). In addition, the transformed Hamiltonian is equi-
valent to the original upon identifying S → B1 þ B†

1 and
HS → HS þ Ω1½B†

1 þ ðλ1=Ω1ÞS†�½B1 þ ðλ1=Ω1ÞS�. The pro-
cedure can thus be applied recursively, which would eventually
map the “starlike” system-reservoir interaction, where the
system is coupled to each bath mode, into a chain, where the
system and each bath site are coupled only to nearest neighbors
(Fig. 5). The typical intention of the reaction-coordinate
formalism is to stop after a few iterations. As a rule of thumb,
the transformed spectral densities tend to become more and
more structureless with each iteration, which at some point
enables a Markovian description (Martinazzo et al., 2011;
Woods et al., 2014). For methods requiring a chain representa-
tion, however, it is possible to perform the star-to-chain
mapping directly; see Sec. II.H.2. Alternatively, since
Bogoliubov transforms are invertible, one may also exploit
reverse reaction-coordinate mappings to map long chains with
structureless reservoirs into a single quantum dot with highly
structured reservoirs, which can be treated with nonequilibrium
Green’s functions (Martensen and Schaller, 2019; Ehrlich and
Schaller, 2021).
If the system is coupled to multiple reservoirs, the

reaction-coordinate mapping is applied individually to each
bath. Hence, the resulting QME will still add up. However,
a dissipator for reservoir ν now depends on the system
plus reaction-coordinate Hamiltonian, and hence on the
parameters of the original reservoirs. As such, the original
reservoirs no longer enter additively in the sense of
Sec. II.C.3.
We can also generalize the formalism to multiple reaction

coordinates. For example, at each step of the mapping one

may split the support of ΓðnÞðωÞ into intervals and introduce a
reaction coordinate for each interval. This will lead to tree-
type network topologies that can be more efficient than a chain
mapping (Huh et al., 2014; Mascherpa et al., 2020; Pleasance,
Garraway, and Petruccione, 2020). Alternatively, one may
represent Γð0ÞðωÞ by a sum of simpler (e.g., Lorentzian)
functions, which also introduces multiple collective coordi-
nates at once. This is often called the pseudomode approach
(Imamoğlu, 1994; Garraway, 1997a, 1997b; Pleasance,
Garraway, and Petruccione, 2020) and has been used to
describe strong coupling and non-Markovianity. Brenes et al.
(2020) combined this with multisite GKSL baths (Sec. II.K.2)
and tensor networks (Sec. III.E), with a specific focus on
applications in many-body thermal machines.

2. Star-to-chain and Thermofield transformations

Recursively applying the reaction-coordinate method takes
the star configuration [Eq. (85)] into a chain configuration for
the bath (Fig. 5). Since they can be interpreted as successive
Bogoliubov transforms, their joint application is also a
Bogoliubov transform. The star-to-chain mapping can thus
be performed on a single step. In this section, we describe this
idea in more detail. In addition, we show how to combine it
with the thermofield transformation, which ensures that the
resulting chain reservoirs are empty, thus providing simple
initial conditions for simulations.

a. Star-to-chain transformation

Consider for simplicity a continuous bath with Hamiltonian
HB ¼ R ωðkÞb†ðkÞbðkÞdk and coupling

HI ¼ S
Z

hðkÞ½bðkÞ þ b†ðkÞ�dk; ð93Þ

where S acts only on the system and hðkÞ is the coupling
density. The spectral function analogous to Eq. (87) is thus
JðωÞ ¼ πh2½kðωÞ�dkðωÞ=dω (Leggett et al., 1987; Bulla et al.,
2005).
To apply the star-to-chain mapping directly, one may

discretize the spectrum [as in the numerical renormalization
group (Wilson, 1975; Bulla, Costi, and Pruschke, 2008)], use
orthogonal polynomials (Chin, Rivas et al., 2010; Prior et al.,
2010), or perform numerical optimization via a cost function
(Caffarel and Krauth, 1994; Dorda et al., 2014). In direct
discretization, we split the range of frequencies of the bath in
different intervals and use a set of basis functions to describe
the bath operators within each range, thus recovering a
discrete bath. A strategy that properly weights different energy
scales is the logarithmic discretization, which considers
intervals at frequencies ωn ¼ ωmaxΛ−n where Λ > 1 (Bulla,
Costi, and Pruschke, 2008). In each interval, one can choose
basis functions that are plain waves in that interval and 0
elsewhere such that

R ωmax
0 dω ¼Pn

R
ωn
ωnþ1

dω.
Conversely, with orthogonal polynomials one introduces a

new set of bosonic operators Bn ¼
R
UnðkÞbðkÞdk, with n ¼

0; 1;… and UnðkÞ ¼ hðkÞρ−1n πnðkÞ. Here ρn is a normaliza-
tion factor and πnðkÞ are orthogonal polynomials with inner
product

R
h2ðkÞπnðkÞπmðkÞdk ¼ ρnδn;m. Since all information

FIG. 5. Sketch of a single reaction-coordinate (RC) mapping
(top left arrow) that effectively transfers 1 degree of freedom from
the reservoir (dark green circles) to the system (light blue circles)
generating an enlarged supersystem that requires an explicit
treatment. Recursive applications (on the right in faint colors)
generate a chain configuration, effectively implementing the star-
to-chain mapping (bottom long arrow) described in Sec. II.H.2.
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about the environment is contained in JðωÞ (Leggett et al.,
1987), one may choose ωðkÞ and h2ðkÞ freely, as long as JðωÞ
is preserved. A useful choice is ωðkÞ ¼ ωck and
h2ðkÞ ¼ ωcJ(ωðkÞ)=π. This transforms the bath and the
interaction into

HB ¼ ωc

�X
n

αnB
†
nBn þ

� ffiffiffiffiffiffiffiffiffi
βnþ1

p
B†
nþ1Bn þ H:c:

��
; ð94Þ

HI ¼ S

ffiffiffiffiffi
ηJ
π

r
ðB0 þ B†

0Þ; ηJ ¼
Z

JðωÞdω; ð95Þ

which follow from the recursion relation kπnðkÞ ¼ αnπnðkÞ þ
βnπn−1ðkÞ þ πnþ1ðkÞ [which holds when ωðkÞ ¼ ωck].
Choosing π−1ðkÞ ¼ 0 and π1ðkÞ ¼ 1, the coefficients αn
and βn in HB are then given by β0 ¼ 0, βn ¼ γn=γn−1,
γn ¼

R
h2ðkÞπnðkÞ2dk, and αn ¼ γ−1n

R
kh2ðkÞπnðkÞ2dk,

which are amenable to numerical evaluation (Gautschi,
2005). These coefficients are bounded if the spectrum is
finite. And if the measure h2ðkÞdk belongs to the Szegő class
(Szegő, 1939), they converge to a value independent of n.
Hence, deep within the chain the couplings will be uniform, as
is the case in reaction coordinates (Woods et al., 2014).
Additional details were given by Chin, Rivas et al. (2010).
If the bath is already discrete, a Lanczos or Householder

transform will turn the originally diagonal bath Hamiltonian
tridiagonal, i.e., a chain. The important step is to choose as the
first vector the sum of all modes weighted by their coupling
with the system (de Vega, Schollwöck, and Wolf, 2015).
Converting the original problem to a chain configuration

allows it to be more readily tackled with tensor networks
(Sec. III.E). However, this is not always advantageous. For
instance, for fermionic baths (Wolf, McCulloch, and
Schollwöck, 2014; Lu et al., 2019; Rams and Zwolak,
2020) the star configuration may lead to a slower growth
of entanglement limited by the large number of fully occupied
states in the Fermi sea that do not participate in the evolution.

b. Thermofield transformation

The star-to-chain mapping allows one to study the evolution
of the system plus baths together as a single system. A
difficulty of bosonic chains, however, is that they may have
large local occupations at high temperatures. Using the thermo-
field transformation (Bargmann, 1961; Araki and Woods,
1963; Takahashi and Umezawa, 1996; Blasone, Jizba, and
Vitiello, 2011; de Vega and Bañuls, 2015), we can map the
chain, at least at initial times, to two empty chains. This can be
particularly useful in tensor network algorithms (Sec. III.E).
The thermofield transformation is employed in bosonic baths
modeled with bilinear couplings to the system. It applies to
arbitrary coupling strengths and could also be extended to
considering initial correlations between system and bath.
Extensions to fermionic systems were discussed by Blasone,
Jizba, andVitiello (2011), deVega andBañuls (2015), Schwarz
et al. (2018), and Nüßeler et al. (2020).
Given a bath defined by modes bk, the idea is to introduce

another bath, with modes ck, that is identical to the physical
one, such that for thermal density matrices ρB the expectation
value can be written as trð·ρBÞ ¼ hΩj · jΩi, with

jΩi ¼ ⊗
k

�X∞
nk¼0

e−βωknk=2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ nk

p jnkibk jnkick
�
; ð96Þ

where n̄k ¼ 1=ðeβωk − 1Þ and jnibk and jnick are Fock states of
bk and ck. The state jΩi is called the thermal vacuum. It
satisfies expð−βHBÞ=ZB ¼ trCfjΩihΩjg and can be
obtained from the global vacuum j0i of bk and ck via a
thermal Bogoliubov transformation jΩi ¼ e−iGj0i, with G ¼
i
P

θkðb†kc†k − bkckÞ and tanhðθkÞ ¼ expð−βωk=2Þ. This
implies that jΩi is the vacuum of a new set of bosonic modes
a1;k ¼ e−iGbkeiG and a2;k ¼ e−iGckeiG.
We can now simulate the evolution of a system, initially

prepared in the pure state jψi and coupled to a thermal bath of
harmonic oscillators, as the evolution of the pure state
jψi ⊗k j0ia1;kj0ia2;k. However, to do so we must trans-
form the Hamiltonian from the bk, ck to the a1;k, a2;k
representation. It is much more convenient to use a slightly
different Hamiltonian HTF

tot ¼ Htot −
P

k ωkc
†
kck. Adding such

a decoupled term, one that depends only on the ck modes, has
no physical consequences. Using HTF

tot uncouples the modes
a1;k and a2;k in the equations of motion, resulting in a much
simpler treatment. A similar idea also leads to better numerical
performance of tensor network methods when studying finite
temperatures (Karrasch, Bardarson, and Moore, 2012).
As an example, consider the Hamiltonian

Htot ¼ HS þ
X
k

ωkb
†
kbk þ

X
k

hkða†Sbk þ aSb
†
kÞ; ð97Þ

where aS and a†S act on the system only. After a thermal
Bogoliubov transformation, the thermofield Hamiltonian HTF

tot
becomes

HTF
tot ¼ HS þ

X
k

ωkða†1;ka1;k − a†2;ka2;kÞ

þ
X

i∈f1;2g

X
k

hi;kða†Sai;k þ aSa
†
i;kÞ; ð98Þ

with new couplings h1;k ¼ hk coshðθkÞ and h2;k ¼ hk sinhðθkÞ.
This can then be used together with the star-to-chain mapping,
thereby transforming a single thermal bath into two empty
semi-infinite chains (Guo et al., 2018; Schwarz et al., 2018;
Chen et al., 2020).

3. Polaron treatments

A convenient tool for studying the strong-coupling regime
with bosonic environments is the polaron master equation.
The starting point is a system-environment Hamiltonian
parametrized as in Eq. (85). The polaron or Lang-Firsov
transform (Lang and Firsov, 1963) amounts to a global unitary
transformation of the system and reservoir

Up ¼ exp

�
S
X
k

�
h�k
ωk

b†k −
hk
ωk

bk

��
; ð99Þ

where hk and ωk are as defined in Eq. (85). As one may verify,
this yields UpSU

†
p ¼ S and UpbkU

†
p ¼ bk − ðh�k=ωkÞS.

Hence, under this transform Eq. (85) becomes
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H0
tot ¼ trB

�
UpHSU

†
p
e−β
P

k
ωkb

†
kbk

Z

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

H0
S

⊗ 1B þ
X
k

ωkb
†
kbk

þ
�
UpHSU

†
p − trB

�
UpHSU

†
p
e−β
P

k
ωkb

†
kbk

Z

�
⊗ 1B

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

H0
I

;

where we added and subtracted the same term to make the
renormalized interaction H0

I obey trBfH0
Iρ̄Bg ¼ 0, such that

the standard derivation of a GME or LME from Sec. II.C can
be followed. To apply a perturbative treatment, it is not
necessary for hk to be small, but rather thatH0

I is. In fact, since
the polaron transform is unitary, none of these terms diverge
when hk → ∞. In the weak-coupling limit the standard QME
is reproduced, and for pure-dephasing models (½HS; S� ¼ 0)
the system is untouched (H0

S ¼ HS). More involved state-
ments on the thermodynamic consistency of the polaron
approach are possible, including fluctuation theorems
(Schaller et al., 2013; Krause et al., 2015).
Such favorable properties have been used to advocate for the

polaron approach as being capable of interpolating between the
weak- and strong-coupling regimes (Wang, Ren, and Cao,
2015; Wang and Sun, 2015). Furthermore, it has been found to
yield consistent thermodynamic results even for driven systems
(Gelbwaser-Klimovsky and Aspuru-Guzik, 2015). Various
improvements have been suggested, including variational
polaron transforms (McCutcheon et al., 2011) and mixtures
of polaron transforms and reaction-coordinate mappings
(Wächtler and Schaller, 2020). Finally, we remark that for
multiple reservoirs a polaron transform designed to modify the
coupling to one bathwill dress the couplings to others (Brandes,
2005; Schaller et al., 2013), making the nonadditivity explicit.

4. Evolution of the system and large finite baths

The previously mentioned methods rely on quadratic
interactions and the harmonicity of the bath Hamiltonian.
However, baths composed of interacting particles are often
more realistic. Hence, depending on the model it may not be
possible to use the previously mentioned methods, requiring
one to treat the system and bath almost on the same footing.
The bath does not have to be infinite in size, but as long as the
system does not feel any finite-size effects and the dynamics
has reached an approximate steady state, one can still learn
about its transport properties.
For instance, Karrasch, Ilan, and Moore (2013) studied the

dynamics of an XXZ chain with different types of perturba-
tions and within a quantum Ising chain when each half
was prepared at a different temperature, as depicted in
Fig. 6. They showed that the system relaxes quickly to a
steady current value in the presence of a nonzero Drude
weight (Sec. IV.B). Mascarenhas, Giudice, and Savona (2017)
considered a spin chain in the center, coupled at the edges to
two chains prepared in different (nonthermal) states.
Ljubotina, Znidaric, and Prosen (2017) and Žnidarič and
Ljubotina (2018) considered a similar setup and studied the
evolution of the time-integrated current

R
t
0Idt

0 ∝ tϕ, with ϕ
characterizing the transport regime according to Table I. One

can also consider the unitary evolution of two different
integrable chains, each prepared in a different thermal state
(Biella et al., 2016, 2019). The contact interaction between the
two chains was chosen to break the integrability and induce
the formation of a growing region supporting steady transport
until finite-size effects came into play. This idea was pre-
viously suggested by Ponomarev, Denisov, and Hänggi
(2011), who studied thermalization in bosonic systems.
In a recent study by Xu, Guo, and Poletti (2022) on a setup

analogous to Fig. 6, they considered pure state preparations of
each half chain. They showed that, in the regime of weak
coupling between the two halves, the emergence of a steady
current is typical. This means that for any initial condition
formed of energy eigenstates within an energy window the
resulting long-lasting current converges, in the thermody-
namic limit, to the expected current from microcanonical
preparations of each half.
A slightly different approachwas taken byMascarenhas et al.

(2019), where additional dissipation at the edges of the baths
was used to extend the time for which the system could be
studied.More recently a differentway of periodically refreshing
the baths was put forward (Purkayastha et al., 2021), and a
hierarchy of master equations for the description of finite-size
baths was introduced by Riera-Campeny, Sanpera, and
Strasberg (2022). For noninteracting systems, works along
these lines with fermionic-mesoscopic baths were introduced
by Ajisaka et al. (2012) and Ajisaka and Barra (2013).

I. Full counting statistics and generalized master equations

Full counting statistics (FCS) asks for the number of jump
processes during a given timespan. If the jumps are net particle
transfers, the time derivative of that number yields the particle
current. Similarly, if they come with net energy changes, one
can construct energy currents. FCS goes beyond the average,
however, and also accounts for fluctuations. We begin with a
phenomenological introduction in Sec. II.I.1, followed by a
microscopic derivation in Sec. II.I.2. Tools on how to actually
extract the results are discussed in Sec. II.I.3.

1. Phenomenological introduction

When studying the dynamics of GKSL QMEs [Eq. (11)],
one may wonder about the statistics of the quantum jumps
described by the terms LαρSL

†
α (Wiseman and Milburn, 2010).

To track it, we can decompose the full Liouvillian into a no-
jump evolution L0 and a jump term of interest (Brandes,
2008), i.e.,

FIG. 6. Unitary (Hamiltonian) dynamics can be simulated for
two long but finite spin chains prepared in an initial product state,
with each chain in a different pure or mixed state (differing
colors).
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L ¼ L0 þ L1; L1ρS ≡ γᾱLᾱρSL
†
ᾱ; ð100Þ

for a single chosen process9ᾱ. When a Dyson series is used,
the full propagator Pðt; t0Þ ¼ eLðt−t0Þ can be expressed as a
sequence of jump-free evolutions P0ðtÞ ¼ eL0t interrupted by
a variable number of quantum jumps:

Pðt; t0Þ ¼ P0ðt − t0Þ þ
Z

t

0

dt1P0ðt − t1ÞL1P0ðt1 − t0Þ

þ
Z

t

0

dt2

Z
t2

0

dt1P0ðt − t2ÞL1P0ðt2 − t1Þ

× L1P0ðt1 − t0Þ þ � � � : ð101Þ

The first term in Eq. (101) describes a trajectory without
jumps, the second term a trajectory with a single quantum
jump at 0 < t1 < t, the third one a trajectory with two
quantum jumps at 0 < t1 < t2 < t, etc.
To select trajectories with a specific number of jumps, one

introduces a counting field χ (Levitov, Lee, and Lesovik,
1996; Esposito, Harbola, and Mukamel, 2007), tilting the
Liouvillian according to LðχÞ ¼ L0 þ L1eþiχ . In the
Dyson series of Pðχ; tÞ ¼ eLðχÞt terms containing n jumps
then go with einχ . Using the orthogonality relationR
π
−πðdχ=2πÞeiðn−mÞχ ¼ δn;m, we can then select the propagator

associated with a dynamics with specifically n jumps up to
time t:

PðnÞðtÞ ¼ 1

2π

Z þπ

−π
Pðχ; tÞe−inχdχ: ð102Þ

The associated probability pnðtÞ of obtaining n quantum
jumps during the time interval ½t0; t� is then simply the
following trace of the conditional dynamics PðnÞðtÞρSðt0Þ:

pnðtÞ ¼
1

2π

Z þπ

−π
trfeLðχÞðt−t0ÞρSðt0Þge−inχdχ: ð103Þ

The explicit evaluation is numerically tedious and is analyti-
cally possible only in special cases (Schaller, Kießlich, and
Brandes, 2010). It is more convenient to look at the moment-
generating function

Mðχ; tÞ ¼ trfρðχ; tÞg; ρðχ; tÞ ≔ eLðχÞðt−t0ÞρSðt0Þ; ð104Þ

where ρðχ; tÞ is the solution of the generalized master
equation, _ρðχ; tÞ ¼ LðχÞρðχ; tÞ. From Mðχ; tÞ, we obtain
the cumulant-generating function Cðχ; tÞ ¼ lnMðχ; tÞ, which
is the QME equivalent of the Levitov-Lesovik formula for
noninteracting electrons (Levitov and Lesovik, 1993; Klich,
2003; Schönhammer, 2007). Specific techniques to extract the
lowest cumulants are discussed in Sec. II.I.3.
The questions raised in FCS are universal: They have been

rigorously treated in both GMEs (Schaller, 2014) and LMEs
(Garrahan and Lesanovsky, 2010; Žnidarič, 2014a, 2014b),
where approximate methods have been developed for large
and interacting 1D systems (Carollo et al., 2017; Carollo,

Garrahan, and Lesanovsky, 2018). Some GKSL extensions
include feedback interventions (Brandes, 2010; Wiseman and
Milburn, 2010) and the analysis of factorial cumulants
(Stegmann et al., 2015; Stegmann, König, and Sothmann,
2020). Beyond the GKSL framework, FCS was used in the
Redfield equation (Hussein and Kohler, 2014; Jin, Filippone,
and Giamarchi, 2020) and non-Markovian QMEs (Flindt,
Braggio, and Novotný, 2007; Flindt et al., 2008; Braggio,
Flindt, and Novotný, 2009). Electronic transport setups also
allow one to test these concepts experimentally (Fujisawa
et al., 2006; Gustavsson et al., 2006; Flindt et al., 2009;
Utsumi et al., 2010; Wagner et al., 2017; Kurzmann et al.,
2019). Alternatively, one may also ask for the waiting-time
distribution ΩðtÞ (Cohen-Tannoudji and Dalibar, 1986)
between jumps, which is related to the probability of no
jump by ΩðtÞ ¼ −ðd=dtÞp0ðtÞ. This can also be extended to
the waiting times between different jumps (Brandes, 2008).
As an example, consider the QME (32). If we want only the

total number of jumps (termed dynamical activity), we can tilt
all jump operators identically LabρSL

†
cd → LabρSL

†
cde

þiχ.
Conversely, to count the particle current we use LabρSL

†
cd →

LabρSL
†
cde

þiχðNa−NbÞ (the coefficients γab;cd require that
Nd − Nc ¼ Nb − Na). Similarly, the energy current
can be counted with LabρSL

†
cd → LabρSL

†
cde

þiχðEa−EbÞ. For
multiple reservoirs, specific counting fields can track
the exchanges with each individual bath. Sometimes, how-
ever, a phenomenological identification of jump terms
is not obvious. In these cases, one must instead resort to
a microscopic derivation, as now discussed.

2. Microscopic derivation

Esposito, Harbola, and Mukamel (2009) provided a
microscopic approach to connect changes in the bath with
quantum jumps in the system. The assumption is that the
reservoir observable of interest Ô (such as the particle number
or energy) commutes with the reservoir Hamiltonian
½Ô; HB� ¼ 0. For a typical reservoir, the absolute value of
such observables may assume infinite values. However, one
needs only to track their changes during the time interval ½0; t�.
These can be obtained from a two-point measurement scheme,
where we measure Ô at time 0 and again at time t. If we let
Ô ¼PlOljlihlj in the first measurement, the outcome Ol
occurs with a probability pl ¼ trfjlihljρ̄Bg and projects ρ̄B
to ρ̄BðlÞ=pl, where ρ̄BðlÞ ¼ jlihljρ̄Bjlihlj. Since we measure
only the reservoir, this does not affect the system. When
averaged over all outcomes of the first measurement, the
moment-generating function is

Mðχ; tÞ ¼
X
l

trSBfeiχðÔ−OlÞUðtÞρ0S ⊗ ρ̄B
ðlÞU†ðtÞg; ð105Þ

where UðtÞ is the full evolution operator in the interaction
picture. This is similar to Eq. (104) but from the perspective
of the system plus bath unitary dynamics. Analogously,
derivatives with respect to χ generate the moments of the
distribution of changes in Ô.
We can also rewrite Eq. (105) as Mðχ; tÞ ¼

trSBρSBðχ; tÞ, where ρSBðχ; tÞ ¼ Uþχ=2ðtÞðρ0 ⊗ ρ̄BÞU†
−χ=2ðtÞ9One may generalize to many different jumps.

Landi, Poletti, and Schaller: Nonequilibrium boundary-driven quantum systems …

Rev. Mod. Phys., Vol. 94, No. 4, October–December 2022 045006-22



and Uþχ=2ðtÞ ¼ eþiÔχ=2UðtÞe−iÔχ=2. As a consequence,
ρSBðχ; tÞ will evolve according to

dρSBðχ; tÞ
dt

¼ −i½Hχ=2ðtÞρSBðχ; tÞ − ρSBðχ; tÞH−χ=2ðtÞ�; ð106Þ

with the tilted Hamiltonian

Hχ=2ðtÞ ¼ eþiÔχ=2HIðtÞe−iÔχ=2

¼
X
α

AαðtÞ ⊗ eþiÔχ=2BαðtÞe−iÔχ=2: ð107Þ

The tools of Sec. II.C can now be employed to trace out the
bath and derive a generalized QME for ρS ¼ trBf� � �gðρSBÞ
that will have the form _ρS ¼ LðχÞρS. The moment-generating
function will then be given by Eq. (104). Formally, LðχÞ looks
similar to the GKSL generator derived in Sec. II.C, with the
exception that the jump terms will now be given by

Cχ
αβðt1; t2Þ≡ trfe−iÔχ=2Bαðt1ÞeþiÔχ=2eþiÔχ=2Bβðt2Þe−iÔχ=2 ¯̄ρBg:

ð108Þ

In the other terms of Eq. (104) [where ρS appears on either the
left or the right; cf. Eq. (32)], the standard correlation
function (23) applies. For energy, in particular, Ô ¼ HB,
Eq. (108) simplifies to Cχ

αβðτÞ ¼ Cαβðτ − χÞ.
The FCS formalism counts net transfers from the reservoir,

i.e., those crossing the red long-dashed circle in Fig. 2. For
the particle current, this typically coincides with the previ-
ously mentioned phenomenological replacements since
typical system-reservoir couplings do not create particles.
Those leaving the reservoir must enter the system, and are thus
tracked using either approach. The secular approximation
(which neglects the energy in the system-reservoir interaction
Hamiltonian) enforces an analogous property for the energy.
However, for nonsecular QMEs, the phenomenological intro-
duction of energy counting fields is usually not obvious. In
the Redfield equation (81), for instance, a microscopic
derivation would yield tilted jump terms of the form
fLðϵ� hÞÂρSB̂ → fLðϵ� hÞÂρSB̂e−iχLðϵ�hÞ and ½1 − fLðϵ�
hÞ�ÂρSB̂ → ½1 − fLðϵ� hÞ�ÂρSB̂eþiχLðϵ�hÞ, counting energies
positively when they enter the left reservoir.
Finally, although we focused on QMEs, the FCS is defined

via Eq. (107), and can thus be extracted from other (pertur-
bative and nonperturbative) methods; see Schönhammer
(2007), Saito and Utsumi (2008), Simine and Segal (2012),
Friedman, Agarwalla, and Segal (2018), and Kilgour,
Agarwalla, and Segal (2019).

3. Extracting full counting statistics

The computation of moments or cumulants is generally
simpler than obtaining the full distribution (103). The kth
moment hnki or the kth cumulant ⟪nk⟫ is found by differ-
entiating the moment (cumulant) generating function MðχÞ
[CðχÞ] defined in Eq. (104), that is, hnki≡ ð−i∂χÞkMðχ; tÞjχ¼0

and ⟪nk⟫≡ ð−i∂χÞkCðχ; tÞjχ¼0. If the steady state is unique,

one may show that the long-time cumulant-generating func-
tion is given by the dominant eigenvalue of LðχÞ (Touchette,
2009),

Cðχ; tÞ ¼ lnMðχ; tÞ⟶t→∞
λdomðχÞt; ð109Þ

which is the eigenvalue with the largest real part. This
eigenvalue obeys λdomð0Þ ¼ 0 and corresponds to the stationary
state as χ → 0; see Sec. III.A for a discussion on the spectrum
of L. For simple systems, the eigenvalues of LðχÞ may be
directly accessible. If not, one may perform a series expansion
on the leading coefficients of the characteristic polynomial
(Bruderer et al., 2014; Friedman andSegal, 2019),which allows
the lowest cumulants to be extracted analytically.
Often one is interested only in the first two cumulants, i.e.,

the average current and its fluctuations. These can be extracted
without computing Cðχ; tÞ. Differentiating Mðχ; tÞ with
respect to χ and using the fact that Lð0Þ is traceless, we find
that the average current is

IðtÞ≡ d
dt

⟪n⟫t ¼ −i∂χ trfLðχÞρðχ; tÞgjχ¼0

¼ −i trfL0ð0ÞρðtÞg;

which depends only on ρðtÞ. Similarly, the current fluctuations
can be written as

d
dt

⟪n2⟫t ¼ −trfL00ð0ÞρðtÞg − 2i trfL0ð0ÞσðtÞg; ð110Þ

where σðtÞ≡ −i∂χρðχ; tÞ=trfρðχ; tÞgjχ¼0 is an auxiliary quan-
tity. It need not be computed via ρðχ; tÞ but can be obtained by
solving the differential equation

_σ ¼ −iL0ð0ÞρðtÞ − IðtÞρðtÞ þ Lð0ÞσðtÞ; ð111Þ

with σð0Þ ¼ 0 [which implies that trfσðtÞg ¼ 0]. These results
can be generalized to driven systems (Benito, Niklas, and
Kohler, 2016; Restrepo et al., 2019). In the steady state,
Eq. (111) reduces to the algebraic equation Lσss ¼ iL0ð0Þρssþ
Issρss, which can be solved using standard linear algebra
routines.10

J. Dephasing and bulk noises

Bulk noises refer to a series of methods designed to induce
diffusive transport, even in noninteracting chains. In the
classical literature they are usually termed self-consistent
baths (Bolsterli, Rich, and Visscher, 1970), whereas in
mesoscopics they are called Büttiker probes (Büttiker,
1986). The boundary-driven community usually employs
the quantum information name dephasing. The idea is
illustrated in Fig. 7: one introduces virtual reservoirs acting
on all sites that are designed to inject noise without currents.
The interesting physics emerging from this is reviewed in
Sec. IV.E.

10Since L is not invertible, this has an infinite number of solutions,
and one must pick the one satisfying trfσðtÞg ¼ 0.
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For concreteness, consider a 1D tight-binding
Hamiltonian (15) with L sites. Dephasing can be described
using a dissipator of the form11

Ddeph
i ðρSÞ ¼ Γ(c†i ciρSc

†
i ci − 1

2
fðc†i ciÞ2; ρSg); ð112Þ

with rate Γ. In spin systems, the dephasing might instead be
written as

Ddeph
i ðρSÞ ¼ Γðσziρσzi − ρÞ; ð113Þ

where we used ðσzi Þ2 ¼ 1. The dissipator (112) induces no
particle current at the operator level, although there may still
be an energy current (Mendoza-Arenas, Al-Assam et al.,
2013; Werlang and Valente, 2015).
The full QME for a system subject to dephasing will have

the form

dρS
dt

¼ −i½HS; ρS� þDbðρSÞ þ
XL
i¼1

Ddeph
i ðρSÞ; ð114Þ

where DbðρSÞ refers generically to the boundary dissipators.
As discussed in Sec. III.B, the effects of dephasing on the
steady state are dramatic (Karevski and Platini, 2009; Asadian
et al., 2013; Žnidarič, 2010a). For any Γ > 0, dephasing will
always lead to diffusive transport for sufficiently large chains.
Self-consistent reservoirs are an alternative to dephasing

(Bolsterli, Rich, and Visscher, 1970). Instead of Eq. (112),
one adds local dissipators Dsc

i ðρSÞ ¼ Γð1� Nsc
i ÞD½ci�þ

ΓNsc
i D½c†i �, where the plus sign (the minus sign) refers to

bosons (fermions). The parameters Nsc
i are then chosen to

match the local occupation of the system Nsc
i ¼ hc†i cii (hence

the name self-consistent). This enforces zero particle current
since Isci ¼ trfc†i ciDsc

i ðρÞg ¼ ΓðNsc
i − hc†i ciiÞ ¼ 0. Although

similar in spirit, the two methods are different: self-consistent
baths only enforce zero current on average, while dephasing
does so at the operator level. Thus, while they may predict the
same steady-state currents, the steady-state density matrices
will be different. For instance, in noninteracting Hamiltonians,
self-consistent baths lead to Gaussian steady states, while
dephasing does not (Malouf et al., 2020).

K. Other heuristic methods

We discuss here two additional approaches that are
employed in the literature to deal with strong-coupling,
quasistatic equilibrium reservoirs (Sec. II.K.1) and multisite
baths (Sec. II.K.2). Other approaches such as surrogate
Hamiltonians (Baer and Kosloff, 1997; Torrontegui and
Kosloff, 2016) are not discussed, as they have not yet been
applied, to our knowledge, in boundary-driven systems.

1. Quasistatic equilibrium reservoirs

In most QMEs, the reservoirs are typically kept at constant
equilibrium states ρ̄B ∝ e−βðHB−μNBÞ. We can also model
mesoreservoirs (i.e., reservoirs of finite size that always
remain close to local equilibrium) by fixing its dynamics to
be of the form (Schaller, Nietner, and Brandes, 2014; Amato
et al., 2020)

ρ̄BðtÞ ¼
e−βðtÞ½HB−μðtÞNB�

trfe−βðtÞ½HB−μðtÞNB�g ; ð115Þ

with the time-dependent parameters βðtÞ and μðtÞ determined
from the energy and particle currents. To find these, we write
the currents to the bath as IresE ≡ ðd=dtÞ R ρdðωÞωn�ðω; tÞdω
and IresN ≡ ðd=dtÞ R ρdðωÞn�ðω; tÞdω, where ρdðωÞ denotes
the density of states of the fermionic or bosonic mesoreservoir
and n�ðω; tÞ≡ ½eβðtÞ½ω−μðtÞ� � 1�−1 are Fermi-Dirac or Bose-
Einstein distributions, respectively. Following the chain rule,
the time derivative will generate terms proportional to _μ and _β,
with the prefactors interpreted as a heat capacitance and
charge capacitance. Imposing energy and matter conservation,
we can then equate IresEðNÞ with minus the currents entering the

system [Eq. (50)], resulting in nonlinear first-order differential
equations for βðtÞ and μðtÞ. For N mesoreservoirs this will
yield 2N coupled equations. Solving these equations numeri-
cally thus allows one to track the evolution of quasistatic
equilibrium reservoirs.

2. Multisite GKSL baths for nonintegrable spin chains

LME dissipators lack information on interactions within the
system. Motivated by this, Prosen and Žnidarič (2009)
considered nonintegrable spin chains where entire chunks
(instead of single sites) were coupled to the baths (Fig. 8). The
jump operators were chosen so as to push these chunks to
specific thermal states. This cooperates with the nonintegr-
ability of the chain, yielding an accurate model of heat
transport.

(a)

(b)

FIG. 7. Comparison between (a) a standard boundary-driven
model and (b) a model involving bulk noises. In the latter,
additional baths act on all sites and are adjusted so that no current
flows between the bulk baths and the system.

11More generally, the term dephasing stands for a GKSL dissipator
D½L� with a Hermitian jump operator L. Any state satisfying ½ρS; L�
will be a fixed point; states tend to destroy coherences in the
eigenbasis of L while leaving the diagonal entries unchanged, thus
increasing the system’s entropy (Polkovnikov, 2011). Equation (112),
for example, tends to destroy coherences between different positions.
Using the logarithmic sum inequality, one can show that the entropy
increase is monotonic.
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To better understand the idea, we focus on two-site dis-
sipators. They can be parametrized as DðρÞ ¼Pi;jγij½ΓiρΓ

†
j−

ð1=2ÞfΓ†
jΓi; ρg�, with jump operators Γj acting only on the

two sites involved. For spin 1=2 systems, the indices i and j
take 16 values since, in each site, we can act with
σ� ¼ ðσx � iσyÞ=2, σu ¼ ð1þ σzÞ=2, and σd ¼ ð1 − σzÞ=2.
The matrix γij thus has 256 entries, which can be adjusted to
impose that the fixed point ofDðρÞ is a thermal state ρT on the
two sites (due to the other Hamiltonian terms, the steady state
of the entire chain will generally differ). Since ρT only has 16
entries, there is significant freedom in choosing γij. Prosen
and Žnidarič (2009) chose them so that all excited modes
decayed at the same rate. Palmero et al. (2019) chose rates
satisfying detailed balance, which improves the performance
by producing states closer to the thermal one at lower
temperatures. An extension to baths coupling to more than
two sites was studied by Guimarães, de Oliveira, and
Landi (2016).
The target state ρT ∝ e−βTHT is determined by βT and the

target Hamiltonian HT, for which two choices have been
considered. Mendoza-Arenas, Clark, and Jaksch (2015) took
HT as the reduced Hamiltonian of the two sites, including their
interactions, but neglected any couplings to other sites.
Alternatively, Žnidarič et al. (2010), Žnidarič (2011c), and
Mendoza-Arenas et al. (2019) took ρT as the reduced density
matrix of the two sites if the entire chain was in equilibrium:
ρT ∝ tr3;…;Lfexp½−βðHS − μMÞ�g, where μ is the chemical
potential and M is the total magnetization.
To evaluate the consistency of the method, one may

couple the chain to only one dissipator, or to two at the
same temperature, and check to see whether the steady state
behaves like a thermal state The first thing to point out is
that ρss does not typically approach a thermal state at βT ,
but rather at some other βS < βT. If βT is small enough, the
system will thus approach the thermal state ∝ expð−βSHSÞ.
One can then compute expectation values hOiS of different
observables and determine whether they are consistent with
those at the corresponding thermal state hOiβS . This defines
an effective temperature βO for each O. If ρS indeed
approaches a thermal state, then βO will be the same for
all observables. Using this criterion, Žnidarič (2011c) and
Palmero et al. (2019) found that the dispersion in βO’s was
smaller at high temperatures, and when they had smaller
support (such as one-site observables rather than two-
site ones).
One may also consider the trace distance [Eq. (82)] between

the reduced density matrix of a portion of ρss and that of the
same portion in a thermal state (Mendoza-Arenas, Clark, and

Jaksch, 2015; Zanoci and Swingle, 2021). This measure is
meaningful since it bounds the differences between expect-
ation values of any operator with finite eigenvalues (Mendoza-
Arenas, Clark, and Jaksch, 2015).
This methodology can be implemented with tensor net-

works (Prosen and Žnidarič, 2009; Žnidarič et al., 2010;
Žnidarič, 2011c; Mendoza-Arenas, Clark, and Jaksch, 2015;
Mendoza-Arenas et al., 2019; Palmero et al., 2019)
(Sec. III.E), resulting in an effective approach for studying
heat transport in a strongly interacting quantum system. This
has been used to study transport in chains, with and without
disorder, which we review in Sec. IV. For instance, Fig. 12(b)
was obtained with this tool. The method is accurate only at
relatively large temperatures. However, in this regime and for
large strongly correlated systems, it is more efficient than
other methods like GMEs or LMEs. The former requiresHS to
be diagonalized and the latter does not faithfully represent
thermal baths at strong coupling. Multisite baths also require a
smaller number of sites than a thermofield plus star-to-chain
mapping (Sec. II.H.2).

III. METHODS FOR BOUNDARY-DRIVEN
OPEN SYSTEMS

This section provides methods specifically designed for
boundary-driven problems. We do not review methods
designed for open quantum systems but which have not been
applied to boundary-driven problems. These include varia-
tional and cluster mean-field methods (Weimer, 2015; Jin
et al., 2016), quantum Monte Carlo methods (Nagy and
Savona, 2018), corner-space renormalization (Finazzi et al.,
2015), and neural-network Ansätze (Hartmann and Carleo,
2019; Nagy and Savona, 2019; Vicentini et al., 2019;
Yoshioka and Hamazaki, 2019; Luo et al., 2020). We also
do not discuss microscopically exact approaches like non-
equilibrium Green’s functions (Caroli et al., 1971; Meir and
Wingreen, 1992; Economou, 2006; Haug and Jauho, 2008;
Prociuk, Phillips, and Dunietz, 2010; Aeberhard, 2011;
Zimbovskaya and Pederson, 2011; Dhar, Saito, and
Hänggi, 2012; Nikolić et al., 2012; Wang, Agarwalla, and
Thingna, 2014), hierarchies of equations of motion (Tanimura
and Kubo, 1989; Tanimura, 1990), or path integrals (Aleiner,
Brouwer, and Glazman, 2002; Mühlbacher and Rabani, 2008;
Segal, Millis, and Reichman, 2010; Hützen et al., 2012).

A. Vectorization

Irrespective of the type of system-bath interaction, many
boundary-driven problems are described by linear time-local
evolution equations of the form

dρ
dt

¼ LðρÞ; ð116Þ

whereL, called theLiouvillian, is a linear superoperator. Sinceρ
is an operator, LðρÞ will involve left and right multiplication.
Notwithstanding, Eq. (116) is in the exact same spirit as a linear
matrix-vector equation like dx=dt ¼ Ax.
Since matrix-vector equations are standard in scientific

computing, it is often convenient to recast Eq. (116) in this

FIG. 8. Depiction of the multisite GKSL thermal baths model
described in Sec. II.K.2. The last two sites at each edge are in
contact with a bath that drives them toward different target states.
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form. This can be done by introducing a vectorization
operation that maps a matrix M onto a vector vecðMÞ≡ M⃗
(the two notations are used interchangeably) by stacking the
columns (Turkington, 2013), e.g.,

vec

�
a b

c d

�
¼

0
BBB@

a

c

b

d

1
CCCA: ð117Þ

The most important property of vectorization is the following:
Given arbitrary matrices A, B, and C, one obtains12

vecðABCÞ ¼ ðCT ⊗ AÞvecðBÞ: ð118Þ

Equation (118) allows us to write the superoperator L as a
matrix L̂, and hence recast Eq. (116) as

dρ⃗
dt

¼ L̂ ρ⃗ : ð119Þ

For example, take LðρÞ ¼ −i½H; ρ� þPkD½Lk�ðρÞ. Terms
such as Hρ can be written as Hρ1 so that vecðHρÞ ¼
ð1 ⊗ HÞρ⃗. Proceeding similarly with the other terms yields
the vectorized Liouvillian

L̂¼ −ið1⊗H −HT ⊗ 1Þ

þ
X
k

�
L�
k ⊗ Lk −

1

2
1⊗ L†

kLk −
1

2
ðL†

kLkÞT ⊗ 1

�
; ð120Þ

which is now a matrix of dimension d2 × d2 instead of a
superoperator.
Vectorization can also be viewed as the operation taking

jiihjj → jji ⊗ jii; ð121Þ

which is known as the Choi-Jamiolkowski isomorphism
(Jamiolkowski, 1972; Choi, 1975). As a consequence, a
d-dimensional density matrix ρ ¼Pijρijjiihjj is vectorized
to vecðρÞ ¼Pijρijjji ⊗ jii, with length d2. The inner prod-
uct between two vectorized operators is related to the Hilbert-
Schmidt inner product

vecðAÞ†vecðBÞ ¼ trðA†BÞ: ð122Þ

Accordingly, the normalization condition trðρÞ ¼ 1 is mapped
onto vecð1Þ†vecðρÞ ¼ 1, where vecð1Þ ¼Pi jii ⊗ jii is the
vectorized identity.

1. Spectral properties of the Liouvillian

Vectorization converts the master equation (116) into the
standard matrix-vector equation (119) for ρ⃗. The formal
solution is then simply

ρ⃗ðtÞ ¼ eL̂tρ⃗ð0Þ; ð123Þ

which leads to the problem of computing the exponential of
the non-Hermitian matrix L̂. To gain some intuition, we first
assume that L̂ is diagonalizable. Being non-Hermitian, how-
ever, it will have different right and left eigenvectors x⃗α and y⃗α,

L̂x⃗α ¼ λαx⃗α; y⃗†αL̂ ¼ λαy⃗
†
α; ð124Þ

associated with the eigenvalue λα [sometimes called rapidities
(Kimura, Ajisaka, and Watanabe, 2017)]. If S is a matrix with
columns x⃗α, then y⃗†α are the rows of S−1. Hence, y⃗

†
αx⃗α0 ¼ δα;α0

and

L̂ ¼
X
α

λαx⃗αy⃗
†
α ¼ SΛS−1; ð125Þ

where Λ ¼ diagðλ1; λ2;…Þ. The rapidities λα are in general
complex. In particular, for GKSL generators L̂ one finds that
they have nonpositive real parts (indicating a decay toward the
steady state) and come in complex conjugate pairs (if λα is an
eigenvalue, then so is λ�α) (Albert and Jiang, 2014). In fact, the
pairing is a necessary condition for ρ⃗ðtÞ to be Hermitian at
all t.
The steady state ρss is the fixed point of Eq. (119):

L̂ρ⃗ss ¼ 0: ð126Þ

As Evans (1977), Frigerio (1978), Evans and Hanche-Olsen
(1979), and Baumgartner and Narnhofer (2008) showed,
GKSL equations always have at least one fixed point ρss.
However, if some rapidity is purely imaginary, the system may
never relax toward it, but will instead oscillate indefinitely in a
dark subspace (D’Abbruzzo and Rossini, 2021; Buča, Booker,
and Jaksch, 2022). Moreover, ρss may not be unique (Schaller,
Kießlich, and Brandes, 2010; Buča and Prosen, 2012;
Manzano and Hurtado, 2014; Buča, Tindall, and Jaksch,
2019; Thingna and Manzano, 2021), although this is often
the case (Evans, 1977; Nigro, 2019).
For concreteness, we henceforth assume that ρss is unique.

Equation (126) then shows that ρ⃗ss ¼ x⃗0 is the right eigen-
vector of L̂ with eigenvalue λ0 ¼ 0. In addition, since the
dynamics is trace preserving, it must also follow that
vecð1Þ†L̂ ¼ 0. Thus, vecð1Þ ¼ y⃗0 is the left eigenvector of
L̂ with eigenvalue λ0 ¼ 0. Assuming that Eq. (125) holds, one

may write13 eL̂t ¼Pαe
λαtx⃗αy⃗

†
α, so Eq. (123) becomes

ρ⃗t ¼
X
α

cαeλαtx⃗α; ð127Þ

12If one defines vectorization by stacking rows instead of columns,
then one should use instead vecðABCÞ ¼ ðA ⊗ CTÞvecðBÞ.

13If L̂ is not diagonalizable, we instead get eL̂t ¼Pαe
λαt×

ðPNα−1
k¼0 tkAαkÞ, where Nα denotes the multiplicity of eigenvalue

λα and Aαk are unknown matrices that follow from the Jordan-block
decomposition of L̂. They can be determined by differentiating both
sides of this equation, which generates a set of equations for jointly
determining λα and Aαk.
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where cα ¼ y⃗†αρ⃗0 is determined by the initial conditions. The
evolution will thus be a linear combination of the right
eigenvectors x⃗α, each with weight cα and evolving in time
with an exponential dependence eλαt. The spectral properties
thus allow us to classify the decay modes α into oscillatory
[ReðλαÞ ¼ 0], purely decaying [ImðλαÞ ¼ 0], decaying spirals
[ReðλαÞ < 0 and ImðλαÞ ≠ 0], and steady states (λα ¼ 0)
(Albert and Jiang, 2014).
We can single out λ0 ¼ 0 in Eq. (127). Owing to normali-

zation, c0 ¼ trfρ0g ¼ 1, so

ρ⃗t ¼ ρ⃗ss þ
X
α≠0

eλαtcαx⃗α: ð128Þ

If ReðλαÞ < 0 for all α ≠ 0, the system will always relax to ρss
as t → ∞ for any initial condition.
The full Liouvillian spectrum can be computed in the

case of pure loss models (Torres, 2014; Nakagawa,
Kawakami, and Ueda, 2021) and was used by Buča et al.
(2020) to study the Liouvillian spectrum of the XXZ
Hamiltonian under pure loss processes. Similar methods
were used by Medvedyeva, Essler, and Prosen (2016),
Essler and Piroli (2020), and Ziolkowska and Essler
(2020) to study models in the presence of bulk noises
(Sec. II.J).
The computation of the steady state [Eq. (126)] is equivalent

to finding the eigenvector of L̂with a zero eigenvalue. As this is
much simpler for Hermitian problems, Cui, Cirac, and Bañuls
(2015) introduced a workaround by instead solving

L̂†L̂ρ⃗ss ¼ 0: ð129Þ

The eigenvectors of L̂†L̂ are different from those of L̂, but the
one with λα ¼ 0 is the same since L̂ρ⃗ss ¼ 0 implies that
L̂†L̂ρ⃗ss ¼ 0. The advantage is that L̂†L̂ is also positive semi-
definite. This is thus a variational problem, where one searches
for the eigenvector of the “effectiveHamiltonian” L̂†L̂with the
smallest eigenvalue. Unlike in the standard variational princi-
ple, here the smallest eigenvalue is explicitly known λα ¼ 0,
such that the distance from zero can be used as a measure of
convergence.
This method is particularly useful when implemented with a

tensor network (Sec. III.E). There are, however, two main
disadvantages: First, even if L̂ is local (as in nearest-neighbor
interactions), L̂†L̂ will in general be nonlocal (Gangat, I, and
Kao, 2017). Second, L̂†L̂ is often ill conditioned. In fact, if the
relaxation gap of L̂ is λ1, the first excited state of L̂†L̂ is
∼jλ1j2, which can be extremely small.
Inverting a matrix is typically a lot simpler than exponen-

tiating it. For this reason, Laplace-transform methods can
often provide a convenient advantage. Laplace transforming
Eq. (119) leads to ρ⃗ðzÞ ¼ ðz − L̂Þ−1ρ⃗ð0Þ, which has poles at
precisely zα ¼ λα. Steady-state expectation values can be
obtained via the final value theorem,

hAiss≡ lim
t→∞

trfAρðtÞg¼ lim
z→0

zvecð1Þ†½ðAT ⊗ 1Þðz− L̂Þ−1�ρ⃗ð0Þ:

In addition, if one can decompose the Liouvillian L̂ ¼ L̂0 þ
L̂1 into a simple part L̂0 and a perturbation L̂1, it is possible to
set up a series expansion of the solution as ðz − L̂Þ−1 ¼P∞

n¼0½P0ðzÞL̂1�nP0ðzÞ, where P0ðzÞ ¼ ðz − L̂0Þ−1. This is
the analog of Eq. (101) in the z domain. When the structure of
L̂0 is simple, it is often possible to transform the solutions
back to the time domain. Other perturbative methods are
reviewed in Sec. III.D.
The vectorization recipe of Eqs. (117) and (121) chooses a

specific basis to represent L̂ and other operators. For instance,
in the case of 2 × 2 matrices this basis is

q1 ¼
�
1 0

0 0

�
; q2 ¼

�
0 0

1 0

�
;

q3 ¼
�
0 1

0 0

�
; q4 ¼

�
0 0

0 1

�
;

which, when vectorized, leads to the four basis vectors
q⃗1 ¼ ð1; 0; 0; 0Þ, q⃗2 ¼ ð0; 1; 0; 0Þ, etc. With the inner product
[Eq. (122)], however, one may generalize this for arbitrary
bases of operators. For instance, another natural choice
involves the Pauli matrices (supplemented by 1), which are
orthogonal with respect to Eq. (122) (but not orthonormal). It
can also be useful to split populations (diagonals) and
coherences (off-diagonals) in some chosen basis, such as in
models where their evolutions are decoupled. Given a set of
orthogonal matrices fqig, the Liouvillian can always be
written as

L̂ ¼
X
ij

Lijq⃗iq⃗
†
j ; Lij ¼

trfq†iLðqjÞg
trðq†i qiÞtrðq†jqjÞ

: ð130Þ

For spin chains, a natural choice of basis is the set of tensor
products σi1 ⊗ σi2 ⊗ � � � ⊗ σiN with in ∈ f0; x; y; zg. In this
case, one also has the freedom of choosing how to order the
corresponding vectorized space. In fact, the standard vecto-
rization recipe in Eq. (121) is not good, as it leads to long-
range interactions. Alternative orderings were discussed by
Casagrande, Poletti, and Landi (2021) and may lead to
significant numerical advantages in tensor network simula-
tions (Sec. III.E).

2. Symmetries

Symmetries can significantly reduce the vector space of a
computation. For instance, in the unitary (Hamiltonian)
dynamics of a spin chain with number conservation, such
as the XXZ model with L spins [Eq. (12)], one does not
need to store 2L entries, but instead only ð L

Nu
Þ ¼ L!=

½Nu!ðL − NuÞ!�, where Nu is the number of spins up. As
discussed by Buča and Prosen (2012) for GKSL QMEs, there
are two main types of symmetries. A “weak” symmetry is a
unitary S obeying

SLðρÞS† ¼ LðSρS†Þ: ð131Þ

Conversely, a “strong” symmetry is one in which
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½S;H� ¼ 0; ½S; Lk� ¼ 0; ð132Þ

where H is the Hamiltonian and Lk are the jump operators.
Strong symmetries imply the weak one. As Buča and
Prosen (2012) showed, for the strong symmetry there is at
least one steady state for each symmetry sector. The
evolution of elements within a symmetry sector always
remain in that sector, allowing simulations to be performed
with a smaller vector space. For instance, if both the
Hamiltonian and jump operators preserve the total mag-
netization (such as an XXZ chain with dephasing), there is
a strong symmetry and hence multiple steady states. The
dynamics within a subspace with Nu spins up is then
represented by a density matrix with fðL!Þ=½Nu!ðL −
NuÞ!�g2 elements, as in the unitary case.
Typically, however, the total magnetization or the total

number of particles is not conserved due to the dissipators
at the boundaries; cf. Eq. (17a). In this case, only a weak
symmetry applies and the steady state is unique. If one is
interested solely in ρss, it may suffice to study much
smaller matrices. To see why, consider the XXZ chain
under the LME (17a). Instead of using the Pauli basis
jσ1;…; σLi, we bundle the states in the form jm⃗M;Mi,
where M is the total magnetization and m⃗M labels all states
with magnetization M. We can then decompose

ρ ¼
X
M;M0

X
m⃗M;m⃗0

M0

ρ
m⃗M;m⃗0

M0
M;M0 jm⃗M;Mihm⃗0

M0 ;M0j: ð133Þ

Terms such as σ−i ρσ
þ
i will generate transitions between

different M and M0. But they do so by the same amount,
i.e., M → M − 1 and M0 → M0 − 1. The difference M −M0

is hence preserved, which defines the different symmetry
sectors. Furthermore, if ρss is unique, it must belong to a
sector with M −M0 ¼ 0 since these are the only ones with
unit trace. Hence, ρss lives in a space with dimension
ð2LÞ!=½ðLÞ!ðLÞ!�. Works relying heavily on symmetries
were given by Žnidarič (2013a, 2013b), Guo and Poletti
(2017a, 2019), Sá, Ribeiro, and Prosen (2020a), and Lee
et al. (2022). Some properties of the emerging currents are
discussed in Sec. IV. Another example, which can help to
build some intuition, is superradiant decay and other
Dicke-like collective processes (Gross and Haroche,
1982; Garraway, 2011), where it is much more convenient
to use the large-spin representation instead of local Pauli
matrices.

B. Noninteracting systems and Lyapunov equation

We consider here a generic fermionic or bosonic system
with L sites and annihilation operators ai. The enormous
complexity of boundary-driven systems lies in the exponen-
tially large Hilbert space dimension. In some cases, however,
the full dynamics is captured entirely by pairwise correlations
such as ha†jaii. This will be the case for QMEs such as
Eq. (11), where the Hamiltonian is at most quadratic in ai and
a†i , and the jump operators are at most linear. Systems of this
form are said to be Gaussian, or noninteracting. It is

convenient to organize the correlations into an L × L covari-
ance matrix14

Cij ¼ ha†jaii − ha†jihaii; ð134Þ

where the choice of ordering a†jai, instead of a†i aj, is to
simplify subsequent calculations. In some cases, a more
general definition that includes terms such as haiaji is
necessary. This is further discussed later. When the
Hamiltonian is quadratic and the jump operators are linear,
C will satisfy the Lyapunov equation

dC
dt

¼ −ðWCþ CW†Þ þD; ð135Þ

where W and D are matrices that depend on the parameters of
the QME (see the following example). The solution is

CðtÞ ¼ e−WtCð0Þe−W†t þ
Z

1

0

dt0 e−Wðt−t0ÞDe−W
†ðt−t0Þ: ð136Þ

Convergence to a steady state will thus depend on whether the
eigenvalues of W have positive real parts. When this is the
case, the steady state will satisfy

WCþ CW† ¼ D: ð137Þ

Routines for solving Eq. (137) can be found in most scientific
computing libraries, allowing one to study sizes as large as
L ¼ 10 000 (Bartels and Stewart, 1972; Golub, Nash, and Van
Loan, 1979).
The Lyapunov equation is not restricted to GKSL dynam-

ics, as it also appears in other noninteracting open systems
(Purkayastha, 2022). For example, consider a tight-binding
Hamiltonian HS ¼Pijhija

†
i aj evolving according to the

following GKSL master equation:

dρS
dt

¼ −i½HS; ρS� þ
X
i;j

γ−ji

�
aiρSa

†
j −

1

2
fa†jai; ρSg

�

þ γþij

�
a†i ρSaj −

1

2
faja†i ; ρSg

�
ð138Þ

for Hermitian positive semidefinite matrices γþ and γ−, with
entries γþij and γ−ij (mind the reverse ordering of the indices in
γ−). To derive the Lyapunov equation it suffices to assume that
haii ¼ 0 since the form of the final result will not be affected
by this term. We thus write dCij=dt ¼ trfa†jaidρS=dtg and
use Eq. (138), together with the fermionic or bosonic algebras.
As a result, we precisely find Eq. (135), with

W ¼ ihþ ðγ− � γþÞ=2; D ¼ γþ; ð139Þ

14Gaussian states (assuming that haii ¼ 0) have the form

ρ ¼ e−
P

i;jMija
†
i aj=Z, where M is a matrix related to C by C ¼

ðeM � 1Þ−1 for fermions and bosons, respectively. Moreover,
Z ¼ detð1� e−MÞ�1.
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where the upper sign is for fermions and the lower sign is for
bosons. In LMEs, γ� are diagonal (Sec. II.C.4): For fermions,
γþii ¼ γifi and γ−ii ¼ γið1 − fiÞ, with fi the Fermi-Dirac
distributions. For bosons, one instead has γþii ¼ γiNi and
γ−ii ¼ γið1þ NiÞ, where Ni are now the Bose-Einstein dis-
tributions. The Lyapunov matrices therefore become identical
for fermions and bosons: W ¼ ihþ γ=2 and Dii ¼ γini, with
ni either fi or Ni, and γ ¼ diagðγiÞ.
Next suppose that one has only nearest-neighbor hopping in

HS, such that hii ¼ ϵ and hi;i�1 ¼ −J; cf. Eq. (15). Moreover,
suppose that the system is coupled to two LME baths in the
first and last sites, with equal coupling strengths γ, but
different n1 and nL. As Karevski and Platini (2009),
Žnidarič (2010b), and Asadian et al. (2013) showed, the
solution of Eq. (135) will be a Toeplitz matrix with diagonals
ha†jaji ¼ ðn1 þ nLÞ=2þ ðγ=2JÞxðδj;L − δj;1Þ and a constant

first off-diagonal ha†jþ1aji ¼ ix, where x ¼ γJðnL − n1Þ=
ðγ2 þ 4J2Þ (with all other entries being zero). The current
between sites i and iþ 1 is IN ¼ iJha†iþ1ai − a†i aiþ1i ¼ 2x.
This is the solution discussed in Sec. II.B that provides the
prototypical example of ballistic transport, where IN is
independent of L and the occupations are uniform along
the chain, except in the first and last sites.
The previous example led to a closed set of equations for

Cij. This is no longer the case when the Hamiltonian contains

pairing or squeezing terms a†i a
†
j , or when the dissipators

contain terms such as a†i ρSa
†
j and aiρSaj. Examples include

the XY spin chain and squeezed baths, respectively. In these
cases one may instead use Majorana or quadrature operators
qi ¼ ai þ a†i and pi ¼ iða†i − aiÞ and define a new 2L × 2L
covariance matrix Θ ij ¼ ð1=2ÞhfXi; Xjgi − hXiihXji, where
X ¼ ðq1;…; qL; p1;…; pLÞ. This will follow a Lyapunov
equation of the same form as Eq. (135), but with new matrices
W and D of size 2L (Barthel and Zhang, 2022).
Next we turn to the somewhat peculiar case of dephasing

[Eq. (112)], which is defined by jump operators Li ¼ a†i ai.
Since they are not linear, the dynamics will not be Gaussian,
and one expects the equation for C (or Θ ) to no longer
be closed (i.e., to depend on higher-order moments). For
dephasing, however, it turns out that the equations close. In
fact, one may readily verify that

P
l trfa†jaiDdeph

l ðρSÞg ¼
−Cijð1 − δijÞ, which depends only on C. Dephasing thus
causes the off-diagonal elements to decay while keeping the
diagonal ones intact. Next suppose that we append to
Eq. (138) a set of dephasing baths on all sites

P
iΓD½a†i ai�

of strength Γ. The resulting equation for C is then given by
(Žnidarič, 2010a, 2011a; Asadian et al., 2013; Malouf et al.,
2020)

dC
dt

¼ −ðWCþ CW†Þ þD − 2ΓΔðCÞ; ð140Þ

where ΔðCÞ ¼ C − diagðC11;…; CLLÞ is the off-diagonal part
of C.
Owing to this new element, Eq. (140) is no longer a

Lyapunov equation, although it is still a closed set of linear
equations for C (and hence still tractable). A proposal to

simulate this dynamics in trapped ions was put forth by
Bermudez, Bruderer, and Plenio (2013).
The solution for a uniform tight-binding chain can also be

obtained analytically when dephasing is present (Žnidarič,
2010a; Asadian et al., 2013). The resulting current is

IN ¼ 2γJ
4J2 þ γ2 þ 2γΓðL − 1Þ ðnL − n1Þ; ð141Þ

which now depends on L. In fact, for any Γ ≠ 0, there is
always a sufficiently large size for which IN ∼ 1=L.
Dephasing therefore renders the transport diffusive for any
Γ > 0. The occupations ha†i aii are also modified and vary
linearly between n1 and nL.

C. Third quantization

This section combines concepts from Secs. III.A and III.B.
Equation (118) illustrates how vectorized operators such as L̂
live in a doubled Hilbert space. This is also clear from the
Choi-Jamiolkowski isomorphism in Eq. (121). Consider for
concreteness a system composed of bosons with operators ai.
Equation (118) then implies that vecðaiρÞ ¼ ð1 ⊗ aiÞvecðρÞ
and vecðρaiÞ ¼ ðaTi ⊗ 1ÞvecðρÞ. In the vectorized space, we
therefore end up with two species of particles, the “left-
multiplying kind” and the “right-multiplying kind.” That is,
we can define bi ¼ 1 ⊗ ai and ci ¼ ai ⊗ 1, and therefore
establish the mappings ðai•Þ → bi and ð•aiÞ → c†i . The
problem has thus been recast into a doubled Hilbert
space inhabited by two bosonic species. For fermions this
recipe also works, but some subtleties arise; see Prosen (2008)
for details.
This is the idea behind “third quantization,” which was

introduced by Prosen (2008) and built upon by Prosen and
Seligman (2010), Prosen and Žunkovič (2010), Banchi,
Giorda, and Zanardi (2014), Guo and Poletti (2017b,
2018), Prosen (2010), and Yamanaka and Sasamoto (2021).
It is equivalent to the superfermion approach taken by
Dzhioev and Kosov (2011), although the latter requires only
matrices of size 2L, not 4L.
The situation simplifies whenHS is at most quadratic in the

ai and the jump operators Lk are at most linear (Sec. III.B). In
this case, Eq. (120) becomes a quadratic form in the new set of
4L operators d ¼ ðb1; b†1; c1; c†1; ;…; bL; b

†
L; cL; c

†
LÞ:

L̂ ¼
X4L
μ;ν¼1

Λμνd
†
μdν; ð142Þ

with a 4L × 4L matrix of coefficients Λμν. For instance,

the master equation (138) can be rewritten as L̂ ¼
−
P

ijðWijb
†
i bj þW†

ijc
†
i cjÞ þ

P
ijðγ−ijcibj þ γþijc

†
jb

†
i Þ, where

W is as defined after Eq. (135).
Third quantization generalizes the Lyapunov equa-

tion (135). If one is interested only in the covariance matrix
and currents, then Eq. (135) suffices. However, with Eq. (142)
one now has access to the full quadratic Liouvillian, and
therefore to its entire spectrum. In fact, as Prosen (2008)
showed, Eq. (142) can always be put in diagonal form, as
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L̂ ¼ −2
P

2L
k¼1λkf

0
kfk, where fk and f0k are normal modes of

the Liouvillian that, respectively, annihilate and create a
particle in mode k (since L̂ is not Hermitian, f0k ≠ f†k). In
turn, the c-number quantities λk are the rapidities in Eq. (125).
For tight-binding Hamiltonians or local boundary drives, their
computation can simplify considerably and may even allow
for solutions in closed form (Yueh, 2005; Kouachi, 2006;
Willms, 2008; Da Fonseca and Kowalenko, 2020).

D. Perturbative approaches

It is often impossible to find the steady state analytically
[Eq. (116)], but it may be possible to gain important
insights using Liouvillian perturbation theory. Consider a
Liouvillian of the form L ¼ L0 þ μL1, where μ is a small
parameter and L0 and L1 are in GKSL form. We decom-
pose ρS in a power series in μ as ρS ¼Piμ

iρi. The steady-
state equation LðρSÞ ¼ 0 then results in a set of recurrence
relations L0ðρ0Þ ¼ 0 and L0ðρnÞ ¼ −L1ðρn−1Þ for n ≥ 1,
which can be solved sequentially; see Michel, Gemmer,
and Mahler (2004), Lenarčič and Prosen (2015), and
Žnidarič (2019). This approach is particularly relevant
for boundary-driven problems where the bath couplings
are the perturbation.
In some cases the steady state ρ0 of L0 may be degenerate,

forcing one to resort to degenerate perturbation theory instead.
For example, if one chooses L0 ¼ −i½HS; •�, the steady state
can be any density matrix diagonal in the eigenbasis of HS.
This degeneracy can be lifted when L0 also includes local
dephasing terms like D½a†lal� and D½σzl � (Sec. II.J), leading to
a unique ρ0, which is usually the identity matrix (infinite-
temperature state). If the Hamiltonian is number conserving
(e.g., it conserves the total number of particles or the total
magnetization), then ρ0 would still be degenerate and formed
by mixed states proportional to the identity in each number
sector.
Perturbation theory for the evaluation of the steady state

and the relaxation gap has been used in various works on
boundary-driven problems; see Flindt et al. (2010),
Žnidarič, Žunkovič, and Prosen (2011), Žnidarič (2011b,
2015, 2019), Žnidarič and Horvat (2013), Buča and Prosen
(2014), Lenarčič and Prosen (2015), Guo and Poletti
(2016), and Žnidarič and Ljubotina (2018). Perturbation
theory has also been used for more general problems of
open quantum systems; see García-Ripoll et al. (2009),
Poletti et al. (2012, 2013), Cai and Barthel (2013), Sciolla,
Poletti, and Kollath (2015), and Medvedyeva, Prosen, and
Žnidarič (2016).

E. Tensor network methods

Tensor networks form an extremely effective class of
numerical methods for boundary-driven, strongly interacting
quantum systems. In the following we review the general ideas
and strategies, with a focus on open quantum systems and
boundary-driven transport problems. For general reviews see
Schollwöck (2005, 2011), Verstraete, Murg, and Cirac (2008),
Orús (2014), and Silvi et al. (2019), and for reviews
addressing open quantum systems see Daley (2014),

Bertini et al. (2021), and Weimer, Kshetrimayum, and Orús
(2021). We also call attention to the work of Brenes et al.
(2020), who developed tensor network methods for handling
dissipative, boundary-driven thermal machines, and we also
highlight various publicly available tensor network libraries
(Dolfi et al., 2014; Fishman, White, and Stoudenmire; Kao,
Hsieh, and Chen, 2015; Al-Assam, Clark, and Jaksch, 2017;
Jaschke, Wall, and Carr, 2018; Jaschke, Carr, and de
Vega, 2019).

1. Introduction to tensor networks and matrix product states

We consider a state jψi ¼P cσ1;…;σL jσ1;…; σLi represent-
ing a chain with L sites, each with d local levels. One can
always write the coefficients cσ1;…;σL as a product of tensors,
each with a number of indices depending on the geometry of
the system considered. A particularly effective case is that of
1D systems, in which one can write

cσ1;…;σL ¼
X

a0;…;aL

Mσ1
a0;a1M

σ2
a1;a2 � � �MσL

aL−1;aL ; ð143Þ

where, for each σl, Mσl is a matrix with auxiliary indices al−1
and al. This is referred to as a matrix product state (MPS).
MPSs are not the only type of tensor network. But since most
boundary-driven systems studied are 1D, where MPSs work
particularly well, we henceforth concentrate on this structure.
The MPS Ansatz is exact if we allow the size of the matrices
Mσl to grow unboundedly. However, this would be of little
interest. The advantage instead is that accurate representations
can often be obtained even with fixed maximum sizes DB,
called the bond dimension. This is because area laws predict
that the entanglement entropy of the ground state of gapped
short-range Hamiltonians grows as LDdim−1, where Ddim is the
dimensionality (Bombelli et al., 1986; Srednicki, 1993;
Audenaert et al., 2002; Plenio et al., 2005; Wolf, 2006;
Eisert, Cramer, and Plenio, 2010). In 1D critical systems the
entropy grows at most logarithmically (Vidal et al., 2003;
Latorre, Rico, and Vidal, 2004).
For a fixed DB, the memory requirements go as Ld2DB

2,
i.e., linearly with L, a significant advantage compared to the
exponential scaling of the coefficients cσ1;…;σL . Given the
MPS Ansatz in Eq. (143), tensor network algorithms aim to
find the matrices Mσl that most accurately approximate a
particular state for a fixed DB. From a mathematical point of
view, MPSs are thus simply an algorithm to approximate a
vector in a high-dimensional space by a product of matrices. It
can be implemented beyond the evaluation of ground states to
study time evolutions of unitary and dissipative systems and in
the computation of steady states. In most of these scenarios,
however, there is no guarantee that the Ansatzwill be accurate.
Brandão et al. (2015) and Cubitt et al. (2015) showed that area
laws also exist for rapidly mixing dissipative systems, and
Gullans and Huse (2019) showed the existence of NESSs with
local equilibrium, which can be effectively represented using
tensor networks. In any case, one can systematically study the
equilibrium and nonequilibrium properties of a system as a
function of the maximum bond dimension DB and can
estimate the accuracy of these results.
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2. Tensor networks and boundary-driven systems

Any normalized vector can represent a physical state, but
not every matrix, even with unit trace, represents a physical
density matrix, since the latter must be positive semidefinite.
Various approaches have been suggested to express density
matrices as tensor networks in a way that preserves positivity,
either using the structure of Eq. (145) (Werner et al., 2016;
Minganti et al., 2018; Weimer, Kshetrimayum, and Orús,
2021) or via purification techniques (Nielsen and Chuang,
2000). However, these approaches have not been largely
pursued. One possible reason is that QMEs guarantee that
any accurate representation of steady states will be physical.
In other words, if one approximates the steady state well
enough, relevant physical properties can be accurately evalu-
ated, even if the density matrix is not exactly positive
semidefinite.
One can thus choose to write the density matrix as a matrix

product operator

ρ ¼
X

σ1 ;…;σL
σ0
1
;…;σ0

L

ρ
σ0
1
;…;σ0L

σ1;…;σL jσ1;…; σLihσ01;…; σ0Lj

¼
X

σ1 ;…;σL;σ
0
1
;…;σ0

L
a0 ;…;aL

M
σ1;σ01
a0;a1 � � �MσL;σ0L

aL−1;aL jσ1;…; σLihσ01;…; σ0Lj;

ð144Þ

where each Mσl;σ0l is a matrix with indices al−1 and al of
dimension smaller than the bond dimension DB. Taken
together with vectorization (Sec. III.A), this Ansatz can then
be used to directly study the time evolution and the steady
state. For a review of methods for time evolving tensor
networks, see García-Ripoll (2006), Žnidarič et al. (2017),
and Paeckel et al. (2019). Another approach is to compute the
steady state as the ground state of the superoperator L̂†L̂, as
discussed in Eq. (129) and by Cui, Cirac, and Bañuls (2015).
Similarly, one may use ground-state-like search algorithms
while looking for the null vector of the non-Hermitian
superoperator L̂ (Mascarenhas, Flayac, and Savona, 2015;
Bairey et al., 2020). Finally, one may also evolve the density
matrix in the Heisenberg picture (Hartmann et al., 2009).
Clark et al. (2010) showed that, depending on the observables
studied, this can lead to significant improvements in effi-
ciency, and even to exact solutions.
An important question is when to stop the simulation. This

depends on the quantities of interest, which in our case is
usually the current. In the steady state, the current is the same
for all bonds of the system, but in the transient this may not be
the case. It is thus common to compute the standard deviation
of the current over different bonds, and to stop when this falls
below a chosen threshold.

3. Approaches to improve the performance

Although tensor networks allow one to study large, strongly
interacting boundary-driven systems, the numerical calcula-
tions can still be demanding. It is thus worth considering
different ways to improve the numerical performance of the
algorithm. Tensor networks can be used to describe any type

of quantum systems, whether bosonic, fermionic, spins, or
mixtures. Bosonic systems can be particularly demanding
because the local Hilbert space dimension d may be large. At
large temperatures, the relevant terms of Mσl ;σ0l are usually
those for which σl ≈ σ0l. Considering only such terms can
result in a significant reduction of memory requirements (Guo,
Mukherjee, and Poletti, 2015).
Another improvement is to account for symmetries

(Sec. III.A.2), more notably the conservation of a quantum
number such as total particle number or total magnetization.
For instance, in Eq. (143) one can also write Mσl

ðnl−1;al−1Þ;ðnl;alÞ,
where al−1 and al still represent the auxiliary indices and nl
represents the sum of the physical indices σl until site l, i.e.,
nl ¼

P
l
m¼1 σm, which implies that nl ¼ σl þ nl−1. This more

detailed data structure allows one to save considerable
memory, as one needs to deal with smaller matrices (although
many more of them) (McCulloch, 2007; Hubig, McCulloch,
and Schollwöck, 2017; Silvi et al., 2019). This can be
generalized to open quantum systems, but one needs to
account for the quantum numbers in both the bra and the
ket of the density matrix. Moreover, while the Hamiltonian
does not change the total quantum number, the dissipators
generally do. A scheme that automatically adapts to such
changes in quantum number was introduced by Guo and
Poletti (2019). Taking this into account, however, works best
when the fluctuations in the particle number are small, such as
when they are far from the infinite-temperature state. In the
latter, a simpler non-number-conserving code would typically
be more effective. Similar ideas in a system with non-Abelian
symmetry were studied by Moca et al. (2022).
Parallelization of the time evolution also improves the

performance. Schollwöck (2011) discussed how to apply the
evolution operator to the MPSs in parallel, alternating between
even and odd bonds. This can be done while preserving
the canonical structure of the MPSs, allowing one to reduce
the local bond dimensions in parallel. An alternative is the
algorithm developed by Stoudenmire and White (2013) and
recently adapted for time evolution by Secular et al. (2020). In
this case one divides the sweep over the full system into
sweeps over different portions of the system, and distributes
these internal sweeps to different computational nodes, letting
the nodes communicate once they reach their shared bond.
Recently Rams and Zwolak (2020) and Wójtowicz et al.

(2020) presented a way to significantly reduce the bond
dimension based on the realization that, for fermionic systems,
the star configuration (Sec. II.H.2) requires a lower bond
dimension than the chain configuration; see also Brenes et al.
(2020). They also grouped the eigenmodes of the two baths in
increasing order of energy, allowing the correlations between
baths modes to be concentrated within a narrow energy band
close to their Fermi levels. This is particularly effective in the
common scenarios in which an energy mode from one bath is
scattered to a mode of similar energy in a different bath. Still
on the topic of the star-to-chain mapping, Tamascelli et al.
(2019) and Nüßeler et al. (2020) obtained improvements
while specifically designing a thermofield transformation
approach (Sec. II.H.2) for system-bath couplings with
Hermitian bath operators. Tensor network algorithms have
also been used to simulate Redfield QMEs [Eqs. (26)
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and (27)], reaching system sizes much larger than what
can be obtained using exact diagonalization (Xu, Thingna
et al., 2019).

F. Analytical solutions for interacting chains

Analytical solutions of interacting boundary-driven models
are seldom available due to the enormous mathematical
complexities involved. When they are, it usually concerns
restricted scenarios or extremes of parameter space.
Notwithstanding, these solutions offer invaluable insight,
precisely because they are exact. Here we review the most
famous example: an XXZ chain (12) under maximally biased
local dissipators, which can be solved in terms of MPSs. This
was discovered by Prosen (2011a, 2011b) and generalized by
Karevski, Popkov, and Schütz (2013). Similar ideas were
subsequently used by Popkov, Karevski, and Schütz (2013)
and Popkov and Presilla (2016) to show that there are special
configurations associated with twisted Lindblad operators of
the form σx cos θ − iσy þ σz sin θ, where the NESS is found to
be in a product state despite carrying a finite current (which is
highly unusual). A matrix product solution, in a similar spirit,
was also found by Prosen (2014) and Popkov and Prosen
(2015) for the open Fermi-Hubbard chain. Recently these
developments were generalized to encompass general XYZ
chains and twisted jump operators (Popkov, Prosen, and
Zadnik, 2020a, 2020b).
The system is taken to be an XXZ chain [Eq. (12)] with zero

magnetic field and LME dissipators acting on the first and last
sites, as in Eq. (16). The drives are taken as f1 ¼ 1 and
fL ¼ 0, meaning the dissipators try to fully polarize the first
and last spins in opposite directions. The master equation (16)
is thus described by only the two jump operators

ffiffiffi
γ

p
σþ1 andffiffiffi

γ
p

σ−L, where γ is the coupling strength. We mention up front
that the solution obtained in this limit is not representative
of what is found for other values of fi. For instance, in this
case transport is found to be subdiffusive (I ∼ 1=L2) when
Δ ¼ 1. Conversely, at high temperatures (f1 ¼ 0.5þ δ and
fL ¼ 0.5 − δ) it is superdiffusive (Žnidarič, 2011b); see
Sec. IV for more details.
The solution given by Prosen (2011a, 2011b) starts by

decomposing the steady state as

ρ ¼ SS†

trðSS†Þ ð145Þ

for some operator S. This is always possible for any ρ since
SS† is always a positive semidefinite operator. However, such
a decomposition is often not useful, since, when plugged into
the master equation (16), it leads to a nonlinear equation for S.
The main innovation of Prosen (2011a, 2011b) was to prove
that S in this problem is given by a matrix product Ansatz. One
can approach the problem as follows. Let Hi denote the
Hilbert space of each spin degree of freedom (so that both ρ
and S live inH1 ⊗ � � � ⊗ HL). We then introduce an auxiliary
space A and write S as

S ¼ hϕjΩ1 ⊗ � � � ⊗ ΩLjψi; ð146Þ

where Ωi ∈ Hi ⊗ A are operators that live in the joint Hilbert
space of site i and the auxiliary space. Moreover, jϕi and jψi
are states that act only on A. As a consequence, the sandwich
in Eq. (146) effectively traces out A, leaving S as a state only
in H1 ⊗ � � � ⊗ HL, as it should.
The goal then is to adjust the parameters in Eq. (146) so that ρ

is ultimately a steady-state solution of Eq. (16). This first
involves deciding what properties the auxiliary spaceA should
have. The methods used for doing so are nontrivial, so we state
only the result. Since Ωi ∈ Hi ⊗ A, we can parametrize

Ωi ¼ A0σ
0
i þ Aþσþi þ A−σ

−
i þ Azσ

z
i ; ð147Þ

for some operators Aα ∈ A. This allows us to rewrite Eq. (146)
as

S¼
X

α1;…;αL∈f0;þ;−;zg
hϕjAα1 ;…;AαL jψiσα1 ⊗ � � �⊗ σαL : ð148Þ

Hence, S is written as a linear combination of all possible basis
elements σα1 ⊗ � � � ⊗ σαL .
Prosen (2011a, 2011b) showed that all coefficients involv-

ing σzi can be chosen to vanish. This leaves only three
operators to be specified: A0, Aþ, and A−. Next they showed
that A can be chosen as an infinite-dimensional Hilbert space
with basis elements jri; r ¼ 0; 1; 2; 3;… and

A0 ¼ j0ih0j þ
X∞
r¼1

a0r jrihrj; ð149Þ

Aþ ¼ ðiγ=2Þj0ih1j þ
X∞
r¼1

aþr jrihrþ 1j; ð150Þ

A− ¼ j1ih0j þ
X∞
r¼1

a−r jrþ 1ihrj; ð151Þ

where aαr are complicated coefficients depending on γ and Δ;
see Prosen (2011a) for explicit definitions. For Δ ≠ 1, these
operators are found to satisfy a q-deformed SUð2Þ algebra,
which reduces to the standard SUð2Þ algebra for Δ ¼ 1
(Karevski, Popkov, and Schütz, 2013). Finally, it suffices to
take both jϕi and jψi to be j0i: A systematic calculation of
arbitrary correlation functions from this solution was made by
Buča and Prosen (2016).
Extracting physical observables from this formal solution is

nontrivial for Δ ≠ 1. But whenΔ ¼ 1, it can be shown that the
magnetization current (18) reduces to (Landi and Karevski,
2015)

I ¼ 2

γ

ðBL−1Þ00
ðBLÞ00

;

Bkl ¼ 2





k − i
2γ





2δkl þ l2δk;l−1þ




l −

i
γ





2δk;lþ1; ð152Þ

with k;l ¼ 0; 1; 2;…; L. Equation (152) therefore involves
the entries of the powers BL−1 and BL of a (Lþ 1)-dimen-
sional matrix, allowing one to compute the current for
arbitrarily large sizes. Plots of the behavior of I vs L and γ
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are shown in Fig. 9. As it can be seen, the presence of
interactions dramatically alters the current profile, as com-
pared to the ballistic scenario of Sec. III.B. The dependence of
I on L is found to depend sensibly on γ. For small γ transport
is roughly ballistic, while for large γ it becomes subdiffusive,
scaling as I ∝ 1=L2. For sufficiently large L, it always
eventually becomes subdiffusive for any γ > 0.

G. Quantum trajectory approach

A method commonly used to describe open quantum
systems, including boundary-driven problems (Wichterich
et al., 2007), involves quantum trajectories, also known as
quantum jumps or Monte Carlo wave functions (Dalibard,
Castin, and Mølmer, 1992; Dum et al., 1992; Dum, Zoller,
and Ritsch, 1992; Carmichael, 1993; Mølmer, Castin, and
Dalibard, 1993; Plenio and Knight, 1998; Breuer and
Petruccione, 2002; Gardiner and Zoller, 2004; Jacobs
and Steck, 2006; Wiseman and Milburn, 2010). The main
idea is not to solve the master equation, but rather to
stochastically evolve wave functions such that the average
of these wave functions reproduces the dynamics of the QME.
A GKSL QME of the form of Eq. (11) can be rewritten as

dρS
dt

¼ −iðHeffρS − ρSH
†
effÞ þ

X
k

LkρSL
†
k; ð153Þ

where Heff is a non-Hermitian Hamiltonian given by

Heff ¼ HS −
i
2

X
k

L†
kLk: ð154Þ

The last term in Eq. (153) represents discrete jumps, while the
first represents a no-jump evolution. As a method for quantum
trajectories, one can thus use the following algorithm. Evolve
a wave function jψðtÞi under Heff using a small time δt:

jψ̃ðtþ δtÞi ¼ ½1 − iHeffδt�jψðtÞi: ð155Þ

Since Heff is not Hermitian, the norm of the state reduces to
hψ̃ðtþ δtÞjψ̃ðtþ δtÞi ≃ 1 − δp, where δp ¼ δt

P
khψðtÞj×

L†
kLkjψðtÞi ≔

P
kδpk. Here δpk is interpreted as the proba-

bility of performing the quantum jump Lk and 1 − δp is the

probability of performing no jump during the time interval δt.
Thus, with probability δpk the state is updated to

jψðtþ δtÞi → jψk
jumpi ¼

LkjψðtÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hψðtÞjL†

kLkjψðtÞi
q ; ð156Þ

while with probability 1 − δp it goes to

jψðtþ δtÞi → jψ stayi ¼
jψ̃ðtþ δtÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihψ̃ðtþ δtÞjψ̃ðtþ δtÞip : ð157Þ

One may then verify that the ensemble-averaged evolution
ρðtþ δtÞ ¼ ð1− δpÞjψ stayihψ stayj þ

P
k δpkjψk

jumpihψk
jumpj can

be written to order δt2 as

ρðtþ δtÞ ≃ ρðtÞ − iδt½HeffρðtÞ − ρðtÞH†
eff � þ δt

X
k

LkρðtÞL†
k;

which is equivalent to Eq. (153).
This implies that the expectation value of any observable O

can also be evaluated by averaging over the trajectories
hOi ¼ trfρðtÞOg ¼ hψðtÞjOjψðtÞi. Computing a single tra-
jectory this way requires significantly less effort than solving
Eq. (153). One has to make sure that this numerical advantage
is not scotched by the required sampling (a process that is
easily parallelizable, though).
It is natural to try to bring together quantum trajectories with

tensor networks (Sec. III.E). Thiswas reviewedbyDaley (2014),
who also reviewed the quantum trajectory approach in many-
body settings. The benefits of such an approach were studied by
BonnesandLauchli (2014),whoanalyzed thegrowthof thebond
dimension required for an accurate description of the system.An
important element that they identified is the size of the local
Hilbert spaced,whichmustbe squared for densitymatrices. This
has important consequences on the memory requirements of the
algorithms. Quantum trajectories can also be preferred when the
relaxation time to the NESS is exponentially long (Benenti,
Casati, Prosen, Rossini, and Žnidarič, 2009). Recently Wolff,
Sheikhan, and Kollath (2020) considered different ways of
computing two-time correlations with quantum trajectories,
showing that the preferred approach to this problem also depends
on the problem at hand.

IV. PROPERTIES OF BOUNDARY-DRIVEN OPEN
SYSTEMS

A. Overview of different types of steady transport regimes

We begin with an introduction to the phenomenology of
transport in boundary-driven systems. This is usually char-
acterized by how the current (such as that of energy or
matter) I scales with the system size L. For sufficiently
large L this usually has the form I ∼ 1=Lα [Eq. (2)]. The
different transport regimes were discussed in Sec. I and are
summarized in Table I. They also manifest as signatures in
the expectation values of the quantity considered (such as
the spin or energy). For instance, ballistic transport yields
roughly constant values through the system that are inde-
pendent of L. This is illustrated by the blue solid line in

(a) (b)

FIG. 9. Steady-state currents in the Heisenberg chain (XXZ with
Δ ¼ 1) obtained from the exact solution of Eq. (152). (a) Depend-
ence on the size for different coupling strengths γ. (b) Currents
given as a function of γ for different sizes L.
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Fig. 10, which depicts a generic quantity hOki as a function
of the position k in a chain of length L, when the left (right)
bath tries to impose the value 1 (0). Conversely, for
diffusive transport one would observe a linear profile (red
dashed lines). At the boundaries, however, there is usually
a mismatch with respect to the value the baths are trying
to impose. Finally, in an insulating regime, since there is
no current the profile will be constant over large parts of
the chain. But since the quantity must also be adjusted to
the one imposed by the baths, this will result in a steplike
behavior, as depicted by the green dotted line in Fig. 10.
The classification of transport exponents according to the

scaling I ∼ 1=Lα [Eq. (2)] can alternatively be performed in
isolated (unitary) systems by analyzing the spreading of wave
packets. An initially localized packet will spread along the
system with a standard deviation that scales asffiffiffiffiffiffiffiffiffiffiffiffi

hΔx2i
q

∼ tϕ; ð158Þ

with some exponent ϕ. Diffusive transport corresponds to
ϕ ¼ 1=2. Other transport regimes are shown in Table I.
To relate the exponents α and ϕ, we notice from Eq. (158)

that the characteristic time it takes for a particle to travel
through the chain will be τ ∼ L1=ϕ. In the NESS, the current
should be proportional to the rate of particles flowing through
(I ∼ L=τ ∼ L=L1=ϕ). Comparing this to I ∼ 1=Lα then yields
(cf. Table I)

ϕ ¼ 1

αþ 1
. ð159Þ

Equation (159), however, crucially relies on the somewhat
arbitrary hypothesis of a universal transport exponent. While
true in many cases, this has been reported to break down in
certain models (Purkayastha, Dhar, and Kulkarni, 2016a;
Varma, de Mulatier, and Žnidarič, 2017a).

B. Integrability and transport

One might think that integrable systems are ballistic and
nonintegrable systems are diffusive, but reality is much more
interesting.15 For example, integrable systems can present

ballistic, diffusive, anomalous, and insulating transport
properties (Prosen, 2011b; Žnidarič, 2011b). The mecha-
nisms behind such richness are still a topic of research.
Similarly, nonintegrable models can also exhibit ballistic
transport. In particular, at T ¼ 0 systems with a gapless
phase always support ballistic transport, regardless of
whether or not they are integrable (Kohn, 1964; Shastry
and Sutherland, 1990; Scalapino, White, and Zhang, 1993).
See Mastropietro (2013) for a recent study of an XXZ chain
equipped with next-nearest-neighbor interactions to break
integrability. Away from T ¼ 0, transport can be qualitatively
different. Ballistic transport has been observed in finite-temper-
ature nonintegrable systems, both classical (Lebowitz and
Scaramazza) and quantum (Brenes et al., 2018). In the latter,
Brenes et al. considered an XXZ chain with a single local
impurity in the center, rendering the system nonintegrable.
However, since the system is composed of two ballistic halves,
ballistic transport was still preserved. A small density of
impurities, however, renders the transport diffusive (Žnidarič,
2020). And when the clean system behaves subdiffusively,
impurities can also increase transport (Žnidarič, 2022);
cf. Sec. IV.E.
We now provide an overview of some guiding principles,

starting with the concept of Drude weight in linear
responses. Considering the conductivity of a system as a
function of frequency σðωÞ, which can be obtained from
Kubo’s formula (Green, 1952, 1954; Kubo, 1957), the ac
response is obtained when ω → 0, with ballistic transport
signaled by an infinite conductivity. It is thus useful to write
the real part of the conductivity σ0 ¼ ReðσÞ as
σ0ðωÞ ¼ DWδðωÞ þ σregðωÞ, where DW is the Drude weight
and σregðωÞ is the regular portion of the conductivity. A
nonzero Drude weight thus implies ballistic transport. The
Drude weight of a 1D system in equilibrium with inverse
temperature β is given by

DW ¼ lim
t→∞

lim
L→∞

β

4Lt

Z
t

−t
hILð0ÞILðt0Þiβdt0; ð160Þ

FIG. 10. Qualitative profile of a local quantity hOki vs position
k for three transport regimes: ballistic (blue solid line), diffusive
(red dashed line), and insulating (green dotted line). In all cases
the dissipative boundary driving tries to impose the value 1 at the
left edge and the value 0 at the right edge, as discussed in
Sec. II.D.3.

TABLE I. Scaling exponents for different transport regimes when
analyzed from the perspective of the current or from the perspective
of the spreading of a localized wave packet. The two exponents are
connected by ϕ ¼ 1=ðαþ 1Þ.

Transport regime I ∼ 1=Lα
ffiffiffiffiffiffiffiffiffiffiffiffi
hΔx2i

p
∼ tϕ

Ballistic α ¼ 0 ϕ ¼ 1
Superdiffusive 0 < α < 1 1=2 < ϕ < 1
Diffusive α ¼ 1 ϕ ¼ 1=2
Subdiffusive α > 1 ϕ < 1=2
Localized α ¼ ∞ ϕ ¼ 0

15By integrable, we refer to Bethe-Ansatz integrable models that
have an infinite number of local conservation laws, as discussed by
Bertini et al. (2021). For a more exhaustive discussion on integra-
bility in quantum systems, see Caux and Mossel (2011).
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where h� � �iβ denotes the average over a thermal state at
temperature β and IL ¼PlI l is the sum of all the local
current operators [defined in Eq. (61)].
If the I l are conserved at system-internal junctions, trans-

port is guaranteed to be ballistic (Zotos, Naef, and Prelovsek,
1997) because hILð0ÞILðt0Þiβ becomes a constant in t, and
hence the Drude weight is finite. For instance, in the XXZ
model [Eq. (12)] the energy current operator I l

E is given,
using Eq. (62), by

I l
E ¼ ΔðI l−1;l

M σzlþ1 þ σzl−1I
l;lþ1
M Þ þ JI l−1;lþ1

M σzl ; ð161Þ

where I l;lþ1
M ¼ −2Jðσxl σylþ1 − σyl σ

x
lþ1Þ; cf. Eq. (18). It follows

that energy transport is ballistic for any parameter value
(Zotos, Naef, and Prelovsek, 1997). On the other hand,
½Pl I

l;lþ1
M ;HXXZ� ≠ 0, and hence spin transport is not guar-

anteed to be ballistic.
A lower bound to the Drude weight is provided by the

Mazur bound (Mazur, 1969; Suzuki, 1971; Zotos, Naef, and
Prelovsek, 1997)

DW ≥ lim
L→∞

β

2L

X
k

jhILQkij2
hQ†

kQki
; ð162Þ

where Qk are orthogonal conserved quantities that, if they are
(quasi)local, have an overlap with I l that is not exponentially
small as L increases. If the system has an extensive number of
such quantities, then the Drude weightDW can be nonzero and
transport will be guaranteed to be ballistic. Finding theQk may
be nontrivial, however. For the XXZ chain they were computed
by Prosen (2011b) and Prosen and Ilievski (2013). Using these
results, one may show that spin transport in XXZ chains in the
zero magnetization sector is ballistic for jΔj < 1 (Prosen,
2011b), and for any Δ when it is away from the zero
magnetization sector (Zotos, Naef, and Prelovsek, 1997).
This can also be shown using the Bethe Ansatz at T ¼ 0
(Shastry and Sutherland, 1990) or with numerical methods
(Heidrich-Meisner, Honecker, and Brenig, 2005). In a similar
manner one can study the Hubbard model, where the energy
current is not conserved but the current operator has a finite
overlap with conserved quantities, resulting in a nonzeroMazur
bound (Zotos, Naef, and Prelovsek, 1997); see also Karrasch,
Kennes, and Heidrich-Meisner (2016), Ilievski and De Nardis
(2017), and Karrasch (2017). For charge and spin currents, the
current operators have finite overlap with conserved quantities
outside of the half-filling sector, and thus transport is ballistic in
these regimes (Zotos, Naef, and Prelovsek, 1997; Garst and
Rosch, 2001; Ilievski and De Nardis, 2017; Karrasch, 2017).

C. Transport in the XXZ chain

To illustrate the richness of transport behaviors in interact-
ing systems, we review some of the main results for boundary-
driven XXZ spin chains [Eq. (12)]; see also Bertini et al.
(2021) and the following for additional details. We assume the
LME boundary driving given by Eq. (17b). The spin current
transport diagram as a function of the anisotropy Δ and the
bias η1 ¼ −ηL ¼ η is shown in Fig. 11. ForΔ < 1, transport is
ballistic for any value of η. For Δ ¼ 1 it is superdiffusive for

η ≃ 0, with the exponent α ¼ −1=2 (Žnidarič, 2011b) but
subdiffusive for η ¼ 1, with exponent α ¼ −2 (Prosen, 2011b;
Landi and Karevski, 2015); cf. Table I. A superdiffusive
regime was also predicted using hydrodynamic theories (De
Nardis et al., 2019; Gopalakrishnan and Vasseur, 2019),
which were recently verified experimentally in ultracold
atoms (Jepsen et al., 2020) and antiferromagnetic materials
(Scheie et al., 2021).16 Superdiffusive transport was also
observed for energy transport (Brenes et al., 2020). For
Δ > 1 and η < 1, numerical evidence suggests that spin
transport is diffusive (Jesenko and Žnidarič, 2011; Žnidarič,
2011b), but at η ¼ 1 one finds insulating behavior (Prosen,
2011b). The region Δ ¼ 1 for 0 < η < 1 requires further
exploration. Similarly rich behavior can be found in non-
interacting systems with long-range tunneling (Purkayastha,
Saha, and Agarwalla, 2021).
As mentioned earlier, the energy current through an

XXZ chain is ballistic because the corresponding current
operator is a conserved quantity. However, for η ¼ 1 and Δ >
1 the spin current decreases exponentially with L, and the
magnetization profile acquires the sigmoid form in Fig. 10.
Such insulating spin current behavior may seem at odds with
ballistic (without scattering) energy transport. But there is no
contradiction because the energy current in this case is exactly
0 due to the symmetries of the system (Schuab, Pereira, and
Landi, 2016).

D. Disordered and quasiperiodic systems

Disordered systems have been intensely studied for deca-
des, particularly since the discovery of Anderson localization
(Anderson, 1958). For 1D noninteracting systems, any small
amount of disorder makes the system an insulator. In
interacting systems, Anderson localization, which was studied
by Giamarchi and Schulz (1987, 1988), is a line of research
that was invigorated after the discovery of many-body

FIG. 11. Phase diagram of magnetization transport regimes in
the boundary-driven XXZ chain with driving [Eq. (17b)] for
different anisotropies Δ and driving bias η.

16The scenarios reproduced in the experiments are not boundary
driven.
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localization (Gornyi, Mirlin, and Polyakov, 2005; Basko,
Aleiner, and Altshuler, 2006). Comprehensive reviews were
given by Nandkishore and Huse (2015), Abanin and Papić
(2017), Luitz and Lev (2017), Parameswaran and Vasseur
(2018), and Abanin et al. (2019). Here we focus on boundary-
driven systems of the type of Eq. (17b). The transport
properties depend significantly on whether disorder is uncor-
related as in Anderson localization, or correlated as in
quasiperiodic potentials, such as in the Aubry-André-
Harper (AAH) model (Harper, 1955; Hofstadter, 1976;
Aubry and André, 1980). We review them separately in
Secs. IV.D.1 and IV.D.2.

1. Uncorrelated disorder

The standard model for the study of transport in disordered
systems is an XXZ chain [Eq. (12)] with local potentials hl.
For uncorrelated disorder, hl is taken from a uniform dis-
tribution on ½−h; h�, where h quantifies the disorder strength.
We saw in Fig. 11 that when h ¼ 0 and η is small
[cf. Eq. (17b)], the system is ballistic for Δ < 1 and diffusive
for Δ > 1; for Δ ¼ 1 it is superdiffusive. We also know from
the work of Anderson (1958) that, in the absence of inter-
actions, the system becomes an insulator for any value of h.
Analytical results for an XX chain with large disorder were
given by Monthus (2017).
The high-temperature transport diagram in the XXZ chain

is depicted in Fig. 12(a), which was adapted from Žnidarič,
Scardicchio, and Varma (2016). These were simulated for
small η using tensor networks (Sec. III.E), with L up to 400.
For Δ > 1, the transport is subdiffusive for any h > 0.
Conversely, for Δ < 1 transport is diffusive for h > hc1 ¼
0 and subdiffusive for h > hc2. For even larger disorder
strengths h > hc3 [not shown in Fig. 12(a)], the system is
localized. The emergence of a subdiffusive region for spin
current is aligned with other works (Agarwal et al., 2015,
2017; Bar Lev, Cohen, and Reichman, 2015; Potter, Vasseur,
and Parameswaran, 2015; Vosk, Huse, and Altman, 2015;
Bera et al., 2017), including experiments (Bordia et al., 2017;
Lüschen et al., 2017). However, the origin of the subdiffusive
behavior is still under investigation. In particular, Agarwal
et al. (2015), Potter, Vasseur, and Parameswaran (2015), and
Gopalakrishnan et al. (2016) pointed to the presence of rare
regions with large disorder, known as Griffiths phases
(Griffiths, 1969), that can significantly slow down the dynam-
ics. However, subdiffusive transport can also occur in systems
with correlated disorder (Sec. IV.D.2), in which the previously
mentioned regions do not occur (Weiner, Evers, and Bera,
2019). Numerical simulations initially did not provide any
evidence of such regions (Schulz et al., 2020). However, more
recent studies involving much larger systems together with
local dephasing [cf. Eq. (112)] of random magnitude, and
acting on all sites except the boundaries, found clear signa-
tures of the emergence of a Griffiths phase, signaled by power-
law tails in the distribution of the resistance (Taylor and
Scardicchio, 2021).
We next turn to energy transport. In ordered systems we

previously showed that it differs significantly from spin
transport since energy is a conserved quantity, while the latter
is not. In disordered systems the local energy current is no

longer a conserved quantity but, as we later see, transport is
strongly affected by the limiting case of disorder going to 0, in
which case the current is conserved and transport becomes
ballistic. A diagram of the energy transport properties at high
temperature and zero magnetization in the disordered XXZ
chain [Eq. (12)] is depicted in Fig. 12(b), which was adapted
from Mendoza-Arenas et al. (2019). The boundary driving is
modeled by the two-site reservoirs reviewed in Sec. II.K.2,
i.e., baths that act on two sites and that are designed to locally
thermalize these sites. In particular, Mendoza-Arenas et al.
used the target state, acting at the edges, such that
ρT;l ∝ exp ½−βlðHl − μlMlÞ�, where Hl is the Hamiltonian
acting on the two edge sites and Ml is the total magnetization
of l and lþ 1. Earlier studies of energy transport in the
disordered XXZ model were also given by Varma et al.
(2017), where two halves of the system were prepared in
different states and then allowed to evolve unitarily
(cf. Sec. II.H.4); diffusive transport was found for small
disorder. In Fig. 12(b) we see that for any value of Δ, as soon
as h > 0, energy transport goes from ballistic to diffusive, and
only at a nonzero critical field can it become subdiffusive. The
dashed gray line in Fig. 12(b) shows the boundary between

FIG. 12. Maps of (a) spin and (b) energy transport character-
istics for the model (12) with local uncorrelated disordered
potential hl. (a) Boundary driving given by Eq. (17a). The
transition lines at hc1 and hc2 represent transitions from ballistic
to diffusive and diffusive to subdiffusive, respectively. The
transition region, represented by black dots, is evaluated from
simulations with L up to 400 spins. Adapted from Žnidarič,
Scardicchio, and Varma, 2016. (b) Boundary driving as described
in Sec. II.K.2. The black solid line shows the transition line
between diffusive and subdiffusive transport, with the dotted
lines indicating the confidence level. The gray dashed line
represents the transition from diffusive to subdiffusive for the
particle transport shown in (a). Adapted from Mendoza-Arenas
et al., 2019.
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diffusive and subdiffusive transport for spin currents
[Fig. 12(a)]. For finite magnetization with h ¼ 0, both the
particle and the energy current operators are ballistic. In this
case, the energy current mimics more closely the particle
current (Mendoza-Arenas et al., 2019).
A qualitatively similar description is also found for a non-

Uð1Þ symmetric model, such as an XYZ chain with local
disorder [Eq. (54)]. Schulz et al. (2018) showed that the
location of the transition between diffusive and subdiffusive
occurs at disorder strengths that depend on the amount of the
XY anisotropy (Jx − Jy).
Energy transport was also studied in the localized phase,

where it is strongly suppressed. An interesting advantage of
the localized phase is that one can exploit the l-bit represen-
tation (Huse, Nandkishore, and Oganesyan, 2014; Ros,
Müller, and Scardicchio, 2015) based on extensive in number,
quasilocal integrals of motion, which can be computed at
polynomial cost as a function of the size (Khemani, Pollmann,
and Sondhi, 2016; Wahl, Pal, and Simon, 2017; Kulshreshtha
et al., 2019). Used by Wu et al. (2019), this allowed them to
go up to 100 spins. In both the noninteracting and weakly
interacting regimes, they found that the temperature T
dependence of the heat conductivity σ follows Mott’s law
(Mott, 1969), σ ∝ exp½ð−T0=TÞ1=ðdþ1Þ�, where d is the dimen-
sionality of the system and T0 is an interaction-dependent
temperature above which the conductivity becomes more
sizable.
We also comment on systems beyond the XXZ chain, but

not necessarily studied in the context of boundary-driven open
quantum systems. One interesting setup is the Fermi-Hubbard
model. It does not fully localize when the disorder does not
differentiate between spin-up and spin-down (Prelovšek,
Barišič, and Žnidarič, 2016). Instead, the charge degrees of
freedom can be localized and nonergodic, while the spin
degrees of freedom are delocalized. Full localization can be
obtained using spin-dependent tunneling (Środa, Prelovšek,
and Mierzejewski, 2019). Iadecola and Žnidarič (2019)
considered a spin ladder and showed that the presence of
symmetries, independent of the strength of disorder, can be
used to construct exponentially large subspaces that can be
localized or ballistic. Another interesting setup is a single
particle in a lattice with a disordered potential and coupled to a
bosonic chain (Prelovšek, Bonča, and Mierzejewski, 2018;
Mierzejewski, Prelovšek, and Bonča, 2019; Mierzejewski
et al., 2020).17 The effect of the latter was modeled using
Fermi’s golden rule and also included a rate equation to
describe the injection and removal of particles at the edges.
This allowed them to study up to 104 sites, and also systems in
two dimensions. In one dimension, Mierzejewski, Prelovšek,
and Bonča (2019) found that strongly interacting bosons
(hard-core bosons) made the transport subdiffusive, while
weak interactions resulted in diffusive transport at long times.
Conversely, Mierzejewski et al. (2020) showed that while
transport can be subdiffusive in one dimension, in two
dimensions it is always diffusive, even for large disorder.

2. Correlated disorder

As discussed in Sec. IV.D.1, in 1D noninteracting systems
any small amount of uncorrelated disorder turns the system
into an insulator. In other words, there is no mobility edge, i.e.,
an energy threshold that differentiates localized from delo-
calized energy states. Mobility edges are possible, however,
with correlated disorder, such as quasiperiodic potentials. We
consider a noninteracting lattice of free fermions [Eq. (15)],
with local potential hαQ;l ≡ hl given by (Ganeshan, Pixley, and
Das Sarma, 2015)

hαQ;l ¼ λ
2 cosð2πβQlþ ϕÞ

1 − αQ cosð2πβQlþ ϕÞ ; ð163Þ

where βQ ¼ ð1þ ffiffiffi
5

p Þ=2 is the golden mean (other
Diophantine numbers lead to similar results). This is a
generalization of the AAH model, which is obtained setting
αQ ¼ 0 (Harper, 1955; Hofstadter, 1976; Aubry and André,
1980). In the AAH model there is a critical value of λ below
which all eigenstates are delocalized and above which all
eigenstates are exponentially localized. This is already a
noteworthy difference from uncorrelated noise for which
any amount of disorder localizes all eigenstates in one
dimension. The transport is found to be ballistic for λ < 1

and insulating for λ > 1. At λ ¼ 1 all eigenstates are critical
(Ostlund et al., 1983) and particle transport is subdiffusive,
with I ∝ L−1.4 (Purkayastha, Dhar, and Kulkarni, 2017;
Purkayastha et al., 2018).
Here we add a note on the system sizes L considered to

compute I. Varma, de Mulatier, and Žnidarič (2017b),
Purkayastha et al. (2018), and Sutradhar et al. (2019) showed
that particle transport differs quantitatively whether L is a
Fibonacci number or not. For instance, Varma, de Mulatier,
and Žnidarič (2017b) showed that in the subdiffusive region
(λ ¼ 1) the current scaled as I ∝ L−1.38 when L are powers of
2, while I ∝ L−1.27 when they are Fibonacci numbers. A
related study, based on entanglement entropy, was put forth
by Roy and Sharma (2019). Another subtlety of the model
is that at λ ¼ 1 one finds different transport coefficients for
a boundary-driven system and a unitary Green-Kubo analy-
sis (Purkayastha et al., 2018). In particular, the latter can
predict superdiffusion (due to the fast spreading of the tails
of a wave packet). This has been shown to be due to the
fact that the Green-Kubo formalism takes L → ∞ first, and
then t → ∞. Conversely, boundary drives can take only
L → ∞ since the infinite time limit is implicit (Purkayastha,
2019). Hence, for systems that are sensitive to boundary
conditions (as is the case here), this results in different
predictions, depending on the method used. If one is
interested in finite systems, then boundary drives are the
most accurate approach. Such subtleties are not present for
diffusive transport (Žnidarič, 2019).
When αQ > 0 in Eq. (163), the system presents a mobility

edge; i.e., below a certain energy all eigenstates are delocal-
ized, and above it they are localized (or vice versa). The
presence of a mobility edge shifts the critical value of λ at
which transport goes from ballistic to insulating. Furthermore,
while the system is still subdiffusive at the critical value the

17Note that only Mierzejewski et al. (2020) considered a boun-
dary-driven setup.
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exponent for αQ > 0 is given by IN ∝ L−2, and thus differs
from the case αQ ¼ 0. This is illustrated in Fig. 13, based on
the work of Purkayastha, Dhar, and Kulkarni (2017), who
presented the parameter regions with ballistic and diffusive
particle transport, and the critical line with the two scalings for
αQ ¼ 0 and αQ ≠ 0.
A mobility edge can also be obtained by modifying the

AAH model to include beyond-nearest-neighbor tunneling
(Das Sarma, He, and Xie, 1988; Boers et al., 2007; Li, Li, and
Das Sarma, 2017), which was studied experimentally by
Lüschen et al. (2018). Power-law hopping can result in
algebraically localized modes instead of exponential ones,
and this can lead to different forms of zero-temperature
particle transport, from ballistic to superdiffusive to insula-
ting, as well as the presence of mobility edges in one
dimension (Saha, Maiti, and Purkayastha, 2019).
Furthermore, when transport is modeled by Büttiker probes
(see Sec. II.J), the current can depend nontrivially on the
magnitude of the coupling to the probes (Saha, Venkatesh, and
Agarwalla, 2022).
Equilibrium localization properties for an AAH potential

(αQ ¼ 0) have also been studied in the presence of inter-
actions, both theoretically (Iyer et al., 2013; Cookmeyer,
Motruk, and Moore, 2020) and experimentally (Schreiber
et al., 2015; Lüschen et al., 2017), and in higher dimensions
(Bordia et al., 2017). Interactions with αQ ≠ 0were studied by
Li et al. (2015), Modak and Mukerjee (2015), and Modak,
Ghosh, and Mukerjee (2018). Additionally, the possible
existence of a nonergodic phase violating the eigenstate
thermalization hypothesis while having volume law entangle-
ment entropy was studied by Srednicki (1994).
Focusing on αQ ¼ 0, Žnidarič and Ljubotina (2018)

showed that for the region of λ≲ 1.5 any small Δ makes
the particle and magnetization transport diffusive. However,
this requires much larger system sizes, even up to sizes of
L ¼ 1000 sites (Žnidarič, 2021). Since for Δ ¼ 0 the system
is insulating when λ > 1, the diffusion constant diverges as

Δ → 0 when λ < 1 and tends to zero otherwise. These results
indicate that, even for strongly localized integrable systems,
small integrability-breaking perturbations can result in dif-
fusive dynamics. Žnidarič and Ljubotina (2018) showed that
altering the potential at chosen sites can significantly affect the
transport, thus opening another door to engineer transport
properties in quantum systems.
Another particularly interesting quasiperiodic potential is

the Fibonacci chain defined by the local potential (Kohmoto,
Kadanoff, and Tang, 1983; Ostlund et al., 1983; Kalugin,
Kitaev, and Levitov, 1986; Kohmoto, Sutherland, and Tang,
1987; Sutherland and Kohmoto, 1987; Hiramoto and Abe,
1988; Hiramoto and Kohmoto, 1992)

hl ¼
h
2
½2VðlgÞ − 1�; ð164Þ

where h is the magnitude, g ¼ ð1þ ffiffiffi
5

p Þ=2, and VðxÞ ¼
bxþ gc − bxc, with bxc denoting the integer part of x.
Unlike the AAH model, the noninteracting (Δ ¼ 0)
Fibonacci model is critical for any value of h, showing
eigensystem fractality, and anomalous transport (Kohmoto,
Kadanoff, and Tang, 1983; Ostlund et al., 1983; Kalugin,
Kitaev, and Levitov, 1986; Kohmoto, Sutherland, and Tang,
1987; Hiramoto and Abe, 1988; Hiramoto and Kohmoto,
1992; Macé, Jagannathan, and Piéchon, 2016). In fact, the
particle transport varies continuously from ballistic to insu-
lating as h increases. This is illustrated in Fig. 14, which
shows simulations computed using the Lyapunov equation
[Sec. III.B].
Concerning interacting Fibonacci chains, in the low-tem-

perature regime bosonization techniques showed that repul-
sive interactions can lead to a metal-insulator transition and a
power-law dependence of the conductivity with L (Vidal,
Mouhanna, and Giamarchi, 1999, 2001). The high-temper-
ature case was studied by Macé, Laflorencie, and Alet (2019)
and Varma and Žnidarič (2019), who showed that for large
enough h and Δ the system becomes subdiffusive and can
show many-body localization. However, we point out that,
independent of the magnitude of h, for small Δ the current is
diffusive. Further studies are required for larger values of Δ,
especially close to Δ ¼ 1. Although they did not employ a
boundary-driven setup, Chiaracane et al. (2021) found sig-
natures of superdiffusive behavior for h < Δ, and subdiffusive
to insulating behavior for h > Δ. Similar results were also
found by Chiaracane et al. (2022) for the energy current.
In the AAH model [Eq. (163) with αQ ¼ 0], the eigenstates

for λ ¼ 1 are neither localized nor delocalized. Instead, they
are critical and display fractal properties. Conversely, in the
Fibonacci model [Eq. (164)] they are critical for any value of
h. The fractal nature of the steady-state magnetization profile
was shown by Varma, de Mulatier, and Žnidarič (2017b). To
characterize said fractal structure, they had go to almost 40
000 sites, which was made possible by recasting the problem
as a Lyapunov equation (Sec. III.B). To conclude, we mention
that contrasting the AAH potential (163) with a uniform
distribution may not provide a fair comparison between
uncorrelated and correlated disorder, since the potential
magnitudes are significantly different. A noteworthy work-
around was pursued by Setiawan, Deng, and Pixley (2017),

FIG. 13. Phase diagram of the high-temperature particle trans-
port properties of the modified AAH model with potential (163).
The ballistic region (top left, turquoise) is separated from the
localized region (bottom right, yellow) by a subdiffusive line with
IN ∼ L−2 and a subdiffusive point at αQ ¼ 0 and λ ¼ 1 with
IN ∼ L−1.4. The symbol IN stands for the NESS particle current
and L represents the system size. Adapted from Purkayastha,
Dhar, and Kulkarni, 2017.
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who used the AAH potential (163) but with randomly chosen
local phases ϕ on each site. With this they showed that for
small λ and high temperatures, the correlated disordered
model led to a higher current when compared to the uncorre-
lated one. Conversely, for large λ the situation was inverted
(although for both setups the currents decayed exponentially
with L since both are insulators).

E. Dephasing and transport

In this section we discuss how transport is affected by the
presence of dephasing baths (Sec. II.J) acting locally on all
sites of a chain. In short, dephasing is expected to always
render the transport diffusive for a sufficiently large chain size
L. This is based on evidence from various models: first in
noninteracting chains with homogeneous (Žnidarič, 2010a,
2011a; Asadian et al., 2013; Bermudez, Bruderer, and Plenio,
2013; Malouf et al., 2020), disordered (Žnidarič and Horvat,
2013; Taylor and Scardicchio, 2021), and quasiperiodic
(Dwiputra and Zen, 2021; Lacerda, Goold, and Landi,
2021) potentials, and second in interacting systems both
homogeneous (Mendoza-Arenas, Grujic et al., 2013) and
disordered (Žnidarič et al., 2017).
To illustrate the idea, consider the nearest-neighbor homo-

geneous tight-binding chain studied in Sec. III.B. The current
in this case is given by Eq. (141), which scales as

I ¼ a
bþ ΓL

; ð165Þ

where a and b are constants. In the absence of dephasing
(Γ≡ 0), the transport is ballistic. But for any nonzero Γ there
will always be a sufficiently large L for which the current
starts to behave diffusively, as I ∼ 1=L.
For other models involving interactions, disorder, etc., the

functional form of the current IðΓ; LÞ will no longer be given
by Eq. (165). Notwithstanding, one can still predict that if Γ is
much larger than any other scale in the problem, any
Hamiltonian contribution should be washed away, so the
current is expected to behave similarly to Eq. (165):

IðΓ; LÞ ¼ cdeph
ΓL

ðΓ largeÞ; ð166Þ

where cdeph is a constant. The interesting case, therefore, is
when Γ is moderate, as this should lead to an intricate
competition between the Hamiltonian, which is responsible
for the system’s natural transport I ∼ 1=Lα, and the dephasing,
which tends to make the transport diffusive (I ∼ 1=L). In fact,
in this case there should be a characteristic length scale LΓ at
which the system transitions from one regime to the other
(Žnidarič et al., 2017). That is,

IðΓ; LÞ ¼
�
c0=Lα; L ≪ LΓ;

cΓ=L; L ≫ LΓ;
ð167Þ

where c0 and cΓ are constants, with the former independent of
Γ. The length scale LΓ, where the transition occurs, can be
estimated if one assumes the single-transport exponent
hypothesis [Eqs. (158) and (159)], from which the typical
length scale for the spreading of wave packets is found to
behave as

ffiffiffiffiffiffiffiffiffiffiffiffi
hΔx2i

p
∼ τ1=ðαþ1Þ. Since dephasing introduces a

characteristic timescale τ ∼ 1=Γ, LΓ should scale as

LΓ ∼ Γ−1=ðαþ1Þ: ð168Þ

Since α > 0, LΓ is always decreasing in Γ. Hence, for large Γ
the diffusive behavior should become visible for small chain
sizes, while for low Γ large L’s might be necessary.
Finally, the functional dependence of cΓ in Eq. (167) can

also be estimated by requiring continuity when L ¼ LΓ. That
is, c0=Lα

Γ ¼ cΓ=L, which yields

cΓ ¼ c0Γðα−1Þ=ðαþ1Þ: ð169Þ

One can use this to predict the following: Suppose that L is
sufficiently large such that L ≫ LΓ for a wide range of Γ’s.
Both Eqs. (166) and (167) will predict diffusive transport, but
with a nontrivial dependence on Γ:

IðΓ; LÞL ¼
�
c0Γðα−1Þ=ðαþ1Þ; Γ small;

cdeph=Γ; Γ large;
ð170Þ

where “small” and “large” are defined with respect to the
energy scales of the system Hamiltonian. Particularly note-
worthy, even though the transport is diffusive due to dephas-
ing, is that the exponent α of the dephasing-free system still
plays a clear role.
The presence of noise is often expected to reduce the

current and thus is deleterious for transport. For instance, in
the ballistic example of Eq. (165), the current with dephasing
is always smaller than that without it (Γ ¼ 0). There are
situations, however, where noise can actually be beneficial.
The term dephasing-assisted transport (or noise-assisted
transport) is used to describe those situations in which an
additional noise source increases the current.
This effect was first investigated by Olaya-Castro et al.

(2008) and Plenio and Huelga (2008) and in a series of follow-
up papers (Caruso et al., 2009; Rebentrost et al., 2009; Chin,
Datta et al., 2010; Chin, Huelga, and Plenio, 2012; del Rey

(a) (b)

FIG. 14. (a) Magnetization current as a function of L for the
noninteracting Fibonacci model (164), for different values
of h ranging from h ¼ 0 (top) to h ¼ 2.5 (bottom) in steps
of 0.5. For sufficiently large L, all curves behave like
I ∼ 1=Lα [Eq. (2)], with an exponent α that depends on h.
(b) α vs h, extracted from the simulations in (a). Adapted from
Lacerda, Goold, and Landi, 2021.
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et al., 2013; Manzano, 2013; Contreras-Pulido et al., 2014).
Interest was on light harvesting in biological molecules,
modeled by spin 1=2 (or tight-binding) networks. The noise
was introduced by means of a dephasing dissipator (Sec. II.J)
acting on all sites of the lattice. Experimental simulations were
carried out in optical setups (Viciani et al., 2015; Biggerstaff
et al., 2016) and trapped ions (Cormick and Schmiegelow,
2016; Maier et al., 2019). Related studies were also carried
out using Büttiker probes (Sec. II.J) by Kilgour and Segal
(2015, 2016).
Dephasing-assisted transport always occurs in systems

exhibiting subdiffusive transport (Žnidarič et al., 2017) (with
insulators being a limiting case). This can be seen in Eq. (170):
Subdiffusivity implies that α > 1, and hence ðα − 1Þ=
ðαþ 1Þ > 0. For small Γ the function I ∼ Γðα−1Þ=ðαþ1Þ will
thus be monotonically increasing in Γ, which is exactly the
dephasing-assisted transport. This was explored by Žnidarič
and Horvat (2013) and Lacerda, Goold, and Landi (2021),
who studied the XX model in the presence of disorder and
Fibonacci potentials, respectively. Mobility edges were stud-
ied by Dwiputra and Zen (2021), and Chiaracane et al. (2022)
addressed applications to thermal machines. In the context of
many-body systems, this was studied by Mendoza-Arenas,
Al-Assam et al. (2013) and Mendoza-Arenas, Grujic et al.
(2013), who considered interacting fermionic chains with
LME dissipators (17b) at the boundaries, and dephasing
dissipators at all sites. The system was simulated using
tensor network methods (Sec. III.E) up to 120 sites.
Finally, Mendoza-Arenas et al. (2014) considered a system
made by multiple lattices and found an even larger transport
enhancement by a type of noise that induces incoherent
coupling to neighboring lattices.

F. Negative differential conductance

In linear response, the greater the bias at the boundaries of a
driven system, the larger the response. For example, the larger
the temperature difference, the larger the heat current, as
indicated by Fourier’s law [Eq. (1)]. The early works of Esaki
(1958), Esaki and Stiles (1966), and Esaki and Tsu (1970)
showed that it is possible to have negative differential
conductance (NDC) or resistance, which means that an
increase of the bias would result in a decrease of the response.
NDC is a key ingredient in the realization of transistors,
including thermal ones (Li, Wang, and Casati, 2006).
Esaki and Tsu (1970) showed that superlattices, and the

consequent presence of a structured density of states, can
result in a resonant response that naturally leads to NDC.
Many other mechanisms resulting in resonant behavior do as
well, such as Coulomb blockade (Heij et al., 1999), spin-
charge separation (Cavaliere et al., 2004), ferromagnetic
interactions (Rolf-Pissarczyk et al., 2017), conformational
changes (Mujica et al., 2003), and electron interactions with
vibrational modes (Gaudioso, Lauhon, and Ho, 2000;
Galperin, Ratner, and Nitzan, 2005) in molecules.
NDC has been observed in semiconductor quantum dots

(Weis et al., 1993), carbon nanotubes (Zhou et al., 2000;
Pop et al., 2005), and small molecular systems (Chen
et al., 1999; Halbritter et al., 2008). This was reviewed,
with an emphasis on molecular electronics, by

Zimbovskaya and Pederson (2011) and Xu and Dubi
(2015), and in more general reviews on nanoelectronics
(Kastner, 1992; Anantram and Léonard, 2006). We thus
focus on reviewing negative differential conductance in
boundary-driven, strongly interacting spin systems, which
were not discussed in the previous reviews.
Owing to interactions, spin chains are an ideal setup for

the emergence of NDC. Recently it was shown that this
can also appear in classical Heisenberg chain models with
varying magnetic field (Bagchi, 2015). Benenti, Casati,
Prosen, and Rossini (2009) and Benenti, Casati, Prosen,
Rossini, and Žnidarič (2009) showed that strongly inter-
acting XXZ chains [Eq. (12)] can present strong NDC
under LME boundary driving. In the notation of Eq. (17a),
strong bias (f1 ¼ 1 − fL ¼ 0) forces the edge spins to be
either up or down. If Δ > 1, the bulk Hamiltonian, together
with the large bias, will favor the presence of two large
ferromagnetic domains at the edges. Because of their
insulating nature this lowers the current, and for large
enough interactions and biases the system can turn into an
insulator. The stability of such an insulating phase is due
to the properties of the Hamiltonian, and for large enough
interactions the steady state is given by two large domains
that can be destabilized only by magnons: excitations at
the boundary between the domains. However, for large
enough Δ, such excitations are gapped and thus exponen-
tially localized. As a consequence they cannot propagate
and reach the baths, thereby prohibiting the decay of the
system to a different state. A different explanation of the
phenomenon was given by Mendoza-Arenas, Al-Assam
et al. (2013), who stressed that for Δ ≫ 1 the baths
preferentially couple to high energy states with low
conductivity. Specifically, one configuration becomes par-
ticularly important, which is the one with two half-chain-
long ferromagnetic domains, as this is a dark state of
the baths alone, for which the domain boundary is
farthest from the baths. All other states are exponentially
suppressed.
One can also examine the robustness of NDC. First, it is

robust against various types of integrability-breaking terms;
thus, it is not related to the integrable nature of the XXZ chain.
For instance, Benenti, Casati, Prosen, and Rossini (2009) also
added an integrability-breaking staggered magnetic field and
still observed it. Mendoza-Arenas, Grujic et al. (2013) and
Droenner and Carmele (2017) instead considered a dissipative
perturbation as an additional dephasing in the local σz basis
[Eq. (113)]. Since the mechanism for such strong rectificat-
ion is related to the properties of the bulk Hamiltonian,
dephasing is found to significantly reduce, or even remove,
NDC. This is another manifestation of dephasing-assisted
transport (Sec. IV.E). Another way to remove NDR is to
increase the range of the spin-spin interactions or add strong
disorder, as studied by Droenner and Carmele (2017). Long-
range interactions oppose the formation of two large and
opposite domains at the edges, thus resulting in a more gradual
spin magnetization profile. Particularly chosen local potentials
can also significantly reduce the NDC for one bias and
reinforce it for the opposite one, thus resulting in strong spin
current rectification (Lenarčič and Prosen, 2015; Lee et al.,
2020) (Sec. IV.G).
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G. Rectification

Rectification is an effect that has widespread applications in
electronics. It describes, in the widest sense, an asymmetric
response of a two-terminal system to reflection. The electric
diode makes the flow of electric current in one direction
significantly different from the other if the driving bias is
inverted. While electric diodes are widespread, the imple-
mentation of a heat diode appears to be much more chal-
lenging. A key requirement is the presence of reflection
symmetry breaking in the system. Given our focus on
quantum boundary-driven systems, we discuss rectification
of different quantities, such as spin, particle, and heat currents.
We also mention key developments in classical rectification,
which form the basis for the developments in quantum
systems; for comprehensive reviews, see Li et al. (2012)
and Benenti et al. (2016). There has also been significant
interest in the experimental realization of thermal rectifiers in
various setups, such as oxides (Starr, 1936; Brattain, 1951),
nanotubes (Chang et al., 2006), nanoribbons (Hu, Ruan,
and Chen, 2009), quantum dots (Scheibner et al., 2008),
and systems with superconducting components (Fornieri,
Martínez-Pérez, and Giazotto, 2015; Martínez-Pérez,
Fornieri, and Giazotto, 2015; Bours et al., 2019; Iorio et al.,
2021). A review of the experimental efforts was given by
Roberts and Walker (2011).
The rectification performance is measured by the rectifi-

cation coefficient R defined as R ¼ −If=Ib, where If and Ib
are the current with the bias in the forward and backward
(swapped) directions. The minus sign is used because the
current, after inverting the bias driving the current, is in the
opposite direction. An alternative figure of merit is
C ¼ jðIf þ IbÞ=ðIf − IbÞj, which is sometimes also denoted
as the rectification coefficient, but which we refer to as
contrast. A system that does not rectify has R ¼ 1 and
C → 0, while a perfect rectifier (where the system is an
insulator in one direction) has R → 0;∞ and C → 1. Since
C is confined between 0 and 1, it helps to observe sharp
transitions between nonrectifying and strongly rectifying
behavior (Balachandran et al., 2018).
To better understand the requirements for rectification, we

consider the heat current through a system coupled to two
baths (L and R) at temperatures TL and TR. We can thus write
If ¼ IðT̄;ΔTÞ and Ib ¼ IðT̄;−ΔTÞ, where T̄ ¼ ðTL þ TRÞ=2
and ΔT ¼ TL − TR. Each current can be written as a series
expansion in powers of ΔT:

IðT̄;ΔTÞ ¼
X
n>0

αnInðT̄ÞΔTn: ð171Þ

It is thus clear that in order to have rectification IðT̄;ΔTÞ
should be nonlinear in ΔT, and the expansion in Eq. (171)
should include even powers of n. For a study of the role of
quadratic and quartic conductivities as a function of temper-
ature, see Yang et al. (2018).
For rectification to occur, it is necessary to break reflection

symmetry. This can be done by considering (i) a non–
reflection-symmetric system (Wang et al., 2019; Chioquetta
et al., 2021), (ii) equivalent baths with asymmetric couplings
(Purkayastha, Dhar, and Kulkarni, 2016a), or (iii) different

baths [such as baths with different magnetic fields (Arrachea,
Lozano, and Aligia, 2009) or different statistics (Wu and
Segal, 2009b; Wu, Yu, and Segal, 2009)]. These conditions,
however, are necessary but not sufficient.
Interactions tend to play a key role in rectification. For

instance, considering the Landauer formula (84), for non-
interacting transport one finds that when the transmission
function is reflection symmetric, there will be no rectification:
Reversing the bias amounts to exchanging fLðωÞ ↔ fRðωÞ
and the current simply reverses sign. This therefore excludes
rectification effects for a broad class of models. In contrast,
Meir and Wingreen (1992) provided a formally exact current
formula for transport through an interacting region, which was
also recently done in boundary-driven LMEs (Jin, Filippone,
and Giamarchi, 2020). This formula is not antisymmetric
under reservoir exchanges, and hence rectification is in
principle possible. In the remainder of this section we review
general ways of obtaining nonlinear responses and thus
rectification. Section IV.G.1 discusses the role of nonlinear-
ities and interactions within the system, while Sec. IV.G.2
considers asymmetric baths.

1. Nonlinearities and interactions within the system

Terraneo, Peyrard, and Casati (2002) and Li, Wang, and
Casati (2004) greatly advanced our understanding of heat
rectification in classical systems. They showed that to obtain a
nonlinear response one can build rectifiers from a concatena-
tion of chains of nonlinear oscillators. In this case, rectifica-
tion occurs because each portion of the chain has a distinct,
temperature-dependent power spectrum. It results that for a
certain pair of temperatures TL and TR there is a large overlap
between the spectra of the different portions of the chain
(resulting in large currents), but if the temperatures are
swapped this overlap is significantly suppressed (resulting
in small currents).
Nonlinear responses have been used to rectify the propa-

gation of waves (Lepri and Casati, 2011; Mascarenhas et al.,
2016), and they have also been employed in quantum many-
body systems. A prototypical example was presented by
Werlang et al. (2014), who considered two spins coupled
via a σz1σ

z
2 coupling. Each spin feels a different local

magnetic field and is coupled to a different heat bath. The
interplay between the structure of the system Hamiltonian
and the coupling of the system to the baths can result in
perfect rectification (zero current in one direction). This
approach was later pursued for more than two spins by
Pereira (2019).
Considering extended boundary-driven systems, one of the

first works to give strong rectification was by Balachandran
et al. (2018), who considered an XXZ chain [Eq. (12)]
segmented in two halves,18 one with anisotropy Δ ¼ 0 and
the other with Δ ≠ 0. They considered spin transport with
LME dissipators acting on the first and last sites, as in
Eq. (17a). One bath had f ¼ 0.5 (infinite temperature) and
the other had f ¼ 0. It was shown that for an anisotropy

18With a Jordan-Wigner transformation [Eq. (14)], the XXZ chain
can be seen as a fermionic lattice where the anisotropy plays the role
of the interactions.
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Δ > 1þ ffiffiffi
2

p
the system had large rectification (R ≈ 104) even

for small chains. And in the thermodynamic limit, the system
became a perfect heat diode. This occurs because, in reverse
bias, the baths drive the system toward a state with a large
excitation gap, which thus is stable toward spin excitations
arising from the Hamiltonian. In the forward bias the state is
not gapped, so excitations can propagate.
An analysis of the stability of this rectifier, as well as further

properties, was provided by Balachandran et al. (2018) and
Lee et al. (2020, 2022). For instance, if Δ is nonzero on both
sides of the chain, then the value of Δ at which the energy gap
occurs in reverse bias increases with the system size (Lee,
Balachandran, and Poletti, 2021). As a result, there is no
perfect insulator in the thermodynamic limit, although the
system can still become a strong rectifier. This setup can also
be used to rectify heat, as done by Balachandran, Clark et al.
(2019), with possibly large values of heat current rectification
(R ≈ 400). Adding a ring structure in the middle of the chain
can increase rectification, which occurs together with the
formation of entanglement between the spins in the ring
(Poulsen et al., 2022).
An XXZ spin chain that also shows large-spin rectification

is one with homogeneous anisotropy but local magnetic fields
pointing in different directions in each half of the chain
(Lenarčič and Prosen, 2015; Lee et al., 2020). Gradual
changes of the local magnetic field also result in rectification
(Zhang et al., 2009; Landi et al., 2014; Pereira, 2017a). In
particular, Landi et al. (2014) showed that when Δ≡ 0 the
rectification is identically zero, underlining once again the
importance of interactions. Moreover, Pereira (2017a) showed
that in spin chains described by LMEs rectification can also
reach an extreme situation where even the direction of the
current does not change sign, as the baths are inverted; i.e., the
energy current flows in the same direction even after inverting
the baths. Even though this seems thermodynamically incon-
sistent at first sight, it can actually be explained by the
existence of a work term in LMEs (De Chiara et al., 2018;
Pereira, 2018); cf. Eq. (73).
The role of interactions in rectification is also prominent in

bosonic chains (Purkayastha, Dhar, and Kulkarni, 2016a)
and quantum dots (Stopa, 2002; Michaelis, Emary, and
Beenakker, 2006; Scheibner et al., 2008; Xue-Ou, Bing,
and Xiao-Lin, 2008; Pöltl, Emary, and Brandes, 2009; Kuo
and Chang, 2010; Svensson et al., 2013; Sierra and Sánchez,
2014; Marcos-Vicioso et al., 2018; Tang, Zhang, and Wang,
2018; Zimbovskaya, 2020). Schaller, Giusteri, and Celardo
(2016) relied on collective effects such as configurational
blockades to significantly enhance the rectification.
Alternatively, rectification can also be enhanced using long-
range interactions (Pereira and Ávila, 2013; Chen, Pereira,
and Casati, 2015).

2. Nonlinearities in the baths and role of quantum statistics

Important insights into the origin of nonlinear terms in
Eq. (171) were developed by Segal (2008), Wu and Segal
(2009b), and Wu, Yu, and Segal (2009). They considered
systems coupled to two reservoirs and found two sufficient
conditions for the emergence of thermal rectification: baths
with different energy-dependent densities of states and dif-

ferent statistical properties of system and baths, plus asym-
metric system-bath couplings. They studied the Hamiltonian
HS ¼PnEnjnihnj, weakly coupled to the baths via
HI ¼

P
νSλνBν, with Bν an operator acting on bath ν, λν a

coupling constant, and S ¼PnmSn;mjnihmj, an operator act-
ing only in the system. They considered Markovian baths and
weak coupling, such that the evolution can be described using
a Pauli master equation for the populations pn of the system
energy levels [see Eq. (36)]:

_pn ¼
X
ν;m

jSn;mj2pmðtÞkνm→nðTνÞ − pnðtÞ
X
ν;m

jSn;mj2kνn→mðTνÞ;

with transition rates

kνm→nðTνÞ ¼ λ2ν

Z
∞

−∞
dτeiðEm−EnÞτhBνðτÞBνð0ÞiTν

; ð172Þ

where hBνðτÞBνð0ÞiTν
are bath correlation functions

[Eq. (23)]. Segal (2008), Wu and Segal (2009b), and Wu,
Yu, and Segal (2009) then observed that if the system is a
harmonic oscillator with HS ¼ ωa†a and S ∝ aþ a†, then

IHOðTL;TRÞ¼−
ω½nBðω;TLÞ−nBðω;TRÞ�

nBð−ω;TLÞ=kLðTLÞþnBð−ω;TRÞ=kRðTRÞ
;

where kνðTνÞ ¼ kνðTνÞn→n−1 is independent of n and
nBðω; TνÞ ¼ ðeω=Tν − 1Þ−1. Conversely, if one has a two-level
system HS ¼ ðω=2Þσz, with S ¼ σx, then

ISðTL; TRÞ ¼ −
ω½nSðω; TLÞ − nSðω; TRÞ�

nSð−ω; TLÞ=kLðTLÞ þ nSð−ω; TRÞ=kRðTRÞ
;

with nSðω; TνÞ ¼ ðeω=Tν þ 1Þ−1. In both cases the numerator
is antisymmetric with respect to a swap TL ↔ TR, but the
denominator may not be. It is thus sufficient to study the
denominator to find criteria for the occurrence of rectification.
The decay rate kνðTÞ can be written as (Wu, Yu, and Segal,

2009)

kνðTÞ ¼ 2πλ2ν

R
dϵe−ϵ=Tρd;νðϵÞgνðϵ;ωÞR

dϵe−βϵρd;νðϵÞ
; ð173Þ

where ρd;νðϵÞ is the density of states (see Sec. II.K.1) of bath ν,
while λ2νgνðϵ;ωÞ characterizes the system-bath coupling;
cf. Eq. (87). Assuming that λL ¼ λR and gL ¼ gR, it follows
that ifR
dϵe−ϵ=Tρd;LðϵÞgLðϵ;ωÞR

dϵe−βϵρd;LðϵÞ
≠
R
dϵe−ϵ=Tρd;RðϵÞgRðϵ;ωÞR

dϵe−βϵρd;RðϵÞ
; ð174Þ

then rectification is possible. For example, as long as gνðϵ;ωÞ
depends on ϵ, it is sufficient that ρd;LðϵÞ ≠ ρd;RðϵÞ, and at least
one of them depends on ϵ as well. Thus, if both baths are
harmonic with a constant density of states, there is no
rectification.
An example of this behavior, in the context of quantum spin

chains, was given by Arrachea, Lozano, and Aligia (2009).
They considered an XX chain coupled on one edge to a
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semi-infinite XY chain and on the other to a semi-infinite XX
chain, which assumed the role of the reservoirs. Each bath was
subject to different magnetic field biases, resulting in rec-
tification. Kalantar, Agarwalla, and Segal (2021) showed that
while it is not possible to obtain rectification in a completely
harmonic system plus bath setup, it is possible to obtain
rectification when different portions of each edge of the chain
are coupled to baths at different temperatures. Similarly,
Pereira (2017b) showed that classical harmonic chains sub-
ject to temperature-dependent potentials could also lead to
rectification.
Another sufficient condition for the emergence of rectifi-

cation, first discussed by Wu and Segal (2009b) and Wu, Yu,
and Segal (2009), is when the system and baths are composed
of particles with different statistics. An intuitive way to think
about it is that if the bath is harmonic and the system is a spin,
the latter can be thought of as a strongly anharmonic system
(as exemplified by a Holstein-Primakoff transform), and thus
there is an effective nonlinearity in the overall system plus
bath setup. Another way to look at this is to note that different
quantum statistics make it impossible to describe transport
with linear scattering theory; see Benenti et al. (2017). A
difference in statistics is in fact the mechanism that allows the
linear models described by Yan, Wu, and Li (2009),
Balachandran, Benenti et al. (2019), and Silva et al. (2020)
to show rectification.
The fact that rectification is possible does not imply that it

will be strong. Balachandran, Benenti et al. (2019) considered
a bosonic chain with a quasiperiodic potential [introduced by
Ganeshan, Pixley, and Das Sarma (2015)] and two identical
spins baths at different temperatures. This setup allows
rectification because of the different statistics in the system
and in the baths, and because the quasiperiodic potential
breaks reflection symmetry. The quasiperiodic potential also
induces mobility edges [cf. Eq. (163)], which significantly
enhances the rectification. In fact, Ganeshan, Pixley, and Das
Sarma showed that this could be used to tune the magnitude of
the rectification over 3 orders of magnitude. This is because
localized modes can be moved into different positions by
tuning the potential parameters, and in the scenarios in which
one localized mode is at one of the edges of the system but no
other localized mode is present at the other edge, strong
rectification emerges.

H. Beyond 1D systems

Thus far we have discussed transport in boundary-driven
systems that are mainly 1D. Extending beyond 1D geometries
opens various possibilities. First, systems that are integrable in
one dimension may not be integrable in two dimensions: e.g.,
the 1D XXZ chain is integrable, but an XXZ ladder, or the 2D
XXZ model, is not. Second, there is more flexibility on what
parameters to tune, and one can also introduce qualitatively
different new terms, such as gauge fields, in the Hamiltonian.
Here we focus on ladders dissipatively driven far from
equilibrium. Results obtained via the Kubo formula for closed
quantum systems were reviewed by Bertini et al. (2021).
Spin ladders are setups that show neither that integrability is

strictly associated with ballistic transport nor that nonintegr-
ability corresponds to diffusive transport. The following refers

to results for local dissipators of the form of Eq. (17b).
Žnidarič (2013b) considered an integrable spin ladder and
showed that while for finite magnetization the transport is
ballistic, in the zero magnetization sector transport it can be
anomalous. For nonintegrable ladders Žnidarič found numeri-
cal evidence of diffusive transport. However, Žnidarič (2013a)
showed that a nonintegrable spin ladder with XX coupling for
bonds in the legs and XXZ coupling within the rungs (i.e.,
Δ ≠ 0) has invariant subspaces that permit ballistic spin
transport within them. The existence of such subspaces, with
different transport properties, has been investigated as a tool to
control the transport properties of the system (Manzano and
Hurtado, 2014, 2018; Manzano, Chuang, and Cao, 2016;
Thingna, Manzano, and Cao, 2016, 2020). In the Fermi-
Hubbard model analyzed by Prosen and Žnidarič (2012) for
small driving ηi [see Eq. (17b) after conversion from fermions
to spins], they showed the emergence of diffusive transport
except for the noninteracting limit, where it was ballistic, and
for infinite interaction strengths, where it was anomalous.
Moreover, for extreme boundary drivings ηi ¼ �1, the system
became an insulator.
The addition of an extra dimension also allows one to

explore the effect of different Hamiltonian terms and the
resulting phases of matter. For instance, one can consider the
following noninteracting bosonic ladder with gauge fields in
each leg:

HVM¼−
�
Jk
X
l;p

eið−1Þpþ1ϕ=2a†l;palþ1;pþJ⊥
X
l

a†l;1al;2þH:c:

�

þV
X
l;p

a†l;pal;p: ð175Þ

In Eq. (175) ϕ is the gauge field phase, al;p (a†l;p) is the
bosonic annihilation (creation) operator at the lth rung and pth
leg of the ladder, and Jk and J⊥ are the tunneling amplitudes
along the legs and rungs, respectively. Such a system presents
a phase transition between a Meissner phase, in which the
ground state has a current circulating on the edges but not
within the rungs (known as chiral current), and a vortex phase
for which the current in the ground state presents a different
number of vortices (Kardar, 1986; Granato, 1990). This
system has been studied both theoretically (including inter-
actions) and experimentally, with different techniques and
experimental setups (Kardar, 1986; Granato, 1990; Denniston
and Tang, 1995; van Oudenaarden and Mooij, 1996;
Nishiyama, 2000; Donohue and Giamarchi, 2001; Orignac
and Giamarchi, 2001; Atala et al., 2014). However, only
recently have the effects of the phase transition on the
boundary-driven transport properties been explored (Guo
and Poletti, 2016, 2017a; Rivas and Martin-Delgado, 2017;
Xing et al., 2020).
Given the noninteracting nature of the problem, transport is

always ballistic, regardless of the strength of the gauge field ϕ.
However, tuning ϕ can significantly alter the current across
the ladder and within the system. For instance, Guo and Poletti
(2016) considered LME baths of the type of Eq. (17b)
(adapted for bosons) and showed that chiral currents can
emerge, but only if the baths are coupled to certain sites. They
also showed that it is possible to tune the system into a perfect
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insulator. The nonequilibrium properties of this system
depend significantly on whether or not the two bands of
the spectrum have an energy gap between them (see the
further discussion in Sec. IV.I on phase transitions). As the gap
opens between the bands, such as by varying ϕ or J⊥, the
current is significantly reduced. Rivas and Martin-Delgado
(2017) considered a similar setup under the effect of GME
thermal baths [as in Eq. (32)] and showed the robustness of the
chiral, heat, and particle currents versus the presence of
disorder. Xing et al. (2020) used nonequilibrium Green’s
functions, which unlike GMEs and LMEs is exact, to study
chiral, heat, and particle currents for a broad range of system
parameters. They showed how, at low temperatures, these
three currents are significantly different depending on whether
the underlying ground state is in the Meissner or vortex phase,
and on the presence or absence of a gap between the two
bands of the energy spectrum of the system. For instance, if
one of the temperatures is large enough to allow transport via
the upper band, then even a small amount of particle current in
this band would result in a significant change to the heat
current, especially if the gap between the bands is large. If one
compares the current pattern in the ground state to the one in a
low-temperature NESS, it can be found that the pattern is more
robust to the coupling with the baths for parameters such that
the ground state is in the Meissner phase, while it is less robust
for an underlying vortex phase. The boundary-driven bosonic
system with a gauge field has also been studied for interacting
particles, in particular, the hard-core bosons discussed by Guo
and Poletti (2017a), who found that the effect of the gauge
field on the current becomes less prominent as the filling
increases.
As in ladders, in ring configurations the magnetic field

can significantly affect the transport properties. To be more
specific, we focus on rings with two external baths coupled
to different sites. A ring can behave as an Aharonov-Bohm
interferometer (Aharonov and Bohm, 1959) that is sensitive
to an external magnetic field, as long as the ring is smaller
than the phase-coherence length. Ring setups have been
studied intensively, particularly when they contain quantum
dots; see Yacoby et al. (1995), Schuster et al. (1997),
Holleitner et al. (2001), and Sigrist et al. (2004) and Akera
(1993), Yeyati and Büttiker (1995), Bruder, Fazio, and
Schoeller (1996), and Hackenbroich and Weidenmüller
(1996) for pioneering experimental and theoretical works,
respectively. Various phenomena have been observed,
including resonant tunneling (Shahbazyan and Raikh,
1994; Mourokh, Horing, and Smirnov, 2002) and cotunnel-
ing (Akera, 1993; Loss and Sukhorukov, 2000), Fano
physics (Kubala and König, 2002; Silva, Oreg, and
Gefen, 2002; Kobayashi et al., 2003; Ueda et al., 2003),
Kondo correlations (Gerland et al., 2000; Hofstetter, König,
and Schoeller, 2001; Boese, Hofstetter, and Schoeller, 2002;
Kim and Hershfield, 2002), the influence of Coulomb
interaction on transport, quantum coherence, and current
statistics (Bruder, Fazio, and Schoeller, 1996; Hackenbroich
and Weidenmüller, 1996; König and Gefen, 2001, 2002;
Weidenmüller, 2003; Urban, König, and Fazio, 2008; Urban
and König, 2009; Hiltscher, Governale, and König, 2010),
and entanglement (Loss and Sukhorukov, 2000). We have
provided here some of the key references, but we

acknowledge that a fair discussion of transport in rings
and quantum-dot setups would require its own review. One
interesting aspect of rings is that currents can follow
different paths, depending on the parameters. For instance,
while overall the current enters the system at one point and
leaves in another, within the ring it could follow an overall
clockwise or counterclockwise path, or even move on both
sides of the ring in the same direction (Xu, Choo et al.,
2019), while spin and energy currents can follow different
patterns.
Last, we also point out that molecules are a prominent

example of beyond 1D systems, in which it is important to
study transport properties. Given the vastness of the research
done on molecular transport, we direct the interested reader to
Nitzan and Ratner (2003), Tao (2009), Dubi and Di Ventra
(2011), Zimbovskaya and Pederson (2011), and Segal and
Agarwalla (2016).

I. Phase transitions

Phase transitions represent abrupt transitions that take
place when one changes an external parameter such as the
temperature. In classical phase transitions, such as the melting
of ice, the driver of the transition is thermal fluctua-
tions, while quantum phase transitions (QPTs) (Sachdev,
2011), such as the superfluid-to-Mott-insulator transition
(Fisher et al., 1989; Jaksch et al., 1998; Greiner et al.,
2002), are driven by quantum fluctuations.19 Conversely,
dissipative phase transitions are driven by a competition
between nonequilibrium fluctuations produced by the cou-
pling to the environment and internal system parameters.
As an example of a dissipative phase transition, consider the

electron shuttle, which [in analogy with a ball pendulum
between two capacitor plates (Kim et al., 2015)] can be
realized by a single electron transistor mounted on a harmonic
oscillator system (Gorelik et al., 1998). The single electron
transistor can be modeled by a LME such as of the Redfield
type as in Eq. (28) to describe electronic tunneling to the leads
and the oscillator by a local Fokker-Planck equation (equiv-
alent to an oscillator-local master equation of the Redfield
type in the classical limit) (Novotný, Donarini, and Jauho,
2003; Strasberg, Wächtler, and Schaller, 2021). The tunneling
depends nonlinearly on the oscillator position, and the phase
transition manifests as a sharp onset of autonomous self-
oscillations. This transition has been studied in various works,
highlighting the FCS of electron transfers (Flindt, Novotný,
and Jauho, 2004) (Sec. II.I) or its thermodynamic properties
(Wächtler et al., 2019) (Sec. II.D). Further experimental (Park
et al., 2000; Scheible and Blick, 2004; Moskalenko et al.,
2009; König and Weig, 2012) and theoretical (Joachim,
Gimzewski, and Aviram, 2000; Shekhter et al., 2003;
Galperin, Ratner, and Nitzan, 2007; Galperin et al., 2008)

19This includes not only the more common ground-state transi-
tions, but also excited-state phase transitions (Cejnar et al., 2021), in
which the level density changes abruptly, and topological phase
transitions (Hasan and Kane, 2010), where some eigenstates undergo
topological changes.
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studies demonstrate the use of LMEs to explain dissipative
nonequilibrium phenomena.
There are many natural questions that one can then ask

regarding phase transitions and boundary-driven systems,
such as (i) How does a phase transition affect the transport
properties of a system? (ii) Can transport be used as an
indicator of the occurrence of a phase transition? (iii) Are the
character and position of the critical point and the nature of the
phases altered or induced by the presence of the reservoirs?
In Markovian systems described by the GKSL master

equation (11), the Liouvillian L, not the Hamiltonian, becomes
the central object of interest (Morrison and Parkins, 2008;
Kessler et al., 2012; Minganti et al., 2018). Thus, while a QPT
can be associated with the ground state of the Hamiltonian, a
dissipative transition is associated with the NESS, which is
simply the right eigenstate of L with a vanishing eigenvalue;
cf. Eq. (124). Similarly, the Hamiltonian energy gap that closes
at the critical point for QPTs is replaced by the gapwith the next
eigenvalue of L (Minganti et al., 2018). In some systems,
dissipation affects only a transition that already occurs in
the isolated system, e.g., by shifting the critical point
(Morrison and Parkins, 2008; Dalidovich and Kennett, 2009;
Bhaseen et al., 2012). In other models, it may induce entirely
new behavior.
In previous sections we saw that in systems driven by LMEs

transport properties can be significantly altered at the tran-
sition point. For instance, in the XXZ chain, transport changes
from ballistic to diffusive to insulating as Δ crosses the critical
value Δc ¼ 1 (Fig. 11). At Δc ¼ 1, transport can be super-
diffusive for small boundary driving, and subdiffusive for
large boundary driving. As mentioned in Sec. IV.D, it is also
possible to have phase transitions without interaction. For
instance, in the AAH model, which uses the potential of
Eq. (163), the system is insulating in one phase and ballistic in
the other and shows anomalous tranport at the transition
(Fig. 13). Another well-studied example (see also Sec. IV.H) is
a ladder in the presence of a magnetic field; cf. Eq. (175). The
QPT takes the ground state from a Meissner phase, charac-
terized by currents only at the edges, to a vortex phase, in
which the ground state has vortices of currents. The transport
properties of this setup were discussed in Sec. IV.H. Here we
add that there is also a significant change in the relaxation
timescale toward the steady state (Guo and Poletti, 2017b).
More precisely, the rapidity of the slowest decaying state
scales as L−3, except at the phase transition where it scales as
L−5. As shown by Prosen (2008) and Žnidarič (2015), this is
due to the change in the momentum k dependence of the
energy dispersion relation from ωðkÞ ∝ k2 to k4. The model in
Eq. (175) also shows an excited-state QPT in which a gap
opens in the density of states.
Continuing the review of noninteracting systems, Prosen

and Pižorn (2008) considered the XY model [Eq. (54) with
Jz ¼ 0]. In particular, they parametrized the Hamiltonian with
Jx ¼ Jð1þ δÞ=2, Jy ¼ Jð1 − δÞ=2, hi ¼ h, and a coupling to
baths described by a LME of the type of Eq. (9). They found
the existence of a critical magnetic field magnitude
hc=J ¼ 1 − δ2: Below this critical value, the single-particle
correlations present long-range order and the operator space
entanglement entropy (OSEE), which is a measure of the

complexity of the operator (Prosen and Pižorn, 2007; Prosen
and Žnidarič, 2009), grows linearly with L. Above the critical
value the correlations decay and the OSEE saturates to a
constant value. This transition is related not to a phase
transition in the ground state of the system but to dynamical
properties of the system (Pižorn and Prosen, 2009). The out-
of-equilibrium transition can also be observed when using the
Redfield-II master equation (27), as shown by Prosen and
Žunkovič (2010).
In bosonic systems one can also consider the effects of

Bose-Einstein condensation. Vorberg et al. (2013) showed
that the presence of multiple macroscopically occupied states
can significantly enhance transport in noninteracting bosonic
chains.
As mentioned, the fact that a phase transition affects

transport also implies that with GMEs one can use the current
to identify signatures of phase transitions that occurred in the
isolated systems discussed by Vogl, Schaller, and Brandes
(2011) and Schaller, Vogl, and Brandes (2014). An example is
the critical nature of the eigenstates of the AAH or Fibonacci
model (Sec. IV.D). In such scenarios, Varma, de Mulatier, and
Žnidarič (2017b) found that the magnetization profile shows a
fractal behavior.
Phase transitions can turn systems into a strong rectifier (see

Sec. IV.G for a more in-depth discussion), and this phenom-
enology can in itself be a probe of the phase transition; see
Balachandran et al. (2018) and Sec. IV.G. In a completely
different setup, Schaller, Giusteri, and Celardo (2016) con-
sidered a system coupled differently to each of the two baths
and observed that when the system undergoes a phase
transition the rectification becomes significantly stronger. It
is a challenging task to develop accurate models to describe
the out-of-equilibrium dynamics close to criticality. Recent
advances in this direction were obtained by Wächtler and
Schaller (2020), who used polaron transforms and reaction
coordinates (Secs. II.H.1 and II.H.3) to obtain thermodynami-
cally consistent equations.

V. SUMMARY AND OUTLOOK

In this review we have examined theoretical aspects of
boundary-driven systems, focusing on models to describe
them (Sec. II), techniques to analyze them (Sec. III), and the
emerging phenomenology (Sec. IV). The models studied
in Sec. II have revealed that the local and global master
equations are complementary tools capable of addressing
different parameter regimes of open nonequilibrium systems.
Transport theory shows, in particular, that for a proper
thermodynamic interpretation the computed currents must
properly reflect the corresponding energy balances between
the system and the reservoirs. We have also exposed methods
to explore the strong-coupling regime. However, apart from
exact solutions, these methods are capable of exploring only
small regions of the parameter space. This means that none of
these methods should be used naively beyond their range of
validity. In particular, GKSL approaches can be deceptive in
the sense that a formally correct solution can be far from being
physically correct.
Many important questions remain largely unexplored. For

example, within the exposed theoretical framework it would
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be interesting to consider varying degrees of locality by
treating only certain internal junctions of a multipartite system
perturbatively. This would yield dissipators acting nontrivially
only on a few sites of a larger system, and it would be
interesting to learn how the spectral changes of random
Liouvillians (Timm, 2009; Can, 2019; Lange and Timm,
2021), as a function of locality (Denisov et al., 2019; Wang,
Piazza, and Luitz, 2020), are linked to physical phenomena.
Furthermore, while symmetries in the full counting statistics
such as the fluctuation theorem (Crooks, 1999) are naturally
reflected in GMEs (Esposito, Harbola, and Mukamel, 2009;
Campisi, Hänggi, and Talkner, 2011), they are less well
explored in LMEs. For example, the standard thermodynamic
uncertainty relation for Pauli-type rate equations (Barato and
Seifert, 2015; Gingrich et al., 2016) need not be respected by
LMEs or Redfield equations (Liu and Segal, 2021). The
fluctuation theorem alone would enforce weaker uncertainty
relations (Hasegawa and Van Vu, 2019; Timpanaro et al.,
2019). To explore the long-time limit of strongly interacting
systems, or simply large systems with small energy gaps,
would also require us to advance the corresponding theo-
retical description. Here both GMEs and LMEs have issues
since approximations like the secular one may fail. With
such issues resolved, it would be interesting to consider the
dynamics and transport characteristics of larger and strongly
interacting systems (Navez and Schützhold, 2010; Queisser
et al., 2014). Systems for which a rich dynamics can be
expected are Fermi-Hubbard models (Wu and Eckardt,
2019; Kleinherbers et al., 2020; Kolovsky, 2020; Wu and
Eckardt, 2020) or higher-dimensional spin systems [such
as higher-dimensional lattices or irregular spin networks
(Farhi et al., 2001) with quantum information applications].
One could then go beyond mere heat transport applications,
and also revisit the development of correlations inside the
system from the perspective of information processing. Still,
with their contractive properties GKSL master equations can
treat only a fraction of all possible dynamics. Self-oscil-
latory systems (Gorelik et al., 1998; Novotný, Donarini, and
Jauho, 2003) require a nonlinear ingredient, and it is
questionable whether this can be achieved with GKSL
approaches.
These arguments encourage the search for alternative

approaches for treating open systems. The few exactly
solvable models can assist as benchmarks in this endeavor.
Small steps include discarding or avoiding certain approx-
imations, such as the secular one (Hartmann and Strunz, 2020;
McCauley et al., 2020). More ambitiously, one may also
consider methods to find approximations to the full Kraus map
dynamics, aiming at a picture consistent with thermody-
namic laws.
As for the methods discussed in Sec. III, we want to add

a few comments. Boundary-driven problems are usually
difficult to solve owing to the large Hilbert space dimension,
together with the need to work with density matrices instead
of pure states. In this aspect, the use of tensor network
methods is currently revolutionizing the field, with new
approaches being invented all the time; see Sec. III.E. Tools
such as entanglement entropy have greatly assisted in the
development of tensor networks for closed systems but are
not readily extensible to open dynamics. This is one of the

challenges that must be overcome. The other challenge is
to gain a better understanding of the typical tensor struc-
tures of boundary-driven systems. Most open system models
use MPSs. But other structures such as tree tensor networks
and neural-network states could offer advantages in cer-
tain cases.
Once again analytical solutions offer valuable insight. The

results discussed in Sec. III.F highlight the underlying tensor
structure of the NESS but hold only for special setups. In
parallel to the development of novel tensor network algo-
rithms, the discovery of new models amenable to analytical
treatment is therefore highly desirable.
Another related challenge is in the description of boundary-

driven systems with different geometries. This does not
necessarily indicate higher dimensionality; it could instead
suggest more complex bond structures, such as the network
illustrated in Fig. 2. These systems appear frequently in
biological processes, molecular transport, nuclear magnetic
resonance, optomechanics, and quantum-dot devices. Most
solution methods can handle this kind of geometry, but few are
actually optimized for it. Bridging this gap is another
important open challenge in the field.
In Sec. IV we have reviewed the different transport pro-

perties and phenomena that can emerge in boundary-driven
quantum systems. We have described systems with distinct
transport properties (i.e., insulating, subdiffusive, diffu-
sive, superdiffusive, and ballistic) and have showed phase
diagrams for prototypical models in clean conditions with
disorder and with a quasiperiodic potential (Figs. 11–13).
Many of these diagrams, however, are still incomplete. For
instance, in Fig. 11 the transport properties in the vertical
line for anisotropy Δ ¼ 1 are still unknown. The models
presented are also often studied only close to infinite
temperature, as only in this regime can one investigate
large enough systems to be able to extract the transport
exponent. This is made worse by the small values that the
currents tend to reach. The same type of problem occurs
when studying negative differential conductance (Sec. IV.F)
or rectification (Sec. IV.G), which occurs primarily when the
bath imposes large biases and not small ones near the
infinite-temperature state.
For interacting systems, most studies have relied on tensor

network methods to describe the steady states (Sec. III.E).
However, for large system sizes the bond dimensions needed
to describe the steady state accurately can be too large to make
computations practical. This is particularly relevant in systems
beyond the nearest-neighbor 1D chains. In Sec. IV.H we have
showed that geometries such as ladders, or 2D systems, can
have significantly different properties than their 1D counter-
part. For instance, an XXZ chain could be integrable and
ballistic, while an XXZ ladder with the same magnitude of
anisotropy would be nonintegrable and diffusive (Žnidarič,
2013b). Because of the presence of ulterior symmetries in
the ladders, it is even possible that the same system is
ballistic in some symmetry sectors but diffusive in others
(Žnidarič, 2013a).
Going beyond 1D nearest-neighbor chains also allows one

to introduce other terms in the Hamiltonian, such as gauge
fields on plaquettes, which can induce quantum phase
transitions in the ground state or abrupt changes in the density
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of states (excited-state QPTs), significantly affecting transport
across the system. In ladders such QPTs can already occur in
noninteracting systems (Kardar, 1986; Granato, 1990), and
hence can be studied up to large system sizes. However,
interactions can affect their transport properties, and this is
still a vastly unexplored area.
Phase transitions can significantly affect the transport

properties of the system, as reviewed in Sec. IV.I. We
stress here that this can be seen from two parallel and
equally interesting points of view. From one side, one can
vary a parameter to induce a phase transition as a way to
control transport properties in a device. Conversely, since a
phase transition can drastically change the transport prop-
erties, one can design detectors that function by measuring
currents in systems that can go through a phase transition
if some external parameters are varied. Additionally, the
impact of topological and excited-state phase transition on
transport properties requires more research (Benito
et al., 2016).
Another topic currently under intense study concerns the

complexity of boundary-driven steady states. This has been
analyzed through the OSEE (Sec. IV.I), the levels statistics
of the steady state (Prosen and Žnidarič, 2013), or the
effective Hamiltonian (Sá, Ribeiro, and Prosen, 2020b). The
OSEE in 1D steady states may follow an area or a volume
law. The level spacing of the steady state or the effective
Hamiltonian can follow a Poisson distribution for integrable
or localized systems, or a Wigner-Dyson distribution for
nonintegrable ones. This mirrors the behavior of unitary
chaotic systems, in which the change from Poisson to
Wigner-Dyson statistics of the energy level spacing is
associated with a passage from regular to chaotic dynamics
(Casati, Valz-Gris, and Guarnieri, 1980; Bohigas, Giannoni,
and Schmit, 1984; D’Alessio et al., 2016). For the overall
open system setup, one needs to take into account that
rapidities, unlike eigenvalues of a Hamiltonian, can be
complex numbers, and one thus needs to consider the
distance in a 2D space (Sá, Ribeiro, and Prosen, 2020a;
Li, Prosen, and Chan, 2021). Recently it was shown that
Liovillians of GKSL form with randomly chosen jump
operators (Can, 2019; Can et al., 2019) tend, in the
thermodynamic limit, to a universal lemon shaped spectrum
of rapidities in the complex plane (Timm, 2009; Denisov
et al., 2019; Wang, Piazza, and Luitz, 2020). Further
analyses on random Liouvillians were undertaken by Can
et al. (2019), Sá, Ribeiro, and Prosen (2020b), Sá et al.
(2020), and Lange and Timm (2021). Depending on the
symmetries in the system, other universality classes in the
level-spacing distribution of the rapidities have been uncov-
ered (Hamazaki et al., 2020), and it has been shown in an
increasing number of works that the level-spacing statistics
of nonintegrable open systems tend to be one of these
classes (Akemann et al., 2019; Hamazaki et al., 2020; Sá,
Ribeiro, and Prosen, 2020a; Li, Prosen, and Chan, 2021;
Rubio-García, Molina, and Dukelsky, 2022). There have
also been recent developments in understanding the relation
between the scaling of the rapidities with system size and
the scaling of the current (Mori and Shirai, 2020). The
relaxation gap, in particular, does not necessarily scale in
the same way as the current (Žnidarič, 2015).

A more recent field of research that was not covered in
this review is that of periodically driven systems. Prosen and
Ilievski (2011) found that the driving could result in the
emergence of long-range spin-spin correlations. Purkayastha
and Dubi (2017) realized that the instantaneous current can
be orders of magnitude larger than the average current,
making it experimentally measurable. Periodic drivings
bring an entirely new dimension to the study of transport
because they can be used to model engines, refrigerators, and
heat pumps; cf. Thouless (1983), Switkes et al. (1999), Xiao,
Chang, and Niu (2010), Kosloff (2013), Pekola et al. (2013),
Kaestner and Kashcheyevs (2015), Van den Broeck and
Esposito (2015), Goold et al. (2016), Millen and Xuereb
(2016), Vinjanampathy and Anders (2016), Benenti et al.
(2017), and Lacerda et al. (2022). The modeling of open
quantum systems subject to time-dependent driving must be
considered carefully, however. For periodic driving and weak
coupling, one may rely on Floquet master equations (Grifoni
and Hänggi, 1998; Breuer and Petruccione, 2002). In the
strong-coupling regime, one may instead employ methods
simulating both the system and the bath (Secs. II.H.2
and II.H.4), which are extendable to driven systems.
Finally, in this review we have not covered experimental

papers in detail, although we have cited a number of
experimental results in various sections. An important direc-
tion for future research is the proposal of novel experiments in
new setups, such as ultracold atoms (Damanet et al., 2019)
and trapped ions (Bermudez, Bruderer, and Plenio, 2013),
both of which allow a high degree of control (Bloch, Dalibard,
and Zwerger, 2008; Blatt and Roos, 2012) and can lead to
applications in atomtronics (Seaman et al., 2007; Amico et al.,
2017, 2021). We have highlighted experiments that use
ultracold atoms to create two reservoirs, connected by a
tunable channel through which both particles and energy
can flow (Brantut et al., 2012, 2013; Stadler et al., 2012;
Husmann et al., 2015, 2018; Krinner et al., 2015, 2016; Lebrat
et al., 2018). Experiments would be the first step toward the
design and production of new materials and devices, such as
tunable spin and heat current rectifiers, transistors, and
sensors.
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APPENDIX: EXACT SOLUTION VIA LAPLACE
TRANSFORMS

Herewe provide details for the exact time-dependent solution
discussed in Sec. II.G. The star representation has the advan-
tage that, by computing the Laplace transform CkαðzÞ ¼R
∞
0 ckαðtÞe−ztdt, we can eliminate the reservoir modes

CkLðzÞ ¼
ckL

zþ iϵkL
− i

tkLD1ðzÞ
zþ iϵkL

;

CkRðzÞ ¼
ckR

zþ iϵkR
− i

tkRDNðzÞ
zþ iϵkR

; ðA1Þ

leaving only the following Laplace-transformed equations for
the system operators to solve:

zDaðzÞ − da ¼ −i
X
j

hajDjðzÞ∶ 2 ≤ a ≤ N − 1;

zD1ðzÞ − d1 ¼ −i
X
j

h1jDjðzÞ − i
X
k

tkLckL
zþ iϵkL

−
X
k

jtkLj2
zþ iϵkL

D1ðzÞ;

zDNðzÞ − dN ¼ −i
X
j

hNjDjðzÞ − i
X
k

tkRckR
zþ iϵkR

−
X
k

jtkRj2
zþ iϵkR

DNðzÞ: ðA2Þ

Thereby one can express the Laplace-transformed system
operatorsDjðzÞ in terms of the initial system (dj) and reservoir
(ckα) operators, and by performing inverse Laplace transforms
one can in principle compute all observables exactly.
To be more specific, we now consider the case N ¼ 2.

We can recast the equations for the system annihilation
operators as

G−1ðzÞ
�
D1ðzÞ
D2ðzÞ

�
¼
�
d1
d2

�
− i
X
k

�½tkL=ðzþiϵkLÞ�ckL
½tkR=ðzþ iϵkRÞ�ckR

�
;

G−1ðzÞ¼
�
z·1þ i

�
h11 h12
h21 h22

�

þ
X
k

�jtkLj2=ðzþ iϵkLÞ 0

0 jtkRj2=ðzþ iϵkRÞ

��
;

ðA3Þ

where GijðzÞ is the Green’s function. By inversion, we can
write this in the form

DiðzÞ ¼ Gi1ðzÞd1 þ Gi2ðzÞd2
− i
X
k

tkLGi1ðzÞ
zþ iϵkL

ckL − i
X
k

tkRGi2ðzÞ
zþ iϵkR

ckR: ðA4Þ

Employing the initial product assumption

ρ0 ¼ ρ0S ⊗
e−βLðH

ðLÞ
B −μLN

ðLÞ
B Þ

ZðLÞ
B

⊗
e−βRðH

ðRÞ
B −μRN

ðRÞ
B Þ

ZðRÞ
B

; ðA5Þ

one then finds via the inverse Laplace transform (Bromwich
integral) that the system observables can be expressed in terms
of the initial expectation values as

hd†i djit ¼ g�i1ðtÞgj1ðtÞhd†1d1i0 þ g�i2ðtÞgj2ðtÞhd†2d2i0
þ g�i1ðtÞgj2ðtÞhd†1d2i0 þ g�i2ðtÞgj1ðtÞhd†2d1i0
þ
X
k

jtkLj2g�i1kLðtÞgj1kLðtÞfLðϵkLÞ

þ
X
k

jtkRj2g�i2kRðtÞgj2kRðtÞfRðϵkRÞ; ðA6Þ

where the initial reservoir properties are encoded in the
Fermi functions fαðϵkαÞ and gijðtÞ and gijkαðtÞ are the inverse
Laplace transforms of GijðzÞ and −iGijðzÞ=ðzþ iϵkαÞ,
respectively.
As a first observation, although for finite Lα the evolution is

quasiperiodic, a stationary long-term limit may arise from the
exact dynamics. When we make the reservoirs larger
(Lα → ∞), their single-particle spectra from Eq. (75) con-
tinuously cover the interval ½ϵ − 2τ; ϵþ 2τ� and we can use the
spectral coupling density of Eq. (77). To invert the Laplace
transform, we can then analytically calculate expressions like

X
k

jtkαj2
zþ iϵkα

¼ 1

2π

Z
ΓαðωÞ
zþ iω

dω

¼ τ2α
2τ2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4τ2

ðzþ iϵÞ2

s
− 1

!
ðzþ iϵÞ; ðA7Þ

which has a branch cut discontinuity along the imaginary axis
in the interval i½−ϵ − 2τ;−ϵþ 2τ� that has to be considered
when inverting the Laplace transform.
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Büttiker, M., 1986, Phys. Rev. Lett. 57, 1761.
Cabot, A., F. Galve, and R. Zambrini, 2017, New J. Phys. 19,
113007.

Caffarel, M., and W. Krauth, 1994, Phys. Rev. Lett. 72, 1545.
Cai, Z., and T. Barthel, 2013, Phys. Rev. Lett. 111, 150403.
Campisi, M., P. Hänggi, and P. Talkner, 2011, Rev. Mod. Phys. 83,
771.

Can, T., 2019, J. Phys. A 52, 485302.
Can, T., V. Oganesyan, D. Orgad, and S. Gopalakrishnan, 2019,
Phys. Rev. Lett. 123, 234103.

Carmichael, H. J., 1993, An Open Systems Approach to Quantum
Optics (Springer, Berlin).

Caroli, C., R. Combescot, P. Nozieres, and D. Saint-James, 1971, J.
Phys. C 4, 916.

Carollo, F., J. P. Garrahan, and I. Lesanovsky, 2018, Phys. Rev. B 98,
094301.

Carollo, F., J. P. Garrahan, I. Lesanovsky, and C. Pérez-Espigares,
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