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Abstract
We study the dynamics of correlations in a paradigmatic setup to observe PT -symmetric physics:
a pair of coupled oscillators, one subject to a gain one to a loss. Starting from a coherent state,
quantum correlations (QCs) are created, despite the system being driven only incoherently, and
can survive indefinitely. Both total and QCs exhibit different scalings of their long-time behavior
in the PT -broken/unbroken phase and at the exceptional point (EP). In particular, PT symmetry
breaking is accompanied by non-zero stationary QCs. This is analytically shown and quantitatively
explained in terms of entropy balance. The EP in particular stands out as the most classical
configuration, as classical correlations diverge while QCs vanish.

1. Introduction

The finding of non-Hermitian Hamiltonians with real eigenvalues [1] fueled widespread attention at a
fundamental level, as well as in terms of potential applications [2–4]. A major motivation comes from the
experimental implementability of such Hamiltonians, especially in optics [5–7]. A prototypical example
(see figure 1) is a pair of coupled oscillators, separately subject to either gain or loss. At the mean-field level,
the modes evolve according to a Schrödinger-like equation featuring a non-Hermitian Hamiltonian H that
enjoys parity-time (PT ) symmetry [8].

To date the vast majority of studies of such dynamics adopted a classical description (based on
Maxwell’s equations in all-optical setups), thus neglecting quantum noise. Recent works yet showed that a
full quantum treatment (beyond mean field) can have major consequences [9–12], although the
exploration of this quantum regime is still in an early stage [13–23]. With regard to the potential
exploitation of PT -symmetric systems for quantum technologies, a major obstacle is that gain and loss
unavoidably introduce quantum noise, which is detrimental for quantum coherent
phenomena—entanglement above all [24]. In particular, the incoherent pumping due to the gain is unusual
in quantum optics settings [25]. This issue even motivated recent proposals to employ parametric driving in
place of gain/loss to effectively model non-Hermitian systems [12, 26].

Yet, in the last two decades, ‘cheaper’ quantum resources have been discovered that put milder
constraints on the necessary amount of quantum coherence. Among these is quantum discord, a form of
quantum correlations (QCs) that can occur even in absence of entanglement [27, 28]. This extended
paradigm of QCs has received huge attention for its potential of providing a quantum advantage in noisy
environments [29]. Remarkably, a very recent work reported the first experimental detection of such a form
of QCs [30] in an anti-PT -symmetric system featuring similarities with the setup in figure 1. However,
whether or not QCs dynamics are sensitive to different PT symmetric phases is yet generally unknown.

This work puts forth a detailed study of total and quantum correlations in the case study of the gain-loss
setup in figure 1, which is the simplest and most widely investigated system to implement PT -symmetric
non-Hermitian Hamiltonians [2]. We will show that, in addition to mean-field dynamics, PT symmetry
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Figure 1. A pair of quantum oscillators G and L undergo a coherent exchange energy with rate g. Additionally, mode G (L) is
subject to a local gain (loss) with rate γ. The mean-field dynamics is described by a PT -symmetric Hamiltonian. (Left): when
PT symmetry is preserved (g > γ), if each mode starts in a coherent state (zero correlations), after some time they will share
only classical correlations. (Right): PT symmetry breaking (g < γ) is instead accompanied by stationary quantum correlations.

breaking can be sensed by the long-time behavior of both total and QCs: these are found to display different
scalings in the PT -broken/unbroken phase and at the exceptional point (EP). This is proven analytically
and the underlying mechanism explained in detail through entropic arguments. In particular, breaking of
PT symmetry is accompanied by the appearance of finite stationary discord. Our study provides a new
characterization of phases with unbroken/broken PT symmetry in terms of the asymptotic behavior of
correlations, whose knowledge requires accounting for the full quantum nature of the field.

2. System

We consider two quantum harmonic oscillators G and L (see figure 1), whose joint state evolves in time
according to the Lindblad master equation (we set � = 1 throughout)

ρ̇ = −i[g(â†LâG + H.c.), ρ] + 2γLD[âL]ρ+ 2γGD[â†G]ρ (1)

with

D[Â]ρ = ÂρÂ† − 1

2
(Â†Âρ+ ρÂ†Â).

Here, ân and â†n with n = L, G are usual bosonic ladder operators [ân, â†n] = 1. Here, we assumed a rotating
frame so as to eliminate the free Hamiltonian term ω0(â†GâG + â†LâL), which does not affect any G–L
correlations. The coupling Hamiltonian in (1) describes a coherent energy exchange at rate g between the
two modes. In addition, each oscillator interacts incoherently with a local environment: the one on G
pumps energy with characteristic rate γG (gain) while that on L absorbs energy with rate γL (loss). This
system can be implemented in a variety of ways [2], including coupled waveguides [5], microcavities [7],
inductively-coupled LRC circuits [31] and coupled pendula [32].

From equation (1) it follows that the evolution of the mean-field vector ψ = (〈âL〉, 〈âG〉)T, with
〈âL〉 = Tr (âLρ) and similarly for 〈âG〉, is governed by the Schrödinger-like equation iψ̇ = Hψ with

H =

(
−iγL g

g iγG

)
. (2)

The non-Hermitian matrix H generally has two complex eigenvalues with associated non-orthogonal
eigenstates. For γL = γG = γ (the so-called ‘PT line’), H is invariant under PT symmetry, corresponding
to a swap G ↔ L combined with time reversal (complex conjugation). In this case, its eigenvalues are
ε± = ±

√
g2 − γ2. These are real in the so called unbroken phase (UP) γ < g and complex in the broken

phase (BP) γ > g, coalescing at the EP γ = g where the corresponding eigenstates become parallel [2].
Equations analogous to (1) for the full-quantum description of PT -symmetric systems also appeared
elsewhere (see e.g. references [33–35]).

3. Second-moment dynamics

The two oscillators have an associated quantum uncertainty described by a 4 × 4 covariance matrix.
Introducing quadratures x̂n = 1√

2
(ân + â†n) and p̂n = i√

2
(â†n − ân) (with n = G, L), we define the covariance

matrix as σij = 〈X̂iX̂j + X̂jX̂i〉 − 2〈X̂i〉〈X̂j〉, where X̂i = (x̂L, p̂L, x̂G, p̂G) [36]. Following a standard recipe
[36], the master equation (1) implies a Lyapunov equation for the covariance matrix:

σ̇ = Yσ + σYT + 4D (3)

2
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Figure 2. Evolution of total and quantum correlations on the PT line (γL = γG = γ). This comprises the UP γ < g, the EP
γ = g and the BP for γ > g. (a) and (b): mutual information I (a) and discord DLG (b) for γ = g/2 (UP, green), γ = 3g/2 (BP,
red) and γ = g (EP, blue). A qualitatively analogous behavior is exhibited by DGL . (c): asymptotic value of discord, DLG(∞)
(yellow) and DGL(∞) (purple). See appendix.

with

Y =

⎛
⎜⎜⎝
−γL 0 0 g

0 −γL −g 0
0 g γG 0
−g 0 0 γG

⎞
⎟⎟⎠ (4)

and D = 1
2 diag(γL, γL, γG, γG). The dynamics generated by equation (1) is Gaussian preserving, hence a

Gaussian initial state will remain so at any time. Thereby, the entire state is fully specified by the mean-field
vector ψ and the covariance matrix σ [37, 38].

4. Correlation measures

A measure of the total amount of correlations between modes âG and âL is given by the mutual information
I = SG + SL − S, which is the difference between the sum of local entropies SL(G) = −Tr(ρL(G) log ρL(G)),
with ρL(G) = TrG(L) ρ, and the entropy of the joint system S = −Tr(ρ log ρ) [24, 39]. This fulfills I = 0 if
and only if ρ = ρL ⊗ ρG. Instead, the amount of QCs is measured by the so-called quantum discord [27–29]

DLG = SG − S + min
Ĝk

∑
k

pkS(ρL|k), (5)

where the minimization is over all possible quantum measurements {Ĝk} made on G. A measurement
outcome indexed by k collapses the joint system onto ρL|k = TrG(Ĝkρ)/pk with probability pk. Likewise, DGL

is obtained in terms of measurements on mode L by swapping G and L in equation (5).
Note that discord is in general asymmetric, i.e., DLG 	= DGL, which is the typical case for our system

[see figure 2(c)]. The difference I − DLG quantifies the maximum amount of information that can be
extracted about L only from local measurements on G. Based on this, discord captures QCs beyond
entanglement, as it is in general nonzero for separable states [29]. Hence, correlations between the modes
are wholly classical only when both DLG and DGL vanish but I 	= 0.

For Gaussian states, the optimization in (5) can be restricted to Gaussian measurements (Gaussian
discord) [40], leading to a closed-form, albeit cumbersome, expression for D [41, 42]. In order to provide a
simpler analytic expression we replace the von Neumann entropy by the Rényi-2 entropy
S(�) = −log Tr(�2) in each expression [43]. For Gaussian states, it has been shown that the choice of
Rényi-2 entropy leads to well-behaved correlation measures [44]. We however numerically checked that all
of the results presented (in particular asymptotic scalings to be discussed later) are qualitatively unaffected if
von Neumann entropy is used instead. The fact that discord detects QCs more general than entanglement is
condensed in a simple property: states such that D > log 2 are entangled (log 2 → 1 if von Neumann
entropy is used) [42].

5. Correlations dynamics for balanced gain and loss

We study the dynamics of correlations when each oscillator n = L, G starts in a coherent state

|αn〉 = e(αâ†n−α∗ ân)|0〉; the initial covariance matrix is thus simply σ0 = 𝟙4 (note that this is independent of
αL and αG). We evolve the covariance matrix through equation (3) and then compute the time evolution of
correlation measures I, DLG and DGL for which we obtain exact and compact expressions (see appendix).
Instead, entanglement is zero at any time. It turns out that (5) admits a global minimum for all possible
parameter values, which corresponds to a phase-insensitive (heterodyne) measurement. Intuitively, this

3
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property can be traced back to the absence of any coherent drive: the dynamics in (1) preserves U(1)
symmetry and thus favors the conditioning of phase-insensitive measurements over phase-sensitive ones;
this in turn makes the latter suboptimal for generating QCs.

Figure 2, where we set γL = γG = γ (PT line), shows the typical time behavior of mutual information
I (a) and discord D (b) in the UP (green line), at the EP (blue) and in the BP (red). Correlations, including
QCs, are created on a typical time scale (transient time) of the order of ∼ g−1 or less (see appendix for
details). As discussed later on, transient generation of QCs is common in noise-driven multipartite systems.
In the long-time limit, instead, correlations show a peculiar behavior, which we next analyze for each phase
(namely in the UP, BP and at the EP).

In the UP, I saturates to a finite value and exhibits secondary oscillations at frequency 2
√

g2 − γ2, while
discord slowly decays until it vanishes. Their asymptotic expressions are given by (see appendix for details)

I ≈ log(
g2

g2 − γ2
), DLG,DGL ≈ γ

2g2t
, (6)

showing that discord undergoes a power-law decay in this phase (throughout the symbol ≈ indicates the
long-time limit). Thus in the UP asymptotic correlations are entirely classical, i.e., they do not involve any
quantum superposition. At a glance, this may seem to contradict the well-known property that Gaussian
states such that I = 0 are all and only those with zero discord [42]. That property yet holds for systems
with bounded mean energy, while the present dynamics is unstable on the whole PT line (see appendix for
details).

When PT symmetry is broken, on the other hand, the behavior of long-time correlations changes
dramatically. The mutual information now grows linearly as I ≈ 2Ω t, with Ω =

√
γ2 − g2, while QCs tend

to a finite value given by

DLG ≈ log

(
γ(γ +Ω) + g2

2γ2

)
, DGL ≈ log

(
γ(3γ +Ω) − g2

2γ2

)
. (7)

Thus in the BP stationary QCs are established, notwithstanding the noisy action of gain/loss and despite the
dynamics being unstable.

Jointly taken, equations (6) and (7) show that the nature of long-time correlations is different in the two
phases. In each phase, stationary finite correlations occur, but these are purely classical in the UP (where I
converges, while D → 0) and quantum in the BP.

Finally, a special behavior occurs at the EP with the correlations scaling as

I ≈ log(
4g2

3
t2), DLG,DGL ≈ 1

gt
. (8)

Thus, while discord scales as in the UP phase (although with a different pre-factor, cf (6)), the growth of
mutual information is now logarithmic. Notably, the EP is the only point on the PT line such that
I →∞, D → 0 (purely classical and diverging correlations). Thus, for balanced gain and loss, the EP can
be regarded as the most classical configuration.

Figure 2(c) shows the stationary QCs on the PT line. In the BP, DGL(∞) monotonically grows with γ

asymptotically approaching the entanglement threshold, while DLG(∞) takes a maximum followed by a
long-tail decay. A critical behavior occurs at the EP (on the boundary between regions of zero and non-zero
discord) since D ∼ (γ/g − 1)

1
2 for γ > g while D = 0 for γ � g.

As specified previously, all the plots in figure 2 are for an initial coherent state. Yet, we gathered
numerical evidence that different initial Gaussian states yield analogous long-time behaviors of correlations
(see appendix).

6. Dynamics of correlations beyond the PT line

We next address the rich dynamics of correlations beyond the PT line, i.e., for unbalanced gain and loss
(γL 	= γG). The phase portrait in figure 3 displays five distinct dynamical regimes, obtained by applying
standard stability analysis (see appendix for details). These regions are limited by the PT line, the EP line
γL + γG = 2g and the hyperbola γLγG = g2. There is a stable region (III + IV), where both distinct
eigenvalues λ± of matrix Y (cf (4)) have negative real part (note that for g > γG a too large rate γL makes
the dynamics unstable). This is the usual bounded-energy region featuring non-zero stationary values of
I and D. Symmetric to that is a totally unstable region (I + II), where both Rλ± > 0. Notably, this whole
region is characterized by asymptotically vanishing discord [cf figure 3(c)]. The EP line separates two kinds
of divergence (convergence) in the totally unstable (stable) region: below this line there occur repulsive

4



Quantum Sci. Technol. 6 (2021) 025005 F Roccati et al

Figure 3. (Left): stability diagram for the dynamics ruled by (1) with unbalanced ga in and loss; see text for details. (Right):
typical time evolution of the mutual information [(a), (b)] and discord [(c), (d)] corresponding to the points highlighted in the
diagram. Asymptotic discord vanishes in the I + II region and along the line γG = 0.

(attractive) spirals, and sources (sinks) above it. Finally, there is an unstable region (V) (saddle points) with
linearly divergent I and stationary QCs [cf (b) and (d)]. Yet another remarkable feature is that the region
(I + III + IV) is characterized by asymptotic finite values of I. In particular, in region I, I displays
extremely long-lived oscillations [see figure 3(a)].

7. Physical mechanisms behind generation of correlations

Generation of QCs during the transient dynamics can be understood by noting that the coupling
Hamiltonian acts on the modes like a beam splitter. When acting on |αL〉 ⊗ |αG〉, the coupling Hamiltonian
alone cannot correlate the modes, but only mix their amplitudes [45]. Thus |αL〉 ⊗ |αG〉 → |α̃L〉 ⊗ |α̃G〉
where α̃L(G) is a linear combination of αL and αG. The loss term of course does not correlate either, its
action being described by |αL〉 ⊗ |αG〉 → |ηαL〉 ⊗ |αG〉 with 0 � η < 1. The gain, on the other hand, turns
a coherent state of G into a mixture, namely

|αG〉〈αG| →
∫

d2α′
G P(α′

G)|α′
G〉〈α′

G| (9)

with P(α′
G) � 0, that is a state with reduced coherence [46].

Overall, the combined action of beam splitter, loss and gain transforms the initial state as

|αL〉〈αL| ⊗ |αG〉〈αG| →
∫

d2α P(α)|αL(α)〉〈αL(α)| ⊗ |αG(α)〉〈αG(α)|. (10)

Although disentangled, one such correlated state is generally discordant because coherent states form a
non-orthogonal basis [47]. We note that a similar effect is obtained if the gain is replaced by a local thermal
bath. Indeed, the ability of certain local non-unitary channels to favor creation of discord was demonstrated
in [29]. For instance, local gain or loss can create QCs starting from a state featuring only classical
correlations (a process which is not possible for entanglement) [48–51], which was experimentally
confirmed in reference [52].

The peculiar nature of the present dynamics mostly comes from the long-time behavior of correlations.
To shed light on it, we first express the discord in the form

DLG = log

(
1 +

eI − 1

eSG + 1

)
, (11)

(with an analogous expression for L ↔ G). This identity, which is proven in the appendix, holds true for
any Gaussian state generated by (1) and subject to a local heterodyne measurement. Notably, at variance

5
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Table 1. Asymptotic behavior of S and SL(G) on the PT line.

PT line UP EP BP

S log
(

4γ2g2

g2−γ2 t2
)

log
(

4g4

3 t4
)

2Ωt + log
(

γ3(γ+Ω)
Ω4

)

SL

log
(

2γg2

g2−γ2 t
)

log
(

4g3

3 t3
) 2Ωt + log

(
γg2

2Ω3

)

SG 2Ωt + log
(

γ(γ+Ω)2

2Ω3

)

with (5), equation (11) no longer features any optimization to be performed, but instead expresses discord
as an explicit function of mutual information and local entropy.

Combined with I = SG + SL − S, equation (11) allows to explain the dynamics of classical and QCs in
terms of a competition between global and local entropies. This task is relatively straightforward on the PT
line, in which case the long-time expressions of S and SL(G) are reported in table 1. All of these diverge in
time (either logarithmically or linearly depending on the phase). Hence, (11) simplifies to

DLG ≈ log
(
1 + e−(S−SL) − e−SG

)
, (12)

which shows that the survival of QCs is controlled by S − SL alone. Using the expressions in table 1 and (12)
yields precisely the scalings in equations (6), (7) and (8).

In the UP, SG and SL grow at the same rate and their sum is almost equal to the global entropy S. Their
difference is small (showing this requires sub-leading contributions not reported in table 1) and yields
constant I in the long-time limit. Equation (11) then entails that discord vanishes. In the BP, instead, the
gain dominates the entropy balance (i.e., SG > SL) and the total entropy is slaved to the local one, S ≈ SG.
This in turn implies I ≈ SL. Moreover, the divergences of S and SL cancel out, so that S − SL is convergent,
in turn entailing a finite value of QCs via (12).

The above reasoning concerns the PT line γL = γG = g. Analogous arguments can be developed on any
line γL = βγG with β < 1, where however the expressions of global and local entropies are not as compact
as those in table 1. The transition between the two different scalings now occurs at point γG = 1√

β
g,

γL =
√
β g.

The fact that both mean field and correlations can exhibit a transition between different regimes
corresponding to the same parameters is due to the form of matrix Y entering the second-moment
dynamics in equation (3). Indeed, it is easily shown (see appendix) that, under a suitable canonical
transformation, Y takes the form

Y =

(
−iH 0

0 iH†

)
. (13)

The eigenvalues of Y are thus the same as those of matrix −iH [see equation (2)] with a double degeneracy.
This property is a consequence of the form of the Lindblad master equation (1) (in particular the
beam-splitter-like interaction between the modes) and holds even for setups with more than two modes
(obeying a master equation of the same type) [53].

Lastly, we comment on the fact that zero discord can occur without a simultaneous vanishing of mutual
information. As mentioned previously, any two-mode Gaussian state with finite mean energy fulfills
D 	= 0 ⇔ I 	= 0 [42]. This property can be retrieved from (11) when SG is finite. Yet, for SG →∞, discord
can vanish asymptotically even if I does not (e.g. in the UP and at EP, see figure 2).

8. Conclusions

Through a fully quantum description, we studied the dynamics of total and quantum correlations in a
typical gain-loss system exhibiting PT -symmetric physics. With the modes initially in a coherent state, QCs
without entanglement are created and, in a large region of the parameter space, settle to a non-zero value.
For balanced gain and loss, in particular, and in the long-time limit, phases with distinct PT symmetry
exhibit dramatically different time scalings of both total and quantum correlations. This suggests a new
distinction between phases with unbroken/broken PT symmetry in the dynamics of entropic quantities,
whose knowledge requires accounting for the full quantum nature of the field.

From the viewpoint of QCs theory, the unstable nature of the dynamics brings about exotic behaviors
such as diverging correlations of a purely classical nature, which arise at the exceptional point.

In terms of quantum technologies, stationary QCs beyond entanglement (occurring e.g. in the unbroken
phase) are potentially appealing in that this form of correlations have found several applications in recent
years, [54, 55] such as information encoding [56], remote-state preparation [57], entanglement activation

6
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[58–61], entanglement distribution [62–65], quantum metrology and sensing [66] and so on. This suggests
that quantum noise could embody a resource, rather than a hindrance, to the exploitation of
PT -symmetric systems for useful applications. Future important tasks will be studying the effect of finite
temperature and gain saturation (the latter introduces non-linearities affecting the Gaussian nature of the
dynamics).
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Appendix A. Covariance matrix and correlations

On the PT line excluding the EP, that is for γL = γG = γ 	= g, the solution of equation (3) in the main text
under the initial condition σ(0) = 𝟙4 (product of coherent states) reads

σ11(t) = σ22(t) =
γg2 sinh(2Ωt)

Ω3 − 2γg2t

Ω2 + 1

σ14(t) = −σ23(t) = −γg

Ω2 +
γ2g sinh(2tΩ)

Ω3 − 2γ2gt

Ω2 +
γg cosh(2tΩ)

Ω2 ,

σ33(t) = σ44(t) = −γ2 + 2γg2t + g2

Ω2 +
2γ2 cosh(2tΩ)

Ω2 +
γ
(
γ2 +Ω2

)
sinh(2tΩ)

Ω3 ,

where Ω =
√
γ2 − g2 and all the remaining matrix entries vanish. In unbroken phase, Ω = i

√
g2 − γ2 and

hyperbolic functions are turned into oscillating functions of
√

g2 − γ2 t. At the EP γ = g the solution reads

σ11(t) = σ22(t) =
4g3t3

3
+ 1, σ33(t) = σ44(t) =

4g3t3

3
+ 4g2t2 + 4gt + 1,

σ14(t) = −σ23(t) =
4g3t3

3
+ 2g2t2,

with all the remaining matrix entries being zero. Although exact analytical solution of equation (3) outside
of the PT line can be found, their expressions are not reported here since these are lengthy and
uninformative.

Mean energy of joint and reduced states can be easily computed from the covariance matrix as E = Trσ

and EL(G) = TrσL(G), respectively. On the PT line and in the long-time limit, they scale as EUP(t) ≈ 8g2γ
g2−γ2 t,

EL,UP(t) ≈ 1
2 EUP(t), EEP(t) ≈ 16g3

3 t3, EL,EP(t) ≈ 1
2 EEP(t) and EBP(t) ≈ 2γ2(γ+Ω)

Ω3 e2Ωt ,

EL,BP(t) ≈ g2γ
2γ2(γ+Ω) EBP(t).The general form of σ generated by equation (1) with an initial product of

coherent state features 2 × 2 blocks

σ =

(
L C

CT G

)
, (A.1)

where L = diag(σ11,σ22), G = diag(σ33,σ44) and C =

(
0 σ14

σ23 0

)
describe uncertainties affecting the local

fields L and G and cross-correlations, respectively.

A.1. Total and local entropies
The knowledge of the covariance matrix allows to work out all entropic quantities. Such task is particularly
simple using the Rényi-2 entropy. This is because, while von Neumann entropy requires the knowledge of
the symplectic eigenvalues of σ, the Rényi-2 entropy for Gaussian states is simply given by

S(σ) =
1

2
ln |σ|, (A.2)

with |σ| ≡ det(σ). The entropies of the reduced states of L and G (local entropies) are similarly obtained as
S(L) and S(G). Plugging in the expressions for σij then leads to the results in table 1 of the main text.
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Figure B1. Long time QCs as measured by DLG (a) and DGL (b) on the plane γG − γL (in units of g). PT line, EP and hyperbola
are highlighted to clarify the relation with figure 3 in the main text.

Appendix B. Analytical expressions for discord

Despite a closed expression for bipartite Gaussian quantum discord can be obtained, it is generally lengthy
and uninformative regardless of the chosen entropy measure. However, in our dynamics with initial product
of coherent states, the isotropy of the problem suggests that the measurement which maximizes discord is
likely to be phase-insensitive. Indeed, it can be checked that heterodyne detection (i.e., projection onto
coherent states) is the optimal measurement. In our dynamics it can also be checked that cross correlations
are always smaller than local uncertainties (this is of course not true for any Gaussian state). These facts
allow us to write quantum discord as in equation (9) according to the following lemma.Using (B.1) we plot
asymptotic discord in figure B1.

Lemma. For a heterodyne measurement Gaussian discord with Rényi-2 entropy of a Gaussian state as in
equation (A.1) whose cross correlations are smaller than local uncertainties (i.e., |C| <

√
|L|

√
|G|) can be

written as

DLG = log

(
1 +

eI − 1

eSG + 1

)
, DGL = log

(
1 +

eI − 1

eSL + 1

)
. (B.1)

Proof. A heterodyne measurement on G turns the CM into σ|G =

(
L C

CT G + σM ,

)
, where σM = 𝟙2 is the

CM of the measurement outcome [38]. Let L̃ = L − C(G + σM)−1CT be the Schur complement and let us
denote |A| ≡ det(A). Using the definition of Gaussian discord with Rényi-2 entropy [43]

DLG = 1
2 log

(
|L̃||G|
|σ|

)
we get

DLG =
1

2
log

(
|G|

|G + σM|
|G + σM ||L̃|

|σ|

)
=

1

2
log

(
|G|

|G + σM|
|σ|G|
|σ|

)
.

Now using the assumption |C| <
√
|L|

√
|G| we can write

DLG =
1

2
log

(
e2SG

(eSG + 1)2

(eS + eSL )2

e2S

)
= log

(
1 +

eI − 1

eSG + 1

)
.

Analogous proof holds for DGL.

Appendix C. Absence of entanglement

As mentioned in the main text, discord detects QCs more general than entanglement. For Gaussian discord,
this is condensed in a simple property: Gaussian states such that D > log 2 (1 with von Neumann entropy)
are entangled. In our setup, discord never exceeds this threshold (see figure 2(c)) and we checked that the
state is never entangled as ν̃− > 1 at any time (ν̃− is the smallest symplectic eigenvalue of the partially
transposed CM [42]). Besides these analytical results, absence of entanglement at any given time is justified
by the fact that the coupling Hamiltonian acts like a beam-splitter, and cannot therefore entangle coherent
states, and that the two gain/loss channels are local.

8
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Figure E1. Transient time τ LG (yellow) and τGL (purple) in units of g−1 versus gain/loss rate γ in units of g.

Appendix D. Stability analysis

Schrödinger-like equation for the mean-field ψ̇ = −iHψ is nothing but a two dimensional linear dynamical
system whose asymptotic behavior is completely characterized by the eigenvalues
λ± = 1

2 (γG − γL ±
√

(γG + γL)2 − 4g2) of −iH. If λ+λ− < 0 then the origin O = (0, 0) is a saddle point
for the dynamical system. If both λ± are real numbers then O is a source (sink) if both λ± > 0 (λ± < 0),
otherwise O is a repulsive (attractive) spiral if both Rλ± > 0 (Rλ± < 0). The boundaries separating
regions with different behaviors are exactly the PT line (γL = γG < g), the hyperbola (γLγG = g2) and the
EP line (γL + γG = 2g), as shown in figure 3.

Accordingly, the asymptotic behavior of the CM is determined by the Lyapunov stability criterion:
equation Yσ∞ + σ∞YT + 4D = 0 has a (finite) solution if and only if the eigenvalues of Y have negative real
parts. We observe that, by expressing the CM in terms of ladder operators X̂i = (âL, âG, â†L, â†G) (instead of

quadratures as in the main text), matrix Y entering equation (4) turns into Ỹ =

(
−iH 0

0 iH†

)
. The

eigenvalues of Y are thus same as those of Ỹ (as a unitary transformation preserves the spectrum) and are in
turn the same as those of matrix −iH with a double degeneracy. Therefore CM dynamics mimics that of the
Schrödinger-like equation for the mean-field: it admits a stationary value for Rλ± < 0 [regions III + IV in
figure 3], otherwise it diverges.

Appendix E. Transient time

Stationary QCs occur only when the dynamics is unstable. It is therefore important from an experimental
point of view to compute the transient time τ , namely the time it takes for QCs to reach a relevant
percentage of their asymptotic value. We focus here on the PT line in broken phase and define τ LG as that
time satisfying DLG(τLG) = 90%DLG(∞), with an analogous definition for τGL. From figure E1, we see that
both τ ’s are of the order of g−1. We numerically checked that this holds true besides the PT -broken phase
whenever asymptotic discord is finite.

Appendix F. Other initial states

All the results and plots in the main text are for an initial coherent state (covariance matrix σ0 = 𝟙4). Yet,
we gathered numerical evidence that mutual information and discord exhibit analogous long-time
behaviors if different (Gaussian) initial states are chosen. This is illustrated in figure F1 where we set
γG = γL = γ (PT line) and plot mutual information and DGL versus time for three different choices of
initial state: a coherent state, a two-mode squeezed state and a two-mode squeezed thermal state, whose
general covariance matrix (in quadrature basis) has the form

σ0 =

(
(cosh r (nG + nL + 1) + nL − nG)𝟙2 sinh (nG + nL + 1) σz

sinh r (nG + nL + 1)σz (cosh r (nG + nL + 1) + nG − nL)𝟙2

)
(F.1)

where σz =

(
1 0
0 −1

)
, r is the squeezing parameter and nL(nG) is the mean number of photons in mode

L(G). Note that changing the initial states does not even affect the numerical asymptotic value except for the

9
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Figure F1. Typical time behavior on the PT line of mutual information (top panels) and discord DGL (bottom) for different
choices of the initial state as in (F.1): coherent (blue, r = 0, nL = nG = 0), two mode squeezed (red, r = 0.5, nL = nG = 0) and
two mode squeezed thermal (green, r = 0.5, nL = 3, nG = 7) state. The three columns represent UP (γ = g/2), EP (γ = g) and
BP (γ = 3g/2).

BP where a little discrepancy between different initial states arises. We checked that this discrepancy
disappears if Von Neumann entropy is used instead of Rényi-2 entropy.
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[19] Jan P, Antonín L, Kalaga J K, Leoński W and Adam M 2019 Nonclassical light at exceptional points of a quantum PT -symmetric
two-mode system Phys. Rev. A 100 053820

[20] Klauck F, Teuber L, Ornigotti M, Heinrich M, Scheel S and Alexander S 2019 Observation of PT-symmetric quantum
interference Nat. Photon. 13 883–7

[21] Naikoo J, Thapliyal K, Banerjee S and Pathak A 2019 Quantum zeno effect and nonclassicality in a PT -symmetric system of
coupled cavities Phys. Rev. A 99 023820
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