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“The best that most of us can hope to achieve in physics is simply to
misunderstand at a deeper level.”

— Wolfgang Pauli
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Abstract

This thesis has the objective of exploring new effects caused by initial correlations in
quantum systems, with extensive use of continuous-variables methods. Two main projects
are highlighted. The first project aims to understand how the presence of initial correla-
tions in an environment affects the dynamics of a system interacting with it. We analyze
this problem from the point of view of Collisional Models of qubits and bosonic Gaus-
sian states, in which we show how initial correlations between the environment parts steer
the system’s evolution. As a consequence, the standard Homogenization procedure can
be disrupted. In the second project, we make use of Bayesian Networks to obtain the
statistics of general thermodynamic quantities for two initially correlated systems and we
explore the role of the initial density matrix ambiguity of mixture in this statistics. As an
important application, we compute the effects of correlations in the statistics of the heat
exchanged. Results for the statistics of the heat are obtained numerically for qubits and
analytically for bosonic Gaussian states.

Keywords: Quantum correlations; Open quantum systems; Quantum Information; Continuous-
Variables; Collisional models; Homogenization; Bayesian Networks; Heat distribution;
Quantum Thermodynamics.
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Resumo

Esta tese tem como objetivo explorar novos efeitos causados por correlações iniciais em
sistemas quânticos, com grande uso de métodos de variáveis-contínuas. Dois projetos
principais são destacados. O primeiro projeto visa entender como a presença de corre-
lações iniciais em um ambiente afeta a dinâmica de um sistema que interage com ele.
Analisamos este problema do ponto de vista dos Modelos Collisionais de qubits e estados
Gaussianos bosônicos, nos quais mostramos como as correlações iniciais entre as partes
do ambiente direcionam a evolução do sistema. Como consequência, o procedimento
conhecido de Homogeneização pode ser corrompido. No segundo projeto, fazemos uso
de Redes Bayesianas para obter as estatísticas de grandezas termodinâmicas gerais para
dois sistemas inicialmente correlacionados e exploramos o papel da ambigüidade de mis-
tuda da matriz densidade inicial nesta estatística. Adicionalmente, fizemos uma aplicação
importante, a de calcular efeitos das correlações nas estatísticas do calor trocado entre
dois sistemas. Os resultados para as estatísticas do calor são obtidos numericamente para
qubits e analiticamente para estados Gaussianos bosônicos.

Palavras-chave: Correlações quânticas; Sistemas quânticos abertos; Informação Quân-
tica; Variáveis-Contínuas; Modelos colisionais; Homogeneização; Redes Bayesianas;
Distribuição do calor; Termodinâmica Quântica.
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Chapter 1

Introduction

By the end of the 20th century, the merging of two important fields of knowledge, namely,

Information Theory and Quantum Theory, set the formulation of the Quantum Informa-

tion Theory [1–4]. This formulation was the result to the effort of enlightening question-

ings concerning to the foundations of Quantum Theory as well to the use of these clar-

ifications for the flowering of ideas to new technologies. This movement is often called

the Second Quantum Revolution [5, 6], and the technologies developed include Quantum

Computing [1, 7], Quantum Cryptography [1], Quantum Simulation, Quantum Sensing

and Quantum Metrology [8] which caused enormous attention to technology companies

and hence even more research interest.

In the heart of such revolution is the concept of quantum correlations whose primor-

dial researches can be traced to 1935 with the work of Einstein, Podolsky and Rosen

(EPR) [9], Erwin Schrödinger [10] and debates with Niels Bohr [11]. The controversy

was mainly about if the predictions of correlations pointed by EPR in Quantum Theory

could cause it to be an incomplete theory, in the sense to be a theory with the necessity of

additional hidden variables locally generated in a common past and without further non-

local “spooky” interactions to explain such correlations. This was solved by John Bell in

1964 [12] by proving that, only if a certain average of observable respect a set of inequali-

ties (now called Bell inequalities), then the correlations described by EPR could be caused

by local hidden variables. It happens that Quantum Theory predicts such violation and this

gave rise to the concept of a new kind of fully quantum (in the sense of without classical

analogue) correlations, now called entanglement, which could not be explained by local
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hidden variables. These events marked the beginning of what more recently caused the

Second Quantum Revolution. Due to the importance of these discoveries nowadays, the

most recent Nobel Prize in Physics was awarded to Alain Aspect, John F. Clauser and An-

ton Zeilinger due to their pioneering work on violating experimentally Bell’s inequalities

[13]. Therefore, quantum correlations are recently between the most prominent subjects

in pure and applied physics and exploring new effects concerning them can blossom into

new ideas and applications.

Inside this broader context, this thesis has the objective of searching for new effects

caused by quantum correlations in cases where systems start their interactions already cor-

related. We use mainly the tools of quantum continuous-variables [14–16] to investigate

the effects of initial correlations between quantum systems in their dynamical evolution

and thermodynamic quantities. Our work can be stated in two main projects, the first one

is concerned about a system evolution interacting with an initially correlated environment,

being more concerned with the dynamics of the system. The second project has the main

goal of obtaining the statistics of thermodynamic quantities of two initially correlated sys-

tems, specially of their heat distribution, using the framework of Beyesian Networks. The

two projects can be described as follows.

1.1 Collisional model with initially correlated ancillae

This first project aims to explore an almost uncharted question of relaxation towards equi-

librium: how do initial correlations between the environment parts affect the system equi-

libration? The analysis towards the answer in general can easily become intractable as the

size of the environment becomes large, also general and standard bath models can present

additional features that can obscure the effects caused by the initial correlations. For

these reasons, we chose to focus on the so-called collisional models [17–21], in which

we assume total control over environment features since here we suppose that the bath

is composed of large number of smaller subunits (the ancillae) that interact individually

with the system one at a time, each of these interactions is called a collision. This way,

we are able to obtain manageable answers to the problem by extending methods already

explored.
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The effect of initial correlations between parts of the environment on the system evo-

lution is, as already said, the main inquiry of this project, and it can be understood as the

following analogy suggests. Suppose a group of workers (ancillae) want to convince a

boss (system) that he/she must buy them new tools, but each of them enters and argues to

the boss alone at his office (interact individually and one at a time). If the workers talked

to each other before going to the boss’ office and have some plan or information shared

(correlations), then the result of the boss’ mind (final state of the system) will be different

than if they had not talked to each other.

Our results reveal an unfamiliar phenomenon of steering caused by the initial correla-

tions between the environmental parts. We obtain these results numerically for the case

where system and ancillae are qubits and analytically, which a more complete description,

for the case where the system and ancillae are bosonic modes. These last more detailed

results were possible due to the use of continuous-variables methods. As a comparison to

well-known results, we make a contrast with the results of [19], where for a certain kind

of interaction and initially identical ancillae, the whole system and ancillae become a set

of identical parts, this is the so-called homogenization. We show that homogenization can

become impossible if the ancillae are initially correlated.

1.2 Statistics of thermodynamic quantities using Bayesian

Networks

With the Second Quantum Revolution, increasing attention has been brought to the grow-

ing field of Quantum Thermodynamics [22–25] from reasons that range from extending

the Thermodynamic laws to the quantum domain, understanding fundamental relations

between thermodynamics and information [26–28] to studies of the enhancement of the

efficiency of quantum thermal machines using quantum features [29–32]. However, the

description of the statistics of thermodynamic quantities, such as heat and work is often

made with the use of Two-Point Measurement (TPM) procedure [33–35] which spoils

the coherence of the initial state and consequently the effect of quantum correlations due

to the supposition of measurements. Alternatives without this undesired feature involve

work operator definitions [36, 37], which cannot hold fluctuation relations [34, 35, 38–
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40], and quasi-probabilities [41, 42] which cannot be described by a quantum measure-

ment. The objective of this second project is to fulfill this gap of constructing a statistics

of thermodynamic quantities which fully accounts for initial quantum correlations and

coherence, focusing primarily in the specific case of obtaining the probability distribution

for the heat exchanged between two initially correlated systems interacting as a closed

system.

By making use of the concept of Bayesian Networks (BNs) [43–47] in the context

of quantum theory, Ref. [48] successfully described fluctuation relations fully consider-

ing the effect of initial correlations and coherence. Additionally, this framework can be

described by quantum measurements protocols [49]. Therefore, we chose the BN frame-

work to obtain our statistics for thermodynamic quantities. The BN concept has wide

application in statistics, engineering and mainly in artificial intelligence. It consists in

a method which infers the probabilities of the evolution of the system from conditional

distributions of the previous state of the system, supposing a causal relation from this past.

We follow the construction initiated in Ref. [48], focusing in deepening our under-

standing on the statistics of thermodynamic quantities. We obtain general formulae for

the characteristic function (and consequently, the statistical moments) for the probability

distribution of the change (or variation) of an observable during an evolution of the sys-

tem, such changes of observable can represent thermodynamic quantities, such as heat and

work. Our results reveal a dependence of the probability distribution on the initial density

matrix choice of ensemble to represent it. The consequence of the different choice of

ensembles turns to be one of our main attentions due to the different interpretations it can

result.

As our main goal and application, we apply this framework to understand deeply the

statistics of heat exchanged between two systems and the consequences of initial correla-

tions in this exchange. As a well-known effect caused by initial correlations, we recover

the heat flow inversion [50–53], which was obtained experimentally for the interaction of

two qubits [54]. And we propose conditions for such inversion to happen for the case of

two bosonic modes interacting. Due to the unexplored character of the subject, we study

the variance of the heat probability distribution and how it behaves with the presence of

correlations. This is done numerically for the case of two qubits, and analytically for
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the case of two bosonic modes. Interesting features are raised due to the different choice

of ensembles to be made in continuous-variables for bosonic modes, such as the use of

quasi-probabilities.

1.3 Structure of the thesis

This thesis will be organized as follows. It is divided in two parts, Part I (chapters 2 to 4)

resumes the background used to obtain our results, there is no original result among the

chapters of this part. In Part II (chapters 5 to 8) we have our main projects and the results

contained in these chapters are original. Chapters 5 and 6 refer to the first project of the

thesis while chapters 7 and 8 refer to the second project.

Chapter 2 contain a brief resume of Open Quantum Systems paradigm with the es-

sential parts needed to construct our work and we introduce and define the concept of

collisional models as well as the notion of homogenization. In Chapter 3 we present a

resume of the parts concerning to Quantum Information that we shall use. We also define

in this chapter precisely what we denominate as correlations and quantum correlations,

introducing the concept of Quantum Discord, for further use, being a broader concept

of quantum correlations than the aforementioned entanglement. The last section of this

chapter will make a brief presentation of BNs and how it is applied to describe the evolu-

tion of quantum systems.

In Chapter 4 we present the framework of continuous-variables. This is an extensive

chapter since it permit us to obtain analytical results specially when dealing with Gaus-

sian states, so a considerable part of the text will be restrained to a careful construction

and explanation of such methods. This makes a large part of our results to be possibly

applicable in the realm of bosonic states and Quantum Optics [55, 56].

In Chapter 5 we present the structure and results for the simulations of our qubit

minimal collisional model with initially correlated ancillae. Chapter 6 is devoted to the

structure and analytical results of our collisional model with initially correlated ancillae,

where the state and ancillae are bosonic modes. The last section of this chapter will

expose our construction of correlated environments made of bosonic Gaussian states with

the use of graph states.
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Chapter 7 will develop briefly the concept of BN, then apply it to find the statistics for

the changes of observable for bipartite initially correlated systems in very general terms.

Here we expose general results about the statistics of such changes as well as applications

to the case of two qubits initially correlated. Finally, in Chapter 8 we apply Chapter 7

results to obtain conclusions for the heat probability distribution between two bosonic

modes and the relation between this distribution and the quantum correlations between

the modes.

Finally, Chapter 9 is devoted to the final remarks and possible future works concerning

to the thesis results.
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Chapter 2

Open Quantum Systems and Collisional

Models

In first two sections of this chapter we shall give a short introduction to the paradigm

of Open Quantum Systems [57–59] which deals successfully with quantum phenomena,

maintaining untouched all Quantum Mechanics postulates, but adding the concept of open

evolution in a similar way to the Stochastic Physics [60–62]. This framework had its foun-

dations constructed by von Neumann, Kraus, Lindblad and many others, generally obtain-

ing the system’s evolution by considering finite time steps, given by Kraus operations, or

solving Lindblad Master Equations (analogously as the classical Master Equations case)

to obtain continuum time evolution. We shall focus here in the first approach which are

the methods used in the present work.

In this paradigm, commonly a bath is decomposed in a continuum of quantum har-

monic modes, these modes interact with the system via a coupling which is appropriate to

the physical phenomenon in description. Finding the dynamics of the system under this

interaction with these baths is normally a daunting problem and most solutions involve

Markovian (past independent) approximations. As a less orthodox approach, Collisional

Models (CMs) [20, 21, 63] (also dubbed as “Collision Models” and “repeated interaction

schemes”) suppose that the bath is composed of large number of smaller subunits (the

ancillae) that interact individually with the system one at a time. In the present quantum

formulation, these models were first proposed by Jayaseetha Rau in 1963 [17], which was

inspired in Boltzman’s Stosszahlansatz molecular chaos hypothesis [62, 64].
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Since then, CMs have became very attractive for a vast range of applications, ranging

from weak measurements to a very satisfactory description of the micromaser [65–70]. At

the beginning of the 21st century, the interest in quantum computation brought attention

to the implementation of collisional models with interactions involving two qubits, which

resulted in the concept of homogenization [18, 19], a well explored concept in this thesis,

as well as studies of using CMs to describe the decoherence of qubits [71]. In the past

decade, CMs have a major role in studies of non-Markovian dynamics and Quantum

Thermodynamics [63, 72–88]. In the last section of this chapter, we shall introduce the

framework of CMs, a few examples of models and physical implementations in order to

prepare for the description of the first project of this thesis.

2.1 The density matrix

Open quantum systems, as the name suggests, deals with systems that interact with an

environment capable to exchange energy and information. Although the closed quantum

systems formalism could encompass systems that exchange energy (with a time depen-

dent hamiltonian), it would never be capable of describing systems that dissipate informa-

tion. The reason is because all the closed quantum system formalism only deals with the

hypothesis that we know in which quantum state the system is and its evolution will be

deterministic according to Schrödinger’s Equation. We must have a formalism that takes

into account the lack of information about which quantum state the system is and obtain

an equation where the evolution is not necessarily deterministic.

In classical stochastic processes or statistical mechanics, when we don’t know the

state of the system, we can associate to each classical state (for instance a point (x, p) on

the phase space) a probability P (x, p) that the system is in this state. In the quantum case,

the same can be done for a set of quantum states {|ψk⟩} in a Hilbert space H, assigning

a probability Pk for each |ψk⟩. The difference exists when we compute the average of

an observable A. To accomplish this we must to take into consideration the quantum and

classical uncertainties (“classical uncertainties” here refers to the lack of information) and

9



Chapter 2. Open Quantum Systems and Collisional Models

we have to make a classical average over quantum averages

⟨A⟩ =
∑
k

Pk ⟨ψk|A |ψk⟩ . (2.1)

In order to compress quantum and classical information into a single object describing

the state, von Neumann introduced [89] the density matrix

ρ =
∑
k

Pk |ψk⟩ ⟨ψk| , (2.2)

and with this definition we may write averages like Eq. (2.1) as

⟨A⟩ =
∑
k

Pk ⟨ψk|A |ψk⟩ = Tr(Aρ). (2.3)

There are some requirements that a generic operator must satisfy if we want to con-

sider it as a physical density matrix. First we must notice that, due to the normal-

ization of the kets |ψk⟩ and probabilities
∑

k Pk = 1, we must have a density ma-

trix normalization Tr(ρ) = 1. And second, for any generic ket |ϕ⟩, we must have

⟨ϕ| ρ |ϕ⟩ =
∑

k Pk| ⟨ϕ|ψ⟩ |2 ≥ 0, which states that ρ must be a positive semi-definite

matrix (in symbols ρ ≥ 0). So, for an operator to be able to describe a physical density

matrix, it must satisfy

Positive semi-definite: ρ ≥ 0, and (2.4)

Normalization: Tr(ρ) = 1. (2.5)

Also, it is important to remember that ρ must be a hermitian operator, and this is covered

by the positive semi-definite condition (all positive semi-definite operators are hermitian).

We shall often refer to the density matrix ρ as “the state” of a given system. The

reason for this is similar to describing a classical state by a probability distribution: the

distribution is the best description one can have, given the information accessible (even

though it is not the full description given by a phase space point), and the same is true for

the density matrix, serving as a “distribution” of quantum states. The non-diagonal terms

of the density matrix are often called coherence terms. These terms are dependent on the

10



Chapter 2. Open Quantum Systems and Collisional Models

basis we choose to represent the density matrix and represent the superposition terms in

the respective basis.

When one has certainty about the state of the system, then we say that the state is pure.

This happens if for some j, Pj = 1 and Pk = 0, ∀k ̸= j in Eq. (2.2), which implies that

ρ = |ψ⟩ ⟨ψ|, for some state |ψ⟩ (we omit the j here just for convenience). In this case the

density matrix is equivalent to the ket |ψ⟩, and there is no lack of information about the

system. But it is really important to remember that, in general terms, Eq. (2.2) cannot be

factorized as a pure state, i.e., we really have lack of information about which quantum

state the system is, and for this case we say that the state is mixed.

To show if a density matrix can be parametrized as a pure state or not is, in general

not an easy task. To this end, one may define the purity of the state ρ as

P(ρ) = Tr
(
ρ2
)
. (2.6)

It can be shown (see appendix A) that the purity of a state ρ is 1 if and only if ρ is a pure

state and also that 1/d ≤ P(ρ) ≤ 1 for any ρ. Consequently, purity is the decisive witness

which points out if a state is pure or not.

2.2 Dynamics

2.2.1 Closed systems - Unitary operators

As we are used to, the dynamics for a closed pure system |ψ(t)⟩ with a hamiltionan H in

Quantum Mechanics is given by the Schrödinger Equation (setting ℏ → 1 throughout)

i
∂ |ψ(t)⟩
∂t

= H |ψ(t)⟩ , (2.7)

which has the following solution

|ψ(t)⟩ = U(t− t0) |ψ(t0)⟩ , (2.8)

11
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where, for time independent hamiltionians, we have the unitary operator

U(t− t0) = e−iH(t−t0), (2.9)

and |ψ(t0)⟩ is the initial system state.

We may notice that the evolution of any system initially in |ψk(t0)⟩ also evolves as

|ψk(t)⟩ = U(t− t0) |ψk(t0)⟩. So for a density matrix like in Eq. (2.2), the evolution is

ρ(t) = U(t− t0)ρ(t0)U
†(t− t0), (2.10)

for an initial density matrix ρ(t0) =
∑

k Pk |ψk(t0)⟩ ⟨ψk(t0)| in a closed system.

Eq. (2.10) sets the evolution for any time step t − t0 of a density matrix, and is the

solution of the equation that plays the same role as Schrödinger’s Equation, but for density

matrices, the so-called von Neumann Equation

dρ(t)

dt
= −i[H, ρ(t)]. (2.11)

2.2.2 Open systems - Kraus matrices

One of the standard approaches to deal with open quantum systems is to consider the

system state ρS(t0) (acting on a Hilbert space HS) and environment state ρE(t0) (act-

ing on a Hilbert space HE) together as an initially uncorrelated joint system ρSE(t0) =

ρS(t0) ⊗ ρE(t0) and make an unitary evolution of this joint system ρSE(t) = U(t −

t0)ρSE(t0)U
†(t−t0). The system resulted from tracing out the environment (see Appendix

A for the definition of partial trace) will be our evolved system ρS(t) = TrE[ρSE(t)] and

the map from ρS(t0) to ρS(t), in general, will not be unitary. The procedure of evolving

unitarily the joint system and tracing out the environment is called Stinespring represen-

tation and can be made to describe an open quantum system, as the following discussion

shows.

Writing the above procedure explicitly, we obtain

ρS(t) = TrE{UρS(t0)⊗ ρE(t0)U
†}, (2.12)

12
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where we are omitting the (t − t0) in U just for practicality. Now if we make a spectral

decomposition of the initial environment density matrix

ρE(t0) =
∑
m

qm |m⟩E ⟨m|E ,

(where the sub index E in |m⟩E just makes it explicit that |m⟩ belongs to the basis of HE

that diagonalizes ρE) and apply it in Eq. (2.12), we obtain

ρS(t) = TrE

{∑
m

qmU |m⟩E ρS(t0) ⟨m|E U
†

}
=
∑
m,k

qm ⟨k|E U |m⟩E ρS(t0) ⟨m|E U
† |k⟩E ,

(2.13)

where in the last equality we computed the partial trace in the same basis as |m⟩E . Finally,

if we define (putting (t− t0) back to U )

Mk,m(t− t0) =
√
qm ⟨k|E U(t− t0) |m⟩E , (2.14)

and rename the collective index (k,m) to α, we obtain

ρS(t) =
∑
α

Mα(t− t0)ρ(t0)M
†
α(t− t0). (2.15)

This equation has the form of the Kraus representation [90]

E(ρ) =
∑
α

MαρM
†
α. (2.16)

of a quantum channel E , where Mα are called Kraus matrices and must satisfy

∑
α

M †
αMα = 1. (2.17)

Quantum channels are the linear operations that transform density matrices onto den-

sity matrices, maintaining all their properties (Eq. (2.4) and Eq. (2.5)) and hence are

appropriate operations for the general description of open quantum systems dynamics

(such as unitary operators are for closed systems). They are called linear completely
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positive trace preserving (CPTP) maps1. It can be shown (see, for instance, [1, 57, 91])

that every linear CPTP map can be described in the form of a Kraus representation (Eq.

(2.16)) and vice-versa for a set of Kraus matrices, thus it sets a necessary and sufficient

condition to describe an open system dynamics. Its intuition can be founded in making

a parallel to Markov chains for discrete time evolution. We shall follow this scheme in

our work, considering interactions that last finite time between part of the environment

(the ancillae) and making the partial trace in order to obtain the desired dynamics of our

collisional model.

2.3 Collisional Models

2.3.1 General case (correlated ancillae)

Suppose we have a system S that starts interacting, at a time t = 0, with an environment

E, which is separated in n sub systems Aj (1 ≥ j ≥ n) named ancillae. We say that

we have a Collisional Model (CM) whenever the system interacts individually, one at a

time and only once with each ancilla and we call each of these interactions a collision (see

Fig. 2.1). There are studies on CMs in which the ancillae interact with themselves after

the instant t = 0 (see, for instance, [80]), but in our case we assume that this is not the

case.2

Given those demands, the depiction of the system’s interaction with the j-th ancilla,

during a time τ (we suppose all ancilla-system interactions last the same time), is given

by a unitary operator

Uj = e−iHjτ , (2.18)

in which

Hj = HS +HAj
+ Vj, (2.19)

where HS is the system’s internal Hamiltonian, HAj
is the internal Hamiltonian of the

1Actually, the term completely positive means a stronger assumption: that given a density matrix ρ, then
the matrix (I ⊗ E)(ρ) must also be positive, where I is the identity operator acting on an extra system R
of arbitrary dimensionality.

2We do consider that the ancillae may interact with themselves before starting the dynamics with the
system, in order for them to be initially correlated. In fact, the study of the effects of such initial correlations
in the system is one of the main themes of this thesis.
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Figure 2.1: Schematic of collisions, where the system S is interacting individually with
the k-th ancilla during a time τ going to interact with the next ancilla also during a time
τ .

j-th ancilla and Vj describes the interaction between the system and the j-th ancilla. Then

the joint state of system plus all ancillae after the n-th collision is given by

ρnSE = UnUn−1 · · ·U2U1ρ
0
S ⊗ ρ0EU

†
1U

†
2 · · ·U

†
n−1U

†
n, (2.20)

where we supposed that the initial joint state ρ0SE is the tensor product between the initial

system ρ0S and the environment ρ0E (remembering, inside this environment state are all

the ancillae and possible correlations among them) since their interaction only starts at

t = 0. Furthermore, we trace out all the environment in order to obtain the system’s

stroboscopic3 evolution after the n-th collision

ρnS =TrE {ρnSE}

=TrE

{
UnUn−1 · · ·U2U1ρ

0
S ⊗ ρ0EU

†
1U

†
2 · · ·U

†
n−1U

†
n

}
. (2.21)

3“Stroboscopic” means that our interest is only in the evolution steps multiples of τ , no attention is given
for the intermediate time evolution.
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Suppose we wish to analyse the evolution of the system after the second collision

(n = 2), Eq. (2.21) will result in

ρ2S =TrE

{
U2U1ρ

0
S ⊗ ρ0EU

†
1U

†
2

}
=TrA2

{
U2TrA1

{
U1ρ

0
S ⊗ ρ0EU

†
1

}
U †
2

}
=TrA2

{
U2ρSA2U

†
2

}
̸=TrA2

{
U2ρ

1
S ⊗ ρA2U

†
2 ,
}

(2.22)

where we defined ρSA2 = TrA1

{
U1ρS ⊗ ρEU

†
1

}
as a density matrix that acts on HS ⊗

HA2 , where HS(A2) is the Hilbert space of S(A2). The last line of Eq.(2.22) above happens

because ρSA2 cannot in general be parametrized as a tensor product ρ1S ⊗ ρA2 (where

ρ1S is the density matrix of the evolved system after the first collision) due to the initial

correlation between the ancillae. This way the ρ2S in Eq. (2.22) cannot result in a map

between ρ1S and ρ2S , and the evolution of the system from the first collision into the second

will not be a CPTP map. The reason for this is that the initial correlations causes the

system evolution to be non-Markovian, since after the first collision the second ancilla

already obtain information about the system. The information about the initial system

affects the system itself at the second collision, clearly this narrative also happens for all

further collisions.

As the case above suggests, non-Markovianity preclude intermediate maps to be CPTP,

i.e., if we have a CPTP map Et2−t0 that evolves a state from t0 to t2, we cannot break it in

two CPTP maps Et2−t1 and Et1−t0 such that Et2−t0 = Et2−t1Et1−t0 for some intermediate

time t1. This aspect of Non-Markovianity is studied in CMs (see, for instance, Refs. [72–

86]) and is a caveat for obtaining the evolution of the system, since it makes impossible

to gradually describe the system’s evolution by a cumulative sequence of simpler steps.

Chapters 5 and 6, which are intended for the results of the first project of the thesis, focus

on obtaining non-Markovian dynamics caused by the initial correlations between the an-

cillae. In the rest of this chapter we shall present the standard Markovian CMs framework,

as well as special cases, such as homogenization, that will contrast with the results of the

following chapters.
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2.3.2 Markovian case

For standard CMs we suppose, in addition to the assumptions above, that initially all

ancillae are uncorrelated, so that the environment is factorized as

ρ0E = ρA1 ⊗ ρA2 ⊗ · · · ⊗ ρAn , (2.23)

where each ρAj
acts on its respective ancilla Hilbert space Hj . Using this at Eq. (2.21)

we obtain a major simplification in our strobocopic evolution

ρnS = TrAn

{
Un · · ·TrA2

{
U2TrA1

{
U1ρ

0
S ⊗ ρA1U

†
1

}
⊗ ρA2U

†
2

}
· · · ⊗ ρAnU

†
n

}
, (2.24)

where we just used that the partial trace over Am does not affect operators that don’t act

on HAm . Now, if we define a map E (n), called collision map or stroboscopic map, acting

on a state ρS as

E (n)(ρS) = TrAn

{
Unρ⊗ ρAnU

†
n

}
, (2.25)

then Eq. (2.24) can be rewritten as

ρnS = E (n)(E (n−1)(· · · E (1)(ρ0S))), (2.26)

which represents the successive application of CPTP maps, since the map in Eq. (2.25) is

CPTP as consequence of having the form of a Stinespring reprentation (see Eq. (2.12)).

This successive application of CPTP maps forming a CPTP map indicate that all the

stroboscopic dynamics is Markovian. This is a direct consequence of the absence of

initial correlations between the ancillae.

As done in most of studies in CMs and will be often done in this work, we consider that

all the ancillae are isomorfic and start at exactly the same state, thus ρAj
= ρA for every

j. The internal Hamiltonian of the system and ancillae will be set to 0 (unless specified),4

and the interaction between the ancillae and the system are equal, i.e., Vj = V 5 for all j

in Eq. (2.19) and consequently all unitary operators are the same (Uj = U for all j). In

4Actually, this condition of setting HS and HAj
to 0 is equivalent of demanding that HS = HAj

,
[HS , Vj ] = 0, and going to the interaction picture (see Appendix A).

5Of course, the operators Vn are identical but each act only on the system and their respective ancillae
An.
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this case the stroboscopic map will be independent of n, E (n) = E , ∀n, and hence

ρnS = En(ρ0S), (2.27)

which means that it will be sufficient to find the map E and apply it n times in the initial

state in order to obtain the full evolution. Similarly we can obtain the state of the n-th

ancilla after its collision with the system, it will be the result of tracing out the system

from the evolution of ρnS ⊗ ρA, explicitly

ρnA = TrS
{
UρnS ⊗ ρAU

†} = TrS
{
U(En(ρ0S)⊗ ρA)U

†} . (2.28)

2.3.3 Qubit example, thermalizing machines

Proceeding with the restrictions above, we assume that the system and ancillae are qubits

(all-qubit model) and that all the ancillae are initially in a thermal state (see Appendix A,

in particular Eq. A.22)

ρth = (1− pth)P0 + pthP1, (2.29)

when 0 ≤ pth ≤ 1/2, P0 = |0⟩ ⟨0|, P1 = |1⟩ ⟨1|, are the projectors of the eigenstates of σz

(|0⟩ and |1⟩) with eigenvalues −1 and 1 respectively. If we set the Hamiltonian of each

ancilla qubit to H0 = Eσz (with E > 0), then |0⟩ is the ground state qubit and |1⟩ is the

excited state and hence pth is the probability that the qubit is in the ground state. If we

now ask which are the unitaries U that could construct a collision map E such that

U(ρth ⊗ ρth) = ρth ⊗ ρth and (2.30)

ρnS = En(ρ0S)
n→∞−−−→ ρth, ∀ρ0S. (2.31)

The most general answer is that the unitaries must have the form of Eq. (2.18) (remem-

bering that in this case they are all identical, independent of j) with the Hamiltonian

H(g, gz) = g(σ+ ⊗ σ− + σ− ⊗ σ+) + gzσz ⊗ σz, (2.32)
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where g and gz are real numbers and

σ− = σ†
+ =

1

2
(σx − iσy) = |0⟩ ⟨1| . (2.33)

This result was obtained in Ref. [18], which also brands that any setup responsible for

the quantum operation respecting Eqs. (2.30) and (2.31) is called a thermalizing machine

and the process of the system relaxing towards ρth is called thermalization. These terms

are easily justified since Eq. (2.30) affirms that if the system is at the same state as the

thermal ancillae, then the evolution stagnate, while Eq. (2.31) means that the quantum

operation is such that system’s state will converge to the thermal ancillae independent of

the system’s initial state, i.e., this CM setup will make the system eventually thermalize.

As an example of thermalization made with simple computations, we suppose that all

the ancillae start with the state ρA = |0⟩ ⟨0| (this is the ground state, which is the thermal

state at the limit T → 0, so we are supposing a very cold environment) and the initial

system state is an arbitrary qubit which can be always parametrized as

ρ0S =

⟨0| ρ0S |0⟩ ⟨0| ρ0S |1⟩

⟨1| ρ0S |0⟩ ⟨1| ρ0S |1⟩

 =

1− p C

C∗ p

 , (2.34)

where 0 ≤ p ≤ 1/2 and (1 − 2p)2 + 4|C|2 ≤ 1 which are conditions that come from

of positivity and unit trace. Here p is the population of the excited state |1⟩ and C is the

coherence. Now if we explicitly compute the unitary with the Hamiltonian given by Eq.

(2.32), we obtain

U(g, gz) = e−iH(g,gz)τ

= e−i2gzτ (|00⟩ ⟨00|+ |11⟩ ⟨11|) + cos(gτ)(|10⟩ ⟨10|+ |01⟩ ⟨01|)− i sin(gτ)(σ+σ− + σ−σ+),

(2.35)

where we just used that |00⟩ , |11⟩ and 1√
2
(|10⟩ ± |01⟩) are the eigenvectors of H(g, gz)

with eigenvalues gz, gz and ±g − gz, respectively and use it to expand the exponential

operator in the eigenvector basis (also we omitted the tensor product sign |a⟩⊗ |b⟩ = |ab⟩

for convenience). We can now use the unitary above to obtain the collision map, according
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to Eq. (2.25)

E(ρ0S) = TrA
{
U(g, gz)ρ

0
S ⊗ |0⟩ ⟨0|U †(g, gz)

}
=

(1− p) + sin2(gτ)p e2igzτ cos(gτ)C

e−2igzτ cos(gτ)C∗ cos2(gτ)p

 . (2.36)

By iterating this map6 n times in order to obtain the system’s evolution after the n-th

collision (according to Eq. (2.27)), we obtain

ρnS =

1− pn Cn

C∗
n pn

 , (2.37)

where Cn = e2igznτ cosn(gτ)C and pn = cos2n(gτ)p. As we can see, Cn and pn go to

0 as n gets large (of course, if gτ isn’t an integer multiplied by π). This highlights two

effects of dissipation due the bath: the decoherence (the vanishing of the off-diagonal

terms), as usually happens when a quantum system is interacting with a thermal bath (in

this case, even with the bath at a very low temperature), and the decay of the population

of the excited state |1⟩, pushing the system to the steady-state |0⟩ ⟨0|. This steady-state

is nothing but the thermalization of the system towards the initial 0 temperature ancillae

state.

2.3.4 Steady-states

We already tacitly used the concept of steady-state as the state in which the system con-

verge after a long time interacting with the environment. For making this definition more

concrete, we say that a state ρ∗ is a steady-state of a map E , if and only if

E(ρ∗) = ρ∗. (2.38)

ρ∗ is also called a fixed point of the map.

Notice that the steady-state needs not to be unique. A map that has a unique stateady-

6For the case of gz = 0 this map is the same as the well-known amplitude damping [1, 91].
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state is called ergotic, and if

En(ρ) → ρ∗, (2.39)

for large n and any density matrix ρ, then this map is said to be mixing. Consequently,

any mixing map is ergotic, and thus if one proves the mixing of a map which leads the

initial state to ρ∗, it will be the unique steady-state (this will be our procedure in bosonic

CMs in Chapter 5).

The process of thermalization in Eqs. (2.30) and (2.31) is a mixing map which has

ρth as fixed point. A slightly more general concept is that of thermal operations, in which

the ancillae need not be isomorphic to the state but the state thermalize to a thermal state

in the same temperature as the ancillae. This is an important concept in the context of

Resource Theories and it can be proved that any energy conseving unitary generating a

CM map like in Eq. (2.25) (with ancillae in thermal states) is a thermal operation [92].

This kind of unitary will describe the main interactions studied in this thesis, including

the Partial SWAP.

2.3.5 SWAP and Partial SWAP

Another important case of a thermalizing machine which will be important in this thesis

is when the interaction is given by gz = g/2 in Eq. (2.32), here the Hamiltonian will have

the form

H(g, g/2) =
g

2
σ⃗ · σ⃗, (2.40)

where σ⃗ · σ⃗ = σ1
x⊗σ2

x+σ
1
y⊗σ2

y+σ
1
z ⊗σ2

z , we used that σ1
+σ

2
−+σ1

−σ
2
+ = 1

2
(σ1

xσ
2
x+σ

1
yσ

2
y)

and here σ1(2)
i means the i Pauli matrix acting in the first(second) qubit. This Hamiltonian

is, except for a constant term, equivalent to the SWAP Operation

S =
1

2
(I+ σ⃗ · σ⃗) , (2.41)

where I is the identity operator. The SWAP operation is a very important quantum channel

having applications from Open Quantum Systems to Quantum Computation. Its main
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property is that, given two states |ψ⟩ and |ϕ⟩, then

S(|ψ⟩ ⊗ |ϕ⟩) = |ϕ⟩ ⊗ |ψ⟩ . (2.42)

Actually, Eq. (2.42) is a more general definition of the SWAP, being valid for any set of

two vectors in a Hilbert space. Conversely, Eq. (2.41) is equivalent to Eq. (2.42) only for

the case of two cubits.

A direct consequence of Eq. (2.42) is

SS = S2 = I, (2.43)

which can be used to directly show that the SWAP generates the Partial SWAP Operation

UP (gτ) = e−igτS = cos(gτ)I+ i sin(gτ)S. (2.44)

It can be shown (see Ref. [19]) that the Partial SWAP of Eq. (2.44) is, except for an

irrelevant phase term, the only unitary U that satisfies the following two properties

Tr1{Uρ⊗ ρU †} = ρ and (2.45)

Tr2{Uρ⊗ ρU †} = ρ, (2.46)

for qubits (the subscripts 1 and 2 indicate that the partial trace is realized in the subspace of

the first and second two level Hilbert space, respectively). In Chapter 4, in the continuous-

variables context, we shall present the Beam Splitter as the Partial SWAP, with the same

properties, for the bosonic modes case.

2.3.6 Homogenization

We shall focus on the procedure proposed in [19], where the so-called homogenization

was defined for qubits systems. This procedure consists of a CM where all ancillae have

the same structure as the system (like qubits, in the case of [19]), are initially identical and

uncorrelated and the unitary responsible for the interactions between system and ancillae

acts in such a way that, after the system collides with all the ancillae, the system and
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ancillae will be all approximately identical.

The homogenization procedure is very similar to the procedure of thermalizing, but in

this case, as we shall see, we are free to involve any kind of ancillae state in the process,

not only thermal states. The process is outlined as follows. Suppose we have a CM with

identical ancilae initially in a generic state ρ0A and a system initially at state ρ0S and they

interact in each collision via the same unitary U (the condition here are just like in the

thermalizing machine, but notice that the ancillae states ρA don’t need to be at a thermal

state). Hence the system after the n-th collision will evolve according to the stroboscopic

map in Eq. (2.27) and the n-th ancilla after its collision with the system will be given by

(2.28). We say that homogenization happens when for all δ > 0 there is a finite number

of collisions Nδ such that

D(ρNS , ρA) ≤ δ, ∀N ≥ Nδ, (2.47)

D(ρnA, ρA) ≤ δ, ∀n, 1 ≤ n ≤ N, (2.48)

where D(•, •) means any distance between operators and in this work we shall use the

trace distance.7

These two conditions means that not only the system must get as close as we want to

the initial ancillae state ρA, independent of the initial system state ρ0S , but also the ancillae

must never get too distant from its initial state after their collision with the system. The

result is that the final states must all be similar, and the ancillae turn the system to look

like one of them, transforming the system and environment in an homogeneous set of very

similar parts (see Fig. 2.2).

It can be shown, for the all-qubit case, that homogenization is achieved if the unitary

U that rules the interaction in the collisions is the Partial SWAP given in Eq. (2.44).

This can be seen by direct application of our Stinespring representation to CMs using this

7Suppose we have two densisty matrices ρ and σ, then the trace distance between them will be

D(ρ, σ) =
1

2
Tr |ρ− σ|, (2.49)

where |A| =
√
A†A is the positive square root of A†A.
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Chapter 2. Open Quantum Systems and Collisional Models

Figure 2.2: Schematic of homogenization. From left to right, the system S interacts
with the ancillae at time 0 < t < τ , τ < t < 2τ , 2τ < t < 3τ and (n − 1)τ <
t < nτ , respectively. The color changes on the system represents the different states
it passes trough until it gets very similar to the ancillae and the whole system becomes
homogeneous.

particular unitary. Starting with Eq. (2.25), we obtain

ρ1S = c2ρ0S + s2ρA + ics[ρA, ρ
0
S], (2.50)

when c and s are cos(gτ) and sin(gτ), respectively. Following the interaction of the

same channel n times, as Eq. (2.27) suggests, we obtain the system’s state after the n-th

collision

ρnS = c2ρn−1
S + s2ρA + ics[ρA, ρ

n−1
S ]

= s2
n−1∑
j=0

c2ρA + ρnrest

= (1− c2n)ρA + ρnS,rest (2.51)

where ρnrest is a ρ0S dependent part that will go to 0 as n→ ∞ (see Appendix A). Similarly,

we can use Eq. (2.28) and the equation above to obtain the state of the n-th ancilla after

its collision

ρnA = s2ρn−1
S + c2ρA + ics[ρn−1

S , ρA]

= s2(1− c2(n−1))ρA + ρnA,rest, (2.52)
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where ρnA,rest is also a ρ0S dependent part that goes to 0 as n → ∞ (see Appendix A),

meaning that ρnS → ρA and ρnA → ρA for large n. Therefore, both system and ancillae

converge to ρA for sufficient large n.

There is one more restriction needed so that homogenization can be correctly achieved.

Notice that in the first line of Eq. (2.52) the term [ρn−1
S , ρA] is the one responsible for ρnA,rest

and it gets smaller at each collision since ρn−1
S gets closer to ρA. From this observation

we can conclude that

D(ρnA, ρA) ≤ D(ρn−1
A , ρA), (2.53)

which means that the first collision pushes the ancilla further away while the next colli-

sions pushes lesser and lesser (which makes sense since the system gets closer and closer

to ρA). Thus the condition from Eq. (2.48) actually bounds D(ρ1A, ρA) for each δ, putting

a bound in the Partial SWAP parameter gτ . This restriction turns to be (see Appendix A

for the proof)

sin(gτ) ≤
√
δ/2. (2.54)

Finally, this sets the sufficient conditions for homogenization, which can be used for

quantum cloning protocols and quantum-safe cryptography with a classical communica-

tion [19]. We can also prove, as will be done in Chapter ??, that homogenization can also

happen when system and ancillae are bosonic states. This proof will be done analytically

obtaining the stroboscopic evolution for all time steps. Importantly, in both cases homog-

enization demands that the steady-state of this kind of CM must be the initial state of the

ancillae itself. The main original result of the first project of this thesis is to show that the

presence of initial correlations between the ancillae in CMs tends to steer the steady-states

far from its original steady-states and, in the special case of homogenization, steering the

steady-state away from the ancillae state [93].

2.3.7 Physical implementations of CMs

In this subsection we present a few examples about how CMs can describe important open

quantum systems dynamics, going beyond a set of theoretical insightful models.

A very intuitive dynamic that can be associated with CMs are the ones concerning a

dilute gas of particles, following Boltzman’s Stosszahlansatz molecular chaos hypothesis
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[64]. However, these models need to consider the time interval τ during the interaction

between the system and each ancilla to be a random variable in order to obtain a reliable

description of gases [62]. This set of CMs, which are frequently called stochastic CMs,

have not the same structure and dynamics of the models described in this chapter, which

are sometimes called of periodic CMs. Recently, an insightful manner to mimic any

stochastic CM using periodic CMs was proposed [94].

Perhaps the most natural physical setup that can fit to a CM description is the micro-

maser [69, 70]. In general terms, a maser is a device similar to a laser, producing coherent

photons around the microwave spectrum by stimulated emission, as opposed to a laser,

which produces coherent photons around the visible light spectrum. The micromaser is a

specific case where a filtered stream of Rydberg atoms (heavy atoms with valence elec-

trons behaving approximately as electrons of a hydrogen atom, see Ref. [95]) are sent

trough a cavity so that each atom flies alone inside the cavity and interacts individually

with the electromagnetic fields inside the cavity (see Fig. 2.3). This way, the CM de-

scribed above for the Markovian case is almost perfectly suitable since we can treat each

atom as an individual ancilla (uncorrelated with the other atoms) which interacts one at a

time with the electromagnetic field of the cavity, which plays the role of the system.

The micromaser setup is also the most adequate apparatus for the application of the

Janyes-Cummings (JC) model,8 since both consider the presence of only one atom at a

time interacting with the cavity field, being different from most lasers and masers where

the cavity field actually interacts collectively with many atoms. Therefore, the CM de-

scribing the micromaser has the JC interaction Hamiltonian

V = g(aσ+ + a†σ−), (2.55)

where g is the interaction strength, a (a†) are the annihilation (creation) operators of

the field mode9 and σ− (σ+) are the qubits operators given by Eq. (2.33).

The setup can then be modeled by the Markovian CM with identical ancillae and in-

teractions, as described in Susbsec. 2.3.2, with the interaction Hamiltonian of Eq. (2.19)

8The JC model is a largely applicable model of light-matter interaction [55, 57, 91], where the matter is
described by a qubit (in this case, the atom) and the light is an electromagnetic mode.

9Importantly, the atom qubit interacts only with one mode of the electromagnetic spectrum in the cavity.
This is justified by the rotating wave approximation (RWA) [55, 91].
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Figure 2.3: Micromaser setup: An atomic beam oven emits Rydberg atoms which pass
trough a velocity selector tuning the flux of atoms so that each atom passes one at a time
through the cavity containing electromagnetic fields. (This figure was taken from Ref.
[21].)

given by Eq. (2.55) in the interaction picture (see Appendix A). Such CM is an approxi-

mation of the real micromaser setup, but can reproduce the main important features of the

real phenomena [95, 96]. A more complete description of the micromaser can be found

in Refs. [95, 97].

Beyond the micromaser example, which is a direct application of CMs in a physical

setup, CMs are extremely useful to create effective models of realistic open quantum sys-

tems situations. Important examples include the full simulation of Markovian dynamics

from single qubits [81, 98] and the reproduction of any Markovian dynamics with the

multipartite collision model (a generalization of the CM described in this chapter with

multipartite system) [99].

Finally, another major example is the fact that a CM description can also emerge

very naturally from one of the most common microscopic system-bath model, namely the

interaction with the one-dimensional waveguide. In this model, the system is described by

a generic system with frequency ω0 and annihilation (creation) operator A(A†), and the

environment is represented by a continuum of bosonic modes, with annihilation (creation)

operators bω(b†ω) and frequencies that range from −∞ to ∞. The Hamiltonian of the full

joint system is given by

H = HS +HE + V, (2.56)

where

HS = ω0A
†A, HE =

∫ ∞

−∞
dω(ω0 + ω)b†ωbω and V =

√
γ

2π

∫ ∞

−∞
dω(A†bω + Ab†ω),

(2.57)
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where γ is a constant coupling strength. This is the so-called white noise coupling [55].

The above Hamiltonian is justified by the RWA (which explains the presence of non-

physical negative frequencies) together with the weak coupling approximation, which is

very often used in quantum optics [55, 57, 100].

By making a Fourier transform we can define time modes, for any real t,

bt =
1√
2π

∫ ∞

−∞
dωbωe

−iωt. (2.58)

These time modes can represent quantum harmonic modes since they satisfy [bt, b
†
t′ ] =

δ(t − t′) and [bt, bt′ ],= [b†t , b
†
t′ ] = 0. In order to make a discrete time step evolution, we

can discretize the real line in intervals with equal lengths so that tn − tn−1 = ∆t for finite

∆t and any integer n. This way, we may redefine the time modes for discrete steps

bn =
1√
∆t

∫ tn

tn−1

dtbt, (2.59)

which also satisfy the commutation relations for any n. Going to the interaction picture

(see Appendix A), the Hamiltonian of Eqs. (2.56) and (2.57) reduces to

Vn =

√
γ

∆t
(A†bn + Ab†n), (2.60)

which is time dependent, since the interaction will affect only each mode n when t ∈

[tn, tn−1]. Consequently, this model is exactly a CM where the ancillae are described by

the time discrete modes represented by the operators bn(b†n). This CM picture of open

systems under white noise is explained and applied in the context of waveguide-QED in

Refs. [100, 101]. In this thesis, such CM in which all the ancillae are bosonic modes will

be explored in detail, since its formalism makes it possible to obtain analytical solutions

to the effects of initial correlations between the ancillae in the system’s dynamics.
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Chapter 3

Quantum Information and Bayesian

Networks

Quantum Information (QI) is a largely growing field in the past decades, specially with

the advent of promising new quantum technologies [102]. The rich history of the cre-

ation and development of this field is well narrated in Ref. [1] and excellent introductory

and detailed texts approaching general themes about QI are found in Refs. [1, 2, 15].

In this Chapter we mainly focus in the aspects of quantum information used to quantify

correlations between quantum states and how to identify which correlations have intrinsic

quantum aspects. These subjects are going to be essential for the analysis and interpreta-

tions of the main projects of this thesis.

As a second subject of this Chapter, we present the concept of Bayesian Networks. The

exposition will be brief and primarily focused in the application needed for our second

project (Chapters 7 and 8).

3.1 Generalized measurements

Quantum measurements are among the most controversial subjects of quantum mechan-

ics, hence the discussion of its postulates can render extensive texts. Here we only expose

the postulates which are useful to the present thesis. More complete discussions explain-

ing and motivating the postulates are given in Refs. [1, 2, 15, 57, 103] and examples for

the exposition of interpretations are given in Refs. [103, 104]. The postulates are the
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following:

• Any measurement can be described in terms of a set of Kraus matrices {Mk}k,

satisfying Eq. (2.17), given the measurement setup. Each of this choices define

a Positive Operator Value Measure (POVM).1 The result of each measurement is

labeled by a index k of the the corresponding Kraus matrix Mk;

• The probability of obtaining the outcome k is

pk = Tr
(
MkρM

†
k

)
; (3.1)

• After the measurement is done, if the result of k is recorded, the effect of the mea-

surement in the state ρ, called backaction, will be to evolve

ρ→ MkρM
†
k

pk
. (3.2)

The items above are sufficient to describe any generalized quantum measurement. An

important class of quantum measurements are the projective measurements, where the

Kraus matrices Mk are simply the projectors |k⟩ ⟨k| in some basis {|k⟩}k. This results in

the familiar “wave function collapse” rule pk = | ⟨ψ|k⟩ |2 and |ψ⟩ → |k⟩ for measuring a

pure state |ψ⟩.

3.2 Entropy

3.2.1 The Shannon Entropy

Entropy is a central concept not only in QI but also in Classical Information Theory [105].

Since Shannon’s revolutionary paper in 1948 [106], the quantity now known as Shannon

entropy can be undoubtedly interpreted as a measure of the average information carried by

a random variable after we learn its value. At the same time, at is often done in physics,

we interpret it as the lack of information we have about a random variable before we learn

its value.
1The POVM is a set of operators {Ek}k such that Ek =M†

kMK .
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If we have a random variableX with a probability distribution p(X), then the Shannon

entropy associated with this distribution is2

H(p(X)) = −
∑
x

p(x) log p(x), (3.3)

where we consider the limit limy→0 y log y = 0, for the case where p(x) = 0. As already

mentioned, this quantity measures the average information carried by a random variable,

given its probability distribution. A heuristic justification for this statement can be given

as follows.

Let X be a random variable with the corresponding probability distribution p(X)

and suppose that we want to construct a “surprise” function (say S) which measures the

amount of unexpected learning that would be obtained if it is revealed to us the value of

this random variable. For instance, if we learn that x is the value of the random variable

and p(x) is close to 1, it means that the learning was not unexpected resulting in S(x)

small. Conversely, if p(x) ≪ 1, then S(x) should be a large number. Hence, intuitively

we expect S(x) to be inversely proportional to p(x), but it is also desirable that it respects

the additive property, i.e. having the surprise of learning x and of learning y (in symbols

S(x, y)) should give S(x)+S(y). The only function of p(X) that satisfies both properties

(except by a multiplicative constant) is

S(x) = log

(
1

p(x)

)
. (3.4)

Intuitively, this unexpected learning can be identified as information since unexpected

results tend to be more relevant and give us more information. Hence, the average of

this value can be interpreted as the average of information obtained if we learn a random

variable

⟨S⟩ =
∑
x

p(x)S(x) = −
∑
x

p(x) log(p(x)), (3.5)

which is exactly the Shannon entropy.

This intuitive, although not formal, argument was taken from Ref. [27]. More formal

2Here the log is taken as the natural logarithm. This differs from many QI and information theory books
which define the log with base 2.
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arguments for the Shannon entropy interpretation can be found in Refs. [1, 2, 105] and in

Shannon’s original paper [106].

3.2.2 The von Neummann Entropy

We also need a quantity which encompass the information content of a quantum state. For

defining this quantity, we assume it depends on the density matrix ρ of a quantum state,

since it has the informational content of the probability distribution of each possible pure

quantum state (see Sec. 2.1). But naively one could guess that, given a density matrix

ρ =
∑
i

pi |ψi⟩ ⟨ψi| , (3.6)

the appropriate entropy that represents the quantum state should be just the Shannon en-

tropy of the probability distribution of the states {|ψi⟩}i

H(pi) = −
∑
i

pi log(pi). (3.7)

It turns out that this is not a good choice since the probability distribution {pi}i is de-

pendent on the ensemble {|ψi⟩}i and in general, the states {|ψi⟩}i are not necessarily

orthogonal, hence indistinguishable. The interpretation of Shannon entropy as being the

average measure of information only makes sense if we can distinguish the outcomes of

the random variables.

A more accurate attempt would be to make the spectral decomposition

ρ =
∑
i

λi |λi⟩ ⟨λi| , (3.8)

where {λi}i and {|λi⟩}i are the eigenvalues and eigenvectors or ρ, respectively, and com-

pute the Shannon entropy of the eigenvalues3

H(λi) = −
∑
i

λi log(λi). (3.9)

3The eigenvalues of ρ are also a valid probability distribution (see Appendix A).
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This equation can be rewritten as

−
∑
i

λi log(λi) = −Tr(ρ log ρ), (3.10)

its proof is simple and can be found in Appendix B. The quantity above is invariant under a

change of basis, since the eigenvalues are basis independent. Importantly, the eigenstates

{|λi⟩}i are orthogonal and thus are distinguishable, hence it represents a more suitable

entropy for quantum states. This quantity is the von Neumann entropy

S(ρ) = −Tr(ρ log ρ), (3.11)

and is the correct candidate to represent the information contained in a quantum state [1,

2, 15].

From Eq. (3.10) it is immediate to see that the von Neumann entropy is always a

positive quantity. Another important aspect is that the von Neumann entropy vanishes

for pure states and assumes its maximal value at the maximally mixed state ρ = I/d, for

finite-dimensional Hilbert states with dimension d. Thus

0 ≤ S(ρ) ≤ log d. (3.12)

Indeed, the von Neumann entropy has a similar interpretation as the purity (see Eq. (2.6)).

If we have a pure state, then we have no ignorance about the system since we know the

state it is in, and if we have a maximally mixed state, then we have the most ignorant case,

since we have equal probability of being in any quantum state.

The von Neumann entropy has an enormous set of properties [1, 2, 15]. But in this

thesis it will be sufficient to use the fact that it is a quantity invariant under a unitary trans-

formation4 and to work with its conceptual role of representing the amount of ignorance

we have about a quantum system. We shall use this concept to the construction of quan-

tities representing correlations. From now on, we refer to the von Neumann entropy of a

quantum state simply as the entropy.

4Suppose that U is a unitary transformation and that ρ′ = UρU†. Then S(ρ′) =
Tr
(
UρU† log

(
UρU†)) = Tr

(
UρU†U log(ρ)U†) = Tr (ρ log ρ) = S(ρ), where in the second equality

we used that a unitary U infiltrates in any well-defined function of operators.
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3.3 Mutual Information and Correlations

3.3.1 Relative Entropy

As an entropic-like distance, we shall define the Relative Entropy5 or Kullback-Leibler

divergence

S(ρ||σ) = Tr(ρ log ρ)− Tr(ρ log σ), (3.13)

where ρ and σ are density matrices. This quantity is always non-negative

S(ρ||σ) ≥ 0, (3.14)

and vanishes for the case where ρ = σ. The proof of such inequality is non-trivial and

can be found in Refs. [1, 15].

From the non-negativity of the relative entropy we can have an intuitive idea of en-

tropic distance. Although it is important to underline that this is not an actual distance,

since it is not symmetric, i.e., in general S(ρ||σ) ̸= S(σ||ρ), and does not satisfy the

triangle inequality.

3.3.2 Mutual Information

We are interpreting entropy as the measure of ignorance over a quantum system. A useful

quantity would be the information of a quantum system described by a quantum state ρ.

It is intuitively defined as the entropic distance between the state ρ and the state in which

the ignorance is maximum. In other words, it is the relative entropy between the state ρ

and the maximally mixed state π = I/d (assuming a d-dimensional Hilbert space)

I(ρ) = S(ρ||π)

= log(d)− S(ρ). (3.15)

5This Relative Entropy is often called Quantum Relative Entropy since it is the quantum counterpart
of the classical Relative Entropy defined as H(p(x)||q(x)) =

∑
x p(x) log

(
p(x)
q(x)

)
, given two probability

distributions p(x) and q(x).
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From Eq. (3.12) we obtain that

0 ≤ I(ρ) ≤ log(d), (3.16)

with its minimum at ρ = π and maximum where ρ is a pure state.

With this concept in hand, it is straightforward to have an intuitive idea of the quantity

called mutual information. Given a system divided in two parties A and B, in which the

global state is ρAB, the mutual information between the two parties is defined as

IρAB
(A : B) = S(ρAB||ρA ⊗ ρB), (3.17)

where ρA = TrB(ρAB) and ρB = TrA(ρAB).

The mutual information embrace all the content of the correlations between the parties

A andB. In general, ρA⊗ρB ̸= ρAB since the partial trace which generates the local state

ρA vanishes with all the B dependence, i.e., their correlations. Thus the product ρA ⊗ ρB

represents completely uncorrelated states and consequently its distance to the global state

ρAB measures their correlations.

A more explicit representation of the aforementioned ideas can be seen in the follow-

ing formulas. From the definition of relative entropy (Eq. (3.13)), we have

S(ρAB||ρA ⊗ ρB) = −S(ρAB)− Tr(ρAB ln ρA)− Tr(ρAB ln ρB). (3.18)

Now, noticing that

− Tr(ρAB log ρA) = −TrA(TrB(ρAB) log ρA)

= −TrA(ρA log ρA)

= S(ρA), (3.19)

with a similar result for −Tr(ρAB log ρB) and applying it in Eq. (3.18), we obtain

IρAB
(A : B) = S(ρA) + S(ρB)− S(ρAB), (3.20)
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which is a simpler way to compute the mutual information in various applications.

Finally, using the definition of information (Eq. (3.15)) in Eq. (3.20) and the fact that

log(dAdB) = log dA + log dB, we conclude that

IρAB
(A : B) = I(ρAB)− I(ρA)− I(ρB), (3.21)

where dA(dB) is the dimension of the Hilbert space of A(B). The equation above simply

states that “the mutual information between A and B is the information contained in ρAB

minus the information contained locally in ρA and ρB”, that is, the mutual information

represent the correlations between the parties.

3.3.3 Entanglement

We gave justifications to the fact that the mutual information represents the total cor-

relations between two parties. However, to conclude which of these correlations have

quantum origins without classical counterpart is a hard task and still a very fruitful re-

search field nowadays [107]. Here, we briefly introduce concept of entanglement, which

is the most known type of quantum correlations, due to its applications as an important

resource in quantum technologies and conceptual problems [108].

Suppose a system is divided in two parties A and B. A pure state |ψ⟩ representing this

system is called a product state if it can be parametrized as tensor product

|ψ⟩ = |ψA⟩ ⊗ |ψB⟩ , (3.22)

where |ψA⟩ (|ψB⟩) belong to the Hilbert space of A(B). Any pure state which is not a

product state is called an entangled state.

Notice that for the case of pure states it is not hard to have a decisive witness of

entanglemet. If a state |ψ⟩ is a product state just like in Eq. (3.22), then clearly the partial

trace of its density matrix over A or B will result in a pure state, i.e.

TrA(|ψ⟩ ⟨ψ|) = |ψB⟩ ⟨ψB| . (3.23)

Otherwise, if a state |ψ⟩ is a entangled state, then the partial trace of its density matrix
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over A or B will result in a mixed state. Consequently, the entropy of the reduced state

will be non-zero. So, if

S
(
TrA(B)(|ψ⟩ ⟨ψ|)

)
> 0, (3.24)

the state will be entangled. Otherwise, it will be a product state.

With the use of the Schmidt decomposition [1, 2, 91], it can be shown that for any

pure state S (TrA(|ψ⟩ ⟨ψ|)) = S (TrB(|ψ⟩ ⟨ψ|)) and this quantity can also represent a

quantifier of entanglement.

Unfortunately, for the case of mixed states, the problem of quantifying entanglement

is much more challenging. For a system divided in parties A and B, a state ρ is said to be

separable when

ρ =
∑
i

piρ
i
A ⊗ ρiB, (3.25)

where {pi}i is a probability distribution, ρiA are density matrices in A and ρiB are density

matrices in B. A mixed state is said to be entangled when it is not a separable state.

The meaning of Eq. (3.25) is that a separable state is a classical mixture of quantum

states ρiA and ρiB which are only locally quantum. It can be shown that such states can

always be prepared by the so-called Local Operations and Classical Communications

(LOCCs) [108]. To distinguish if a mixed state is separable or not is, in general, a very

arduous task.

3.3.4 Quantum discord

Due to the difficulties mentioned above in characterizing entanglement for mixed states,

we focus in another quantifier of quantum correlations, the so-called quantum discord.

The concept of quantum discord was first proposed in Refs. [109–111]. It is a dis-

crepancy between the mutual information among two parties and the maximum amount

of information we can get form one party by measuring the other party. Intuitively, one

may think that the maximum information we can get by one party looking at the other

party is equal to their total correlations, but we shall see that this statement is true only for

classical systems. For quantum systems we get a mismatch due to quantum backactions.

This can be seen in the following discussion. Given a system divided in two parties A

and B, suppose that their states can be represented by classical probability distributions
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p(X)A and p(Y )B, respectively. We can define the conditional entropy

H(A|B) = −
∑
y

p(y)B
∑
x

p(x|y)A log
(
p(x|y)A

)
, (3.26)

which is the average of the Shannon entropy of the conditional probability of A given we

obtain an outcome from B, this conditional probability distribution is given by Bayes’

Theorem [105]

p(x|y)A =
p(x, y)AB

p(y)B
, (3.27)

where p(x, y)AB is the joint probability distribution of A and B.

The conditional entropy in Eq. (3.26) is interpreted as the lack of information we have

about A given we know the outcomes of B. It can be shown (see Appendix B) that the

mutual information between A and B is given by6

I(A : B) = H(A)−H(A|B), (3.28)

where H(A) is the Shannon entropy of A given its probability distribution p(X)A. The

equation above simply states that the mutual information between A and B is the igno-

rance of A less the ignorance of A given that we know the outcomes of B.

We can try to define a similar conditional entropy for the quantum case. In this case,

obtaining the outcome of the subsystem B cannot be done without taking into considera-

tion the effects of the measurement on it. Hence we suppose that, if choose a generalized

measurement described by the Kraus matrices {MB
k }k in B, the joint system ρAB will

suffer a backaction

ρAB|k =
(IA ⊗MB

k )ρAB(IA ⊗MB
k )†

pk
, (3.29)

if the outcome is k, with probability

pk = Tr
(
(IA ⊗MB

k )ρAB(IA ⊗MB
k )†
)
. (3.30)

With the reduced state ρA|k = TrB
(
ρAB|k

)
we can define the quantum-classical condi-

6This mutual information, defined for classical systems, has exactly the form of Eq. (3.20), but switching
von Neumann entropies for Shannon entropies and density matrices for probability distributions.
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tional entropy

SM(A|B) =
∑
k

pBk S(ρA|k), (3.31)

which follows exactly the same idea of the conditional entropy of Eq. (3.26), but with

the influence of the backaction in the quantum state and the dependence on the choice of

measurement {MB
k }k. Its interpretation is also similar, it represents the ignorance of the

system A given we know the outcomes of the generalized measurements {MB
k }k.

It is useful to define the quantity

JM(A|B) = S(ρA)− SM(A|B), (3.32)

which means the information obtained by A with the outcomes of the quantum measure-

ment {MB
k }k of B, very similar to the mutual information in Eq. (3.28). For the classical

case, the quantity equivalent to Eq. (3.32) must be the mutual information, but for the

quantum case this is not always true. For this reason one defines the quantum discord

DM(A|B) = I(A : B)− JM(A|B), (3.33)

meaning the mismatch between the total correlations and the information obtained by A

after the outcomes of {MB
k }k in B.

A more compelling quantity is the measurement independent discord

D(A|B) = min
{MB

k }k
DM(A|B) , (3.34)

which is the minimum discord obtained over all possible measurements. It is the case

where we obtain the maximum information about A with measurements in B, i.e., maxi-

mizing JM(A|B). A non-zero value of this quantity means that there is no measurement

that can give us full information about the correlations, as it is possible in classical sys-

tems. From now on we shall refer to the measurement independent discord simply as the

quantum discord (and to the quantum discord of Eq. (3.33) as the measurement dependent

discord).

This correlation quantifier, without classical counterparts, has several applications in
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Figure 3.1: Three random variables A, B and C disposed in a causal order.

quantum information, quantum thermodynamics, open quantum systems, and many-body

physics [107]. In this thesis it will be useful to indicate genuine quantum correlations

between Gaussian systems in Chapter 8.

3.4 Bayesian Networks

Bayesian Networks (BNs) was first introduced in its modern terms by Judea Pearl in 1985

[47]. In Judea’s words, his study was “motivated by attempts to devise a computational

model for humans’ inferential reasoning”, from which he obtained a graph-type model

for inferring probabilities from conditional distributions disposed in a causal order. This

concept is used in a large range of applications, mainly in Artificial Intelligence, which

was its initial proposal application.

This concise presentation will focus only on the necessary concepts for the second

project of the thesis, which took a large inspiration from [48] in introducing the BN con-

cept to quantum systems. For a complete introduction to the subject of BNs, see Refs.

[43–46].

3.4.1 Definition and examples

Suppose we have three random variables A,B and C disposed in a causal order where

A causes B and B causes C (see Fig. 3.1). The approach to relate these quantities is to

assign to each arrow a conditional probability according to the causal order . For instance,

for the case of Fig. 3.1, the joint probability distribution P (A,B,C) is
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Figure 3.2: Example of directed graph representing relations of causality between random
variables.

P (A,B,C) = P (C|B,A)P (B,A)

= P (C|B,A)P (B|A)P (A)

= P (C|B)P (B|A)P (A), (3.35)

where the last equation holds since the random variable C depends only on B.7

For more complex relations of causality, instead of an ordered string (as in Fig. 3.1)

the causal orders can be described by directed graphs where the directed edges means

causal relations and each vertex represents a random variable. Fig. 3.2 gives an example

of a directed graph describing more complex relations of causality. For this case, the joint

probability P (A,B,C,D,E, F ) is

P (A,B,C,D,E, F ) =P (F |A,B,C,D,E)P (A,B,C,D,E)

=P (F |C)P (A,B,C)P (F |D)P (D)P (F |E)P (E), (3.36)

where in the last equality we used that the random variable F only depends onC,D andE

and these three variables are independent of each other. The joint probability P (A,B,C)

can be computed separately

7Of course, the random variable C has a causal relation with A. But, once the random variable B ins
known (B = b), the random variable C will be fully specified by P (C|B = b), thus A and C become
independent. This property is known as a d-separation between A and C [44, 45].
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P (A,B,C) = P (C|A,B)P (A,B)

= P (C|A)P (C|B)P (B|A)P (A)

= P (C|A)P (C|B)P (B|A)P (A). (3.37)

Combining the two equations above, we obtain

P (A,B,C,D,E, F ) = P (C|A)P (F |C)P (C|B)P (B|A)P (A)P (F |D)P (D)P (F |E)P (E).

(3.38)

If in a directed graph there is a link from A to B, we say that A is a parent of B. In

the directed graph of Fig. 3.2 F has parents C,D and E; C has parents A and B, and B

has only the parent A. Notice that in Eq. (3.38), the joint probability distribution is just

the chain product of the conditional probabilities between the random variables and its

parents times the probability distributions of the random variables without parents. This

is a general property of Baysean Networks, the BNs are sets of random variables with

their causal relations described in acyclic directed graphs8. For similar reasons as the

examples above, we have the following theorem [44, 45].

Theorem (Chain rule for Bayesian Networks): For the set {A1, · · · , An} of all

random variables in a BN, the joint probability distribution will be

P (A1, · · · , An) =
n∏

i=1

P (Ai|pa(Ai)), (3.39)

where pa(Ai) is the set of all parents of Ai.

For these reasons, BNs yields a compact representation for joint probability distribu-

tions of sets of random variables with causal relations.

3.4.2 Dynamical BNs for quantum systems (QBNs)

In this Subsection we make an application of BNs for estimating the probability of re-

duced quantum systems to be in a particular conditional trajectory as the system evolves,

8Acyclic directed graphs are directed graphs which have no cycles in their inner structure, or directed
loops. This avoids causal loops causing feedback cycles (see Fig. 3.3), which makes the modeling too
difficult.[44]
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Figure 3.3: A directed graph with in internal cycle, provoking a causal loop between the
random variables A, B, C and D.

these are called Quantum Bayesian Networks (QBNs). This structure will be the basis of

the second main project of this thesis and has great influence from [48, 112, 113].

The setup is the following. Consider a state divided in two parties A and B and with

the initial joint state

ρAB(0) =
∑
s

Ps |ψs(0)⟩ ⟨ψs(0)| , (3.40)

where {Ps, |ψs(0)⟩}s is an ensemble of quantum states which are not necessarily orthog-

onal. If we have a global unitary evolution U(t) of the joint system, then each state of the

ensemble {|ψs(0)⟩}s will evolve deterministically as

|ψs(t)⟩ = U(t) |ψs(0)⟩ . (3.41)

Looking now at the reduced local systems, suppose we have observable OA in A and

OB in B with eigenvectors {|ai⟩}i and {|bj⟩}j , respectively. We know that, if the global

state is |ψs(t)⟩, then the conditional probability of the reduced states being in the eigenkets

|ak⟩ in A and |bk⟩ in B is9

P (ak, bk|ψs(t)) = | ⟨ak, bk|ψs(t)⟩ |2. (3.42)

With this conditional probability in hand, we can create a BN (see Fig 3.4) for finding

the probability of the joint system passing trough the states |a0, b0⟩ , |a1, b1⟩ , |a2, b2⟩ , · · · , |an, bn⟩

for time instants (0, t1, t2, · · · , tn), respectively. From the Theorem given in Eq. (3.39),

9We will denote |ak, bk⟩ as the tensor product of vectors in A and B, |ak, bk⟩ = |ak⟩A ⊗ |bk⟩B .
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Figure 3.4: BN for the dynamical evolution of a quantum system. The upper line describes
the global state evolution (which we often call hidden layer) and the dashed arrows indi-
cates the causal dependence of the reduced states on the global states at each instant tk.

the probability of realising such states is

P(ψs(0), a0, b0, a1, b1, · · · , an, bn) = PsP (a0, b0|ψs(0))P (a1, b1|ψs(t1)) · · ·P (an, bn|ψs(tn)),

(3.43)

where we omitted the conditional probabilities from ψs(tk) to ψs(tk+1) since these tran-

sitions are deterministic and thus the conditional probabilities are 1. Consequently, the

only global probability in which this joint distribution depends is on the initial ensemble

{ψs(0)}s.

Finally, for obtaining a conditional trajectory (a0, b0, a1, b1, · · · , an, bn) of the reduced

states, we must only marginalize over all s from the initial density matrix ensemble

P(a0, b0, a1, b1, · · · , an, bn) =
∑
s

PsP (a0, b0|ψs(0))P (a1, b1|ψs(t1)) · · ·P (an, bn|ψs(tn)).

(3.44)

These results will be essential for obtaining the average shifts of observable in the

second project of the thesis, shown in Chapter 7.
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Continuous Variables Framework

4.1 Bosonic modes

In this chapter we shall describe the framework of quantum continuous-variables. This

exposition is based mostly on Serafini pedagogical compendium [14], also well-marked

references can be founded in [15, 16]. The subject consists in the set of tools needed to

describe the degrees of freedom that satisfy canonical commutation relations (CCR)

[q̂j, p̂j] = i, (4.1)

where q̂j and p̂j are, respectively, the position and momentum operators1 of the degree of

freedom j. The degrees of freedom that satisfy Eq. (4.1) are called bosonic modes (in

contrast to fermionic modes that satisfy anti-commutation relations).

This structure is widely used in quantum optics [55, 56], quantum information and

quantum computation [1, 2, 15, 114], for instance in continuous-variables clusters [115],

many-body and condensed matter physics [116, 117]. In our case we shall use it in our

first project to describe a CM in which the system and ancillae are bosonic modes as a

realization of the bosonic case described in the subsection 2.3.7 and in the second project

as an application of the heat distribution obtained with QBNs.

We will focus on the use of Gaussian states and Gaussian operations. This enable
1In this chapter, as well as in the chapters involving continuum variables, we identify all operators acting

on some Hilbert space with a hat. The reason for such terminology will make itself clear in the following
sections.
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us to describe the effects of the environment in the system with the same approach as the

Stinespring dilation (Eq. (2.12), but with a much smaller number of variables. This will

simplify dramatically the complexity of our computations.

4.1.1 Canonical vectors

We now define some objects concerning bosonic modes that will simplify our treatment

and notation. We start with the vector of operators

r̂ = (q̂1, p̂1, q̂2, p̂2, · · · , q̂n, p̂n)⊤, (4.2)

where n is the total number of modes of the system in question. As we can see, r̂ is

nothing but the vector of all canonical operators (or quadratures) of a system, and can be

rearranged to

ẑ = (q̂1, q̂2, · · · , q̂n, p̂1, p̂2, · · · , p̂n)⊤, (4.3)

and the relation between both vectors is given by

r̂j =
2n∑
k=1

Ljkẑk, (4.4)

where r̂j , ẑj are respectively the j th element of r̂ and ẑ, and Ljk is the permutation matrix

Ljk =

δ j+1
2

,k, for j odd

δN+ j
2
,k, for j even

. (4.5)

Moreover, we have the creation and annihilation operators â†j and âj , related to the

quadrature variables by

âj =
q̂j + ip̂j√

2
, (4.6)

the main importance of these last operators become clear in the second quantization con-

text, as will be detailed later in this Chapter, in Section 4.2. For arranging these operators

we define the vector

â = (â1, â
†
1, â2, â

†
2, · · · , ân, â†n)⊤. (4.7)
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The elements of â can be related to the elements of r̂ by means of Eq. (4.6), resulting

in

â = Ū r̂, (4.8)

where2

Ū =
n⊕

j=1

ū, with ū =
1√
2

1 i

1 −i

 . (4.9)

4.1.2 CCRs and the symplectic form

Given a system of n bosonic modes ordered according to Eq. (4.2), we define a 2n× 2n

matrix Ω as

Ω =
n⊕

j=1

Ω1

= In ⊗ Ω1,

where Ω1 =

 0 1

−1 0

 , (4.10)

called symplectic form. It has the following properties that shall be useful to us

Ω = −Ω⊤ (anti-symmetric), (4.11)

Ω = −Ω−1 ⇔ Ω2 = −I2n, (4.12)

ΩΩ⊤ = Ω⊤Ω = −Ω2 = I2n, (4.13)

where Ik is the k × k identity matrix.

The importance of the symplectic form makes itself clear when we write the CCR (Eq.

(4.1)) in terms of r̂, resulting in

[r̂, r̂⊤] = iΩ, (4.14)

where we used the notation given in Appendix C, specially Eqs. (C.3) and (C.6). This

will be the cornerstone to define the symplectic group during this chapter.

2The symbol ⊕ means the direct sum operation, see Appendix C, Section C.2, for the definition.

47



Chapter 4. Continuous Variables Framework

For completeness and further use, we present the corresponding relation for ẑ

[̂z, ẑ⊤] = iJ , where J =

 0n In
−In 0n

 , (4.15)

where 0n is the n× n null matrix. Finally, the CCR for â is

[â, â†] =
n⊕

j=1

σz ≡ Σ, (4.16)

where σz is the z Pauli matrix.

4.2 Second quantization and the Fock space

The second quantization formalism is based on the idea of counting how many particles

or “field excitations” each bosonic mode has. It is based on the structure existent from

the creation and annihilation operators (Eq. (4.6)). If a mode j has its local Hamiltonian

Hj = ωj

(
a†jaj +

1
2

)
, then the eigenvectors of such Hamiltonian are discretized as |m⟩j ,

where m is a natural number. This way, the spectrum will be

Hj |m⟩j = ωj

(
m+

1

2

)
|m⟩j , (4.17)

having a lower bound when m = 0 such that âj |0⟩j = 0. The eigenvectors |m⟩j relate to

themselves and with the operators as

âj |m⟩j =
√
m |m− 1⟩j , (4.18)

â†j |m⟩j =
√
m+ 1 |m+ 1⟩j . (4.19)

The results above are just the standard Simple Quantum Harmonic Oscillator solution

that can be found in any Quantum Mechanics textbook. But now this structure is used to

interpret the excitations as the number of particles in a mode. For instance |3⟩j represents

a state with 3 particles in the mode j, |8⟩k a state with 8 particles in the mode k and

so on. The space to accommodate this scheme is called Fock space, which is the tensor
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product of the Hilbert spaces corresponding to each number of particles.3 For a mode j,

the corresponding Fock space is

Fj = Hj
0 ⊗Hj

1 ⊗Hj
2 ⊗Hj

3 ⊗ · · · =
∞⊗

m=0

Hj
m, (4.20)

where Hj
m is the Hilbert space with m particles of the mode j. A tensor product of all the

eigenvectors of the free mode Hamiltonian (like in Eq. (4.17)) is called a Fock basis, and

is a basis of the Fock space. Finally, if we are working with a system of n modes, the full

Hilbert space will be

H =
n⊗

j=1

Fj. (4.21)

In this work, we shall always be acting in a Hilbert space like in Eq. (4.21) whenever we

have a system of n bosonic modes.

4.3 Displacement operator and coherent states

Of major importance in continuous varible quantum mechanics is the unitary displace-

ment operator (or Weyl operator) defined as

D̂r = eir
⊤Ωr̂, (4.22)

where r is an arbitrary 2n vector with real components, and notice that D̂†
r = D̂−r. The

name “displacement” turns to be intuitive if we look at the following property

D̂†
r r̂D̂r = r̂ − r, (4.23)

i.e., the action of this unitary on the vector of canonical operators is just its displacement

(this equation is proved in Appendix C, Section C.4).

Another relation frequently used is the composition property

D̂r1+r2 = D̂r1D̂r2e
ir⊤1 Ωr2/2, (4.24)

3It is important to remember that the tensor product of Hilbert spaces is also a Hilbert space, thus Fock
spaces are Hilbert spaces.
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where r1 and r2 are generic 2n vectors with real components. The composition property

can be proved by direct application of the Baker-Campbell-Hausdorff (BCH) or Zassen-

haus formula,4 and it can be an alternative way of defining the non commutative properties

of the canonical quantum operators.

Displacement operators are also used to define coherent states, which may be seen as

a cornerstone to phase space methods in continuum variables. First, define α as a vector

of length n with complex components

αj = (qj + ipj)/
√
2, (4.26)

with qj and pj being real numbers. And define the 2n real vector r related to qj and pj as

r = (q1, p1, q2, p2, · · · , qn, pn)⊤. (4.27)

Then we can rewrite Eq. (4.22) as

D̂α = D̂−r = e
∑n

j=1(αj â
†
j−α∗

j âj). (4.28)

It can be shown, using the BCH formula, that

D̂†
αâjD̂α = âj + αj. (4.29)

We are now in the position to define the coherent state |α⟩ as

|α⟩ = D̂α |0⟩ , (4.30)

where |0⟩ =
⊗n

j=1 |0⟩j is the vacuum of the whole Hilbert space of Eq. (4.21). Conse-

quently, |α⟩ is the eigenvector of the âj operators (see the proof of the following equation

4This formula can be formulated as follows, let Â and B̂ be operators, then

eÂ+B̂ = eÂeB̂e−
1
2! [Â,B̂]e

1
3! (2[B̂,[Â,B̂]]+[Â,[Â,B̂]]) · · · . (4.25)
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in Appendix C, Section C.5)

âj |α⟩ = αj |α⟩ . (4.31)

It is often useful to describe a coherent state |α⟩5 in the Fock basis. This is given by

the following equation (see Appendix C, Section C.6, for the proof)

|α⟩ =
∞∑

m=0

e−|α|2/2 α
m

√
m!

|m⟩ . (4.32)

Other important properties for further use are

D̂αD̂β = e
1
2
(αβ∗−α∗β)D̂α+β, (4.33)

this is equivalent to the composition property of Eq. (4.24), and the overlap between two

coherent states |α⟩ and |β⟩

⟨β|α⟩ = ⟨0| D̂−βD̂α |0⟩

= ⟨0| D̂α−β |0⟩ e
1
2
(αβ∗−α∗β)

= ⟨0|α− β⟩ e
1
2
(αβ∗−α∗β)

= e−
1
2
|α−β|2e

1
2
(αβ∗−α∗β), (4.34)

where in the second equality we used Eq. (4.33) and in the last equality we applied ⟨0| in

Eq. (4.32) to obtain the overlap between |0⟩ and a coherent state. This overlap results in

⟨0|α⟩ =
∞∑

m=0

e−|α|2/2 α
m

√
m!

⟨0|m⟩

=
∞∑

m=0

e−|α|2/2 α
m

√
m!
δ0,m

= e−|α|2/2.

5In this case, as in all the following results and demonstrations, we will assume all coherent states as
being of only one mode (say, mode k), i.e., |αk⟩ = D̂αk

|0⟩, where D̂αk
= eαkâ

†
k−α∗

kâk but we shall
omit the k for simplicity of notation. The generalization to a number n of modes is straightforward since
|α⟩ =

⊗n
j=1 |αj⟩ and D̂α =

∏n
j=1 D̂αj

.
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Moreover, the set of all the coherent states {|α⟩ , α ∈ C} form an “overcomplete”

basis for the Hilbert space of the corresponding mode. This means that, although it is

not an orthogonal set, as we can see in Eq. (4.34), the set can span all the Hilbert space.

Indeed, a completeness relation can be shown (see Appendix C, Section C.7) involving

the coherent basis
1

π

∫
C
d2α |α⟩ ⟨α| = Î, (4.35)

where Î is the identity operator of the Hilbert space and
∫
C d

2α means an integration over

the entire complex plane. This provides an alternative way of computing the trace of an

operator by using continuous-variables

Tr
{
Â
}
=

∞∑
m=0

⟨m| Â |m⟩

=
1

π

∫
C
d2α

∞∑
m=0

⟨m|α⟩ ⟨α| Â |m⟩

=
1

π

∫
C
d2α ⟨α| Â

∞∑
m=0

|m⟩ ⟨m|α⟩

=
1

π

∫
C
d2α ⟨α| Â |α⟩ . (4.36)

To end our presentation about coherent states and displacement operators, we shall

present the Fourier-Weyl relation. This is the statement that any bounded operator Â

acting on the Hilbert space of a mode can be constructed by an integral of displacement

operators weighted by Tr
{
D̂αÂ

}
(see the proof in Appendix C, Section C.8). More

precisely

Â =
1

π

∫
C
d2αTr

{
D̂αÂ

}
D̂−α. (4.37)

This relation follows an idea similar to a Fourier expansion. When we have a function of

a real variable x expanded as f(x) = 1
2π

∫
dpF(p)e−ixp, the weight here is the Fourier

transform F(p) and the function e−ixp has the same role as the displacement operator in

Eq. (4.37). This parallel will be useful to gain some intuition on the concept of charac-

teristic function of a density matrix, which will be discussed below in Sec. 4.4.

A direct consequence of the Fourier-Weyl relation is the orthogonality relation6 for

6This orthogonality is defined in terms of the Hilbert-Schmidt inner product between two operators.
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displacement operators. If we put the displacement operator itself as Â in Eq. (4.37), we

obtain

D̂β =
1

π

∫
C
d2αTr

{
D̂αD̂β

}
D̂−α,

which means that we can treat the trace term as a Dirac delta function

Tr
{
D̂−αD̂β

}
= πδ2(β − α), (4.38)

which is the desired orthogonality relation. Moreover, the orthogonality relation of can

be rewritten for n modes in the real plane as

Tr
{
D̂rD̂−s

}
= (2π)nδ2n(r − s). (4.39)

4.4 Characteristic function

The characteristic function of a density matrix ρ is the weight function of the Fourier-Weil

relation (Eq. (4.37)) if we expand the density matrix itself. More precisely, if

ρ =
1

π

∫
C
d2αχ(α)D̂−α, (4.40)

then, from the Fourier-Weyl relation (Eq. (4.37))

χ(α) = Tr
{
D̂αρ

}
(4.41)

is the characteristic function. The existence of this function for every ρ is guaranteed by

the validity of the Fourier-Weyl relation.

From making the straightforward generalization to n modes and the change of vari-

ables from α to r (given by Eq. (4.26)), Eq. (4.40) results in

ρ =
1

(2π)n

∫
R2n

drχ(r)D̂r, (4.42)

Given two operators Â and B̂ in a Hilbert space, their Hilbert-Schmidt inner product will be Tr
{
Â†B̂

}
.
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where dr = dq1dp1dq2dp2 · · · dqndpn similar to a phase space integral, and

χ(r) = Tr
{
D̂−rρ

}
. (4.43)

Again, this follows the same reasoning as the characteristic function φ(y) of a prob-

ability density function p(x), which are related by p(x) = 1
2π

∫
dyφ(y)e−ixy. Here the

characteristic function is the Fourier transform of the probability density and has the role

of a weight function in the integral, similarly χ(r) has the role of the weight and D̂r has

the role of e−ixy in Eq. (4.42).

Since a physical density matrix ρ must satisfy a set of properties, there is also a set of

properties that χ(r) must satisfy in order to describe a physical state. First of all, from the

definition we can conclude that the characteristic function must be a continuous function.

Now, from the normalization condition of Eq. (2.5), we must have

χ(0) = Tr
{
D̂0ρ

}
= Tr{ρ}

= 1, (4.44)

where 0 here means the 2n vector of entries 0 and we used that D̂0 = I, where I is the 2n

identity matrix. Furthermore, the positive semi-definite condition (Eq. (2.4)) is equivalent

to (see Ref. [14] for an heuristic justification)

X ≥ 0 where Xjk = χ(rj − rk)eir
⊤
k Ωrj/2. (4.45)

Also, from the fact that ρ is hermitian, we must have χ(r)∗ = χ(−r) and it can be

shown that this is also a consequence of X ≥ 0 (as it should be, since ρ ≥ 0 implies ρ

hermitian).

4.5 Quasi-probability distributions

Given a quantum state described in a phase space by the eigenvalues of canonical op-

erators, it is possible to define weight functions in this phase space which are used to
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compute the average of obseravables. These weight functions are called quasi-probability

distributions since they don’t satisfy necessary probability distribution properties but can

have similar interpretations.

4.5.1 Wigner fucntion

We can define Wigner function (or W-function) as the Fourier transform of the character-

istic function

W (α) =
1

π2

∫
C
dβ2χ(α)e(αβ

∗−α∗β). (4.46)

Going to the phase space with the eigenvalues of the quadrature operators, via Eq. (4.26),

we obtain (see Appendix C, Section C.9)

W (q, p) =
2

π

∫
R
dq′ei2pq

′ ⟨q − q′| ρ |q + q′⟩ . (4.47)

Now, if we integrate W (q, p) over all p, we have

1

2

∫ ∞

−∞
dpW (q, p) = ⟨q| ρ |q⟩ , (4.48)

so the integral of the Wigner function over the quadrature eigenvalues of p is twice the

probability distribution of the projective measuring of the conjugate quadrature q. Analo-

gous results are easily obtained for any pair of quadrature operators.

4.5.2 The s-ordered quasi-probability distribution

For s ∈ [−1, 1], we can define the s-ordered characteristic function as

χs(α) = Tr
(
D̂αρ

)
e

s
2
|α|2 , (4.49)

reducing to the characteristic function χs(α) when s = 0 (χ0(α) = χ(α)).

Further, we can define the s-ordered quasi-probability distributionWs(α) as the Fourier

transform of the s-ordered characteristic function

Ws(α) =
1

π2

∫
C
d2β e(αβ

∗−α∗β)χs(β), (4.50)
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which reduces to the Wigner function for the case of s = 0.

This is a normalized function, since

∫
C
d2αWs(α) =

∫
C
d2β δ2(β)χs(β)

= χ(0)

= 1. (4.51)

We shall expose in the following that others important quasi-probabilities results from

the s-ordered quasi-probabilities for s = 1 and s = −1.

4.5.3 Glauber-Sudarshan P-function

For the case of s = 1, the s-ordered quasi-probability satisfies an exceptional property.

It will be the function responsible for the diagonal decomposition of the density matrix

described by the modes of α, i.e., if we define P (α) = W1(α), then

ρ =

∫
C
d2αP (α) |α⟩ ⟨α| . (4.52)

The equation above is proved in Appendix C, Section C.10, and P (α) is called the

Glauber-Sudarshan P-representation (or P-function).

4.5.4 Husimi Q-function

One can define the Husimi Q-function as

Q(α) = W−1(α). (4.53)

The functionQ(α) receives the interpretation of being the probability of an heterodyne

measurement7 to yield the outcome α, since one can prove (see Appendix C, Section C.11,

7An heterodyne measurement is a generalized measurement with Kraus matrices Mα = 1√
π
|α⟩ ⟨α|,

where |α⟩ is a coherent state. Heterodyne measurements are of major importance in Quantum Optics [55,
118, 119]

56



Chapter 4. Continuous Variables Framework

for the proof) that

Q(α) =
1

π
⟨α| ρ |α⟩ . (4.54)

Finally, it is worth to mention that the quasi-probability distributions are extremely

useful to computations of averages of creation and annihilation operators in normal, anti-

normal and symmetric ordering [14, 55, 120]. In this thesis we shall not use such proper-

ties directly.

4.6 Gaussian states

4.6.1 Definitions

We start by defining the second order Hamiltionian as a Hamiltonian that is constructed

with the canonical operators at maximum order 2, its more general form is

Ĥ =
1

2
r̂⊤H r̂ + r̂⊤µ, (4.55)

where H is a 2n × 2n real matrix and a positive definite operator (H > 0)8 called the

Hamiltonian matrix (notice that this is not the Hamiltonian operator) and µ is a real

vector with dimension 2n. A more suitable way of representing general second order

Hamiltonians is given as follows. If we assign

r̃ = −H−1µ, (4.56)

then, except from a constant term, we can write

Ĥ =
1

2
D̂−r̃r̂⊤H r̂D̂r̃

=
1

2
(r̂ − r̃)⊤H(r̂ − r̃). (4.57)

Equipped with these definitions, we define Gaussian states as thermal states with a

second order Hamiltonian Ĥ in which its Hamiltonian matrix is positive definite H > 0

8H must be symmetric (since Ĥ must be hermitian). But, additionally, the positive definite restriction
is there to ensure the thermodynamic stability of the Hamiltonian operator (i.e., their eigenvalues must be
bounded from below).
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(the necessity of H > 0 is a direct consequence of the thermal state being thermally

stable)

ρG =
e−βĤ

Z
, (4.58)

whereZ = Tr
{
e−βĤ

}
is the partition function and β > 0 is the inverse of the temperature

(here we also always set the Boltzmann constant to 1). This definition includes pure states,

which can be taken as the limit of the above equation with β → ∞

ρpure = lim
β→∞

e−βĤ

Z
. (4.59)

Another important concept in the context of Gaussian states are the statistical mo-

ments, i.e., the averages of different orders of canonical operators. The first moments are

the average of the canonical operators

⟨r̂⟩ = Tr{ρGr̂}. (4.60)

As for the second moments, it is convenient to combine them in terms of the covariance

matrix

σ =
1

2
Tr
[
ρG{(r̂ − r̄), (r̂ − r̄)⊤}

]
=

1

2

〈
{(r̂ − r̄), (r̂ − r̄)⊤}

〉
, (4.61)

where the anti-commutator inside the trace is defined just like in Appendix C, Section C.1

and we defined r̄ = ⟨r̂⟩. If we execute the anti-commutator, use the distributive property

of averages and use Eq. (4.14) in the equation above, we obtain

σ = ⟨r̂r̂⊤⟩ − ⟨r̂⟩⟨r̂⟩⊤ − i

2
Ω, (4.62)

which can be a much more suitable way of computing the covariance matrix.
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4.6.2 Bona-fide conditions for covariance matrices

Given that covariance matrices represent the second moments of canonical operators, they

must have restrictions on their components due to the uncertainty-relations. The restric-

tion is given by the following inequality (see Appendix C, Section C.12, for the proof of

this condition)

σ +
iΩ

2
≥ 0. (4.63)

This is the restriction that a covariance matrix must obey to represent a valid quantum

state and is called Roberson-Schrödinger relation, or also referred as bona-fide condition.

4.6.3 Dynamics of canonical operators and statistical moments

We start our development for the dynamics of Gaussian states from analysing the evolu-

tion of the vector of canonical operators r̂ in the Heisenberg picture for closed systems

under the action of a second order Hamiltonian from Eqs. (4.55) and (4.57). Addition-

ally, we analyse the evolution of the statistical moments for closed systems under the

same Hamiltonian.

For the vector of canonical operators, the Heisenberg Equation implies

dr̂j
dt

= (ΩH r̂)j + (Ωµ)j . (4.64)

The equation above is equivalent to stating that

dr̂
dt

= Ω(H r̂ + µ)

= ΩH(r̂ +H−1µ). (4.65)

So, if we define r̂′ such that

r̂ = r̂′ −H−1µ, (4.66)

then
dr̂′

dt
= ΩH r̂′, (4.67)
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which has the solution

r̂′(t) = eΩH(t−t0)r̂′(t0).

Now using that r̂′(t0) = r̂(t0) + H−1µ and r̂′(t) = r̂(t) + H−1µ in the equation above,

we obtain

r̂(t) = eΩH(t−t0)r̂(t0) +
(
eΩH(t−t0) − I

)
H−1µ, (4.68)

where I is the 2n × 2n identity operator. This is the general solution for the Heisenberg

vector of canonical operators that we intended to find. The solution above can be rewritten

in terms of r̃ from Eq. (4.56) as

r̂(t) = D̂r̃

(
eΩH(t−t0)D̂−r̃r̂(t0)D̂r̃

)
D̂−r̃. (4.69)

Notice that the general solution above reduces to the simple form

r̂(t) = eΩH(t−t0)r̂(t0), (4.70)

if µ = 0. The general solution of Eq. (4.69) can be understood as translating r̂(t0), so

that the Hamiltonian is quadratic in this new frame (see Eq. (4.57)); making the quadratic

Hamiltonian evolution, and then translating back the vector to its initial frame.

Focusing now in the dynamics of statistical moments, we start by studying the first

moments evolution. The time derivative for the vector of the first moments given in Eq.

(4.60) can be obtained by applying the density matrix ρ in both sides of Eq. (4.65) and

taking the trace, arriving at
d⟨r̂⟩
dt

= Ω(H⟨r̂⟩+ µ). (4.71)

The equation above has the exact same structure as Eq. (4.65), thus its solution is analo-

gous

⟨r̂(t)⟩ =
〈
D̂r̃

(
eΩH(t−t0)D̂−r̃r̂(t0)D̂r̃

)
D̂−r̃

〉
. (4.72)

Again, if the Hamiltonian has no linear term (µ = 0), we have

⟨r̂(t)⟩ = eΩH(t−t0)⟨r̂(t0)⟩. (4.73)
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For the second moments, we study the evolution of the covariance matrix. From taking

the derivative of Eq. (4.62) with respect to time, we obtain

dσ

dt
=

d

dt
⟨r̂r̂⊤⟩ − d⟨r̂⟩

dt
⟨r̂⟩⊤ − ⟨r̂⟩d⟨r̂⟩

⊤

dt
, (4.74)

for computing the term with d
dt
⟨r̂r̂⊤⟩ we observe that, in the Heisenberg picture,

d

dt
(r̂r̂⊤) =

dr̂
dt

r̂⊤ + r̂
dr̂⊤

dt

= ΩH r̂r̂⊤ + Ωµr̂⊤ + r̂r̂⊤(ΩH)⊤ + r̂(Ωµ)⊤,

where in the second equality we used Eq. (4.65) and the transpose of it. We can now

apply the density matrix in the equation above and take the trace of it, obtaining

d

dt
⟨r̂r̂⊤⟩ = ΩH⟨r̂r̂⊤⟩+ Ωµ⟨r̂⊤⟩+ r̂r̂⊤(ΩH)⊤ + r̂(Ωµ)⊤. (4.75)

Lastly, using Eq. (4.75), the transpose of it, Eq. (4.65) and the transpose of it in Eq.

(4.74), we obtain
dσ

dt
= ΩHσ + σ(ΩH)⊤, (4.76)

which is our differential equation for a general second order Hamiltonian evolution of the

covariance matrix. Its solution is simple and is given by

σ(t) = eΩH(t−t0)σ(t0)
(
eΩH(t−t0)

)⊤
. (4.77)

There are three things that must be observed in the solution above. First, the evolution

of σ(t) does not depend on the first moment ⟨r̂(t)⟩, both of them evolve in a decoupled

way. Second, the solution of σ(t) does not depend at all on the linear terms of the Hamilto-

nian, it only depends on the Hamiltonian matrixH of the quadratic part. Third, the matrix

eΩH(t−t0) clearly plays a major role in both σ(t) and ⟨r̂(t)⟩ solutions; for this reason, and

further simplifications in the following of the thesis, we shall refer to it as SH = eΩHt

(from now on we set t0 = 0 just for convenience).
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4.6.4 Symplectic operators

As already anticipated above, the matrix SH has a major role in the evolution of statistical

moments. We shall point the condition that these operators must satisfy in order to de-

scribe valid a physical evolution for vectors of operators. These conditions are analogous

to the condition of unitarity for evolution operators acting on Hilbert space states.

Since in our applications we shall deal only with quadratic Hamiltonians without lin-

ear terms, and the extension to Hamiltonians with linear terms can be simply accounted

with applications of displacement operators in Eqs. (4.57), (4.69) and (4.72), we shall

from now on only consider quadratic Hamiltonians. Hence the evolution will be fully

described by the Hamiltonian matrix H .

In this context (where r̃ = 0) we obtain, by Eq. (4.70),

r̂(t) = Ŝ†
Ĥ

r̂(0)ŜĤ = SH r̂(0), (4.78)

where ŜĤ = e−iĤt is the time evolution unitary operator. This implies, for any vector of

canonical operators r̂, that

Ŝ†
Ĥ

r̂ŜĤ = SH r̂, (4.79)

this equation makes explicit part of the enormous simplification that the continuous-

variables framework can offer to us. The left hand side sets the evolution to the canonical

operators given by the unitary operators acting at each one of the vector elements, remem-

bering that these unitaries act on a infinite dimensional Hilbert space. This evolution is

equally obtained, on the right hand side, by the action of a much simpler 2n× 2n matrix

(with real components) on the canonical vector, simplifying manifestly our computations.

Notice that the evolution operator ŜĤ is unitary and thus represents a physical transfor-

mation between states. Therefore, it must maintain the CCR for the vectors of canonical

operators r̂, i.e., if we call r̂′ = Ŝ†
Ĥ

r̂ŜĤ , then we must also have [r̂′, r̂′
⊤
] = iΩ. This must
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imply, from Eq. (4.79) that

[r̂′, r̂′
⊤
] = [SH r̂, (SH r̂)⊤]

= SH [r̂, r̂]S⊤
H

= iSHΩS
⊤
H

= iΩ. (4.80)

The equation above implies that

SHΩS
⊤
H = Ω,

is the necessary and sufficient condition for a real 2n × 2n matrix to be considered a

transformation capable of substituting the unitary evolution as in Eq. (4.79). Stating

properly, any 2n× 2n real matrix S that satisfies

SΩS⊤ = Ω, (4.81)

is called a symplectic transformation and forms a symplectic group with the others trans-

formations satisfying this property,9 in symbols S ∈ Sp2n,R . This is the group in which all

the elements can possibly describe a physical unitary transformation acting in 2n vectors

of operators.

4.6.5 Covariance matrix parametrization

It can be shown that for Gaussian states we have a one to one parametrization of the

density matrix in terms of the first moments and the covariance matrix of the state. More

precisely, if we know the covariance matrix σ (Eq. (4.61)) and the first moments r̄ = ⟨r̂⟩

(Eq. (4.60)) of a Gaussian state, than we can obtain its density matrix by the relation

9We call an application of a transformationA on a transformation O as application by congruence when
we have AOA⊤. For instance, in Eq. (4.81) at the left hand side S acts by congruence in Ω.
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ρG =
e−

1
2
(r̂−r̄)⊤M(r̂−r̄)

Z
,

where M = 2arccoth(2iΩσ)iΩ, (4.82)

and Z = Tr
(
e−

1
2
(r̂−r̄)⊤M(r̂−r̄)

)
is just a normalization constant.

The proof for the parametrization of Eq. (4.82) can be found in Appendix C, Section

C.16, and is made with the use of the Normal Mode Decomposition or Williamson’s the-

orem. This theorem can be stated as follows. Suppose M is a 2n × 2n positive definite

real matrix, then there is a symplectic transformation S ∈ Sp2n,R , such that

M = SDS⊤, (4.83)

where

D = diag(d1, d1, · · · , dn, dn), (4.84)

with dj > 0, ∀j ∈ [1, · · · , n] called symplectic eigenvalues.10 In Appendix C, Section

C.14, we present a method of obtaining the symplectic eigenvalues given a positive defi-

nite matrix M .

Conversely, if we have the density matrix of a Gaussian operator ρG, we can obtain its

first moments and covariance matrix by Eqs. (4.60) and (4.61), thus completing the one

to one correspondence.

This correspondence is another critical advantage of dealing with Gaussian states. A

density matrix description of a bosonic Gaussian state requires infinite elements, while

the description of a 2n vector of averages and a 2n×2n covariance matrix require a finite

number of parameters. This parametrization of quantum states in first and second mo-

ments is analogous to the intuitive parametrization of Gaussian probability distributions

in terms of their first and second moments.
10The proof of this theorem can be found in Refs. [14, 121–125].
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4.6.6 Characteristic function and quasi-probability distributions of

Gaussian states

Another important aspect of Gaussian states is that their characteristic function have a

particularly simple form. Using Eq. (4.82) in the definition of Eq. (4.43), one can show11

that the characteristic function of a Gaussian state with first moments vector r̄ = ⟨r̂⟩ and

covariance matrix σ is

χG(r) = e−
1
2

r⊤Ω⊤σΩreir
⊤Ω⊤r̄. (4.85)

Since a state is Gaussian if and only if its characteristic function has the form described

as above, this equation will be very useful to distinguish the Gaussianity of a state.

With the Gaussian characteristic function, we can obtain simple formulas for the

quasi-probability distributions of Gaussian states. With the use of Eqs. (4.49) and (4.50),

going to the quadrature eigenvalues space, we have that the s-ordered quasi probability

distribution Ws(r) in terms of the characteristic function χ(r) is

Ws(r) =
1

(2π2)n

∫
R2n

dr′eir′⊤Ωre
s
4

r′⊤r′χ(r′), (4.86)

where n is the number of modes of the Gaussian state.

With the equation above and the Gaussian characteristic function of (4.85), we ob-

tain (see Appendix C, Section C.17, for detailed calculation) the Glauber-Sudarshan P-

function for the Gaussian state

PG(r) =
1

(2π)n
e−

1
2

r⊤(σ− I
2)

−1
r√

det
(
σ − I

2

) ; (4.87)

the Husimi Q-function for the Gaussian state

QG(r) =
1

(2π)n
e−

1
2

r⊤(σ+ I
2)

−1
r√

det
(
σ + I

2

) ; (4.88)

11This is done in details in Chapter 4 of Ref. [14].
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and the Wigner W-function for the Gaussian state

WG(r) =
1

(2π)n
e−

1
2

r⊤σ−1r√
det(σ)

. (4.89)

Notice the resemblance of these quasi-probability distributions with the classical prob-

ability distribution of a multivariate Gaussian distribution of a 2n-dimensional random

variable

P (x) =
e−

1
2
(x−x̄)⊤Σ−1(x−x̄)√
(2π)2n det(Σ)

, (4.90)

where x is the multidimensional random variable, x̄ is the average of the random variable

and Σ is the covariance matrix of the random variable. In particular, the Q-function of a

quantum Gaussian state, which is a valid probability distribution describing the outcome

of heterodyne measurements, has the same probability distribution as a classical random

variable set with the addend of I/2 in the covariance matrix.

These formulae will be useful for the second project of this thesis, in Chapter 8.

4.7 Gaussian operations

Given the very useful properties of Gaussian states pointed above, it is of our interest

to find quantum operations (in the sense of quantum channels, defined at Section 2.2)

that preserve this Gaussian status of the states. These operations are called Gaussian

operations or Gaussian channels.

In this thesis we shall follow the Stinespring dilation protocol, as described in Section

2.2, for obtaining an open system evolution. This means that we will construct an initially

uncorrelated joint system by making a tensor product between the system and the environ-

ment state, then we shall make the unitary evolution of the joint state and finally trace out

the environment in order to obtain the open system description. In the following, we will

prove that all of such operations: the tensor product, the unitary evolution (generated by

second order Hamiltonians) and the partial trace, are Gaussian operations. This enables

us to use only first moments and covariance matrices to completely describe our system

during the Stinespring procedure, if our system and environment start at Gaussian states.
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4.7.1 Tensor product

Suppose two Gaussian states ρA with m modes and ρB with n modes, first moments

r̄A = ⟨r̂A⟩ and r̄B = ⟨r̂B⟩ and covariance matrices σA and σB respectively. Using the

Gaussian characteristic function (Eq. (4.85)) and Eq. (4.42), we obtain

ρA ⊗ ρB =
1

(2π)2(m+n)

∫
R(2m)

drAe−
1
4

r⊤AΩ⊤σAΩrAeir
⊤
AΩ⊤r̄AD̂rA ⊗

∫
R(2n)

drBe−
1
4

r⊤BΩ⊤σBΩrBeir
⊤
BΩ⊤r̄BD̂rB

=
1

(2π)2(m+n)

∫
R(2m+2n)

drAdrBe−
1
4

r⊤AΩ⊤σAΩrA− 1
4

r⊤BΩ⊤σBΩrB+ir⊤AΩ⊤r̄A+ir⊤BΩ⊤r̄BD̂rA ⊗ D̂rB

=
1

(2π)2(m+n)

∫
R(2m+2n)

dre−
1
4

r⊤Ω⊤σΩr+ir⊤Ω⊤r̄D̂r, (4.91)

where r = rA ⊕ rB and σ = σA ⊕ σB. In the third equality, we regrouped the terms

in the exponential and used that r⊤AΩ⊤σAΩrA + r⊤BΩ⊤σBΩrB = r⊤Ω⊤σΩr and that

r⊤AΩ⊤r̄A + r⊤BΩ⊤r̄B = r⊤Ω⊤r̄, which is a direct consequence of the definition of di-

rect sum.12 Finally, also in the third equality of the equation above, and we used that

D̂r = D̂rA ⊗ D̂rB which is a direct consequence from the definition of the Weyl operator

(Eq. (4.22)).

Eq. (4.91) shows explicitly that the tensor product of two Gaussian states ρA and ρB

is a Gaussian state since it has a characteristic function on the same form as Eq. (4.85).

Moreover, it shows that we can construct a tensor product of two Gaussian states ρA and

ρB by making the following operations in their first moments and covariance matrices

⟨r̂⟩ = ⟨r̂A⟩ ⊕ ⟨r̂B⟩ and

σ = σA ⊕ σB.

(4.92)

(4.93)

4.7.2 Unitary operations

To show that unitary operators, generated by second order Hamiltonians, are Gaussian

operations it is sufficient to show that if an initial state is of the form of Eq. (4.58), then

its unitary evolution ρ′G = ÛρGÛ
† (where Û is a unitary operator) will also be of the

form of Eq. (4.58). Therefore, suppose that our initial state is given by Eq. (4.58), then

12We are implicitly assuming that Ω has the dimensions according to the vectors in which it is acting,
i.e., switching the n in Eq. (4.10) in each case for convenience.
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if we have an unitary evolution given by Û = e−iĤ′ , where Ĥ ′ is a generic second order

Hamiltonian, the evolution of the state will have the form

ρ′G = Û
e−βĤ

Z
Û †

=
e−βÛĤÛ†

Z
,

now if we call Ĥ ′′ = ÛĤÛ †, then we need only to show that Ĥ ′′ is a second order

Hamiltonian in order to complete our proof. In fact

Ĥ ′′ = ÛĤÛ †

= e−iĤ′
ĤeiĤ

′

= Ĥ − i[Ĥ ′, Ĥ]− 1

2!
[Ĥ ′, [Ĥ ′, Ĥ]] +

i

3!
[Ĥ ′, [Ĥ ′, [Ĥ ′, Ĥ]]] + · · · , (4.94)

this is obtained with the use of another BCH formula.13 This proof is completed by the

fact that any commutator between second order operators is a second order operator (see

Appendix C, Section C.18, for a proof of this statement), hence H ′′ is a second order

Hamiltonian.

The unitary evolution for Gaussian states will be described by the symplectic transfor-

mations SH as in Eq. (4.79). And it is sufficient to know the evolution of the first moments

and covariance matrix from the following equations already obtained in Subsection 4.6.3

⟨r(t)⟩ = SH⟨r(0)⟩ and

σ(t) = SHσ(0)S
⊤
H ,

(4.96)

(4.97)

since the Gaussianity of the states is preserved.

13Given two operators Â and B̂, then

eÂB̂e−Â = B̂ + [Â, B̂] +
1

2!
[Â, [Â, B]] +

1

3!
[Â, [Â, [Â, B̂]]] +

1

4!
[Â, [Â, [Â, [Â, B̂]]]] + · · · , (4.95)
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4.7.3 Partial trace

Suppose we have a global system AB composed of two subsystems A and B of m and n

bosonic modes, respectively, and we prescribe the canonical operators of AB as r̂ = r̂A⊕

r̂B, where r̂A and r̂B are the canonical operators of the subspace A and B, respectively.

Then if the global state ρAB is Gaussian, it can be fully described by its first moments

r̄ = ⟨r̂⟩ and covariance matrix σ, which can be parametrized as

r̄ = r̄A ⊕ r̄B =

r̄A

r̄B

 and

σ =

 σA ξAB

ξ⊤AB σB

 ,

(4.98)

(4.99)

where r̄A and r̄B are vectors of 2m and 2n real numbers, respectively and σA, σB and ξAB

are matrices of 2m×2m, 2n×2n and 2m×2n real numbers, respectively. Moreover, the

reduced state ρA = TrB (ρAB) will also be a Gaussian state with its first moments given

by r̄A and covariance matrix σA, completely describing the subsystem A. Analogously,

the reduced state ρB = TrA (ρAB) will also be a Gaussian state with first moments r̄B and

covariance matrix σB.

The above affirmation can be proved as follows. Suppose we know the statistical

moments of AB (r̄ and σ). Then, from the characteristic function of a Gaussian state (Eq.

(4.85)), we have

ρAB =
1

(2π)m+n

∫
R2(m+n)

dre−
1
4

r⊤Ω⊤σΩr+ir⊤Ωr̄D̂r.

If we parametrize r = rA ⊕ rB where rA and rB are 2m and 2n real vectors, respectively,

then

ρAB =
1

(2π)m+n

∫
R2m

drA
∫
R2n

drBe−
1
4
(rA⊕rB)⊤Ω⊤σΩ(rA⊕rB)+i(rA⊕rB)⊤Ω(r̄A⊕r̄B)D̂rA ⊗ D̂rB ,

where we used Eq. (4.98) and that D̂r = D̂rA⊕rB = D̂rA ⊗ D̂rB , from the definition

of the Weyl operator (Eq. (4.22)). Computing the reduced state ρA = TrB (ρAB) and
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remembering that the partial trace TrB acts only on the operators that belong to the Hilbert

space ofB (thus all the exponential term and D̂rA of the equation above remain unaffected

by the trace) we obtain

TrB (ρAB) =

1

(2π)m+n

∫
R2m

drA
∫
R2n

drBe−
1
4
(rA⊕rB)⊤Ω⊤σΩ(rA⊕rB)+i(rA⊕rB)⊤Ω(r̄A⊕r̄B)D̂rA ⊗ TrB

(
D̂rB

)
.

(4.100)

From the orthogonality relation of Eq. (4.39), if we choose s = 0 and use that D̂0 = 1,

we obtain

Tr
(
D̂r

)
= (2π)nδ2n(r).

Applying the above equation in Eq. (4.100) results in

TrB (ρAB) =
1

(2π)m

∫
R2m

drAe−
1
4
(rA⊕rB)⊤Ω⊤σΩ(rA⊕rB)+i(rA⊕rB)⊤Ω(r̄A⊕r̄B)

∣∣
rB=0

D̂rA .

(4.101)

Computing explicitly the exponential components

(rA ⊕ rB)⊤Ω⊤σΩ(rA ⊕ rB) =
(

r⊤A r⊤B
)Ω⊤

m×m 0

0 Ωn×n

 σA σAB

σ⊤
AB σB

Ωm×m 0

0 Ωn×n

rA

rB


= r⊤AΩ

⊤σAΩrA + r⊤BΩ
⊤σABΩrA + r⊤AΩ

⊤σABΩrB + r⊤BΩ
⊤σBΩrB,

where again we stated that Ω has dimensions according to the vector in which it acts.

Similarly, we have

r⊤Ω⊤r̄ = r⊤AΩ
⊤r̄A + r⊤BΩ

⊤r̄B.

Consequently, the equations above imply

e−
1
4
(rA⊕rB)⊤Ω⊤σΩ(rA⊕rB)+i(rA⊕rB)⊤Ω(r̄A⊕r̄B)

∣∣
rB=0

= e−
1
4

r⊤AΩ⊤σAΩrA+ir⊤AΩr̄A ,
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and using this equation in Eq. (4.101), we finally obtain

TrB (ρAB) =
1

(2π)m

∫
R2m

drAe−
1
4

r⊤AΩ⊤σAΩrA+ir⊤AΩr̄AD̂rA . (4.102)

This proves that the reduced state ρA is a Gaussian state completely described by the first

moments r̄A and covariance matrix σA, since its characteristic function has the form of

a Gaussian one (Eq. (4.85)) with the desired parameters. The proof is analogous for the

reduced system ρB.

4.7.4 Gaussian CPTP-maps

We have completed the proof that all operations we shall use in our Stinespring dilation

are Gaussian operators. Now we present the form of Gaussian CPTP-maps that the Stine-

spring dilation creates.

Suppose we have a Gaussian system of n bosonic modes initially at a state with first

moments vector r̄S and covariace matrix σS . Similarly, initially we have a Gaussian

environment of m bosonic modes with first moments r̄E and covariance matrix σE . If

the initial system-environment joint state is uncorrelated they are described by a tensor

product. Hence, from Eqs. (4.92) and (4.93), we have

r̄SE = r̄S ⊕ r̄E and σSE = σS ⊕ σE, (4.103)

where r̄SE is the first moment vector of the initial joint state and σSE is the covariance

matrix of the initial joint state.

Let the unitary evolution of the joint system be given by the symplectic matrix

S =

A B

C D

 , (4.104)

where A is a 2n× 2n real matrix, B is a 2n× 2m real matrix, C is a 2m× 2n real matrix
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and D is a 2m× 2m real matrix. Then, from Eqs. (4.96) and (4.97), we have

r̄′SE =

Ar̄S +Br̄E

C r̄S +Dr̄E

 , (4.105)

for the evolved first moments r̄′SE . And

σ′
SE =

AσSA⊤ +BσEB
⊤ AσSC

⊤ +BσED
⊤

CσSA
⊤ +DσEB

⊤ CσSC
⊤ +DσED

⊤

 , (4.106)

for the evolved covariance matrix σ′
SE .

Finally, from taking the partial trace of the environment (see Subsection 4.7.3), we

obtain

r̄′S = Ar̄S +Br̄E, (4.107)

for the evolved first moments. And

σ′
S = AσSA

⊤ +BσEB
⊤, (4.108)

for the evolved covariance matrix.

If we define the 2n × 2n real matrices X = A and Y = σEB
⊤ and the 2n vector

d = Br̄B, we conclude that the following evolution

r̄S 7→ X r̄S + d and

σS 7→ XσSX
⊤ + Y, with

Y + iΩ ≥ iXΩX⊤,

(4.109)

(4.110)

(4.111)

can represent any Gaussian CPTP-maps of a system n bosonic modes. The condition of

Eq. (4.111) assures that the covariance matrices still satisfy the bona-fide condition. The

necessity of this condition can be shown by demanding the Eq. (4.63) condition to the

evolved covariance matrix of Eq. (4.110) and using the constrains on X and Y due to the

fact that the matrix S (of Eq. (4.104)) is symplectic.

Conversely to the result above, one can show (see, for instance, Chapter 5 of Ref.
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[14]) that any matrices X and Y satisfying Eq. (4.111) can represent a Stinespring di-

lation which acts on the system via the transformations of Eqs. (4.109) and (4.110).

Furthermore, one can always consider the environment as a 2n-modes state initially at

the vacuum (σE = I/2) to construct such Stinespring dilation (for this case, the quantum

channel will have d = 0).

The Stinespring dilation in bosonic modes will be the approach used in Chapter 6 to

obtain the analytical results for the collisional model with initially correlated ancillae.

4.7.5 Applying a channel in only one partition

An useful result for further use is the following. Suppose that we have a Gaussian system

with two parties A, with n modes, vector of first moments r̄A and covariance matrix

σA, and B, with m modes, vector of first moments r̄B and covariance matrix σB. Now,

suppose we have a quantum channel acting only in A given by Eqs. (4.109), (??) and

(4.111) with the respective vector d and matrices X and Y (simultaneously, the identity

operation acts in B). Then the global resulting map will ber̄A

r̄B

 7→

X r̄A + d

r̄B

 and (4.112)

σA ξ

ξ⊤ σB

 7→

XσAX⊤ + Y Xξ

ξ⊤X⊤ σB

 . (4.113)

The proof of this result can be found in Chapter 5 of Ref. [14].

4.7.6 One-mode Gaussian channels

As an important example of Gaussian channels, we present the classes of all possible

Gaussian quantum channels acting in one-mode states. Any Gaussian quantum channel

for one-mode bosonic systems can be described by a vector d̄ ∈ R2 and 2×2 real matrices

T (called transmission matrix) and N (called noise matrix) playing the role of X and Y ,

respectively, in Eqs. (4.109) and (4.110). Accordingly, the condition of Eq. (4.111) will
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result in the conditions

N = N⊤ ≥ 0 and detN ≥ (detT− 1)2. (4.114)

In Ref. [126], it was shown that the general structure of such transformations can

be reduced to a simple set of classes of matrices T and N together with displacement

operations to generate d. The classes are the following

• ClassA1: T = 0 and N = (n̄+1/2)I2, for n̄ ≥ 0. This means that the state is turned

completely into a thermal state, thus the channel is called completely depolarizing

channel;

• Class A2: T = diag(1, 0) and N = (n̄ + 1/2)I2. This channel is phase-sensitive,

i.e., the state’s amplification of the second moments depends on the quadrature;

• Class B1: T = I2 and N = diag(0, 1)/2, for n̄ ≥ 0. This channel is also phase-

sensitive;

• Class B2: T = I2 and N = n̄
2
I2, for n̄ ≥ 0. This is channel just add classical noise

to the system, thus called additive-noise channel, it encompasses the case of the

identity transformation for n̄ = 0;

• Class C: T =
√
τ I2 where τ > 0 and τ ̸= 1. For the case of 0 ≤ τ ≤ 1,

N = (1 − τ)(n̄ + 1/2), for n̄ ≥ 0, this case is called the lossy channel (this

contemplates the Beam-Splitter case to be seen in Chapter 6). For the case of τ > 1,

N = (τ − 1)(n̄ + 1/2), for n̄ ≥ 0, this case is called the amplifier channel (this

contemplates the Two-Mode Squeezing case.14

• Class D: T =
√

|τ |σz for τ < 0 and N = (1 + |τ |)(n̄ + 1/2)I2. This channel is

also phase-sensitive and it can be seen as the environmental outcome of a two-mode

squeezing operation.

This classification will be helpful to the construction of a method for computing the

quantum discord in two-mode bosonic states exposed in Subsection 4.8.3. Also, it will be

14See Refs. [55, 118, 119] for the definition of the two-mode squeezing operation.
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useful (in special the Class D) in the construction of two-mode bosonic locally thermal

states that exchange heat in a reversed flow, in Chapter 8.

4.8 Entropic quantities for Gaussian states

Obtaining the entropy and related quantities, such as Mutual Information and Quantum

Discord, of Gaussian states will be necessary to quantify correlations between bosonic

modes in our second project of the thesis, specially in Chapter 8. Here we present how to

compute these quantities. For obtaining the entropy of a Gaussian state, it will be useful

to present the following diagonalization.

4.8.1 Diagonalization of Gaussian states to thermal states of free modes

Given a Gaussian state (Eq. (4.58)) with n bosonic modes and a general second order

Hamiltonian in the form of Eq. (4.57), we can write the density matrix of the state as

ρG =
e−(r̂−r̄)⊤M(r̂−r̄)

Z
, (4.115)

where Z = Tr
(
e−(r̂−r̄)⊤M(r̂−r̄)

)
and M is a positive definite 2n × 2n matrix. We have,

from Williamson’s theorem (Eq. (4.83)), that

(r̂ − r̄)⊤M(r̂ − r̄) = (r̂ − r̄)⊤SDS⊤(r̂ − r̄), (4.116)

where S ∈ Sp2n,R and D = diag(d1, d1, · · · , dn, dn) is the diagonal matrix of symplec-

tic eigenvalues. From the fact that the transpose of a symplectic transformation is also

symplectic,15 we have that S̃ = S⊤ is symplectic and hence

(r̂ − r̄)⊤M(r̂ − r̄) = (r̂ − r̄)⊤S̃⊤DS̃(r̂ − r̄)

= Ŝ†(r̂ − r̄)⊤ŜDŜ†(r̂ − r̄)Ŝ

= Ŝ†D̂†
r̄ r̂⊤D r̂D̂r̄Ŝ, (4.117)

15This can be proved by taking the transpose of Eq. (4.81) and using that Ω⊤ = −Ω.
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where D̂r̄ is a displacement operator (and we used Eq. (4.23)) and Ŝ is a unitary such that

Ŝ†r̂Ŝ = S̃r̂.16 Finally, using the relation above in Eq. (4.115), we obtain

ρG = Ŝ†D̂†
r̄ρfreeD̂r̄Ŝ, (4.118)

where

ρfree =
e−r̂⊤D r̂

Z
(4.119)

is a thermal state of n non-interacting modes with energies given by the symplectic eigen-

values ofM . The density matrix of thermal n free bosonic modes is obtained in Appendix

C (Eq. (C.33)). Explicitly, we have

ρfree =
n⊗

j=1

ρfreej , with

ρfreej =
1

νj + 1/2

∞∑
nj=0

(
νj − 1/2

νj + 1/2

)nj

|nj⟩ ⟨nj| ,

(4.120)

(4.121)

where νj are the symplectic eigenvalues for the covariance matrix of the state ρG.17

4.8.2 Entropy of a Gaussian state

From Eq. (4.118) we observe that any Gaussian state can be described as a unitary trans-

formation of a thermal state of free modes. Since the von Neumann Entropy is invariant

under unitary transformations, we conclude

S(ρG) = S(ρfree). (4.122)

16This relation is possible since for any S ∈ Sp2n,R , there is a real and symmetric 2n×2n matrix H such
that H = Ω⊤ logS and Ŝ†r̂Ŝ = Sr̂, where Ŝ = e−i 1

2 r̂⊤H r̂ (see Appendix C, Section C.15, for the proof).
17A consequence of the parametrization of Eq. (4.82) is that the elements of the covariance matrix of the

state ρfree are the symplectic eigenvalues of the covariance matrix of ρG.
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Using Eq. (4.120) we obtain18

S(ρG) =
n∑

j=1

S(ρfreej). (4.123)

Finally, using Eq. (4.121), we have (see Appendix C, Section C.19, for a proof)

S(ρG) =
n∑

j=1

g(νj), (4.124)

where νj are the sympletic eigenvalues of the covariance matrix of ρG and

g(x) = (x+ 1/2) log(x+ 1/2)− (x− 1/2) log(x− 1/2). (4.125)

4.8.3 Quantum discord between two Gaussian bosonic modes

With the formulae of Eqs. (4.124) and (4.125), it is possible to compute the entropy of

any Gaussian state given its covariance matrix. Consequently, we can use this formula

also to compute any entropy dependent quantity. Among these quantities is the Mutual

Information, which is a quantifier of total correlations and can be computed with the use of

Eq. (3.20). However, to compute a quantifier of quantum correlations for Gaussian states

is a hard task [107, 127]. Therefore, in this section we only focus on the computation of

Quantum Discord between two Gaussian bosonic modes, which will be used in Chapter

8, for the second project of this thesis.

There is no closed formula to compute the Quantum Discord between two Gaussian

bosonic modes. Notwithstanding, in Ref. [128] it was obtained a closed formula for

computing this quantity for a very rich and useful set of states. Here we present the main

results of this paper. The main proofs of this Section are contained in the Supplemental

Material of Ref. [128], which is a highly self contained and pedagogical text, so we

make reference to this text when needed and to our proofs in Appendix C when we deem

necessary.

18Here we used that S(
⊗

n ρn) =
∑

n S(ρn). This is a consequence of the fact that S(ρA ⊗ ρB) =
S(ρA) + S(ρB). Indeed S(ρA ⊗ ρB) = −Tr ((ρA ⊗ ρB) log(ρA ⊗ ρB)) = −Tr ((ρA ⊗ ρB) log(ρA))−
Tr ((ρA ⊗ ρB) log(ρB)) = −TrA (ρA log(ρA))− TrB (ρB log(ρB)) = S(ρA) + S(ρB).
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First, we make a useful definition. It can be shown (see Appendix C, Section C.20)

that any covariance matrix for a Gaussian state of two-modes can be transformed into the

following form by means of single-mode symplectic transformations

σS =


a 0 c+ 0

0 a 0 c−

c+ 0 b 0

0 c− 0 b

 , (4.126)

for a and b positive real numbers and c+ and c− are real numbers constrained so that

the covariance matrix is bona-fide. This form is named Simon normal form. The normal

form facilitates our treatment since each covariance matrix in a normal form represents

a class of states which have the same amount of quantum correlations between the two

parties (because each of these states can be transformed into another by successive local

symplectic transformations, which represents local unitary transformations).

In order to make a clearer explanation for the method of Ref. [128] for obtaining the

quantum discord between two bosonic modes, we start by showing how to compute the

quantum discord for the Two-mode squeezed thermal state (TMST). This state is repre-

sented by the following covariance matrix

σtmst =


a 0 c 0

0 a 0 −c

c 0 b 0

0 −c 0 b

 , (4.127)

for positive a, b and c and null first moment (see Appendix ?? for a more detailed defini-

tion). Notice that the TMST’s covariance matrix is simply the Simon normal form with

opposite correlations terms c+ and c−.

The method can be described in two steps. First step: state decomposition. We

construct our target Gaussian state ρAB (in this case, the TMST), made of two parties A

and B (each being single-modes), as an application of a local quantum channel E in A of
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an initial Gaussian state ρaB, i.e.,

ρAB = (EA ⊗ IB)(ρaB), (4.128)

where I represents the identity channel.

We chose the quantum channel E to be a phase-insensitive Gaussian channel, these

are the classes A1, B2 and C described in Subsection 4.7.6. Given an input covariance

matrix σin of the state, it will transform as

σin → (T⊕ I2)σin(T
⊤ ⊕ I2) + (N⊕ 0), (4.129)

where T =
√
τ I2, with τ ≥ 0 and N = ηI2, with η ≥ |1− τ |.

We also chose ρaB to be the Einstein-Podolsky-Rosen (EPR) state, which has null first

moment, and has the following covariance matrix

σaB =

 βI2
√
β2 − 1C√

β2 − 1C βI2

 , (4.130)

where C = sign(c+)σz and β > 0 (β here is not playing the role of the inverse of

temperature). These choices ensure that the state decomposition of Eq. (4.128) correctly

results in a TMST state parametrized as (see Suplemental Material of Ref. [128] for the

proof)

σAB =

 (τβ + η)I2
√
τ(β2 − 1)C√

τ(β2 − 1)C βI2

 , (4.131)

where τ ≥ 0 and η ≥ |1− τ | are parameters of the phase-insensitive Gaussian channel.

Second: remote preparation. We make a local generalized measurement MB =

{Mk}k in B. The application of such measurement in ρaB causes an ensemble P =

{pk, ρa|k}k as its backaction in A. The resulting ensemble of applying the local general-

ized measurement MB in ρAB is A = {pk, ρa′|k}k, with

ρa′|k = E(ρa|k), (4.132)

as a consequence of Eq. (4.128) (see Fig. 4.1).
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Figure 4.1: State decomposition: Depicted in black lines, the state ρAB can be decom-
posed as an initial state ρaB in which the first mode (in part A) passes trough a quantum
channel E . Remote preparation : Depicted in red symbols, the effect of the generalized
measurement MB in ρaB creates the ensemble P = {pk, ρa|k}k of states in A which,
passing through the quantum channel, becomes the ensemble A = {pk, ρa′|k}k. The en-
semble A is also generated by the backaction, in A, of the generalized measurement MB

in ρAB. (This figure was taken from Ref. [128] with modifications.)

If we chose MB = hetB to be an heterodyne measurement, the backaction of the

state ρaB in A will result in an ensemble of coherent states P = {Q(α), ρa|α = |α⟩ ⟨α|}α,

where |α⟩ are coherent states and Q(α) is the Husimi Q-function (see Supplemental Ma-

terial of Ref. [128] for the proof of this statement). These coherent states are the inputs of

the phase-insensitive Gaussian channel E . Consequently, from Eq. (4.128) and from the

definition of the quantum-classical conditional entropy (Eq. (3.31)), we obtain

ShetB(A|B) =

∫
C
d2α Q(α)S(E(|α⟩ ⟨α|))

= S(E(|0⟩ ⟨0|)). (4.133)

The second equality of the equation above comes from the normalization of the Husimi

Q-function and from the fact that S(E(|α⟩ ⟨α|)) = S(E(|0⟩ ⟨0|)) for any coherent state

|α⟩ (this statement is proved in Appendix C, Sec. C.21).

For computing the quantum discord, we must find the generalized measurement which

minimizes the quantum-classical conditional entropy (Eq. (3.31)). In order to find this

minimum, we use the seminal result of Refs. [129, 130], which states that the vacuum

(or any translation of it, i.e., coherent states) minimizes the output entropy of a phase-
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insensitive Gaussian channel E among all possible states, i.e.,

S [E(|0⟩ ⟨0|)] = inf
ρ
S [E(ρ)] . (4.134)

From this result, we conclude that the heterodyne measurement is a strong candidate to

minimize the quantum-classical conditional entropy. Indeed, Eqs. (4.133) and (4.134)

imply

ShetB(A|B) = inf
ρ
S[E(ρ)]. (4.135)

To complete the proof that ShetB(A|B) is the smaller quantum-classical conditional

entropy, notice that, for any set {Mk}k of generalized measurements

SM(A|B) =
∑
k

pkS(ρa′|k)

≥ inf
A
S(ρa′|k)

= inf
P
S[E(ρa|k)]

≥ inf
ρ
S(E(ρ)), (4.136)

where the first equality above comes from the definition of Eq. (3.31), the first inequality

says that the average is greater or equal to the infimum of A, the second equality comes

from Eq. (4.132) and the last inequality comes from the fact that P is contained in the set

of all possible one-mode density matrices.

From the equation above and Eq. (4.135), we conclude that

SM(A|B) ≥ ShetB(A|B), (4.137)

for every generalized measurement {Mk}k, implying that ShetB(A|B) is the minimum of

the possible quantum-classical conditional entropy. Therefore, we have a closed formula

for the quantum discord. From Eqs. (3.20) (3.32), (3.33) and (3.34), we have

D(A|B) = S(ρAB) + min
{MB

k }k
SM(A|B)− S(ρB)

= S(ρAB) + S(E(|0⟩ ⟨0|))− S(ρB), (4.138)
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Figure 4.2: State decomposition: Depicted in black lines, the state ρAB can be decom-
posed as an initial state ρaB in which the first mode (in part A) passes trough an inverse
squeezing operator Ŝ−1(r), a quantum channel E and a sequeezing operator Ŝ(ξ). Remote
preparation : Depicted in red symbols, the effect of the generalized measurement MB

in ρaB creates the ensemble P = {pk, ρa|k}k of states in A which, passing through the
quantum channel and squeezing operators, becomes the ensemble A = {pk, ρa′|k}k. The
ensemble A is also generated by the backaction, in A, of the generalized measurement
MB in ρAB. (This figure was taken from Ref. [128] with modifications.)

where in the second equality we used Eqs. (4.133) and (4.137). Computing explicitly the

entropies (see Appendix C, Section C.22), we have finally obtain

D(A|B) = g(β)− g(ν−)− g(ν+) + g

(
τ + η

2

)
, (4.139)

where ν− and ν+ are the symplectic eigenvalues of the TMST covariance matrix σAB (Eq.

(4.131)) and g(•) is defined according to Eq. (4.125).

At this point, we can generalize the method described for computing the quantum

discord of a TMST state in order to extend it to a larger set of correlated two-mode states.

The two steps in the previous case will be modified as follows.

First step: state decomposition. In this case, we intend to construct a target Gaussian

state ρAB in the Simon normal form (Eq. (4.126)). We first extend our phase-insensitive

Gaussian channel E to include phase-sensitive channels with negative transmissivities,

i.e., we can also have τ ≤ 0, this is the case D described in Subsection 4.7.6. Then,

supposing again the initial state ρaB as being the EPR state, with covariance matrix given

by Eq. (4.130), we generate our state ρAB by the following operation

ρAB = ((SξES−1
r )A ⊗ IB)(ρaB), (4.140)

where Sx(ρ) = Ŝ(x)ρŜ†(x) is the unitary one-mode squeezing operation and Ŝ(x) is

82



Chapter 4. Continuous Variables Framework

the squeezing operator with r ∈ [β−1, β] and ξ = r

√
ηr−1+|τ |β√
ηr+|τ |β

.19 The necessity of the

additional squeezing operations in the decomposition made above and the choices of r

and ξ will be explained in the next step. As consequence of Eq. (4.140), the state ρAB

will have a covariance matrix σAB given in the Simon normal form (Eq. (4.126)), with

the following parametrization

a = θ(r)θ(r−1), θ(r) =
√
ηr + |τ |β, (4.141)

b = β, (4.142)

c+ = ±
√
|τ |(β2 − 1)θ(r−1)/θ(r), (4.143)

c− = ∓sign[τ ]
√

|τ |(β2 − 1)θ(r)/θ(r−1), (4.144)

where τ ∈ R, η ≥ |1− τ |, r ∈ [β−1, β] and the ambiguity in the sign of Eqs. (4.143) and

(4.144) comes from the ambiguity of C = sign(σ+)σz.20

Second step: remote preparation. In this case we chose to make the local generalized

measurement MB in B such that {Mα(u) = |α, u⟩ ⟨α, u|}α, where |α, u⟩ = Ŝ(u) |α⟩

being |α⟩ a coherent state and Ŝ(u) the squeezing operator for u > 0. The backaction

of this measurement in B will result in an ensemble P = {pα, ρa|α}α in A such that

the covariance matrix of the states ρa|α will be σa|α = diag(r−1, r), where r = (1 +

uβ)(u+ β)−1 (the proof of this affirmation can be found in the Supplemental Material of

Ref. [128]). Moreover, we wish to turn these states into coherent states, so we apply the

inverse squeezing unitary channel S−1
r . This enables us to use again the result of Refs.

[129, 130] (Eq. (4.134)),21 from which we conclude that

inf
ρ
S(E(ρ)) = S(E(S−1

r (ρa|α)))

= S(E(|0⟩ ⟨0|)), (4.145)

for every ρa|α ∈ P , since all S−1
r (ρa|α) are coherent states.

19The action of the squeezing operation in Gaussian states is described by the symplectic matrix S(x) =(
x1/2 0
0 x−1/2

)
, for x > 0.

20The proof of the parametrization above can be found in details in the Supplemental Material of Ref.
[128].

21Which is also valid for our extended phase-insensitive Gaussian channel E (for all η ∈ R).
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Proceeding in analogy with the argument of the TMST state, we conclude that the

quantum discord of the state ((ES−1
r )A ⊗ IB)(ρaB) is also given by Eq. (4.139). Finally,

to turn the state into the Simon normal form, we apply the squeezing operation Sξ in A,

with ξ =
√

ηr−1+|τ |β√
ηr+|τ |β

, and we obtain the parametrization of Eqs. (4.141), (4.142), (4.143)

and (4.144). The operation Sξ is unitary and local in A, hence it does not interfere in any

entropic quantity.

This method (see Fig. 4.2) gives the exact quantum discord between two modes for a

large set of states in the Simon normal form. Such set generated by the parametrization of

Eqs. (4.141), (4.142), (4.143) and (4.144) cannot range all possible bona-fide states in the

Simon normal form, but encompasses a considerable amount of them. This can be seen

in the plots of Fig. 4.3, where we randomly picked 2× 105 values of τ and r having fixed

different values of a and b.22 The plots expose visually the range that can be accessible

by the parametrization inside the region of possibles c+ and c− delimited by the bona-fide

conditions. It also indicates the inability of such parametrization to achieve states with c+

and c− near to 0. For larger values of a and b, it can be seen that the parametrization is

more capable to fill the region inside the bona-fide allowed states and can generate more

points near to c+ = 0 and c− = 0. Although the regions exactly at c+ = 0 and c− = 0 are

never accessible, this will not compromise our use of this method in Chapter 8.

22With a and b fixed, we choose randomly r ∈ [b−1, b]. As a consequence of Eqs. (4.141), (4.142),

(4.143) and (4.144), we will have η =

√
4a2r2+(r2−1)τ2b2−(1+r2)|τ |b

2r defined in terms of a, b and r and

τ will be restricted to τ ∈ [τmin, τmax], where τmin =
b+(br+2)r−

√
(r2−1)2b2+4a2r(r+b)(rb+1)

2(r+b)(rb+1) and τmax =

b+(br−2)r−
√

(r2−1)2b2−4a2r(r−b)(rb−1)

2(r−b)(rb−1) for b ≥ a, which is also randomly chosen within this range.
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Figure 4.3: Plot of c+ and c− points, for different fixed a and b of states in the Simon
normal form generated 2 × 105 times by random choices of r and τ , according to the
parametrization of Eqs. (4.141), (4.142), (4.143) and (4.144). The pink curves delimit the
bona-fide region of states.
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Main projects
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Chapter 5

Initially Correlated Ancillae - Minimal

Qubit Model CM

As already anticipated in the Introduction and Sec. 2.3.1, our first project of this thesis

focuses on dealing with Collisional Models (CMs) with initially correlated ancillae. This

is the first Chapter concerning to the first project, and we will explore and obtain results

for the evolution of a system interacting with correlated ancillae for the case where all the

parties are made of qubits. The results of this Chapter will support the main results of

Chapter 6 where we obtain a more complete description for the evolution of the system

and ancillae in the case where all the parties are made of bosonic modes.

Initially correlated ancillae in a CM cause the system’s evolution (given by Eq. (2.21))

to be described by a non-Markovian map, as already stressed in Subsection 2.3.1. We can-

not treat it as a set of successive steps of separated maps, since in the very first interaction

of the system with the first ancilla, all the other ancillae may start to be correlated with the

system. Clearly, the problem will be much more intractable than the uncorrelated case,

and maybe it would be impossible for one to find analytically the system’s steady-state,

just like it was done for some cases in Chapter 2, for qubits. For this reason, we computed

Eq. (2.21) numerically for a (not very large, but sufficient) finite number of collisions

in order to observe the effects of the initial ancillae correlations using the Partial SWAP

(Eq. (2.44)) as the unitary dynamics of each collision. These results are contrasted with

the case where the local ancillae states are the same, but are not correlated between them-

selves, and definitely show that the presence of correlations steer the system to a different
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steady-state.

As it was presented in Sec. 2.3.6, a direct consequence of the fact that all ancillae are

locally identical and from the Partial SWAP unitary in each collision, is that we have the

following steady-state of the system

ρ∗S = lim
n→∞

ρnS = ρA, (5.1)

where ρA is the local state of each ancillae. This phenomenon is called Homogenization

[18, 19], described in Section 2.3.6, and in this Chapter we prove, for qubits, that the

presence of initial correlations between the ancillae can prevent it to happen. Thus we

conclude that the steering caused by the correlations can break Homogenization. The

interesting point of it is that, as far as a local observer knows, the system is only interacting

via a partial SWAP with locally identical parts, but the system is being driven to a different

state then the local state of the ancillae. Therefore, the main goal of this Chapter and of

Chapter 6 is to prove the presence of such steering.

In order to be able to simulate a setup physically feasible to implement such CM with

initially correlated ancillae, we make use of Hamiltonian graph states [115, 131–135]. By

putting the ancillae to interact with each other via such Hamiltonian, before the interaction

with the system starts, we prepare an environment of correlated ancillae. This structure

will be described as follows.

5.1 Preparing the correlated ancillae environment

5.1.1 Hamiltonian graph states

We want to have a structure that is capable of encompassing as many ancillae as we want,

since Homogenization tends to happen for a large number of collisions. Also, we assume

that our set of ancillae is translationally invariant. This means that, if ρE = ρA1A2···An is

the environment global state made of all the NA ancillae, then

ρAkAk+1···Ak+l−1
= TrE/{k,··· ,k+l−1} ρE = ρA1A2···Al

, with 1 ≤ k ≤ NA, (5.2)
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where the subscript E/{k, · · · , k + l − 1} means that all the ancillae but the ones at the

set {k, · · · , k+ l−1} are traced out.1 The equation above means that the reduced state of

any set of l neighbors ancillae is the same, no matter their position. Clearly this condition

implies that the local state of each ancillae must be the same (which corresponds to l = 1

in Eq. (5.2)).

The condition above can be accomplished if we start with a state of uncorrelated

ancillae |Φ⟩ =
⊗NA

k=1 |ϕ⟩, where the state |ϕ⟩ is arbitrary, and then evolve it according to

the Hamiltonian

HG = k
∑
i,j

GijHij, (5.3)

where k is an interaction strength,Gij are the matrix elements of the adjacency matrix of a

graph (to be explained in a moment) and Hij represents a certain Hamiltonian interaction

between ancillae i and j. For concreteness, we choose

Hij = σi
x ⊗ σj

x, (5.4)

where σx stands for the x Pauli matrix.

The adjacency matrix elements of a graph specifies the strength between the connec-

tion of each vertex of the graph. For instance, if Gij is the element ij of a adjacency

matrix G, its number is a measure of the strength of the connection between the vertex i

and j of the graph. In our setup, we suppose that each vertex of the graph represent an

ancilla and their edges, as well as the adjacency matrix elements, represent the interaction

strength between them.

In general, we don’t need to haveGij = Gji which means that the connection between

two vertices of a graph does not need to be symmetric. For instance, if the graph repre-

sents the traffic flow between two locations, the traffic can be stronger in one way than in

the other. But, in our case, we only use symmetric graphs (Gij = Gji), this is due to the

fact that, since Hij = Hji, then the sum of Eq. (5.3) will only affect the symmetric part

of G. We also assume that our graph is cyclic, i.e., the connection strength between the

vertices only depend on their distances, to ensure the translationally invariant character of

the ancillae (Eq. (5.2)). This last restriction induces the adjacency matrix to be a circu-

1If k + l surpass NA, the sequence continues considering the first k + l −NA ancillae.
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Figure 5.1: Cyclic graph with 9 ancillae (at the vertices), each interacting only with the
first and second neighbors (interactions represented by the edges).

lant matrix [136], which means that the Gij elements must depend only on the distance

between i and j and we set the diagonal elements to 0. For instance, for NA = 5 we have

G =



0 c1 c2 c3 c2 c1

c1 0 c1 c2 c3 c2

c2 c1 0 c1 c2 c3

c3 c2 c1 0 c1 c2

c2 c3 c2 c1 0 c1

c1 c2 c3 c2 c1 0


, (5.5)

where c1, c2 and c3 are arbitrary real coefficients. As an example, if we want only first and

second neighbors interactions in our graph (see Fig. 5.1), we put cj = 0, ∀j > 2.

5.1.2 Properties of the initial ancillae and their correlations

In the previous section we outlined how to prepare the ancillae before the dynamics of the

CM starts. Now, we show explicit examples of preparations and the correlations that this

process causes between the ancillae.
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As already indicated, the whole environment will be described by

ρE = |ψE⟩ ⟨ψE| , (5.6)

where

|ψE⟩ = e−iHGt |ϕ⟩ , (5.7)

and HG is given by Eq. (5.3), generated by a specific cyclic graph that we choose in each

case.

Next, we obtain the values for the density matrices of the reduced state of each indi-

vidual ancilla, by tracing out the rest of the environment

ρA = ρAj
= Tr{A2,A3,··· ,ANA

} (ρE) , ∀j. (5.8)

Additionally, we also compute the values for the joint density matrices for each pair of

ancille 1 and j

ρA1,j
= TrE/{1,j} (ρE) . (5.9)

Finally, we compute the mutual information between the first ancilla and its neighbors,2

from using Eq. (3.20) and the density matrices from the equations above, in order to

measure their total correlations.

These computations are done numerically. We set the interaction time of Eq. (5.7) as

t = 1, together with the interaction given by Eq. (5.4),3 choose |ϕ⟩ = |0⟩ and obtained

the following results.

• We studied the population of the individual ancilla ρA (Eq. (5.8)) for cyclic graphs

where each ancillae interact only with their first nearest-neighbors (NN1) with equal

intensities (c1 = 1), only with their first and second nearest-neighbors (NN2) with

equal intensities (c1 = c2 = 1) and only with their first, second and third nearest-

2The mutual information doesn’t depend on which pair of ancillae we choose to compute it, but only on
the distance between them, as a consequence of our translational invariant condition.

3This interaction turns the reduced qubits states ρA to be diagonal in the σz basis, i.e., a qubit thermal
state. And thus it is sufficient to us only to study the population p = ⟨1| ρA |1⟩ of the excited state, in order
to describe the state ρA (see Appendix A, Section A.4). In other words, the ancilla local state will always

be in the form ρA =

(
1− p 0
0 p

)
, with 0 ≤ p ≤ 1/2.
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Figure 5.2: Population of the excited state of ρA × total number of ancillae NA, for
different values of k.

neighbors (NN3) with equal intensities (c1 = c2 = c3 = 1). We investigated how

the population of ρA depends on the total number of ancillae NA. The answer is

that, for a number of NA ≳ 6, the population tends to stabilize independent of NA.

These observations are exemplified in the plots of Fig. 5.2.

• We studied the population dependence on the values of the interaction strength k

in Eq. (5.3), obtaining a peak of the populations at k = π/8 when p = 0.5 (i.e.

maximally mixed state and infinite temperature limit) and a minimum at k = π/4

when p = 0 (i.e. ground state and zero temperature limit) and then the population

oscillates with a period of π/4 in k for NN1, NN2 and NN3. The plots of the

populations versus k for different values of NA are given in Fig. 5.3. These plots

indicate that the maxima and minima of the population as a function of k are the

same for any NA and follow the same oscillatory pattern for NN1, NN2 and NN3;

• In Fig. 5.4, we compute the mutual information as a function of the distance be-
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Figure 5.3: Population of ρA × values of k, for different values of NA.
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Figure 5.4: Mutual information between neighbors × distance between neighbors, for
NA = 7 and different values of k.

tween neighbors for NN1, NN2 and NN3. This shows that, in general, the ancillae

get correlated with distant neighbors, even in the NN1 case. Intuitively, the mutual

information between closest neighbors tend to be greater than with the more distant

neighbors. An exception happens in the NN3 case with NA = 7, where the mutual

information tends to be very similar for any neighbor distance. Additionally, we can

see that we have no mutual information between the neighbors in NN1 and NN2

for the case of k = 0.4, while in this case we have a higher mutual information in

NN3 than for any other values of k;

• We analyzed the mutual information between nearest neighbors as a function of k

for different values of NA in Fig. 5.5. This exposes a periodic behaviour of the

mutual information as a function of k (with a period of π/4), and peaks of maxima

for the mutual information in regions close to k = 0.1 and k = 0.7 for NN1, and

around k = 0.15 and k = 0.65 for NN2 and NN3. For NA ≤ 7, we observe

a higher maximum peak of the mutual information at k ≈ 0.4 in NN3, while this
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Figure 5.5: Mutual information between first neighbors × k, for different values of NA.
For larger values of NA, the plots loose resolution since they are computationally more
demanding.

region corresponds to a minimum forNN1 andNN2, which justifies the behaviour

of the mutual information in Fig. 5.4 for k = 0.4. Interestingly, this maximum peak

of the mutual information for NN3 seems to vanish for NA > 7 and, as in NN1 and

NN2, this region around k ≈ 0.4 have a minimum for NN3. These observations

about the correlations dependence on k will be useful to our choice of parameters

in order to investigate the dynamics of the CM and the effects of the correlations in

the evolution of the system, in the next Section.

5.2 Homogenization procedure with initial correlations

between ancillae: Breaking Homogenization

Finally, we present the results for the CM evolution with a Partial SWAP unitary (Eq.

(2.44)) describing the interaction between each locally identical ancilla and the system,
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just like the Homogenization process described in Sec. 2.3.6. But now, we suppose the

presence of initial correlations between the ancillae, which oblige us to compute directly

Eq. (2.21) to obtain the system’s evolution after each collision. In this case, we don’t have

the option of decomposing the evolution as the successive operation of simpler channels.

Consequently, these computations using Eq. (2.21) needed to be done numerically.

We set the correlated ancillae forming the initial environment ρ0E as being the hamil-

tonian graph states presented in the former Section, chosing the same set of cyclic graphs

NN1, NN2 and NN3. We also constructed another environment by removing the corre-

lations between the ancillae in these hamiltonian graph states, but keeping the same local

ancilla reduced state ρA (such that ρE = ρ⊗NA
A ). This way, we prepare two environments,

one causing a Non-Markovian evolution with correlated ancillae and the other with a

Markovian evolution (exactly as the standard homogenization of Sec. 2.3.6), both having

the ancillae in the same local state ρA.

As in standard CMs outlined in Sec. 2.3, we start at t = 0 and the stroboscopic

evolution is given in steps of τ (for these computations we choose τ = 1), which is the

duration of each collision. We initialized the system’s qubit at the ground state ρ0S =

|0⟩ ⟨0| and we can again describe the system’s state by its population of the excited state.

We analyzed the dynamics for the hamiltonain graph states with different values of k (in

the hamiltonian of Eq. (5.3)). From the analysis of Figs. (5.4) and (5.5) we searched

for the the graph states that would maximize the initial correlations between the ancillae

and, consequently, maximize the deviation of the system steady-state with respect to the

case of independent ancillae, therefore breaking Homogenization. We also analyzed how

different values of g for the strength of the Partial SWAP in Eq. (2.44) affected the desired

steering. We present the following results:

• As can be seen in Figs. 5.6, 5.7 and 5.8, the parameter k has a central role in the

steering effect of the correlations over the system’s evolution, since it significantly

affects the correlations between the ancillae, as was observed inf Fig. 5.5. From this

same Figure we also deduced that the region around k ≈ 0.4 may have a minimum

for the mutual information of NN1, NN2 and NN3, and hence there would be less

correlations to cause the steering. This fact can be seen in the plots of NN2 and NN3

(Figs. 5.7 and 5.8), where there is no breaking of homogeniztation for k = 0.4.
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Figure 5.6: Plots of population of ρS × number of steps for ancillae prepared with the
NN1 cyclic graph with NA = 17, for different values of k. Each line correspond to a
different value of g strength of the partial SWAP interaction, from top to bottom g =
0.5, g = 1.0 and g = 1.5. The red dashed lines indicate the value of the population
of the respective ρA, which is the value in which the system’s population converges if
homogenizaton happens.

Adversely, for NN1 (Fig. 5.6) we see that the steering is still present in k = 0.4,

which can be caused by a non-vanishing mutual information between the ancillae,

since the behaviour of the mutual information can be different than in Fig. 5.5 for

larger NA. Also from Fig. 5.5, we suppose large correlation effects in the regions

around k = 0.15 and k = 0.65 for NN1, k = 0.15 and k = 0.7 for NN2, and

k = 0.1 and k = 0.7 for NN3. This is confirmed by the plots of Figs. 5.6, 5.7 and

5.8 since, for the initially correlated ancillae case with these values of k, clearly the

system’s steady-state deviates from the homogenization in the uncorrelated case;

• Finally, we also study different values of g (the strength of the Partial SWAP in-

teraction, given in Eq. (2.44)) in the plots of Figs. 5.6, 5.7 and 5.8. They show

the pattern that, for lower values of g, exemplified by g = 0.5, the homogeniza-
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Figure 5.7: Plots of population of ρS × number of steps for ancillae prepared with the
NN2 cyclic graph with NA = 17, for different values of k. Each line correspond to a
different value of g strength of the partial SWAP interaction, from top to bottom g =
0.5, g = 1.0 and g = 1.5. The red dashed lines indicate the value of the population
of the respective ρA, which is the value in which the system’s population converges if
homogenizaton happens.

tion takes more steps to happen, but the effect of the correlations are stronger than

for larger g’s. This seems to suggest that a greater thermalization (or homogeniza-

tion) time allows the correlations to act more in the system’s evolution, for greater

values of g, e.g. g = 1.5, the system homogenizes too rapidly, so the correlation

effects are unseen. Lastly, the Partial SWAP depends trigonometrically on g (see

Eq. (2.44)), therefore, the effects of g in the system’s evolution will oscillate, as g

grows, repeating the results in cycles of π.

The analysis above clearly confirm the steering effect on the system’s evolution and

the breaking of Homogenization caused by the presence of initial correlations between

the ancillae, for the case where system and ancillae are qubits. These results are also

published in [93].
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Figure 5.8: Plots of population of ρS × number of steps for ancillae prepared with the
NN3 cyclic graph with NA = 17, for different values of k. Each line correspond to a
different value of g strength of the partial SWAP interaction, from top to bottom g =
0.5, g = 1.0 and g = 1.5. The red dashed lines indicate the value of the population
of the respective ρA, which is the value in which the system’s population converges if
homogenizaton happens.
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Initially Correlated Ancillae - Gaussian

States CM

In this Chapter, we present the main results of the second project of this thesis. We ob-

tain simple analytical formulae for the evolution of the system for any number of initially

correlated ancillae in the CM, as described in Sec. 2.3, with a Partial SWAP unitary in

bosonic modes states. Here we observe a direct influence of the initial correlations be-

tween the ancillae in the system’s evolution, which cause a linear (and independent of the

initial system state) term on the system’s steady-state. This presents a clear image of the

steering caused by the correlations and the breaking of Homogenization. These results

are also described in [93].

The results were possible since we consider the system and ancillae as bonsonic modes

starting in Gaussian states. This simplifies remarkably the computations, as explained in

Sec. 4.6. Now we only study the covariance matrices which will completely describe

our system and environment.1 Also, the continuous-variables formalism made possible a

much more simple description of the dynamics, because now the evolution is given by the

2(NA + 1) × 2(NA + 1) (where NA is the total number of ancillae) sympletic matrices,

instead of unitaries that act directly in the infinite dimensional Hilbert space. These char-

acteristics of our object of study allows us to manipulate simple matrices analytically, for

1For instance, in Chapter 5 we were able to compute numerically a maximum of only 17 collisions in
our CM since this would involve the preparation of 17 ancillae in the environment. In order to fully describe
the environment density matrix the computations involved 217 × 217 matrices. While for Gaussian states,
an environment made of 100 ancillae can be fully described by a 200× 200 covarince matrix.
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a low number of ancillae and collisions, and then induce the results for arbitrary numbers.

The procedure will be detailed in the following.

6.1 Preliminaries

6.1.1 The Stinespring dilation procedure

As we already pointed above, the system and environment are composed by bosonic

modes. We have one mode for our system and NA modes for the environment (each

mode represents one ancilla). All of them start the evolution in Gaussian states, thus their

initial states ρ0S and ρ0E will be fully described by their covariance matrices σ0
S and σ0

E

and their firsts moments ⟨r̂0S⟩ and ⟨r̂0E⟩. Now we assume, without lost of generality, that

⟨r̂0S⟩ = 0 and ⟨r̂0E⟩ = 0 (where 0 here means a respective vector of 0 in all entries), which

will ensure that the first moments will remain 0 during the evolution, remaining for us

only the analysis of the covariance matrices.2

We will follow the Stinespring dilation described in Subsec. 2.3.1 to describe the dy-

namics of the CM. Since we are dealing with Gaussian states and quadratic-Hamiltonian

unitaries (the Beam Splitter, to be presented in the next Subsection), all the following

steps will maintain the Gaussian characeter of the states, as proved in Section 4.7. Further

results from Section 4.7 will also be used.

We start by supposing that the system and environment start uncorrelated at time t =

0, so their joint state will be given by ρ0SE = ρ0S ⊗ ρ0E . The tensor product is a Gaussian

operation and the resulting covariance matrix will be

σ0
SE = σ0

S ⊕ σ0
E, (6.1)

from Eq. (4.93).

Then we make a unitary evolution, which is described by a sympletic matrix S1
H

(which will be related with the unitary used, in our case, the Partial SWAP), using Eq.

2This last restriction can contemplate the general analysis since, as we shall study the evolution under
the Partial SWAP unitary, the evolution of the first moments is given by Eq. (4.73). So, if the system starts
with some arbitrary first moment r̄, then we can always translate such first moment to 0 (which will not
affect the covariance matrix since its evolution equation, Eq. (4.76), is decoupled from the first moments)
and Eq. (4.73) guarantee that its evolution will be trivial.
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(4.77)

σ1
SE = S1

Hσ
0
SE(S

1
H)

⊤, (6.2)

where σ1
SE is the covariance matrix of the joint system plus environment state after the

first collision.

Next, in order to obtain the system’s evolution, we separate the joint covariance matrix

as

σ1
SE =

 σ1
S ξ1SE

(ξ1SE)
⊤ σ1

E

 , (6.3)

where σ1
S is a 2× 2 block matrix, σ1

E is a 2NA × 2NA block matrix and ξ1SE is a 2× 2NA

block matrix. As it is demonstrated in Sec. 4.7, σ1
S will be the covariance matrix of the

reduced state of the system, i.e., the system obtained after tracing out the environment.

For obtaining the following steps of the system’s evolution, we just proceed evolving the

joint system SE with the respective unitaries

σn
SE = Sn

HS
n−1
H · · ·S1

Hσ
0
SE(S

1
H)

⊤ · · · (Sn−1
H )⊤(Sn

H)
⊤ (6.4)

and again separate the evolved joint system as

σn
SE =

 σn
S ξnSE

(ξnSE)
⊤ σn

E

 , (6.5)

taking σn
S as the covariance matrix of our evolved reduced state. Notice that we can also

use σn
E as the covariance matrix of the environment’s reduced state.

The reason that we must evolve the whole joint system in Eq. (6.4) is that we cannot

have a map from intermediate covariance matrices of the system to the final one since we

must consider the non-Markovian effects caused by the initial correlations between the

ancillae. This has the same reasoning of why we cannot break the map of Eq. (2.21) into

a succession of intermediate maps. In fact, notice the resemblance between Eqs. (6.4)

and (2.20) and note that Eq. (6.5) has the same role as Eq. (2.21).
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6.1.2 The Beam Splitter interaction

Here, we present the unitary that we shall use in our CM for each collision. It is an

interaction of immense importance in Quantum Optics, the so-called Beam-Splitter (BS)

[14, 15, 55, 95, 118]. The BS can be defined by the following interaction Hamiltonian

between two bosonic modes A and B

ĤBS =
g

2
(p̂Aq̂B − q̂Ap̂B), (6.6)

where g > 0.

In the following, we will show that the unitary generated by this Hamiltonian satisfies

the Partial SWAP conditions (Eqs. (2.45) and (2.46)) for the Gaussian bosonic modes

case.

The interaction Hamiltonian above is quadratic in terms of canonical operators, hence

it can be decomposed in terms of Eq. (4.55) with µ = 0 and the Hamiltonian matrix

HBS =

 0 −igσy
igσy 0

 , (6.7)

where each entry of the matrix above is a 2 × 2 matrix and σy is the y Pauli matrix.

Therefore, the corresponding symplectic transformation will be

SBS = eΩHBSτ

=

 c s

−s c

 , (6.8)

where c = cos(gτ), s = sin(gτ), τ is the duration of the interaction and each entry is

multiplied by I2.

If the modes A and B are Gaussian, they can be described by covariance matrices σA

and σB. And if they are uncorrelated and happen to be in the same local state (σA = σB =
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σ), their joint covariance matrix will be

σAB =

σ 0

0 σ

 . (6.9)

Hence, the unitary Beam Splitter operation in this state will be given by

SBSσABS
⊤
BS =

c −s

s c

σ 0

0 σ

 c s

−s c


=

σ 0

0 σ

 . (6.10)

Consequently, the partial traces in A and B will result in the same state as the initial,

satisfying Eqs. (2.45) and (2.46). These Equations are necessary and sufficient conditions

for a unitary operator to be a Partial SWAP [19].

6.1.3 Correlations block-matrices

Before presenting our results, we will expose important properties about the block ma-

trices that will describe completely the correlations between our ancillae. Suppose two

ancillae of our environment, representing the modes j and k, respectively. We can take a

block matrix made of the covariance matrix terms

ξj,k =

σ2j−1,2k−1 σ2j−1,2k

σ2j,2k−1 σ2j,2k


=

⟨qjqk⟩ − ⟨qj⟩⟨qk⟩ ⟨qjpk⟩ − ⟨qj⟩⟨pk⟩

⟨pjqk⟩ − ⟨pj⟩⟨qk⟩ ⟨pjpk⟩ − ⟨pj⟩⟨pk⟩

 , (6.11)

where we used that canonical operators of different modes commute and Eq. (4.62). Now,

if the canonical operators of j and k are statistically independent, then the components

above must result in 0. Furthermore, given the reduced state ρj,k of the modes j and k, its
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covariance matrix will be

σj,k =

 σj ξj,k

ξ⊤j,k σk

 , (6.12)

where σj(k) is the local covariance matrix of j(k). Now, from the deduction of Eq. (4.93),

we have ξj,k = 03 if and only if ρj,k = ρj ⊗ ρk is the tensor product of the local density

matrices. From Eq. (3.17), the mutual information between j and k is I(j : k) = 0 when

ρj,k = ρj ⊗ ρk, consequently ξj,k = 0 is necessary and sufficient to I(j : k) = 0.

For these reasons, we often name these components as correlations between bosonic

modes of Gaussian states. For instance, for an environment made of 5 ancillae, we have

σE =



σA1 ξ1,2 ξ1,3 ξ1,4 ξ1,5

ξ⊤1,2 σA2 ξ2,3 ξ2,4 ξ2,5

ξ⊤1,3 ξ⊤2,3 σA3 ξ3,4 ξ3,5

ξ⊤1,4 ξ⊤2,4 ξ⊤3,4 σA4 ξ4,5

ξ⊤1,5 ξ⊤2,5 ξ⊤3,5 ξ⊤4,5 σA5


, (6.13)

where all the terms inside the above matrix are actually 2× 2 block matrices, σAn are the

covariance matrices of the n-th ancilla reduced state and ξj,k represents the correlations

between the ancillae j and k.

6.2 Main results

6.2.1 Correlated nearest-neighbors

We start with a simple, yet insightful result. We apply the Stinespring procedure presented

in Subsection 6.1.1 for the case where we have NA ancillae which are correlated only

with their nearest-neighbors. Additionally, we start supposing that the ancillae are not

necessarily identical for obtaining a more general result and then restricting it for identical

ancillae and comparing it to Homogenization. This means that the correlation terms of the

3In this context, 0 means null matrix.
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environment will be in the form ξj,k = ξj,kδk,j+1. Therefore, the environment of correlated

ancillae will initialize in a state with the following 2NA × 2NA covariance matrix4

σ0
E =



σA1 ξ1,2 0 · · · 0

ξ⊤1,2 σA2 ξ2,3 · · · 0

0 ξ⊤3,4 σA3

. . . ...
... . . . . . . . . . ξNA−1,NA

0 0 · · · ξ⊤NA−1,NA
σANA


. (6.14)

The joint system will start as

σ0
SE = σ0

S ⊕ σ0
E

=



σ0
S 0 0 · · · 0

0 σA1 ξ1,2 · · · 0

0 ξ⊤1,2 σA2

. . . . . .

... . . . . . . . . . ξNA−1,NA

0 0 · · · ξ⊤NA−1,NA
σANA


. (6.15)

This joint state evolves as the system evolves unitarilly (collides) with each ancilla j.

They interact via the Hamiltonian

Ĥj = ĤS + ĤAj
+ ĤBSj

, (6.16)

where ĤS = ω
2
(q̂2S + p̂2S), ĤAj

= ω
2
(q̂2Aj

+ p̂2Aj
), for ω > 0, q̂S(Aj) and p̂S(Aj) are the

quadrature operators of the system (ancilla j) and

ĤBSj
=
g

2
(p̂S q̂Aj

− q̂S p̂Aj
), (6.17)

for g > 0, is the Beam Splitter interaction of the system with each ancillae j. We have that

ĤS and ĤAj
are local Hamiltonians, so we can set them to 0 by going to the interaction

picture (see Appendix A).

4In this Section, every matrix element is a 2× 2 block matrix, or a number multiplied by I2.
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Proceeding, we compute the sympletctic transformation corresponding to the unitary

generated by the Hamiltonian Ĥj in the interaction picture

Sj
H = eΩHBSj

τ , (6.18)

where HBSj
is the (2NA + 1) × (2NA + 1) Hamiltonian matrix corresponding to ĤBSj

from Eq. (6.17) and τ is the duration of the collision. For j = 1 (first collision), we have

the following matrix Hamiltonian matrix

H1
BS =



0 −igσy 0 · · · 0

igσy 0 0 · · · 0

0 0 0 · · · 0
...

...
... . . . ...

0 0 0 · · · 0


, (6.19)

where σy is the y Pauli matrix. Consequently, we have the following (2NA+1)×(2NA+1)

symplectic matrix

S1
H =



c s 0 · · · 0

−s c 0 · · · 0

0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1


, (6.20)

where c = cos(gτ) and s = sin(gτ).

In an completely analogous way, we have the Hamiltonian matrices corresponding to
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the next collisions

H2
BS =



0 0 −igσy · · · 0

0 0 0 · · · 0

igσy 0 0 · · · 0
...

...
... . . . ...

0 0 0 · · · 0


,

...

HNA−1
BS =



0 0 · · · 0 −igσy
0 0 · · · 0 0
...

... . . . ...
...

0 0 · · · 0 0

igσy 0 · · · 0 0


, (6.21)

and obtain the respective symplectic matrices

S2
H =



c 0 s · · · 0

0 1 0 · · · 0

−s 0 c · · · 0
...

...
... . . . ...

0 0 0 · · · 1


,

...

SNA−1
H =



c 0 · · · 0 s

0 1 · · · 0 0
...

... . . . ...
...

0 0 · · · 1 0

−s 0 · · · 0 c


. (6.22)

Next, we continue to follow the procedure described in Subsection 6.1.1 using the

symplectic transformations above. Now we obtain the joint system’s first collisional step

evolution by computing σ1
SE = S1

Hσ
0
SE(S

1
H)

⊤ and taking the system’s covariance matrix
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as in Eq. (6.5), obtaining

σ1
S = c2σ0

S + s2σA1 . (6.23)

Doing the next step evolution σ2
SE = S2

Hσ
1
SE(S

2
H)

⊤, we obtain

σ2
S = c4σ0

S + c2s2σA1 + s2σA2 + cs2(ξ1,2 + ξ⊤1,2).

And again, σ3
SE = S3

Hσ
2
SE(S

3
H)

⊤ for the third step, obtaining

σ3
S = c6σ0

S + c4s2σA1 + c2s2σA2 + s2σA3 + c3s2(ξ1,2 + ξ⊤1,2) + cs2(ξ2,3 + ξ⊤2,3).

From this we can begin to see a pattern, from which we can induce

σn
S = c2nσ0

S +
n∑

k=1

c2(n−k)s2σAn +
n−1∑
k=1

c2k−1s2(ξk−1,k + ξ⊤k−1,k), (6.24)

for the system’s covariance matrix after the nth collision.

Now, if we suppose that the ancillae are identical σAk
= σA, as in the Homogenization

case, we obtain, after the use of the geometric sum and some simplifications

σn
S = c2nσ0

S + (1− c2n)σA +
n−1∑
k=1

c2k−1s2(ξk−1,k + ξ⊤k−1,k).

The equation above indicates that, if the correlation terms are 0, Homogenization will

happen. Indeed, for null correlation terms, if gτ are such that |c| < 1, then we will have

the steady-state σ∞
S = σA.

Also supposing that the nearest-neighbor correlations have the same intensity ξk−1,k =

ξ, for a 2× 2 block-matrix ξ, we have

σn
S = c2nσ0

S + (1− c2n)σA + c(1− c2(n−1))(ξ + ξ⊤). (6.25)

Finally, we obtain, for the case of identical ancillae and same intensity nearest-neighbor
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correlations, the steady-state (considering that |c| < 1)

σ∞
S = σA + c(ξ + ξ⊤). (6.26)

The equation above is our first result obtaining an analytical equation that describes the

CM with the presence of initially correlated ancillae, computing the effects of such cor-

relations. Also, by changing the entries of ξ we can have control over the steering of the

entries of the steady-state, driving it away from the ancilla’s covariance matrix σA. This

shows a simple and clear visualization of how the correlations break Homogenization,

and how we can obtain an additional term in the steady-state of the system which is com-

pletely dependent on global correlations, although the system interacts only locally with

ancillae which are locally identical.

Another intriguing observation about the result above can be done. If we consider the

initial state of the system and of the local ancillae as thermal states, the additional corre-

lation term cos(gτ)(ξ + ξ⊤) can heat or cool down the system’s steady-state, depending

only on the sign of cos(gτ). For instance, if the system and local ancillae initial states are

thermal states at the same temperature, the term cos(gτ)(ξ + ξ⊤) can dictate the action of

the CM as a thermal machine or a refrigerator depending only on the values of gτ .

6.2.2 General case

Proceeding analogously as in the nearest-neighbor correlations case presented above, we

can obtain the general evolution of a system interacting with NA ancillae, all correlated

with themselves, via BS interactions. Since the interactions are the same, the symplec-

tic matrices used in the nearest-neighbor correlations case (Eqs. (6.20) and (6.22)) still

describe the unitary dynamics. The only difference is in the initial environment state, its

covariance matrix σ0
E will have the most general form, given, for instance, in Eq. (6.13)

(for the case of NA = 5). We initialize with the joint system’s covariance matrix σ0
S ⊗ σ0

E

and, using Eq. (6.4), we proceed analogously as in the nearest-neighbor correlations case

for obtaining the evolution of the system-environment joint state covariance matrix. This

way, obtaining the local system’s covariance matrices from Eq. (6.5), we achieve the
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following chain of equations

σ1
S =s2σA1 + c2σ0

S,

σ2
S =c4σ0

S + c2s2σA1 + s2σA2 + cs2(ξ1,2 + ξ⊤1,2),

σ3
S =c6σ0

S + c4s2σA1 + c2s2σA2 + s2σA3 + c3s2(ξ1,2 + ξ⊤1,2) + c2s2(ξ1,3 + ξ⊤1,3) + cs2(ξ2,3 + ξ⊤2,3),

σ4
S =c8σ0

S + c6s2σA1 + c4s2σA2 + c2s2σA3 + s2σA4 + c5s2(ξ1,2 + ξ⊤1,2) + c4s2(ξ1,3 + ξ⊤1,3)

+ c3s2(ξ1,4 + ξ⊤1,4) + c3s2(ξ2,3 + ξ⊤2,3) + c2s2(ξ2,4 + ξ⊤2,4) + cs2(ξ3,4 + ξ⊤3,4),

... (6.27)

from which, after some observation, we can induce the pattern for the system’s covariance

matrix after the nth collision

σn
S = c2nσ0

S +
n∑

j=1

c2(n−j)s2σAj
+ s2

n−1∑
j=1

n∑
ℓ>j

c2n−j−ℓ(ξj,ℓ + ξ⊤j,ℓ). (6.28)

Although the very general status of the solution above, it will give us more interesting

results if we analyse more particular cases. First of all, if we suppose that again all ancillae

are equal σAj
= σA and using the geometric sum, we obtain

σn
S = c2nσ0

S + (1− c2n)σA + s2
n−1∑
j=1

n∑
ℓ>j

c2n−j−ℓ(ξj,ℓ + ξ⊤j,ℓ). (6.29)

The equation above shows that Homogenization is indeed achieved again if we have no

correlations, since in this case we have the steady-state σ∞
S = σ, if |c| < 1. Also, it

is worth to note that the third term of right hand side will be fully responsible for the

steering caused by the correlations and of the breaking of Homogenization. This term is

completely independent from the system’s initial state and from the ancillae local states.

6.2.3 Distance dependent correlations

We can proceed with a very intuitive restriction from the case above. That is, if the

correlations terms depend only on the distance between the ancillae, i.e., they only depend
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on ℓ− j = d

ξj,ℓ = ξ|j−ℓ| = ξd. (6.30)

This simplifies Eq. (6.29) to

σn
S = c2nσ0

S + (1− c2n)σA + s2
n−1∑
m=1

c2m
m∑
d=1

c−d(ξd + ξ⊤d ). (6.31)

Here, we can have another way of computing the evolution of the system in the

nearest-neighbors correlations case, by restricting ξd = δ1,dξ in the equation above, ar-

riving in the same results. But another interesting application is for the Algebraically

decaying correlations case, where we consider that the correlations decay exponentially

with the distance

ξd = K1−dξ, d = 1, 2, . . . , (6.32)

for some 2× 2 matrix ξ and K > 1. Using this choice in Eq. (6.31), we obtain

σn
S = c2nσ0

S + (1− c2n)σA +
Ks2

cK − 1

(
c2 − c2n

s2
− cn−1K1−n − 1

1− c−1K

)
(ξ + ξ⊤), (6.33)

where we used the geometric sum twice and made a few algebraic manipulations. From

the solution above, we obtain the system’s steady-state (for |c| < 1)

σ∞
S = σA +

cK

K − c
(ξ + ξ⊤). (6.34)

Now, notice that the case K ≳ 1 means long range correlations, while K ≫ 1 are related

to short range correlations. This short range correlations result is in total agreement with

the nearest-neighbors correlations result. Indeed, if we take the limit of K → ∞, the

steady-state of Eq. (6.34) reduces to the nearest-neighbors correlations steady-state of

Eq. (6.26), i.e.

σA +
cK

K − c
(ξ + ξ⊤)

K→∞−−−→ σA + c(ξ + ξ⊤).

On the other hand, for the long range correlations case, we have large values of the

correlations effects for small K. See, for instance, Fig. 6.1, which shows the behaviour of
cK
K−c

in function of gτ , for different values of K. For small values of K, the function cK
K−c
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Figure 6.1: Values of cos(gτ)K
K−cos(gτ)

× gτ for different values of K in the interval gτ ∈ [0, 2π].

increases dramatically for gτ close to 0 or 2π, amplifying the effects of the correlation

matrix ξ. As in the nearest-neighbor correlations case, the sign of the function multiplying

(ξ + ξ⊤) can be positive or negative. Although in this case, for small values of K, we see

a much larger potential to the positive sign case (heating the system) then negative sign

case (cool down the system).

6.2.4 Ancillae evolution

Here we will obtain each ancilla local covariance matrix after it’s collision with the state,

for the general case of initially correlated ancillae. Importantly, these local ancillae states

don’t suffer any change before and after the collision with the system. This can be seen

as a consequence of the no-signaling theorem.5

We use the exact same procedure used in Subsection 6.2.2. Analogously, we start with

the most general environment σ0
E and evolve the joint system σ0

S ⊗ σ0
E by using Eq. (6.4)

with the symplectic matrices of Eqs. (6.20) and (6.22). In the final step, we separate the

covariance matrix of the joint state as in Eq. (6.5), but we now take the local covariance

matrix of the evolved ancilla (inside the covariance matrix of the evolved environemnt
5The no-signaling theorem have clear statement and proofs in [1, 2, 91].
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σn
E), instead of taking the system’s covariance matrix. The result for the first four evolved

ancillae after their collisions is given in the following chain of equations

σ′
A1

= s2σS + c2σA1 ,

σ′
A2

= c2s2σS + c2σA2 + s4σA1 − cs2(ξ1,2 + ξ⊤1,2),

σ′
A3

= c4s2σS + c2σA3 + s4σA2 + c2s4σA1 + cs4(ξ1,2 + ξ⊤1,2)− c2s2(ξ1,3 + ξ⊤1,3)− cs2(ξ2,3 + ξ⊤2,3),

σ′
A4

= c6s2σS + c2σA4 + s4σA3 + c2s4σA2 + c4s4σA1 + c3s4(ξ1,2 + ξ⊤1,2) + c2s4(ξ1,3 + ξ⊤1,3)

− c3s2(ξ1,4 + ξ⊤1,4) + cs4(ξ2,3 + ξ⊤2,3)− c2s2(ξ2,4 + ξ⊤2,4)− cs2(ξ3,4 + ξ⊤3,4), (6.35)

where σ′
Aj

is the covariance matrix of the ancilla j after its collision with the system.

Analyzing the equations above, we induce that the covariance matrix an ancilla n ≥ 2

after its collision with the system is given by

σ′
An

= c2n−1s2σS + s4
n−1∑
k=1

c2(n−k−1)σAk
+ c2σAn +

n−1∑
m=1

n−1∑
n′>m

c2n−2−n′−ms4(ξm,n′ + ξ⊤m,n′)

−
n−1∑
m=1

cn−ms2(ξm,n + ξ⊤m,n). (6.36)

The equation above is quite general, but we can obtain more conclusive analysis by

making some restrictions. For studying the Homogenization case, we suppose that all

ancillae are initially identical σAj
= σA for every j. After supposing it in the equation

above, using the geometric sum and making algebraic simplifications, we obtain

σ′
An

= c2(n−1)s2(σS − σA) + σA +
n−1∑
m=1

n−1∑
n′>m

c2n−n′−m−2s4(ξm,n′ + ξ⊤m,n′)

−
n−1∑
m=1

cn−ms2(ξm,n + ξ⊤m,n). (6.37)

Clearly, for this case of initially identical ancillae, if we have null correlations terms and

|c| < 1, then σ∞
S = σ. This means that, after a large number of collisions, the ancilla

will practically not modify it’s state after interacting with the system. This agrees with

the last Homogenization condition (Eq. (2.48)) and it is the final step in order to show

that, in the absence of initial correlations between the ancillae, our CM of system and
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initially identical ancillae of bosonic modes, interacting via the BS, indeed corresponds

to the Homogenization in the bosonic case.

Again, if we make a restriction over the correlations matrix, making it only distance

dependent (Eq. (6.30)), we obtain

σ′
An

= c2(n−1)s2(σS − σA) + σA +
n−1∑
m=1

n−m−1∑
d=1

c2n−d−2m−2s4(ξd + ξ⊤d )

−
n−1∑
m=1

cds2(ξd + ξ⊤d ). (6.38)

In order to consider the cases studied in the previous Subsection for the system’s evolu-

tion, we suppose Algebraically decaying correlations, given by Eq. (6.32). Using this

type of correlations in the Equation above, we have, after using the geometric sum twice

and making algebraic manipulations

σ′
An

= c2(n−1)s2(σS − σA) + σA + Γn(K, gt)(ξ + ξ⊤), (6.39)

where

Γn(K, τ) = −s2KcK−1 − (cK−1)n

1− cK−1
+
s4K

c2

(
1

cK − 1

c2 − c2n

s2
− cK(c−1K)1−n − cK

(cK − 1)(1− c−1K)

)
,

c = cos(τ),

and s = sin(τ). (6.40)

The function Γn(K, τ) will dictate the correlations effects on the nth ancilla state after

its collision with the system. This function vanishes at the limit of large n, verily

Γ∞(K, τ) = −s2K cK−1

1− cK−1
+ s4K

(
1

(cK − 1)s2
+

c−1K

(cK − 1)(1− c−1K)

)
= −s2K cK−1

1− cK−1
+ s2K

(
cK−1

1− cK−1

)
= 0. (6.41)

Additionally, we see, from the plots of Figs. 6.2 and 6.3, that after oscillating in the first

collision, the function Γn(K, τ) converges monotonically to 0 for large n. Therefore, the
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Figure 6.2: Γn(K, gt) × n for different values of K, for g = 0.8 and t = 1 fixed.

Figure 6.3: Γn(K, gt) × n for different values of g, for K = 2 and t = 1 fixed.

effects of correlations in each ancilla decrease as the ancillae collides with the system

until they eventually vanish.

6.3 Constructing initially correlated ancillae from H-Graphs

In this Section, we describe a method for constructing an environment of bosonic ancillae

whose correlations depend only on the distance between the ancillae. This justifies the

form of the environment correlations supposed in the last Section (specially in Subsection

6.2.3) by means of a construction made with known systems and operations.

The procedure to create such environments is again by making use of Hamiltonian
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A

A

A

A

A

Figure 6.4: Example of a graph with ancillae in the vertices and the thickness of the edges
between them represent the strength of the correlations (in this case the correlations are
weaker for more distant ancillae), given by the adjacency matrix.

graph states or H-graphs [115, 131–135] and is completely analogous to the proce-

dure presented in Section 5.1 for qubits ancillae. However, due to the versatile tools

of continuous-variables, here we create a protocol of constructing environments with the

desired form of distance dependent correlations by using H-graphs. The protocol is de-

scribed as follows.

6.3.1 Constructing covariance matrix elements

If we want an environment with n bosonic modes, suppose initially that the environment

state is in the n-mode vacuum |ϕ⟩ = |0⟩⊗n. To create graph states, first we define the

unitary operator

V = e−ik
∑

i,j GijHij , (6.42)

where Gij are the elements of the adjacency matrix G representing a graph where the

vertices are the ancillae and the edges represent the interactions between them (see Fig.

6.4) and

Hij =
i

2

∑
ij

(â†i â
†
j − âiâj), (6.43)

is the two-mode squeezing interaction Hamiltonian between the modes i and j, the oper-

ator âi(â
†
i ) correspond to the anihilattor (creator) operator of the mode i. And the graph
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state is defined as the the application of this unitary in the vacuum

|ψE⟩ = V |ϕ⟩ . (6.44)

With the canonical commutation relations, one can show that evolution of the canoni-

cal operators for each mode i will be given by

V†q̂iV =
∑
j

Mij q̂j and (6.45)

V†p̂iV =
∑
j

M−1
ij p̂j, (6.46)

where

M = eGk. (6.47)

Consequently, we can compute the average of the anti-commutators of the canonical

operators, resulting in

1

2
⟨{qi, qj}⟩ =

1

2
(MM⊤)ij, (6.48)

1

2
⟨{pi, pj}⟩ =

1

2
[(M⊤M)−1]ij, and (6.49)

⟨qipj⟩ = 0. (6.50)

Supposing now that G is the adjacency matrix of a cyclic graph, then it must be a

circulant matrix [136].6 The diagonalization of such matrix is given by

G = OΛO†, (6.51)

where the elements of O are discrete Fourier transforms

Ol,m =
ei2πlm/n

√
n

, l,m = 0, · · · , n− 1, (6.52)

6Remembering, cyclic graphs are graphs in which the connection strength between the vertices only
depend on their distances. Hence the coefficients have the same value cj for each diagonal and cj = cn−j ,
for every 0 ≤ j ≤ n− 1, since we demand that the adjacency matrix must be symmetric. See, for instance,
Eq. (5.5).
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and Λ is the matrix of eigenvalues Λl,m = δl,mλk, where

λj = 2

(n−1)/2∑
l=0

cl cos(2πlj/n), (6.53)

assuming n odd for convenience.

From these equations and Eqs. (6.48), (6.49) and (6.50), we obtain, for cyclic graphs,

after algebraic manipulations

⟨qjqj′⟩ =
1

2n

∑
l

exp

[
i
2πl

n
(j − j′) + 2kλl

]
and

⟨pjpj′⟩ =
1

2n

∑
l

exp

[
i
2πl

n
(j − j′)− 2kλl

]
.

This results in equal local covariance matrices for the ancillae

σA =
1

2n

∑n−1
m=0 e

2kλm 0

0
∑n−1

m=0 e
−2kλm

 . (6.54)

And correlations block matrices depending only on the distance between the ancillae

ξd =

ξ(q)d 0

0 ξ
(p)
d

 , (6.55)

where

ξ
(q)
d = ⟨qjqj+d⟩ =

1

2n

n−1∑
m=0

ei2πdm/n+2kλm and (6.56)

ξ
(p)
d = ⟨pjpj+d⟩ =

1

2n

n−1∑
m=0

ei2πdm/n−2kλm . (6.57)

6.3.2 Constructing desired correlations from choosing the cyclic graph

Here we describe a protocol of obtaining a desired form of correlation term ξ
(q)
d by choos-

ing properly the coefficients of the adjacency matrix.
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First notice that we can rewrite Eq. (6.56) as

ξ
(q)
d =

n−1∑
l=0

ale
iθdl, (6.58)

where al = e2kλl
2n

and θd = 2πd
n

. Now, since λn−l = λl, we have that an−l = al, addition-

ally, from λl = λ−l we also have al = a−l. Using these facts, we can write7

n−1∑
l=0

ale
iθdl =

(n−1)/2∑
l=−(n−1)/2

ale
iθdl. (6.59)

Therefore, for large number of ancillae n, we can approximate ξ(q)d to a Fourier Series

ξ
(q)
d =

∞∑
l=−∞

ale
iθdl, (6.60)

from which we can obtain the coefficient of the series

al =
1

2π

∫ 2π

0

ξ
(q)
d e−iθdldθd, (6.61)

where θd = 2πd
n

approaches to a continuous variable due to the large n approximation.

We therefore obtained a formula for al given a desired form of distance dependent cor-

relation ξ(q)d . Inverting the definition of al, we obtain the adjacency matrix G eigenvalues

in function of ξ(q)d

λl =
log(2nal)

2k
. (6.62)

Finally, from the eigenvalues of the circulant adjacency matrix G, we can obtain its co-

efficients by noticing that, from Eq. (6.53), if we go to the large n limit, the eigenvalues

will also be a Fourier Series

λ(θl) =
∞∑
l=0

2cj cos(jθl), (6.63)

where θl = 2πl
n

. From this Fourier Series we obtain the coefficients

7One can prove this equation by noticing that
∑n−1

l=0 ale
iθdl =

∑(n−1)/2
l=0 ale

iθdl +
∑n−1

l=(n+1)/2 ale
iθdl

and using an−l = al, al = a−l and θd = 2πd
n to show that

∑n−1
l=(n+1)/2 ale

iθdl =
∑−1

l=−(n−1)/2 ale
iθdl.
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c0 =
1

4π

∫ π

−π

λ(θl)dθl and

cj =
1

2π

∫ π

−π

λ(θl) cos(jθl)dθl for j ≥ 1,

(6.64)

(6.65)

where θj approaches to a continuous variable for large n. Whence, from Eqs. (6.61),

(6.62), (6.64) and (6.65) we have a procedure of obtaining the coefficients of the circu-

lant adjacency matrix G from a desired correlation term ξ
(q)
d depending on the distance

between the ancillae.

6.3.3 Application to the Algebraically decaying correlations case

As an important example, which generate an environment as the one used in Subsection

6.2.3, we apply these results to find the coefficients for the adjacency matrix of the cyclic

graph which generates the graph state environment with correlations depending on the

distance d described by

ξ
(q)
d = K1−dξ

(q)
0 , (6.66)

where ξ(q)0 is a real number and K > 1.

From using Eq. (6.61), we obtain

al = 2nK log(K)
1− (−1)lK−n/2

4π2l2 + n2 log2(K)
ξ
(q)
0 , (6.67)

and after some manipulations we can write, for large n

a(θl) =
2K log(K)

n

1

θ2l + log2(K)
ξ
(q)
0 ,

where θl = 2πl
n

. Moreover, from Eq. (6.62) we obtain

λ(θl) =

[
1

2k
log(4K log(K))− 1

2k
log
(
θ2l + log2(K)

)]
ξ
(q)
0 .

Finally, for obtaining the coefficients of G, we must evaluate the integrals from Eqs.

121



Chapter 6. Initially Correlated Ancillae - Gaussian States CM

Figure 6.5: Correlations (ξ(q)d ) × d: distance of the neighbor ancilla from the first ancilla.
The blue line is the correlation given by Eq. (6.66) mirrored from n/2, while the red line
is the correlation of the graph state generated by our method. The parameters are k = 1.0,
ξ
(q)
0 = 1.0 and K = 1.05, with n indicated above the plots.

(6.64) and (6.65)

c0 =
1

4π

∫ π

−π

[
1

2k
log(4K log(K))− 1

2k
log
(
θ2l + log2(K)

)]
ξ
(q)
0 dθl and (6.68)

cj =
1

2π

∫ π

−π

[
1

2k
log(4K log(K))− 1

2k
log
(
θ2l + log2(K)

)]
ξ
(q)
0 cos(jθl)dθl for j ≥ 1.

(6.69)

To obtain such coefficients, these integrals must be computed numerically.

A cyclic graph has its vertices disposed in a form of a ring (see, for instance, Figs. 5.1

and 6.4). Therefore, if we want correlations in the form of Eq. (6.66), the correlations

of the first ancilla with its neighbors will decay in relation to its nearest-neighbors and

then raise again, since the last neighbors close the ring. In Figs. 6.5, 6.6, 6.7 and 6.8 we
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Figure 6.6: Correlations (ξ(q)d ) × d: distance of the neighbor ancilla from the first ancilla.
The blue line is the correlation given by Eq. (6.66) mirrored from n/2, while the red line
is the correlation of the graph state generated by our method. The parameters are k = 1.0,
ξ
(q)
0 = 1.0 and K = 2.0, with n indicated above the plots.

Figure 6.7: Correlations (ξ(q)d ) × d: distance of the neighbor ancilla from the first ancilla.
The blue line is the correlation given by Eq. (6.66) mirrored from n/2, while the red line
is the correlation of the graph state generated by our method. The parameters are k = 1.0,
ξ
(q)
0 = 1.0 and K = 5.0, with n indicated above the plots.

plotted the values of the correlations of the first ancilla with its neighbors. We computed

the correlations according to Eq. (6.66) mirrored in n/2, mimicking the behaviour of the

correlations between ancillae disposed in a ring form, and computed the correlations of

the graph states generated by using Eqs. (6.68) and (6.69) to prepare the coefficients for

the adjacency matrix G and using Eqs. (6.48), (6.49) and (6.50) to obtain the covariance

matrix elements (and correlations) of the graph state. In these plots we can see a good

match between the correlations generated by the graph states and the desired form of the

mirrored Eq. (6.66).

From choosing the parameters k = 1.0 and ξ(q)0 = 1.0 we see that our method using

graph states creates the desired correlations mostly if K is not too close to 1.0, but for

K = 1.05 a number of n = 100 of ancillae causes a match between the correlations

which is almost perfect, as can be seen in Fig. 6.5. However, for values of K too big, we

don’t have a very satisfactory match, even for a number of n = 100 ancillae, as can be
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Figure 6.8: Correlations (ξ(q)d ) × d: distance of the neighbor ancilla from the first ancilla.
The blue line is the correlation given by Eq. (6.66) mirrored from n/2, while the red line
is the correlation of the graph state generated by our method. The parameters are k = 1.0,
ξ
(q)
0 = 1.0 and n = 100, with K indicated above the plots.

seen in Fig. 6.8.

Therefore, we conclude that for a region of 1.5 ≲ K ≲ 10.0 and n ≳ 50, our method

of creating an environment with correlations in the form of Eq. (6.66) with graph states

is satisfactory.

6.3.4 Analysing ξ(p)d

If we use the method described above to create the desired correlations ξ(q)d in graph states,

we automatically constrain the correlations referring to the ξ(p)d canonical operators p̂. In

fact, from Eq. (6.57), we can write

ξ
(p)
d =

(n−1)/2∑
l=−(n−1)/2

ble
i2πdl/n, (6.70)

where bl = e−2kλk

2n
. And we also have, by definition, that the coefficient of the correlation

ξ
(q)
d is al = e2kλk

2n
, therefore we can relate them by

bl =
1

4aln2
, (6.71)

from which we conclude that ξ(p)d is completely fixed by ξ(q)d .

As an example, we take again the case of Algebraic correlations from Eq. (6.66). In
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this case we have, from the equation above and from Eq. (6.67), for large n

bl =
4π2l2 + n2 log(K)2

2nK log(K)

1

4n2
. (6.72)

Applying this in Eq. (6.70) and making a large n approximation, we obtain

ξ
(p)
d =

(n−1)/2∑
l=−(n−1)/2

4π2l2 + n2 log(K)2

2nK log(K)

1

4n2
ei2πdl/n

≈
∫ π

−π

θ2 + log(K)2

16πK log(K)
eiθddθ

=
(−1)d

4πK log(K)d2
. (6.73)

Therefore, for creating a correlation of Eq. (6.66) type for ξ(q)d , we must obtain an

oscillating correlation decaying with d2 type for ξ(p)d . This oscillating ξ(p)d is also obtained,

for instance, if we create prepare the correlations from a nearest-neighbor interaction

graph state (see Ref. [93]).

Fortunately, despite we cannot create correlation terms ξ(q)d and ξ
(p)
d which decay

equally with the distance, their effect in the initially correlated CM always act linearly

in the system’s evolution (see Eq. (6.31)). Hence, such correlations affect differently the

system’s evolution and can be computed separately.
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Chapter 7

Obtaining Observables Shifts Using

QBNs

This is the first Chapter about the second main project of this thesis. This project has as its

principal goal to compute the statistics of the heat distribution between two initially corre-

lated parties using Quantum Bayesian Networks (QBNs), described in Subsection 3.4.2.

The QBN formalism, inspired mostly in Ref. [48], has the advantage of estimating a prob-

ability distribution for a process to happen during a system’s evolution without supposing

that a measurement is made. This is opposite to the most commonly used Two-Point Mea-

surement (TPM) protocol [33–35]. For the TPM protocol, two measurements are made to

obtain the outcome of a desired observable for the party of interest at two points in time,

this way the change of the observable is obtained during the process. The unwanted char-

acter of this procedure is the fact that after each measurement the backaction completely

destroys the coherence of the joint state density matrix, therefore consuming the quantum

correlation between the parties. The presence of initial correlations can cause interesting

effects on thermodynamic processes, one of our main influences is the inversion of heat

flow caused by initial correlations [50–53]. Hence, finding a reliable way of computing

the statistics of observable in such processes can be a fruitful objective.

The major goal of finding the heat distribution with the use of QBNs is achieved for a

particular case in Chapter 8, when we compute the heat distribution between two initially

correlated bosonic modes. In this present Chapter we construct a more general formalism

used to compute the statistics for the change of any local observable during a process in
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which the party of a joint system evolves. In the second part of the Chapter we apply, as

an example, such general results for the case where the two parties are qubits, recovering

part of the results of Refs. [48] and [54]. In the final part of the Chapter, we bring our

analysis about the consequences of choosing different ensembles for the initial density

matrix of the joint system over the QBN statistics, since we found out that this statistics

is dependent on the initial density matrix ambiguity of mixtures. This last enquiry creates

important interpretative caveats and thus will be one of the main questionings of this

project.

7.1 General results

7.1.1 Statement of the problem

The setup is the same as the one described in Subsection 3.4.2. As already stated, the

system is composed by to parties A and B and we suppose that they evolve according to

a unitary operator U(t). The joint system starts its evolution in the state

ρAB(0) =
∑
s

Ps |ψs(0)⟩ ⟨ψs(0)| , (7.1)

where {Ps, |ψs(0)⟩}s is an ensemble of quantum states, and we have the observable OA(t)

(which can be time dependent) acting in A and OB(t) in B with eigenvalues (eigenvec-

tors) {ai(t)}i ({|ai(t)⟩}i) and {bj(t)}j ({|bj(t)⟩}j), respectively. Then, the QBN infer

that the probability of the joint system to be in the states (|a0, b0⟩ , |a1, b1⟩ · · · , |an, bn⟩) in

the respective time instants (0, t1, · · · , tn) is (see the deduction of Eq. (3.44) and Fig. 3.4

for the Beaysian Network graph)

P (a0, b0, a1, b1, · · · , an, bn) =
∑
s

PsP (a0, b0|ψs(0))P (a1, b1|ψs(t1)) · · ·P (an, bn|ψs(tn)),

(7.2)
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where

P (ak, bk|ψs(t)) = | ⟨ak, bk|ψs(t)⟩ |2

= | ⟨ak, bk|U(t) |ψs(0)⟩ |2 (7.3)

is the conditional probability for the joint state to be in |ak, bk⟩ given that the system

started at |ψs(0)⟩.

Here we use the BQN formalism to infer the statistics of the observable OA(t) change

∆OA during a proces, i.e., as the system evolves between two points in time. Accordingly,

we only need the conditional trajectory probability distribution of Eq. (7.2) for two points

in time

P(a0, b0, at, bt) =
∑
s

PsP (a0, b0|ψs(0))P (at, bt|ψs(t)), (7.4)

where we rename t1 = t and a1(b1) = at(bt).

Importantly, this conditional trajectory probability distribution satisfies standard prob-

ability distribution marginalization properties. Consider, for instance,

∑
b0,bt

P(a0, b0, at, bt) =
∑
b0,bt,s

Ps| ⟨a0, b0|ψs(0)⟩ |2| ⟨at, bt|ψs(t)⟩ |2

=
∑
s

Ps ⟨ψs(0)|a0⟩

(∑
b0

|b0⟩ ⟨b0|

)
⟨a0|ψs(0)⟩ ⟨ψs(t)|at⟩

(∑
bt

|bt⟩ ⟨bt|

)
⟨at|ψs(t)⟩

=
∑
s

Ps| ⟨a0|ψs(0)⟩ |2| ⟨at|ψs(t)⟩ |2

= P(a0, at). (7.5)

And analogously, we have
∑

a0,at
P(a0, b0, at, bt) = P(b0, bt). Furthermore, consider the
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sum

∑
a0,b0

P(a0, b0, at, bt) =
∑
s,a0,b0

Ps| ⟨a0, b0|ψs(0)⟩ |2| ⟨at, bt|ψs(t)⟩ |2

=
∑
s

Ps ⟨ψs(0)|

(∑
a0,b0

|a0, b0⟩ ⟨a0, b0|

)
|ψs(0)⟩ ⟨ψs(t)|at, bt⟩ ⟨at, bt|ψs(t)⟩

= ⟨at, bt|

(∑
s

Ps |ψs(t)⟩ ⟨ψs(t)|

)
|at, bt⟩

= ⟨at, bt| ρAB(t) |at, bt⟩ , (7.6)

which is the standard probability distribution P (at, bt) obtained from the postulates of

Quantum Mechanics. Analogously we also obtain
∑

at,bt
P(a0, b0, at, bt) = ⟨a0, b0| ρAB(0) |a0, b0⟩.

With the use of this conditional probability, we can construct the probability of ob-

taining a change ∆a in the observable OA(t) during two points in time

p(∆OA = ∆a) =
∑
at,a0

δ(∆a− (at − a0))P(a0, at). (7.7)

Our main enquiry in this Chapter and in Chapter 8 is to investigate the aspects of this

probability distribution, and how the initial correlations between the parts of the global

system affect it. Notice that this change can represent thermodynamic quantities. For

instance, for the case where OA is the Hamiltonian of the subsystem A, for a global time-

independent Hamiltonian, the quantity ∆OA will be the heat.

7.1.2 Characteristic function of the change probability distribution

In order to obtain an useful expression for the probability distribution of Eq. (7.7), we can

resort to the characteristic function of it

GOA
(k) =

∫ ∞

−∞
(d∆a) eik∆a p(∆OA = ∆a). (7.8)

Using Eq. (7.7) in the definition above, we obtain

GOA
(k) =

∑
a0,at

eik(at−a0)P(a0, at). (7.9)
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Proceeding, we expand the distribution P(a0, at) in the equation above, then we have1

GOA
(k) =

∑
at,a0,s

eik(at−a0)Ps| ⟨a0|ψs⟩ |2| ⟨at|U(t) |ψs⟩ |2

=
∑
at,a0,s

Ps⟨a0|ψs⟩⟨ψs|e−ika0|a0⟩⟨at|U(t)|ψs⟩⟨ψs|U †(t)eikat|at⟩

=
∑
at,a0,s

Ps⟨a0|ψs⟩⟨ψs|e−ikOA(0)|a0⟩⟨at|U(t)|ψs⟩⟨ψs|U †(t)eikOA(t)|at⟩

=
∑
s

Ps⟨ψs|e−ikOA(0)

(∑
a0

|a0⟩⟨a0|

)
|ψs⟩⟨ψs|U †(t)eikOA(t)

(∑
at

|at⟩⟨at|

)
U(t)|ψs⟩

=
∑
s

Ps ⟨ψs| e−ikOA(0) |ψs⟩ ⟨ψs|U †(t)eikOA(t)U(t) |ψs⟩ . (7.10)

From which we obtain the result

G∆OA
(k) =

∑
s

Ps ⟨ψs| e−ikOA(0) |ψs⟩ ⟨ψs| eikOAH
(t) |ψs⟩ . (7.11)

where

OAH
(t) = U †(t)OA(t)U(t) (7.12)

is the operator OA(t) in the Heisenberg picture.

An important comment that can be made here about the characteristic function of Eq.

(7.11) is that it has a non-trivial dependence on the choice for the ensemble of pure states

to represent the initial density matrix of the joint state (Eq. (7.1)).

7.1.3 Statistical moments of the change probability distribution

An important utility for the characteristic function is that we can easily obtain formulae

for the statistic moments of the random variables from it. This can be done, for the

characteristic function of the distribution above, by the equation2

⟨(∆OA)
n⟩ = (−i)n∂

n (GOA
(k))

∂kn

∣∣∣
k=0

. (7.13)

1From now on, we call |ψs⟩ = |ψs(0)⟩ for simplicity.
2This relation between statistical moments and the characteristic function can be obtained simply by

direct differentiation of Eq. (7.8) and setting k = 0.
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Using this equation in the result of Eq. (7.11), we obtain the average of OA(t)

⟨∆OA⟩ =
∑
s

Ps ⟨ψs| (OAH
(t)−OA(0)) |ψs⟩ , (7.14)

which can be rewritten as

⟨∆OA⟩ = Tr {(OAH
(t)−OA(0))ρAB(0)} . (7.15)

And obtain the second moment of OA(t)

⟨(∆OA(t))
2⟩ =

∑
s

Ps

(
⟨ψs|

(
(OAH

(t))2 + (OA(0))
2
)
|ψs⟩ − 2 ⟨ψs| OA(0) |ψs⟩ ⟨ψs| OAH

(t) |ψs⟩
)
.

(7.16)

For higher moments the results will be more complex, but with similar aspect. We restrict

the focus to these two moments since they will already expose the desired attributes of

the probability distribution for our analysis.

7.1.4 Comparison with TPM

Here we will compare our results for the statistics obtained using QBN with the standard

TPM statistics.3 The TPM supposes that measurements are made for two points in time

in order to obtain the variation (or change) of some observable. So, supposing the same

bipartite setup presented to the QBN case in Subsection 7.1.1, we additionally suppose

that a projective measurements is made initially in the eigenbasis {|a0⟩}a0 of the operator

OA(0) and finally in the eigenbasis {|at⟩}at of the operator OA(t). The probability of

the initial global system ρAB(0) to have outcomes a0 and at, respectively, in these two

measurements is

PTPM(a0, at) = P (at|a0)P (a0), (7.17)

where P (a0) = Pa0 = ⟨a0| ρA(0) |a0⟩, with ρA = TrB(ρAB(0)), is the probability of the

first measurement to have an outcome a0. While P (at|a0) is the probability of having an

outcome at for the second measurement after the backaction of the first measurement and
3In Section II of Ref. [34] the TPM statistics is presented in details.
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the evolution between them

P (at|a0) = Tr
{
|at⟩ ⟨at|U(t)ρ′AB(0)U

†(t) |at⟩ ⟨at|
}
, (7.18)

where ρ′AB(0) =
|a0⟩⟨a0|ρAB(0)|a0⟩⟨a0|

Pa0
is the backaction of ρ after the first measurement and

U(t) is the unitary evolution operator between the two measurements.

If now we desire to obtain the probability of a change ∆a in the observable OA(t)

with this probability distribution, we define

pTPM(∆OA = ∆a) =
∑
at,a0

δ(∆a− (at − a0))PTPM(a0, at). (7.19)

Using Eqs. (7.17) and (7.18), we obtain (see Appendix D for the computation) the fol-

lowing characteristic function for this probability distribution

GOATPM
(k) = Tr

{
eikOAH

(t)e−ikOA(0)DOA(0)(ρAB(0))
}
, (7.20)

where DOA(0)(•) =
∑

a0
|a0⟩ ⟨a0|•|a0⟩ ⟨a0| is the dephasing operator for the eigenvectors

{|a0⟩}a0 of OA(0).

The only dependence of the joint system initial state in this characteristic functions

is given by DOA(0)(ρAB(0)). Thus all contributions from the initial coherence, in the

eigenbasis of OA(0) vanish in contrast with the QBN characteristic function of Eq. (7.11)

which takes into account the coherence of the initial state. Importantly, the QBN char-

acteristic function of Eq. (7.11) is equivalent to the TPM characteristic function in Eq.

(7.20) for the case where [ρAB(0),OA(0)] = 0, which is the case where there is no coher-

ence for the initial state in the eigenbasis of OA(0).

7.2 Application to qubits

Here we apply our general results to the case where the systems A and B are qubits. As

already said, our main goal is to obtain the heat probability distribution during an interac-

tion taking into account the effects of the initial correlations between the parties. Among

other results, this predicts the inversion of the heat flow caused by initial correlations.
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The first experimental observation of this fact was obtained for this two-qubit setup in

Ref. [54] and we describe this statistics with our results using QBNs. Reference [48],

which initially proposed QBNs, also described the statistics of [54] using QBNs. Thus

our analysis with two-qubit systems will serve as a sanity check for our methods of ob-

taining the statistical moments of the heat probability distribution and its characteristic

function.

7.2.1 Setup and statistical moments

We suppose that the two qubits have local Hamiltonians HA(B) = ω0(1 − σ
A(B)
z )/2,

interacting via the unitary

U(g, t) = e−it π
2g

(σA
+⊗σB

−+σA
−⊗σB

+ ), (7.21)

for σ+(−) defined according to Eq. (2.33). The joint system starts at the state

ρAB(0) = ρAth ⊗ ρBth + χAB, (7.22)

where

ρ
A(B)
th =

1

(1 + e−ω0βA(B))

1 0

0 e−ω0βA(B)

 ,

are the locally thermal states4 and the term

χAB =


0 0 0 0

0 0 α 0

0 α∗ 0 0

0 0 0 0

 ,

is responsible for the coherence and correlations between the parties with α satisfying

|α| ≤ exp [−ω0(βA + βB)] /
(
(1 + e−ω0βA)(1 + e−ω0βB)

)
for the positivity of the density

4These locally thermal states are different from the one described at Appendix A, Section A.4, only due
their local Hamiltonians. Also, the unitary of Eq. (7.21) is simply the Partial SWAP of Eq. (2.44) multiplied
by a phase. The slight differences in these definitions from the previous Chapters are made in order to have
a better comparison with the results of Ref. [48].
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matrix. In fact, the mutual information between the parties is 0 when α is null and reaches

its maximum when |α| = |α∗| = exp [−ω0(βA + βB)] /
(
(1 + e−ω0βA)(1 + e−ω0βB)

)
, as

well its geometrical quantum discord5 has its maximum when α = ±i|α∗| [54].

We define the heat received by the subsystemA as the change of the local Hamiltonian

HA during the evolution from time 0 to t

QA(t) = ∆HA. (7.23)

Using the result of Eq. (7.14) for the average of the change of an operator, we have

⟨QA(t)⟩ = Tr
{(
U †(g, t)HAU(g, t)−HA

)
ρAB(0)

}
. (7.24)

Computing the trace under the conditions described above, we obtain

⟨QA(t)⟩ = ω0

[
Im(α) sin

(
πt

g

)
+

1

2
sin2

(
πt

2g

)(
tanh

(
ω0βA
2

)
− tanh

(
ω0βB
2

))]
.

(7.25)

This result describes correctly the heat flow inversion caused by the initial correlations

between the two qubits. This can be achieved for negative values of Im(α), as can be

seen in Fig. 7.1. In this figure we can spot the heat average initially going from the

colder system A to the hotter system B for the cases where Im(α) < 0 and a stronger

manifestation of such effect for the case with maximum correlation, i.e., for Im(α) =

− e−ω0(βA+βB)/2

(1+e−ω0βA )(1+e−ω0βB )
.

Additionally, with the result of Eq. (7.16), we can obtain the second moment of the

heat probability distribution

⟨Q2
A(t)⟩ =

∑
i

λi(⟨λi|
(
(U †(g, t)HAU(g, t))

2 +H2
A

)
|λi⟩

− 2 ⟨λi|HA |λi⟩ ⟨λi|U †(g, t)HAU(g, t) |λi⟩), (7.26)

where {λi}i and {|λi⟩}i are the eigenvalues and eigenvectors of the initial density ma-

trix ρAB(0). We choose to compute the second moment in the eigenvector ensemble of

the initial density matrix since it is the ensemble which causes the smaller variance (to

5An alternative quantifier of quantum discord [137, 138]
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Figure 7.1: Heat (in unites of ω0)/ Variance of the heat (in unites of ω2
0) × t. The blue

lines represent the heat received by A and the blue dashed lines represent the variance
of the heat when the the qubits are initially correlated. The red lines represent the heat
received by A and the red dashed lines represent the variance of the heat when the the
qubits are initially uncorrelated. The parameters are g = 1, βA = 2/ω0 and βB =
1/ω0. Each plot has a different value of α. In the first line we have, from left to right,
Im(α) = − e−ω0(βA+βB)/2

(1+e−ω0βA )(1+e−ω0βB )
and Im(α) = + e−ω0(βA+βB)/2

(1+e−ω0βA )(1+e−ω0βB )
, and in the second

line Im(α) = −1/20 and Im(α) = +1/20.
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be seen in the next section). With this, we compute (see Fig. 7.1) numerically the heat

variance Var(QA)(t) = ⟨Q2
A(t)⟩ − ⟨QA(t)⟩2 for different choices of α for βA = 2/ω0

and βB = 1/ω0, i.e., initially A colder than B. For both negative and positive val-

ues of Im(α), the presence of correlations decreases considerably the maximum of the

variance. Interestingly, for the cases where the mutual information has its maximum

Im(α) = ± e−ω0(βA+βB)/2

(1+e−ω0βA )(1+e−ω0βB )
we have a higher diminishing of the variance than in the

smaller correlation case of Im(α) = ±1/20. This seems to indicate that the greater the

correlations, the smaller the variance.

7.2.2 Obtaining the probability distribution

We can compute the characteristic function for the heat probability distribution using the

result of Eq. (7.11) to the conditions above, obtaining

GQA
(k) =

∑
s

λs ⟨λs| e−ikHA |λs⟩ ⟨λs| eikU
†(g,t)HAU(g,t) |λs⟩ . (7.27)

As a sanity check, we computed the probability distribution of the heat from this

characteristic function numerically by applying the inverse Fourier transform on it for a

set of parameters. We compared it to the probability distributions obtained in Ref. [48]

and they matched perfectly.

The probability distributions of Ref. [48] are

P (QA = −ω0) =
eω0βB

(
eω0βA/2 cos

(
πt
2g

)
+ eω0βB/2 sin

(
πt
2g

))2
(eω0βA + 1) (eω0βB + 1) (eω0βA + eω0βB)

,

P (QA = 0) =

(
eω0βA + eω0βB

) (
2 + eω0βA + eω0βB + 2eω0(βA+βB)

)
+
(
eω0βA − eω0βB

)2
cos
(

πt
g

)
2 (eω0βA + 1) (eω0βB + 1) (eω0βA + eω0βB)

+
2eω0(βA+βB)/2

(
eω0βA − eω0βB

)
sin
(

πt
g

)
2 (eω0βA + 1) (eω0βB + 1) (eω0βA + eω0βB)

,

P (QA = +ω0) =
eω0βA

(
eω0βB/2 cos

(
πt
2g

)
− eω0βA/2 sin

(
πt
2g

))2
(eω0βA + 1) (eω0βB + 1) (eω0βA + eω0βB)

.

As an example, in Fig. 7.2 we plot the probability distributions of QA = −ω0, QA = 0

and QA = +ω0 computed numerically for initial states ρAB(0) with βA = 2/ω0, βB =
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Figure 7.2: P (QA)× t, for different values of QA, computed numerically with the inverse
Fourier transform of the characteristic function of Eq. (7.27). The initial joint state is pre-
pared at ρAB(0) of Eq. (7.22) with βA = 2/ω0, βB = 1/ω0, α = −i e−ω0(βA+βB)/2

(1+e−ω0βA )(1+e−ω0βB )

and we have g = 1.

1/ω0 and α = −i e−ω0(βA+βB)/2

(1+e−ω0βA )(1+e−ω0βB )
during an evolution in time. These plots match

perfectly with the curves of the probabilities above.

7.3 Dependence on the ambiguity of mixtures

In the results of Eqs. (7.11) and (7.16) an explicit dependence can be verified of the

characteristic function and of the second moment of the change ∆OA on the choice of the

ensemble of states {Ps, |ψs⟩}s for the mixture of states in the initial density matrix of Eq.

(7.1).6 Therefore, this dependence is present in the probability distribution of ∆OA. The

dependence is a consequence from the fact that our construction of the QBN is a causal

network stemming from different possible initial states. Although different choices of

these initial states result in the same initial density matrix, they don’t necessarily cause

the same chain of events with the same chances of occurring.

A compelling result is that, although we have a probability distribution dependence

on the ambiguity of mixtures, the average of the ∆OA has not. This can be clearly seen

in the result of Eq. (7.15). On the other hand, the second moment does depend on the

ensemble choice for the initial density matrix, and thus the variance will also depend on

it.
6Remember that in further equations after Eq. (7.1) we omitted the (0) in |ψs(0)⟩ for simplicity of

notation.
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7.3.1 The variance for the qubits case

Due to its importance on the statistics of a random variable, we analyse in more details the

variance dependence on the ambiguity of mixtures. We compute its values for different

choices of ensembles of the initial density matrix for the case of qubits states described in

Sec. 7.2. Here, the random variable under analysis is the heat received byA: ∆HA = QA.

We obtain the variance of the heat

Var(QA)(t) = ⟨Q2
A(t)⟩ − ⟨QA(t)⟩2, (7.28)

from Eq. (7.24) for computing the average and Eq. (7.16) for computing the second

moment, from which we have

⟨Q2
A(t)⟩ = Tr

{(
(U †(g, t)HAU(g, t))

2 +H2
A

)
ρAB(0)

}
− 2

∑
s

Ps ⟨ψs|HA |ψs⟩ ⟨ψs|U †(g, t)HAU(g, t) |ψs⟩ , (7.29)

depending on the ensemble {Ps, |ψs⟩}s of the initial density matrix.

For generating a set of different ensembles for the same initial density matrix ρAB(0),

we recall a seminal result from Ref. [139]. This Reference reveals that, given a density

matrix ρ with an eigen-ensemble7 {λi, |λj⟩}j , we can generate an ensemble {Pi, |ψi⟩}i
of ρ with the formula

√
Pi |ψi⟩ =

k∑
i=1

√
λjMij |λi⟩ , i = 1, · · · , r, (7.30)

where k = dim(Support(ρ)),8 r ≥ k and Mij are the elements of any r × k matrix M

7An eigen-ensemble of a density matrix ρ is an ensemble of ρ in which all elements are orthonormal
eigenvectors.

8The set Support(ρ) is the linear space spanned by the set of eigenvectors or ρwith non-zero eigenvalues.
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whose columns are orthonormal vectors in Cr.9

Using this result, we suppose an initial state ρAB(0) given by Eq. (7.22) with βA =

2/ω0, βB = 1/ω0 and α = −i exp [−ω0(βA + βB)] /
(
(1 + e−ωβA)(1 + e−ωβB)

)
. For the

generation of eight different equivalent ensembles of ρAB(0), we used Eq. (7.30) with

eight different choices of matrices M (see the matrices chosen in Appendix D). In Fig.

7.3 we see the variance in function of time computed using such ensembles in Eq. (7.29)

and compared with the computation of the variance using the eigen-ensemble. We clearly

see the pattern that the variance computed in general ensembles are greater than or equal

to to the variance computed in an eigen-ensemble.

From these results and from further results of Chapter 8, we postulate that:

The eigen-ensemble is the choice of ensemble which minimizes the vari-

ance of the probability distribution for a change of an observable using a

QBN.

The meaning of this postulate is in our supposition that the presence of indistinguisha-

bility between non-orthogonal states of an ensemble can increase the variance of a distri-

bution generated by such ensemble. Therefore, the postulate is a consequence of notic-

ing that the eigen-ensembles are the only ones without such superpositions. In Fig. 7.3

we see that, for the case of the matrices M7 and M8 (see Appendix D), the ensembles

are also composed by eigenvectors of ρAB(0) but they are non-orthogonal to each other.

Consequently, their variances have higher values than the ones generated for an eigen-

ensemble.10 Furthermore, the matrix M8 generates a more superposed ensemble than the

one generated by M7, hence we can see a larger variance in this case.
9This can be proved simply by noticing that, given Pi and |ψi⟩ defined by Eq. (7.30), we have

r∑
i=1

Pi |ψi⟩ ⟨ψi| =
r∑

i=1

k,k∑
l=1,m=1

M∗
ilMim

√
λmλl |λm⟩ ⟨λl|

=

k∑
m=1

λm |λm⟩ ⟨λm|

= ρ, (7.31)

where in the second equality we used that the columns of M are orthonormal vectors.
10Remember that the eigen-enesemble definition demands that the vectors are orthogonal among them,

in addition to be eigenvectors.
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Figure 7.3: Variance of QA (in units of ω2
0) × t. The green curves represent the vari-

ance computed with the ensembles generated by the respective matrix M (see Appendix
D) with the use of Eq. (7.30) while the gray curves represent the variance computed in
an eigen-ensemble. The initial state ρAB(0) is given by Eq. (7.22) with βA = 2/ω0,
βB = 1/ω0 and α = −i exp [−ω0(βA + βB)] /

(
(1 + e−ωβA)(1 + e−ωβB)

)
. For the uni-

tary U(g, t) we have g = 1.
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Chapter 8

Heat Exchanged Between Bosonic

Modes

As already mentioned, the second project of this thesis has as its main goal to obtain

the probability distribution of the heat exchanged by two systems using QBNs due to its

advantage to describe the statistics of initially correlated quantum systems. In this Chapter

we obtain analytical results for the probability distribution of the heat exchanged between

two initially correlated bosonic modes. The analytical formulae are possible thanks to

the continuous-variables methods and we use them to analyze some of the general QBNs

probability distributions characteristics given in Chapter 7 and specific meaningful results

concerning bosonic systems heat exchange.

We begin this Chapter by exposing our main results concerning the characteristic func-

tion of the heat distribution, its average and its variance and exploring some features of

such results. In the final part of the Chapter we discuss the consequences of the ambiguity

of mixing of the initial density matrix in the heat statistics obtained.
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8.1 Probability distribution for the heat exchanged

8.1.1 Statement of the problem

We suppose that the systems A and B are bosonic modes with local Hamiltonians

HA(B) = ω

(
â†(b̂†)â(b̂) +

1

2

)
, (8.1)

where â(â†) and b̂(b̂†) are the annihilator (creator) operators of the modes in A and B,

respectively. Their interaction is given by the Beam-Splitter unitary

U(t) = e−itHBS , (8.2)

where

HBS = ig(â†b̂− b̂†â). (8.3)

Let the initial density matrix of the joint system be

ρAB(0) =
∑
s

Ps |ψs⟩ ⟨ψs| , (8.4)

where {Ps, |ψs⟩}s is an ensemble of states. The heat will again be defined as the change

of the local Hamiltonian of A, i. e., QA = ∆HA and therefore the probability distribution

of this quantity can be obtained from

P (QA = ∆a) =
∑
a0,at

δ(∆a− (at − a0))P(a0, at), (8.5)

where {ai}i are the eigenvalues of HA. The probability distribution above P(a0, at) is

obtained from the QBN methods described in Sections 3.4 and 7.1. The distribution is

given by

P(a0, at) =
∑
b0,bt

P(a0, at, b0, bt), (8.6)
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where {bj}j are the eigenvalues of HB and

P(a0, at, b0, bt) =
∑
s

Ps| ⟨a0, b0|ψs⟩ |2| ⟨at, bt|U(t) |ψs⟩ |2, (8.7)

is a result from the QBN, where {|ai(bj)⟩}i(j) are the eigenvectors of HA(HB).

8.1.2 Choosing the ensemble and the seed probability

A tricky issue is to choose the more suitable ensemble of the initial density matrix to make

the computations concerning this probability distribution. We have from Chapter 7 our

postulate that the probability distribution with smaller variance is the one generated by the

eigen-ensemble of the initial density matrix. But, due to the infinite dimensional nature of

bosonic modes, obtain the diagonalization of the density matrix, specially in cases where

correlations terms are relevant, is in general a highly intricate problem. We choose to

utilize the ensemble made of coherent states for the initial density matrix in order to be

able to apply continuous-variables methods. With this choice, the initial density matrix

has the following form

ρAB(0) =

∫
C2

d2α d2β P (α, β) |α, β⟩ ⟨α, β| , (8.8)

where P (α, β) = W1(α, β) is the Glauber-Sudarshan P-function (see Eqs. (4.86) and

(4.52)) and |α, β⟩ = |α⟩A ⊗ |β⟩B when |α(β)⟩A(B) is a coherent state in A(B) with

eigenvalues α(β).

With this choice of ensemble of coherent states we took the caveat of determining the

adequate function Ps of Eqs. (8.4) and (8.7), which we will call the seed probability. The

QBN developed in Sections 3.4 and 7.1 is the sum of successive products of conditional

probabilities for possible evolution of hidden layers states times the seed probability (see

Fig. 3.4 and Eq. (3.44)). One could interpret these conditional probabilities as the prob-

abilities of obtaining a result if a projective measurement were made in the system, but

without assuming that such measurement is indeed made, which would disturb the hidden

layer state. As for the seed probability Ps, one could understand it as representing the

probability distribution for the mixed initial state to be in each of the pure states of the
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initial hidden layer. However, as we shall see, the most suitable choice for representing

the seed probability Ps for the case where the vectors of the ensemble choice of the ini-

tial density matrix (|ψs⟩) are coherent states |α, β⟩ is the Glauber-Sudarshan P-function

P (α, β), which is a quasi-probability distribution.

We can argue in favor of the last sentence above by supposing that we want our prob-

ability distribution to respect the marginalization conditions given in Eqs. (7.5) and (7.6).

Let the probability distribution P(a0, at, b0, bt) of Eq. (8.7) for the choice of coherent

states ensemble be of the form

P(a0, at, b0, bt) =

∫
C2

d2α d2β f(α, β)| ⟨a0, b0|α, β⟩ |2| ⟨at, bt|U(t) |α, β⟩ |2. (8.9)

We want to find the function f(α, β) for the seed probability from imposing Eq. (7.6) to

the probability distribution above.

Consider the sum

∑
a0,b0

P(a0, b0, at, bt) =

∫
C2

d2α d2β f(α, β)| ⟨at, bt|U(t) |α, β⟩ |2

= ⟨at, bt|U(t)
(∫

C2

d2α d2β f(α, β) |α, β⟩ ⟨α, β|
)
U †(t) |at, bt⟩ ,

(8.10)

hence this sum is equal to ⟨at, bt|U(t)ρAB(0)U
†(t) |at, bt⟩ (in order to satisfy Eq. (7.5))

if and only if f(α, β) = P (α, β) (see Eq. (8.8)). The marginalization condition Eq. (7.5)

is also satisfied by direct application of f(α, β) = P (α, β).

One could guess that the most suitable function to play the role of f(α, β) would be

the Husimi Q-function Q(α, β), since it is a valid probability distribution for every α and

β. However, this function represents the probability of obtaining outcomes α and β for

heterodyne measurements in A and B and the seed probability need not to assume that a

measurement is indeed made. In fact, if we suppose in Eq. (8.10) that f(α, β) = Q(α, β),

then we have

∑
a0,b0

P(a0, b0, at, bt) = ⟨at, bt|U(t)ρ′ABU
†(t) |at, bt⟩ , (8.11)
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where

ρ′AB =

∫
C2

d2α d2β Q(α, β) |α, β⟩ ⟨α, β| . (8.12)

This density matrix is the result of performing the heterodyne measurement {Mα,β =

1
π
|α, β⟩ ⟨α, β|}α,β in ρAB(0) without revealing the outcome (see Appendix E). Therefore,

the correct interpretation for the QBN probability distribution

PQ(a0, at, b0, bt) =

∫
C2

d2α d2β Q(α, β)| ⟨a0, b0|α, β⟩ |2| ⟨at, bt|U(t) |α, β⟩ |2, (8.13)

is that this corresponds to the trajectory probability of the joint system after a heterodyne

measurement {Mα,β = 1
π
|α, β⟩ ⟨α, β|}α,β is made in the initial state without revealing its

outcome.

8.1.3 The characteristic function

With the QBN probability distribution

P(a0, at, b0, bt) =

∫
C2

d2α d2β P (α, β)| ⟨a0, b0|α, β⟩ |2| ⟨at, bt|U(t) |α, β⟩ |2, (8.14)

we have the heat probability distribution P (QA) from Eq. (8.5). With the result of Eq.

(7.11), we obtain

GQA
(k) =

∫
C2

d2αd2β P (α, β) ⟨α, β| e−ikωâ†â |α, β⟩ ⟨α, β| eikωU(t)â†âU†(t) |α, β⟩ .

(8.15)

The computation of the quantities ⟨α, β| e−ikωâ†â |α, β⟩ and ⟨α, β| eikωU(t)â†âU†(t) |α, β⟩

are extensive, so we present them in Appendix E, Section E.2. They result in

⟨α, β| e−ikωâ†â |α, β⟩ = exp{−|α|2(1− e−ikω)}, (8.16)

and

⟨α, β| eikωU(t)â†âU†(t) |α, β⟩ = exp
{
−α⃗† (I2 − eikωM

)
α⃗
}
, (8.17)
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where

α⃗ =

α
β

 and M =

 cos2(gt) cos(gt) sin(gt)

cos(gt) sin(gt) sin2(gt)

 .

Therefore, the characteristic function of the heat probability distribution is

GQA
(k) =

∫
C2

d2αd2β P (α, β) exp{−|α|2(1− e−ikω)} exp
{
−α⃗† (1− eikωM

)
α⃗
}
.

(8.18)

8.2 Heat statistical moments

At this point, it is useful to describe the characteristic function in terms of the phase

space of the eigenvalues for canonical operators. Let r⊤ = (r⊤A, r⊤B) = (qA, pA, qB, pB)
⊤

be the vector of eigenvalues of the canonical operators (q̂A, p̂A, q̂B, p̂B) and satisfy α =

(qA + ipA)/
√
2 and β = (qB + ipB)/

√
2. With this change of variables, the characteristic

function is

GQA
(k) =

∫
R4

dr P (r) exp
{
−1

2

(
1− e−ikω

)
|rA|2

}
× exp

{
−1

4

(
1− eikω

) (
|rA|2 + |rB|2 + (|rA|2 − |rB|2) cos(2gt) + 2rA · rB sin(2gt)

)}
.

(8.19)

8.2.1 Average of heat

With the characteristic function we compute the statistical moments with Eq. (7.13),

hence the average of the heat will be

⟨QA(t)⟩ = −i∂GQA
(k)

∂k

∣∣∣∣∣
k=0

=

∫
R4

drP (r)
[ω
2

(
sin2(gt)(|rB|2 − |rA|2) + sin(2gt)rA · rB

)]
. (8.20)
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Now we suppose that our initial state ρAB(0) is a Gaussian state. Therefore from Eq.

(4.87) we conclude that the Glauber-Sudarshan P-function must be completely described

by the covariance matrix σAB corresponding to the initial state ρAB(0). Moreover, from

Eq. (4.90) we have that the P-function P (r) can be understood as a R4 probability dis-

tribution of a classical Gaussian probability distribution with covariance matrix Σ =

σAB − I4/2. This implies that the average for polynomials of (qA, pA, qB, pB) are ele-

ments of the classical covariance matrix Σ, for instance

∫
R4

drP (r)q2B = Σ2,2 = σAB2,2 −
1

2
.

Accordingly, the heat average will be

⟨QA(t)⟩ =
ω

2

(
sin2(gt)(σAB4,4 + σAB3,3 − (σAB2,2 + σAB1,1)) + sin(2gt)(σAB1,3 + σAB2,4)

)
.

(8.21)

As we intend to explore effects of quantum correlations, we suppose that the initial joint

state is in the normal Simon form (Eq. (4.126)). Therefore the joint system’s initial

covariance matrix is

σAB =


a 0 c+ 0

0 a 0 c−

c+ 0 b 0

0 c− 0 b

 , (8.22)

where a and b are positive real numbers. Beyond the fact that any two-mode Gaussian

state can be transformed by means of local unitaries in a state with covariance matrix in

the Simon form, this form also assumes that the local states are thermal. The parameters

a and b are related to their local inverse of temperatures βA and βB by means of

a(b) =
1

2
coth

(
ωβA(B)

2

)
, (8.23)

hence the parameters a and b are directly proportional to their systems temperature.1

1This relation is a consequence of Eq. (C.35) and from Section C.13 discussion for the case of local
Hamiltonians HA(B) given by Eq. (8.1) and locally thermal states ρA(B) = e−βA(B)HA(B)/ZA(B), where
ZA(B) = Tr

{
e−βA(B)HA(B)

}
.
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In terms of these parameters, the heat average is

⟨QA(t)⟩ = ω

(
sin2(gt)(b− a) +

1

2
sin(2gt)(c+ + c−)

)
. (8.24)

This formula for the average pinpoints important aspects about the heat flow between

two bosonic modes interacting via a Beam Splitter. The first term ω sin2(gt)(b − a)

indicates the ordinary heat flowing from the hot system to the cold system disregarding

the initial correlations. As for the second term ω
2
sin(2gt)(c+ + c−), the effect of the

correlations is completely manifest. The sign of the sum c+ + c− dictate the tendency of

the correlations to reverse the heat flow or to increase the ordinary flow. Intriguingly, for

the most usual way of entangling two locally thermal bosonic modes, i.e., for two-mode

squeezed thermal states, we have c− = −c+ (see Eq. (4.127)) causing the effect of the

correlations in the average heat flow to be null. However, in Appendix C, Subsection E.4,

we construct the D-plus thermal state and D-minus thermal state in which it is possible

to use the correlation terms to cause the inversion of the heat flow. Importantly, the

construction of these two states are possible only with the use of the one-mode bosonic

channel D (see Subsection 4.7.6), which represents the environmental outcome of a two-

mode squeezing acting in the mode. The unitary two-mode squeezing channel, together

with any other two-mode unitaries, is by itself unable to construct correlations terms that

do not cancel with themselves in the heat average.

In the case of the D-plus thermal state, the covariance matrix in the Simon form is

σD+
AB =


a 0 c 0

0 a 0 c

c 0 b 0

0 c 0 b

 , (8.25)

with positive a, b and c. For this case it is possible to make the system A locally hotter

then the system B (see Subsection E.4), thus the standard heat flow would cause the

average of Eq. (8.24) to be negative. But the correlation terms are always positive and

their influence is capable of reversing the heat flow direction (see Fig. 8.1).

Alternatively, for case of the D-minus thermal state, the covariance matrix in the Si-
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Figure 8.1: ⟨QA⟩ in units of ω (solid lines) and var(QA) in units of ω2/3 (dashed lines) ×
interaction time. For the blue curves in the plot on the left we have an initial state in the
Simon form with a = 1.3, b = 2.0 and c+ = c− = −1.0, this state is correspondent to a
D-minus thermal state. For the blue curves in the plot on the right we have an initial state
in the Simon form with a = 2.0, b = 1.3 and c+ = c− = 1.0, this state is correspondent
to a D-plus thermal state. The red curves correspond to initial locally thermal states but
with no correlations (c+ = c− = 0) with a = 1.3 and a = 2.0 on the left and a = 2.0 and
b = 1.3 on the right. The interaction strength is g = 1.0.

mon form is

σD−
AB =


a 0 −c 0

0 a 0 −c

−c 0 b 0

0 −c 0 b

 , (8.26)

with positive a, b and c. Here it is possible to make the system B hotter than A, but again

it is possible to reverse the direction of the heat flow due to the sign of the correlation

terms (see Fig. 8.1).

8.2.2 Heat variance

From Eq. (8.19) we can obtain the heat second moment

⟨Q2
A⟩ = −∂

2GQA
(k)

∂k2

∣∣∣
k=0

. (8.27)
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After evaluating the second derivative, we obtain

⟨Q2
A⟩ =

∫
R4

drP (r)
ω2

4

[ (
3|rA|2 + |rB|2 + (|rA|2 − |rB|2) cos(2gt) + 2rA · rB sin(2gt)

)
+

1

4

(
|rB|2 − |rA|2 + (|rA|2 − |rB|2) cos(2gt) + rA · rB sin(2gt)

)2 ]
. (8.28)

Since P (r) is a classical Gaussian probability distribution with covariance matrix

Σ = σAB − I4/2, all averages for polynomials of (q̂A, p̂A, q̂B, p̂B), with respect to the

function P (r), are dependent only on the covariance matrix. This is a consequence of the

Isserlis’ Theorem (See Appendix E, Section E.3), which gives the relation between the

average of higher order polynomials and the covariance matrix terms. We use this theo-

rem together with Eq. (8.28) to obtain the analytical result for the second moment of the

heat distribution. The solution’s formula is too extensive and not very clarifying by itself,

therefore in Appendix E, Section E.3, we explain in more details how we computed this

quantity and here we present some plots with physical interpretations of this function.

We present the plots for the variance of the heat

var(QA) = ⟨Q2
A⟩ − ⟨QA⟩2, (8.29)

using our analytical results for the ensemble of coherent states {P (α, β), |α, β⟩}α,β ob-

tained from Eqs. (8.24) and (8.28). In Fig. 8.1 the plots are made relative to states

correspondent to D-minus and D-plus thermal states in which the reversal of the heat flow

is achieved. Curiously, for the case of the D-minus state, at the same time that the initial

correlations reverse the heat flow, they seem to decrease the variance in relation to the

initially uncorrelated case. However, this decreasing of the variance seems not to happen

for the D-plus state case, even during the initial heat flow inversion. This is not a fact

for all ensemble choices generationg the QBN, as we will show in the next Subsection.

For the eigen-ensemble choice, the variance also decreases while the heat flow inversion

happens for the D-plus case.

Moreover, in Fig. 8.2 we have the plots of the heat average and variance for states

prepared initially at two-mode squeezed thermal states. For these states, the correlation

terms in the average completely cancel, so its curve coincides with the initially uncorre-
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Figure 8.2: ⟨QA⟩ in units of ω (solid lines) and var(QA) in units of ω2/3 (dashed lines)
× interaction time. For all the curves in the plots we have initial states in the Simon form
with a = 1.3 and b = 2.0. For the blue curves we have the respective values of c− = −c+
indicated above each plot, these initial states correspond to two-mode squeezed thermal
states (see Appendix C, Section C.72). The red curves correspond to the same initial
locally thermal states but with no correlations (c+ = c− = 0). The interaction strength is
g = 1.0.

lated state curve. Conversely, the initial correlations effects are manifest in the variance.

These plots show that as the initial correlations increase, the variance decreases signifi-

cantly at the heat’s average peak. In Section 8.4, we also identify this region as a peak of

mutual information between the modes.

8.3 The variance for different QBN choices

8.3.1 The ambiguity of mixing

As already mentioned, we have from Eqs. (7.11) and (7.16) that the probability distribu-

tion generated by a QBN is dependent on the initial density matrix ensemble choice. An

analysis of the variance dependence on the ensemble choice was made in Section 7.3 for

the case of two initially correlated qubits. Here we compare our analytical computations

for the coherent states ensemble choice {P (α, β), |α, β⟩}α,β to numerical computations

for the statistical moments obtained using the QBN with the eigen-ensemble of the initial

density matrix for two interacting bosonic modes.

The numerical computations are made supposing a finite Fock space, i.e., we consider

in the trace computations all the Fock basis elements from the ground state |0⟩ to a higher

energy state |N⟩ for each mode. The adequate value of N for a good approximation

depends on the temperature of the state in question. The higher the temperature of the

state, the higher the states of the Fock basis need to be considered. For our computations,
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Figure 8.3: ⟨QA⟩ in units of ω × interaction time. The states are initially in the Simon
form with a = 1.3, b = 2.0 and the values of the correlation parameters are indicated
above the plots. For the blue curves we have the numerical calculation of the average by
computing the trace in the finite Fock basis and for the red curves we have the plot of the
average computed using the result of Eq. (8.24). The interaction strength is g = 1.0.

the number N = 25 of first Fock basis elements is sufficient for the convergence of the

trace for its correct value.

From the result of Eq. (7.15) we have that the heat average obtained by the QBN

is independent of the ensemble choice. We confirm this result by comparing the heat

average of Eq. (8.24) obtained using the coherent states ensemble with the trace of Eq.

(7.15) computed numerically. In Fig. 8.3 we present two examples of such comparison.

The numerical computations for the second moment of the heat are made using Eq.

(7.16) from which we have

⟨Q2
A(t)⟩ =

∑
i

λi(⟨λi|
(
(U †(t)HAU(t))

2 +H2
A

)
|λi⟩

− 2 ⟨λi|HA |λi⟩ ⟨λi|U †(t)HAU(t) |λi⟩), (8.30)

where {λi, |λi⟩}i is the eigen-ensemble of the initial state ρAB(0). Given the initial state

covariance matrix σAB (and supposing null first moments) we obtain its density matrix

ρAB(0) by using Eq. (4.82) which is computed in the Fock basis with its first N = 25

elements for each of the two modes. After obtaining the eigenvalues and eigenvectors of

ρAB(0) in this finite Fock basis, we are able to compute ⟨Q2
A(t)⟩ from Eq. (8.30).

Using these numerical computations for ⟨Q2
A(t)⟩ and ⟨QA(t)⟩ in the eigen-ensemble

of the initial density matrix and our analytical results from Section 8.2 for the ensemble
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Figure 8.4: var(QA) in units of ω2 × interaction time. For the two plots in the left,
the states are initially in the Simon form with a = 1.3, b = 2.0 and the values of the
correlation parameters are indicated above the plots. For the plot in the right, the state
is initially in the Simon form with a = 2.0 > b = 1.3 and c+ = c− = 1.0. For the
blue curves we have the numerical computations using the eigen-ensemble choice while
in the red curves we use our analytical results in the coherent states ensemble choice. The
interaction strength is g = 1.0.

of coherent states, we obtain heat variance (Eq. (8.29)) for such ensembles. In Fig.

8.4 we contrast the variance computed in these two ensembles for different initial states.

The plot on the left of Fig. 8.4 represents a D-minus state while the plot on the right

represent a D-plus state, notice that in this plot the variance for t < 1.5 is clearly much

smaller for the eigein-ensemble then for the coherent states ensemble. Therefore, for the

eingen-ensemble the variance decreases as the heat flux inversion happens for an intial

D-plus state. This is the opposite as Fig. 8.1 seemed to indicate for the coherent states

ensemble. This is because the coherent state ensemble has an additional variance term

related only to the mode in which the heat statistics is being computed. For instance, for

any initial state with covariance matrix in the Simon form, the initial heat variance will be

var(QA(0)) = 2a− 1 for the coherent states ensemble choice.2

The results presented above seem to agree with our postulate made in Subsection

7.3.1 which affirms that the heat variance of the eigen-ensemble is always smaller than

the variance of the probability distribution generated by any other ensemble of the initial

state. Nevertheless, the coherent states ensemble choice suggests to refute this postulate

as can be seen in Fig. 8.5. In this figure we have plots of the variance computed for

the eigen-ensemble and for the coherent states ensemble for four different initial states

which represent two-mode squeezed thermal states. For all of these initial states, in-

2Conversely, if we construct an equivalent QBN to compute the heat received from B, i.e., QB , its
variance for the coherent states ensemble choice will be initially var(QB(0)) = 2b− 1.
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Figure 8.5: var(QA) in units of ω2 × interaction time. For all the plots the states are
initially in the Simon form with a = 1.3, b = 2.0 and the values of the correlation
parameters are indicated above the plots. For the blue curves we have the numerical com-
putations using the eigen-ensemble choice while in the red curves we use our analytical
results in the coherent states ensemble choice. The interaction strength is g = 1.0.

cluding the case of uncorrelated two locally thermal states, the variance is bigger for the

eigen-ensemble choice than for the coherent states ensemble choice in the region of the

peak for the heat average. We suspect that this rebut of our postulate can occur due to

the fact that the coherent state ensemble is associated to the quasi-probability distribution

P-function rather than a well behaved probability distribution.

8.3.2 Different seed probability choices

Additionally, as we discussed in Subsection 8.1.2, we can construct further QBNs with

different seed probability choices. Of course, these QBNs would represent different initial

density matrices than ρAB(0). But, as it is shown in Appendix E, Section E.1, these states

can represent the initial state after a projective measurement is made without a revealed

outcome. Surprisingly, for the coherent states ensemble, if we choose the Husimi Q-
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function or the Wigner W-function as the seed probability instead of the P-function, the

heat average will remain the same.3 Therefore, it would be also instructive to compute

the heat deviation from the average in these cases.

In Fig. 8.6 we plot the variance computed numerically for the eigen-ensemble choice

and analytically for the coherent states ensemble choice with the choice of the P-function,

Q-function and W-function as seed probability. The analytical results of the variance

using the Q-function and W-function as seed probability can be obtained analogously as

it is obtained for the P-function as described in Appendix E, Section E.3. Here we switch

P (r) by Q(r) or W (r) and using Eqs. (4.88) and (4.89) to treat Q(r) or W (r) as classical

probability distributions and use Isserlis’ Theorem to compute the integrals.

It is important to recall that the correct choice of the quasi-probability distribution to

represent the coherent states ensemble of the initial state ρAB(0) is the P-function. As the

Q-function and W-function represent different density matrices which are the evolution

of the initial ρAB(0) after a projective measurement (respectively, an heterodyne and an

homodyne measurement) is made, we expect their von Neumann entropy to be bigger than

S(ρAB(0)) [1, 2]. This can be an interpretation to the fact that in Fig. 8.6 the variance

generated by the seed probabilities of the Q-function and W-function are always bigger

than the one generated by the P-function. In particular, notice that the P-function is the

only seed function which causes smaller variance than the eigen-ensemble choice for the

initial two-mode squeezed thermal state (plot on the right in Fig. 8.6).

8.4 Investigations on correlations

8.4.1 Profile of correlations in the initial state

Since we observed different behaviour of the heat flow and of the heat variance for initially

different states at the Simon form, we explore the content of the correlations for different

states in the Simon form. In Fig. 8.7 we plot the mutual information (representing the total

correlation content) between the modes as well as the quantum discord and the classical

correlations content between the modes for different values of c+ and c− for fixed local

3This can be seen if we switch P (r) by Q(r) or W (r) in Eq. (8.20) and use Eqs. (4.88) and (4.89) to
treat Q(r) or W (r) as classical probability distributions.
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Figure 8.6: var(QA) in units of ω2 × interaction time. For all the plots, the states are
initially in the Simon form with a = 1.3, b = 2.0 and the values of the correlation
parameters are indicated above the plots. For the blue curves we have the numerical
computations using the eigen-ensemble choice while in the red, gray and purple curves
we use our analytical results in the coherent states ensemble choice for the P-function, W-
function and Q-function chosen as seed probabilities. The interaction strength is g = 1.0.

temperatures a = 2 and b = 10.

To prepare the plots we randomly peaked 100, 000 points of r ∈ [1/10, 10] and

τ ∈ [τmin, τmax] where τmin and τmax are defined in the footnote of Page 85. This way, we

create 100, 000 Simon states with a = 2, b = 10 and c+ and c+ given by the parametriza-

tion of Eqs. (4.143) and (4.144). With the covariance matrices, we compute the mutual

information with the use of Eqs. (4.124), (4.125) and (3.20). Additionally, we use the val-

ues of a, b, r and τ from each state to obtain the value of η (see footnote of Page 85) and

finally we use Eq. (4.139) to compute the quantum discord of each state. The quantity we

call classical correlation content (J (A|B)) is the difference between the mutual infor-

mation and the quantum discord computed to each state J (A|B) = I(A : B)−D(A|B).

From Eqs. (3.32), (3.33) and (3.34) we can interpret J (A|B) as the maximum informa-

tion one can obtain for the mode A with the outcomes of a quantum measurement in the

mode B.

We see from Fig. 8.7 that the mutual information is almost radially equally distributed

for different values of c+ and c−, i.e., the total correlations seem to increase as |c+|+ |c−|

increases. Differently, the quantum discord has not this radial pattern, it seems to decrease

as c− and c+ approaches to the c+ = 0 and c− = 0 axes. Also, the quantum discord

increases substantially at the border regions with higher |c−| and |c+| and with |c−| ≈ |c+|.
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Figure 8.7: From left to right: mutual information, quantum discord and classical infor-
mation content in function of c+ (horizontal axis) and c− (vertical axis), for Simon states
prepared with a = 2 and b = 10.

These richer regions in quantum discord are correspondent to the D-plus and D-minus

thermal states (c− = c+) and two-mode squeezed thermal states c− = −c+ and this can

be a justification about why these initial states cause the higher correlations effects in the

statistical moments of the heat. Curiously, the D-plus and D-minus thermal states regions

are slightly richer in quantum discord than the two-mode squeezed thermal states and the

classical correlations content is more present in two-mode squeezed thermal states than

in the D-plus and D-minus thermal states.

8.4.2 Correlations behaviour during evolution

We analyze the correlation quantifiers during the evolution of the system. For our results,

the mutual information is computed according to the evolution of the covariance matrix

using Eqs. (4.124), (4.125) and (3.20). The quantum discord is obtained by inverting Eqs.

(4.141), (4.142), (4.143) and (4.144) numerically to obtain the parameters τ and η and use

Eq. (4.139) to the computation for each covariance matrix during the evolution. Again,

we define the classical correlations content as J (A|B) = I(A : B)−D(A|B).

In Fig. 8.8 we plot the quantifiers for two different initial states in D-minus thermal

states and for an initially uncorrelated thermal state together with the heat average evolu-

tion. As already expected [50–53], and analogously as founded in Ref. [54] for qubits,

the mutual information as well as the quantum discord are completed consumed so that

the heat flow inversion happens in the cases of initial D-minus thermal states. After this
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Figure 8.8: Heat average in units of ω (red), mutual information (black), quantum discord
(blue) and classical correlations content (yellow) × time of interaction. Each plot rep-
resents a different initial state, all the initial states are in the Simon form with a = 1.3,
b = 2.0 and with the correlation terms are described above each plot.

Figure 8.9: Heat variance in units of ω2 (purple), mutual information (black), quantum
discord (blue) and classical correlations content (yellow) × time of interaction. Each plot
represents a different initial state, all the initial states are in the Simon form with a = 1.3,
b = 2.0 and with the correlation terms are described above each plot.

consumption the correlations and the heat average oscillate due to the unitary nature of

the interaction. As for the initially uncorrelated state, the correlations are created and start

to oscillate with the unitary evolution.

In Fig. 8.9 we plot the variance as well as the evolution of the correlations quantifiers

for the same initial D-minus states as in Fig. 8.8. During the heat flow inversion and

the first correlations consumption, the variance shows a slight decrease. As the oscilla-

tory evolution starts, the variance peaks are approximately following the consumption of

correlations.

Unfortunately, if initially we have a state with covariance matrix in the Simon form,

but we don’t have c− = c+, the Beam-Splitter unitary evolution causes the local states

not to be locally thermal during the evolution. This precludes the use of the method from
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Figure 8.10: Heat average (red), heat variance in units of ω2 (blue) and mutual information
(black) × time of interaction. Each plot represent a different initial state, all the initial
states are in the Simon form with a = 1.3, b = 2.0 and with the correlation terms are
described above each plot.

Ref. [128] described in Subsection 4.8.3 to compute the quantum discord for two-mode

Gaussian states, since it only considers locally thermal states. Hence, in Fig. 8.10 we

compute only the mutual information evolution as a quantifier of correlations, together

with the heat average and the heat variance for three initial two-mode squeezed thermal

states. However, with the plots of the mutual information it is possible to see again the

tendency of the correlations minima to be aligned with the peaks of the heat variance, as

it is seen in Fig. 8.9.

Another interesting feature that can be seen in the plots of Fig. 8.10 is the alignment

between a mutual information peak, the heat average peak and a meaningful decreasing of

the heat variance, visible specially for the cases of c+ = −c− = 1.0 and c+ = −c− = 1.4.

This is the same decreasing pattern of the heat variance spotted in Fig. 8.2 and it is clearly

an effect that happens only due to the presence of correlations in the initial state. This

could indicate that the increasing of correlations can reduce the variance of the heat.
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Chapter 9

Conclusions and further perspectives

The main motivations of this thesis was to explore new effects of quantum correlations in

two distinct situations.

The first project, relative to chapters 5 and 6, explored the effects of initial global

correlations between the ancillae in the evolution and thermalization of a system that in-

teracts locally with them in a collisional model setup. As a benchmark for comparison,

we contrasted our results to well-known papers concerning collisional models and the

asymptotic behaviour of the system, leading us to a comparison with Refs. [18, 19], in

which the model studied is very similar to our model explored in Chapter 5. The new

component introduced in our studies (the initial ancillae correlations) revealed highly

non-negligible effects, steering the system towards different steady-states and breaking

the Homogenization proposed in [19]. These facts were numerically glimpsed in the

qubit model and fully described for the bosonic modes case thanks to the very feasible

description of Gaussian bosonic states. It was our initial intention to obtain the full de-

scription of the initial correlations effects in bosonic Gaussian modes and to construct a

physical model capable of mimicking the initial correlations between the ancillae. Both

goals were achieved and lead us to the use of H-Graphs to prepare correlated bosonic

modes. From Chapter 5 we can conclude that it is possible to create an environment with

distance dependent correlated ancillae with the use of H-graphs in qubits. We couldn’t

obtain analytical closed expressions for preparing environments with the desired corre-

lations, however, with numerical approaches it was possible to visualize non-trivial cor-

relation patterns, as it is shown in Section 5.1. In Chapter 6, Section 6.3, we obtained a
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satisfactory method for such preparation of correlated ancillae for the Gaussian bosonic

case, additionally it would be stimulating to suggest in detail a platform for physical im-

plementation. This is a future work perspective and possibly a feasible candidate is to

implement it in the context of waveguide-QED [100, 101]. Another alternative would be

to recycle the ancillae and apply a periodic set of gates in them before they interact with

the system to prepare the initial correlations between neighbors ancillae. This “on the go”

scheme of preparing correlations between ancillae can be applied, for the qubits case, can

be implemented in recent quantum computer platforms. Additionally, the very structure

of continuous-variables graph-states itself [48], used in Section 6.3, is proposed under the

possibility of optical preparation with offline squeezing plus interferometry [140, 141] or

optical parametric oscillators [142].

The analytical results obtained in the Gaussian case raise a variety of enquiries. A

special enquiry is about the underlying mechanisms of the steering effects since there is

still a lack of interpretation about how correlations can deviate the system towards the

specific forms of Eqs. (6.26) and (6.34), for instance. One possible future research is to

analyze this model from the perspective of Quantum Trajectories [8, 57, 143].

It is also important to remember that such kind of deviations can be present in a wide

variety of collisional models rather then in the Homogenization context due to the gen-

erality of Eq. (6.24), and this could indicate the presence of such effects in a diversity

of physical situations. For instance, one could consider not locally identical initial ancil-

lae, but ancillae whose states fluctuate around an average. In this case the steady-state of

the system without the initial ancillae correlations would be the average of the ancillae

state, however if we consider the initial correlations, the steady-state would be steered

in the same way. Therefore, exploring the possibility of new environmental correlations

inducing steering in a system can be a fruitful direction for research.

A very relevant question to be asked is about the necessity for the ancillae correlations

to be of quantum nature. This is also a future work possibility which can be very chal-

lenging for qubits ancillae but feasible for bosonic systems with the use of continuous-

variables methods [14–16, 128]. Another possible exploration about the internal correla-

tions of the ancillae with the use of our results is to analyze how the many-body weaving

of the ancillae set can be changed with the collisions. This concept, proposed in [144],
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characterizes multipartite correlations and describe how correlations scale with the size

of the many-body system.

Furthermore, Eqs. (6.26) and (6.34) give non-trivial results for thermodynamics. As

already indicated in Section 6.2, we could have initial locally thermal system and ancil-

lae (it could also be possible to have them in the same temperature), and Eqs. (6.26)

and (6.34) indicate that, depending on the collisions strength and on the ancillae ini-

tial correlations configuration, the system could get dramatically warmer or colder in the

steady-state. These predictions could result in a thermal machine or refrigerator in which

correlations are consumed, rather than work. Therefore, a deeper study in this feature can

give interesting insights in thermodynamics. Finally, a random distribution in the initial

correlations of the ancillae could nullify or interfere in the steering effect on the system.

A further analysis in this subject could clarify this steering effect in physical systems.

In chapters 7 and 8, regarding to the second project, we refer to the statistics of thermo-

dynamic quantities using QBNs and our main search was to estimate an adequate prob-

ability distribution for the heat distribution which fully considered the effects of initial

quantum correlations. We aimed to achieve this goal using QBNs initially proposed in

Ref. [48]. In Chapter 7 we obtained, inspired by this main question, a general framework

using QBNs to estimate probability distributions to describe observable variations (or

changes) during a physical process. This framework was further reduced to the particular

case for our studies of the heat distribution, but we can have a wide variety of applications

due to the generality of the observable whose change can be explored. For instance, with

this framework we are able estimate the probability distribution variation of the number

of particles (when the observable is the number operator) or work (in the presence of ex-

ternal time-dependent force on the Hamiltonian), being a possibly fruitful road for future

research. The characteristic function of such distribution obtained in Eq. (7.11), as well

as the statistical moments resulting from it, takes under consideration the initial quantum

coherences of the system to describe the full statistics of the changes and reduces to the

TPM statistics for the case where there is no initial coherence in the eigenbasis of the ini-

tial observable in question. Additionally, this formalism is feasible to quantum fluctuation

theorems [48] and has an experimental validation protocol based on the postselection of

independent multiple copies [49]. Therefore, we expect that this formalism can be useful

162



Chapter 9. Conclusions and further perspectives

for further explorations for the statistics of thermodynamic quantities when one desires to

consider entirely the effects of initial quantum correlations and quantum coherence.

Another important aspect observed from the result of the QBN characteristic function

for the observable changes, obtained in Eq. (7.11), is it’s dependence on the choice of

the ensemble to describe the initial covariance matrix. As a consequence, the statistical

moments will also depend on this choice, with the notable exception of the average. Part

of our analysis focus on the behaviour of the variance under this ensemble choice depen-

dence, since it is in our interest to understand which choice of initial ensemble causes

in the probability distribution a smaller deviation from the average. In our analysis for

the statistic of the heat exchanged between two interacting qubits, which we proved to

agreed with the results of Refs. [48, 54], we concluded that the probability distribution

generated by the eigen-ensemble of the initial density matrix would minimize the vari-

ance in relation to any other ensemble choice. We postulated this conclusion from testing

it for a variety of examples and from the intuitive perspective that non-orthogonal ensem-

bles would engender a larger variance distribution due to the indistinguishability of states.

An ongoing research effort to prove analytically this statement or to discover counterex-

amples continues. And further researches relating this feature to related papers as, for

instance, Refs. [139, 145, 146] could illuminate this quest.

Continuing to pursue our main goal in this second project, we focused in obtaining

the statistics of the heat exchanged between two initially correlated Gaussian bosonic

modes during a Beam-Splitter interaction. This led us to the use of coherent-states as

the ensemble of the initial density matrix to be used in the QBN due to it usefulness

when applying continuous-variables methods. From the marginalization conditions we

concluded that the suitable seed probability distribution to the coherent-states ensemble

is the Glauber-Sudarshan P-function. We obtained analytically the heat probability distri-

bution characteristic function for this choice of ensemble in Eq. (4.85) and, consequently,

their first moments. The heat average predicts a heat flow inversion caused by the initial

correlations between the bosonic modes, analogous to the already experimentally proved

qubits case [54]. We discovered that this heat flow inversion cannot happen if the initial

global state is the well-known two-mode squeezed thermal state. Therefore, we proposed

a construction of initial locally thermal states from known methods in which this inver-
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sion is possible, calling them D-plus and D-minus thermal states. However, it still an open

question and future query to interpret why an initial two-mode squeezed thermal state is

unable to cause the heat flow inversion while the D-plus and D-minus thermal states can,

since both are rich in quantum correlations (quantum discord) and mutual information

between the modes (see Section 8.4). Is there a feature or resource created during the

preparation of the D-plus and D-minus thermal states which isn’t present in a two-mode

squeezed state?

As for our analysis of the variance for the heat exchanged between two bosonic modes,

we spotted that the variance decreases while the correlations (classical and quantum) are

consumed for the heat flow inversion and it oscillates achieving its maxima when the

correlations are at their minima and its minima when the correlations reaches its max-

ima. Therefore, a conclusion is that the presence of correlations decreases the variance.

Notwithstanding, our examination on contrasting the variance computed numerically us-

ing the eigen-ensemble of the initial state with the variance computed with our analytical

results from coherent-states ensemble showed unexpected conclusions which signal the

need for for more enquiries and future researches. We observed that the heat variance

computed using the coherent states ensemble choice can be smaller than the variance com-

puted using the eigen-ensemble, apparently contradicting our earlier postulate. However,

we suppose that this may not be considered a an counterexample since the seed proba-

bility associated to this ensemble is a quasi-probability distribution. Despite generating a

valid heat probability distribution, our use of quasi-probabilities as seed probabilities still

lack of better interpretations and an ongoing research direction is to enlighten these re-

sults, be it extending the measurement proposals [49] or relating it to other interpretations

of quasi-probabilities [42, 147, 148].

Finally, it can be a worthwhile research to relate our QBN probability distributions

results concerning to its dependence on initial density matrices ensemble choice to mea-

surement schemes. This is done in Ref. [49] concerning to the eigen-ensemble choice

and a possible generalization can be explored.
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Appendix A

Some proofs and definitions in Open

Quantum Systems and Collisional

Models

A.1 Some properties of purity

Given a density matrix ρ, we can make its spectral decomposition (since it is an hermitian

operator)

ρ =
∑
k

λk |λk⟩ ⟨λk| , (A.1)

where λk and |λk⟩ are respectively the eigenvalues and eigenvectors of ρ. Notice that,

from the semipositivity and normalization condition (Eqs. (2.4) and (2.5)), we obtain

λk ≥ 0 and
∑
k

λk = 1, (A.2)

which implies that we can treat λk as the probabilities. Now, computing the purity of ρ,

we obtain

P(ρ) = Tr

{∑
k

∑
l

λkλl |λk⟩ ⟨λk|λl⟩ ⟨λl|

}
=
∑
k

λ2k ≤ 1, (A.3)
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the above quantity is less or equal than 1 since it is a sum of probabilities squared and can

be 1 if and only if all the probabilities are 0 except one λk which is 1, and in this case we

arrive at a pure state.

Moreover, we can argue that the case where the purity is at its minimum is the situa-

tion where the state is more mixed. This is the case where we have no information that

gives preference for the system to be in one state or another, so λk = 1/d, ∀k (since λk

represents the probability of the system being in the element of basis |λk⟩), where d is the

dimension of the Hilbert space of the system. Consequently we shall have

P(ρ) =
∑
k

λ2k =
∑
k

1

d2
=

1

d
, (A.4)

and thus we have the lower bound for P(ρ). This result can also be obtained by using

Lagrange multipliers for minimizing P(ρ) under the constraint of ρ normalization (Eq.

(2.5)).

A.2 The partial trace

If we treat a bipartite system AB in a Hilbert space HAB = HA ⊗ HB, the partial trace

comes from the idea of creating the adequate description for the subsystemA by summing

the average effects of B. For accounting the effects of B, one can proceed as follows,

suppose the most general linear operator O that acts on HAB

O =
∑
k

Ak ⊗Bk, (A.5)

where Ak and Bk are generic operators that act in HA and HB respectively. The partial

trace with respect to B is defined to be the trace of all the operators that act only on HB

space

TrB O =
∑
k

Ak ⊗ Tr{Bk}, (A.6)

or, equivalently

TrB O =
∑
k

∑
α

⟨α|B Ak ⊗Bk |α⟩B , (A.7)

166



Appendix A. Some proofs and definitions in Open Quantum Systems and Collisional
Models

where {|α⟩B} is some basis of HB. Evidently, TrB O is not a number, but an operator

acting on HA and

Tr{O} = TrA{TrB{O}}. (A.8)

Together with the definition of partial trace we have the notion of reduced density

matrix of a state ρ in AB

ρA = TrB ρ, (A.9)

which describes the system that we would see if we only looked at A making an average

of the effects of B. The intuition may come from the fact that if OA is an operator acting

in HA, then

⟨OA⟩ = Tr{OAρ} = TrA{OA TrB{ρ}} = TrA{OAρA} = Tr{OAρA}, (A.10)

where in the last equality we exchange TrA for the full trace Tr since all the operator

inside the trace acts only on OA.The above equation means that ρA acts just like a density

matrix should act for computing averages only on A.

A.3 Interaction Picture

We shall make the description of this formalism just for completeness, here we are strictly

following Ref. [91].

Notice that the von Neumann Equation (Eq. 2.11), just like Schödinger’s Equation,

also describes a closed system evolving under a time-dependent Hamiltonian H(t). So,

given a quantum state ρ that evolves under such time-dependent Hamiltonian, we can

define a new density matrix given by

ρ̃ = S(t)ρS†(t), (A.11)

where S(t) is an arbitrary time-dependent unitary.

The density matrix ρ̃ is now a state that describes the system ρ in a rotating frame and
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evolves acording to a von Neumann equation

dρ̃

dt
= −i[H̃(t), ρ̃], (A.12)

where

H̃(t) = i
dS(t)

dt
S†(t) + S(t)H(t)S†(t). (A.13)

To prove Eqs. A.12 and A.13, we need only to differentiate ρ̃ in function of t

dρ̃

dt
=
dS(t)

dt
ρS†(t) + S(t)

dρ

dt
S†(t) + S(t)ρ

dS†(t)

dt

=
dS(t)

dt
S†(t)ρ̃− iS(t)[H(t), ρ]S†(t) + ρ̃S(t)

dS†(t)

dt

=
dS(t)

dt
S†(t)ρ̃− i[S(t)H(t)S†(t), ρ̃]− ρ̃

dS(t)

dt
S†(t)

= −i[S(t)H(t)S†(t) + i
dS(t)

dt
S†(t), ρ̃] = −i[H̃(t), ρ̃],

where in the second equality we used the von Neumann Equation for ρ and in the third

equality we used that dS(t)
dt
S†(t) = −S(t)dS

†(t)
dt

since d
dt
(S(t)S†(t)) = 0.

The appropriate choice of S(t) can make a time-dependent Hamiltonian become time-

independent and vice-versa. If we have a time-independent Hamiltonian that can be di-

vided in

H = H0 + V, (A.14)

then, if we chose

S(t) = eiH0t, (A.15)

we obtain

H̃(t) = eiH0tV e−iH0t. (A.16)

which means that we eliminate the direct dependence on the “free” Hamiltonian H0 on

the but add a time dependence.

For the case where [H0, V ] = 0, we have, from the equation above

H̃(t) = V, (A.17)
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which is a time-independent Hamiltonian, and means that the effective Hamiltonian will

act just as the interaction Hamiltonian setting H0 = 0. The assumption [H0, V ] = 0 is

valid for almost all of our cases of study in this thesis, and represents interactions that

conserve the system’s internal energy.

A.4 Thermal states

Given a system with Hamiltonian H described by a density matrix ρ, we affirm that it is

in a thermal state with temperature T when

ρ =
∑
i

e−βEi

Z
|Ei⟩ ⟨Ei| =

e−βH

Z
, (A.18)

where β = 1/T , {Ei}i and {|Ei⟩}i are, respectively, the sets of eigenvalues and eigen-

vectors of H and Z = Tr
{
e−βH

}
is the partition function.

This is just the quantum version of the Gibbs distribution. Where, in classical physics,

the probability distribution of a system in thermal equilibrium at temperature T is only

dependent on it’s energy and is equal to

p(Ei) =
e
− 1

kBT
Ei

Z
, (A.19)

where Ei is the energy of the system, kB is the Boltzmann constant and Z =
∑

i e
− 1

kBT
Ei

(where the index i means “summing over all states for all possible energies Ei”) is again

the partition function. Finally, we just have that Eq. A.18 is

ρ =
∑
i

p(Ei) |Ei⟩ ⟨Ei| . (A.20)

For the case of a qubit, if we are dealing, for instance, with a standard Hamiltonian

H = Eσz, (A.21)

xwith E > 0, then if |0⟩ and |1⟩ are the eigenvectors of σz (with eigenvalues −1 and 1,

respectively), we shall have the same eigenvectors for H with eigenvalues −E and E,
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respectively. Hence, if the qubit is in a thermal state at temperature T , Eq. A.18 will

result in

ρ =

 eβE

Z
0

0 e−βE

Z

 =

1− p 0

0 p,

 , (A.22)

where β = 1/T , Z = eβE(1+e−2βE) and p = 1
2
(1−tanh(βE)). Notice that 0 ≤ p ≤ 1/2

with the bounds achieved at β → ∞ and β → 0, respectively.

A.5 Proof of ρnS,rest → 0 and ρnA,rest → 0

This section of the Appendix is present just for the completeness of the thesis. This was

done following the results of Ref. [19].

For proving the properties above, it is sufficient to prove that ρnS and ρnA converge to

ρA. The proof of these convergences can be made with the use of the Banach Theorem

(see Ref. [149]). But to enunciate such theorem, we must first define what is a contractive

map.

Let S be a space with a distance functionD. A map T is called contractive if and only

if, for any ρ and η that belong to S, we have

D(T [ρ], T [η]) ≤ kD(ρ, η), where 0 ≤ k < 1. (A.23)

The Banach Theorem states that, if a map T is contractive, then it has a fixed point

η∗ ∈ S in which the iteraction of the map converges to it, i.e., limN→∞ TN [ρ] = η∗ for

any ρ ∈ S.

It is important to notice that if a map is contractive and has a fixed point (of course,

this will always be true by the theorem stated above), then the fixed point will be unique.

The proof is very simple: let ρ and η be two fixed points of a contractive map T , then it

must be true that

D(T [ρ], T [η]) ≤ kD(ρ, η) ⇒ D(ρ, η) ≤ kD(ρ, η),

and the inequality above is true for some k where 0 ≤ k < 1 if, and only if, ρ = η. Hence

the Banach Theorem also implies the uniqueness of the fixed point of a contractive map.
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The space S that we shall consider is the space of density matrices operators in the

Hilbert space of the system HS while we want to show that the map E , that makes the

evolution of the system in the Homogenization case of Sec. 2.3.6, is contractive and has

the fixed point ρA.

In order to show the above facts, we first parametrize our initial system’s state as

ρ0S =
1

2
I+ w⃗ · σ⃗, (A.24)

where I is the identity operator, w⃗ is a vector of real numbers with 3 components, with

|w⃗| ≤ 1/2 and σ⃗ = (σx, σy, σz) is the vector of Pauli matrices, it can be shown that every

qubit density matrix can be parametrized in a Eq. (A.24) form (see Ref. [91]). We also

parametrize the ancilla’s initial state as

ρA =
1

2
I+ t⃗ · σ⃗. (A.25)

These parametrization permits us to represent ρ0S = (1, wx, wy, wz) and ρA = (1, t1, t2, t3)

as vectors in the operator basis {I/2, σx, σy, σz} spanning the space of qubit density ma-

trices.

Using this parametrizations and Eq. (2.50), we can write our map E as

E [ρ0S] = ρ1S =
1

2
I+ (s2t⃗+ c2w⃗) · σ⃗ + ics[⃗t · σ⃗, w⃗ · σ⃗]

=
1

2
I+ [s2t⃗+ c2w⃗ − 2cs(⃗t× w⃗)] · σ⃗ =

1

2
I+ w⃗′ · σ⃗, (A.26)

where we used that σkσl = δklI + iϵjklσj (ϵjkl is the Levi-Civita symbol) in the third

equality and we defined

w′
j = s2tj + (c2δjl − 2csϵjkltk)wl.
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Now we can write Eq. (A.26) as a transformation w⃗ → w⃗′ in the following way
1

w′
x

w′
y

w′
z

 =


1 0 0 0

s2tx c2 2cstz −2csty

s2ty −2cstz c2 2cstx

s2tz 2csty −2cstx c2




1

wx

wy

wz

 , (A.27)

the equation above can be rewritten as E [ρ0S] = Tρ0S , with the vector representation of ρ0S

and

T =

 1 0⃗T

s2t⃗ T,

 (A.28)

where 0⃗ is the vector of 3 components with 0 in the entries. Finally it is straightforward

to prove that TρA = ρA using Eqs. (A.27) and (A.28) and hence that ρA is a fixed point

of E .

Furthermore, to prove that E is contrative, let us define v⃗ such that η = 1
2
I+ v⃗ · σ⃗ is a

density matrix and r⃗ = w⃗ − v⃗ and use the trace distance definition, so that

D(ρ, η) = Tr |(w⃗ − v⃗) · σ⃗| = Tr |r⃗ · σ⃗| = 2|r⃗|, (A.29)

where we used that the eigenvalues of r⃗ · σ⃗ are ±|r⃗|. Similarly, we obtain that

D(E [ρ], E [η]) = 2|r⃗′|, (A.30)

where

r⃗′ = w⃗′ − v⃗′ = s2t⃗+ Tw⃗ − s2t⃗− Tv⃗ = T(w⃗ − v⃗) = Tr⃗

= c2r⃗ − 2cst⃗× r⃗,

where we used Eqs. (A.27) and (A.28) in the last equality. The equation above implies

that

|r⃗′|2 = c4|r⃗|2 + 4c2s2 |⃗t× r⃗|2 = |r⃗|2c2(c2 + 4s2|⃗t|2 sin2 β),
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where in the first equality we used that r⃗ is orthogonal to t⃗× r⃗ and in the last equality we

used that |⃗t × r⃗| = |⃗t||r⃗| sin β, for some 0 ≤ β ≤ π. Now, since |⃗t|2 ≤ 1/4, we must

have c2 + 4s2|⃗t|2 sin2 β ≤ c2 + s2 sin2 β ≤ 1 since sin2 β ≤ 1. Using this in the equation

above, we obtain

|r⃗′| ≤ |c||r⃗|.

Finally, combining the equation above with Eqs. (A.29) and (A.30), we obtain

D(E [ρ], E [η]) = 2|r⃗′| ≤ 2|c||r⃗| = |c|D(ρ, η),

from which we obtain that E is a contractive map if |c| < 1 and thus it converges to its

fixed point ρA due to Banach Theorem.

Turning the attention now to the ancillae evolution, we have from Eq. 2.53 that if

we want to satisfy, for any δ, the condition of Eq. (2.48), we must have a bound for the

distance between the first collision and the original ancilla stateD(ρ1A, ρA). The condition

of Eq. 2.48 implies that

D(ρ1A, ρA) ≤ δ. (A.31)

Now, since ρ1A depends on the initial system state ρ0S , we must use the value of ρ0S that

makes the greatest distance above. This is the case where the two states are pure and

mutually orthogonal, i.e., w⃗ = −t⃗ and |⃗t| = 1/2. Using this and Eq. (2.52) in the

equation above, we obtain

2s2Tr |⃗t · σ⃗| = 2s2 ≤ δ,

and this implies Eq. (2.54). And since this assures that the distance between ρnA and ρA is

smaller than δ for any n > 1, this completes the convergence of ρnA to ρA.
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Quantum Information

B.1 Some useful equations

Given a function that can be expanded in the series of the form

f(x) =
∞∑
i=0

aix
i, (B.1)

where ai are complex numbers, and an operator A that can define f(A) such that

f(A) =
∞∑
i=0

aiA
n. (B.2)

If A can be diagonalized as

A =
∑
α

λα |λα⟩ ⟨λα| , (B.3)
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where {λα}α and {|λα⟩}α are respectivley the eigenvalues and eigenvectors of A, then

f(A) =
∞∑
i=0

ai

(∑
α

λα |λα⟩ ⟨λα|

)i

=
∞∑
i=0

ai
∑
α

λiα |λα⟩ ⟨λα|

=
∑
α

(
∞∑
i=0

aiλ
i
α

)
|λα⟩ ⟨λα|

=
∑
α

f(λα) |λα⟩ ⟨λα| .

Writing succinctly,

f(A) =
∑
α

f(λα) |λα⟩ ⟨λα| . (B.4)

B.2 Proof of Eq. (3.10)

Being the density matrix ρ diagonalized as in Eq. (3.8) and given that the function x log x

can be Taylor expanded, we can use Eq. (B.4) to obtain

ρ log ρ =
∑
i

λi log λi |λi⟩ ⟨λi| , (B.5)

and hence we arrive at

− Tr(ρ log ρ) = −
∑
i

λi log λi. (B.6)
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Some proofs and definitions in

Continuous Variables

C.1 Notation for vectors and matrices of operators

Given two vector of operators â and b̂, we can build an operator

âTb̂ =
∑
j

âjb̂j, (C.1)

and matrix of operators âb̂
T

with components

(âb̂
T
)jk = âjb̂k. (C.2)

Since operators don’t always commute, we have, in general ââT ̸= (ââT)T, because the

elements inside the vectors may not commute. Therefore, we can define the following

commutators and anti-commutators

[â, âT] = ââT − (ââT)T, (C.3)

{â, âT} = ââT + (ââT)T, (C.4)
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to express such differences. Combining both equations, we obtain

{â, âT}+ [â, âT] = 2ââT. (C.5)

We can also write

[â, âT]jk = âj âk − âkâj, (C.6)

{â, âT}jk = âj âk + âkâj. (C.7)

C.2 The direct sum

Given two matrices N (with dimension n1 × n2) and M (with dimension m1 ×m2), then

the direct sum of both matrices is

N ⊕M =

 N 0n1×m2

0m1×n2 M,

 (C.8)

where 0n×m means a n×m null matrix.

The notation
⊕N

n=1An means the direct sum of the An matrices from 1 to N

N⊕
n=1

An = A1 ⊕ A2 ⊕ · · · ⊕ AN . (C.9)

C.3 General Gaussian integral

For further use, here we expose the well-known generalization of the Gaussian integral.

Given a positive definite 2n× 2n matrix A and a 2n-dimensional vector b, we have

∫
R2n

dr e−r⊤Ar+r⊤b =
πn

√
detA

e
1
4
b⊤A−1b. (C.10)

C.4 Proof of Eq. (4.23)

For proving this equation, we define a vector of operators f̂(r) = e−irTΩr̂r̂eirTΩr̂, from

which we have f̂(0) = r̂, where 0 here means a 2n vector of 0s. Now, making a Taylor
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expansion of f̂(r) around r = 0, we get

f̂k(r) = f̂k(0) +
∑
j

rj
∂f̂k(r′)
∂r′j

∣∣∣
r′=0

+
∑
jl

rjrl
∂2f̂k(r′)
∂r′j∂r′l

∣∣∣
r′=0

+ · · · . (C.11)

But

∂f̂k(r′)
∂r′

∣∣∣
r′=0

=
∂

∂r′
(
e−i

∑
lm r′lΩlmr̂m r̂ke

∑
st r′sΩstr̂t

) ∣∣∣
r′=0

= −i
∑
m

Ωjm[r̂m, r̂k]

=
∑
m

ΩjmΩmk

= −δjk,

and it is easy to show that higher order derivatives are 0. Using these results in Eq. (C.11),

we obtain f̂(r) = r̂ − r.

C.5 Proof of Eq. (4.31)

We have that, from the definition of |α⟩ (Eq. (4.30))

âj |α⟩ = âjD̂α |0⟩

= αjD̂α |0⟩

= αj |α⟩ , (C.12)

where in the second equality we used the following result. From Eq. (4.29), we have

âjD̂α |0⟩ = D̂αD̂
†
αâjD̂α |0⟩

= D̂α(âj + αj) |0⟩

= αjD̂α |0⟩ . (C.13)

178



Appendix C. Some proofs and definitions in Continuous Variables

C.6 Proof of the formula of coherent state expanded in

the Fock basis (Eq. (4.32))

We can assume that a coherent state can be expanded in the Fock basis as |α⟩ =
∑∞

m=0 cm |m⟩

for some coefficients cm, then

â |α⟩ =
∞∑

m=0

cmâ |m⟩

=
∞∑

m=0

cm
√
m |m− 1⟩

=
∞∑

m=0

cm+1

√
m+ 1 |m⟩

= α
∞∑

m=0

cm |m⟩ ,

since α is the eigenvalue of â for the eigenvector |α⟩. From the linear independence of

the kets |m⟩, we must have the recurrence equation

cm+1

√
m+ 1 = αcm,

whose solution is

cm = A
αm

√
m!
,

where A is a constant to be determined by normalization. Then

⟨α|α⟩ =
∞∑

m=0

|cm|2

= |A|2
∞∑

m=0

|α|2m

m!

= |A|2e|α|2

= 1

=⇒ A = e−|α|2/2,
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so finally

|α⟩ =
∞∑

m=0

e−|α|2/2 α
m

√
m!

|m⟩ . (C.14)

C.7 Completeness relation for coherent states

Using the Fock basis decomposition (Eq. (4.32))

1

π

∫
C
d2α |α⟩ ⟨α| = 1

π

∞∑
m,n=0

∫
C

d2α
αmα∗n
√
m!n!

e−|α|2 |m⟩ ⟨n|

=
1

π

∞∑
m,n=0

∫ ∞

0

dρ

∫ 2π

0

dϕei(m−n)ϕ e
−ρ2ρm+n+1

√
m!n!

|m⟩ ⟨n|

=
∞∑

m=0

2

∫ ∞

0

dρ
e−ρ2ρ2m+1

m!
|m⟩ ⟨m|

=
∞∑

m=0

|m⟩ ⟨m|

= I, (C.15)

where in the second equality we used that
∫ 2π

0
ei(m−n)ϕdϕ = 2πδmn and parametrized

α = ρeiϕ and in the last equality we used the Gamma function
∫∞
0
e−ρ2ρ2m+1dρ = m!/2.

C.8 Proof of the Fourier-Weyl relation

From the completeness relation for coherent states, we can expand any bounded operator

Â as

Â =
1

π2

∫
C2

dαdβ ⟨α| Â |β⟩ |α⟩ ⟨β| , (C.16)

notice that if

|α⟩ ⟨β| = 1

π

∫
C
d2γ Tr

{
|α⟩ ⟨β| D̂γ

}
D̂†

γ, (C.17)
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the proof would be complete. So we shall demonstrate Eq. (C.17), applying D̂−α from

the left of Eq. (C.17) and D̂β from the right, we obtain

|0⟩ ⟨0| = 1

π

∫
C
d2γ Tr

{
|α⟩ ⟨β| D̂γ

}
D̂−αD̂−γD̂β

=
1

π

∫
C
d2γ Tr{|α⟩ ⟨β − γ|}e

1
2
(γβ∗−γ∗β)D̂−αD̂−γD̂β

=
1

π

∫
C
d2γ ⟨β − γ|α⟩ e

1
2
(γβ∗−γ∗β)D̂−αD̂−γD̂β

=
1

π

∫
C
d2γe−

1
2
|β−α−γ|2D̂β−α−γ

=
1

π

∫
C
d2γe−

1
2
|γ|2D̂γ, (C.18)

where in the second equality we used Eq. 4.33, in the third equality we used Eq. 4.34 and

at the last equality we made a change of variables. Thus we must prove that 1
π

∫
C d

2γe−
1
2
|γ|2D̂γ =

|0⟩ ⟨0| in order to complete the proof. For this, notice that, applying it on a Fock basis

vecor |m⟩, we have

1

π

∫
C
d2γe−

1
2
|γ|2D̂γ |m⟩ = 1

π

∫
C
d2γe−

1
2
|γ|2D̂γ

â†m√
m!

|0⟩

=
1

π

∫
C
d2γe−

1
2
|γ|2D̂γ

â†m√
m!
D̂†

γD̂γ |0⟩

=
1

π

∫
C
d2γe−

1
2
|γ|2 (â

† − γ∗)m√
m!

|γ⟩

=

∫
C

d2γ

π
e−|γ|2 (â

† − γ∗)m√
m!

∞∑
n=0

γn√
n!

|n⟩

=
∞∑
n=0

m∑
j=0

∫
C

d2γ

π
e−|γ|2

(
m

j

)
(−γ)∗jγn√

m!n!
â†(m−j) |n⟩

=
m∑
j=0

(
m

j

)
(−1)j |m⟩

= δm0 |0⟩ , (C.19)

where in the third equality we used that D̂γ â
†D̂†

γ = â† − γ∗, in the forth equality we used

Eq. (4.32), in the sixth equality we used 1
π

∫
C d

2γe−|γ|2γ∗jγn = n!δjn and in the last step

we used the fact that
∑m

j=0

(
m
j

)
(−1)j = (1−1)m = δm0. Finally, we have that Eq. (C.19)

implies (C.18) which is equivalent to Eq. (C.17).

181



Appendix C. Some proofs and definitions in Continuous Variables

C.9 Proof of Eq. (4.47)

Given the definitions of Eq. (4.46) and Eq. (4.26) and using that the one mode vector

r′ = (q′, p′), we have

W (q, p) =
1

π2

∫
R

∫
R
dq′dp′ei(pq

′−qp′)χ(q′, p′)

=
1

2π2

∫
R

∫
R
dq′dp′ei(pq

′−qp′)

∫
R
dx ⟨x| D̂− r′

2
ρD̂− r′

2
|x⟩

=
1

π2

∫
R

∫
R

∫
R
dq′dp′dx eipq

′
eip

′(x−q)

〈
x− q′

2

∣∣∣∣ ρ ∣∣∣∣x+ q′

2

〉
=

1

π

∫
R
dq′ eipq

′
〈
q − q′

2

∣∣∣∣ ρ ∣∣∣∣q + q′

2

〉
=

2

π

∫
R
dq′ eipq

′ ⟨q − q′| ρ |q + q′⟩ , (C.20)

where in the second equality we expanded the trace of the definition of χ(q′, p′) (Eq.

(4.43)) in therms of a first quadrature basis |x⟩, we used the cyclic property of the trace

and used that D̂−r′ = D̂−r′/2D̂−r′/2 and in the third equality we used that D̂−r′/2 =

e−
i
2
q′p̂e

i
2
p′q̂e

i
8
q′p′ and thus D̂−r′/2 |x⟩ =

∣∣∣x+ q′

2

〉
e

i
2
p′xe

i
8
q′p′ .

C.10 Proof of Eq. (4.52)

From applying the Weyl operator D̂α from the left of Eq. (C.18) and its conjugate trans-

pose operator from the right of this equation, we obtain

|α⟩ ⟨α| = 1

π

∫
C
d2γe−

1
2
|γ|2e(αγ

∗−α∗γ)D̂−γ, (C.21)
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where we used Eq. (4.33) so that D̂αD̂γD̂−α = e(αγ
∗−α∗γ)D̂γ . Using the equation above,

we obtain

∫
C
d2αP (α) |α⟩ ⟨α| = 1

π

∫
C
d2γe−

1
2
|γ|2
∫
C
d2αe(αγ

∗−α∗γ)P (α)D̂−γ

=
1

π

∫
C
d2γe−

1
2
|γ|2χ1(γ)D̂−γ

=
1

π

∫
C
d2γ χ0(γ)D̂−γ

= ρ, (C.22)

where in the second equality we used the inverse Fourier transform of P (α) (since P (α) =∫
C d

2βe(αγ
∗−α∗γ)χ1(β) then it’s inverse will be χ1(γ) =

∫
C d

2αe(αγ
∗−α∗γ)P (α)), in the

third equality we used Eq. (4.49) to relate χ1(α) to χ0(α) and in the forth equality we

used the Fourier-Weyl relation (Eq. (4.40)).

C.11 Proof of Eq. (4.54)

Using the Fourier Weyl relation, (Eq. (4.40)) we obtain

1

π
⟨α| ρ |α⟩ = 1

π2

∫
C
d2βχ0(β) ⟨α| D̂−β |α⟩

=
1

π2

∫
C
d2βe

1
2
(αβ∗−α∗β)χ0(β) ⟨α|α− β⟩

=
1

π2

∫
C
d2βe(αβ

∗−α∗β)χ0(β)e
− |β|2

2

= W−1(α), (C.23)

where in the second equality we used Eq. (4.33) to obtain D̂−β |α⟩ = D̂α−β |0⟩ e
1
2
(αβ∗−α∗β) =

|α− β⟩ e 1
2
(αβ∗−α∗β) and in the third equality we used Eq. (4.34).
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C.12 Proof of the Robertson-Schrödinger relation (Eq.

(4.63))

In order to obtain the formula, first consider the following 2n× 2n complex matrix

τ = 2Tr
[
(r̂ − r̄)(r̂ − r̄)†ρ

]
. (C.24)

We can show that this operator is positive semi-definite in the following way. Suppose

v ∈ C2n, then we have

v†τv = 2v† Tr
[
(r̂ − r̄)(r̂ − r̄)†ρ

]
v

= 2Tr
[
v†(r̂ − r̄)(r̂ − r̄)†vρ

]
= 2Tr

[
ÔÔ†ρ

]
≥ 0, (C.25)

where O = v†(r̂ − r̄). In the second equality we used Eqs. (C.1) and (C.2) which imply

v†Tr
[
(r̂ − r̄)(r̂ − r̄)†ρ

]
v =

∑
jk

vj Tr [(r̂ − r̄)j(r̂ − r̄)kρ] vk

= Tr

[∑
jk

vj(r̂ − r̄)j(r̂ − r̄)kvkρ

]

= Tr
[
v†(r̂ − r̄)(r̂ − r̄)†vρ

]
,

and in the last step of Eq. (C.25), we used the fact that for every operator O, OO†

is positive semidefinite and ρ is also semidefinite, hence OO†ρ is positive semidefinite.
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This concludes the proof that τ ≥ 0. Now, from Eq. (C.5) and from τ ≥ 0, we have that

τ = 2Tr
[
(r̂ − r̄)(r̂ − r̄)†ρ

]
= Tr

[
{(r̂ − r̄), (r̂ − r̄)†}ρ

]
+ Tr

[
[(r̂ − r̄), (r̄ − r̄)†]ρ

]
= Tr

[
{(r̂ − r̄), (r̂ − r̄)†}ρ

]
+ Tr

[
[r̂, r̄†]ρ

]
= 2σ + iΩ

≥ 0, (C.26)

where in the third equality we used Eqs. (4.61) and (4.14). Finally, we obtain

σ +
iΩ

2
≥ 0. (C.27)

C.13 Density matrix and covariance matrix of free Gaus-

sian bosonic modes

If we have a Gaussian state of N free bosonic modes, then it will have the form

ρfree =
e−r̂⊤Λr̂

Z
, (C.28)

where Λ = diag(λ1, λ2, · · · , λN), λj > 0, ∀j and Z = Tr
(
e−r̂⊤Λr̂

)
. Since the modes

are non-interacting, we have

ρfree =
n⊗

j=1

e−
λj
2
(q̂2j+p̂2j )

Zj

, (C.29)

where Zj = Tr
(
e−

λj
2
(q̂2j+p̂2j )

)
. Computing explicitly and using the geometric series, we

obtain

Zj =
∞∑

nj=0

e−λj(nj+1/2)

=
e−λj/2

1− e−λj
. (C.30)
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Consequently, the density matrix will be

ρfree =
n⊗

j=1

e−
λj
2
(q̂2j+p̂2j )

Zj

=
n⊗

j=1

∞∑
nj=0

e−λj(nj+1/2)

Zj

|nj⟩ ⟨nj|

=
n⊗

j=1

(
1− e−λj

) ∞∑
nj=0

e−λjnj |nj⟩ ⟨nj| (C.31)

For a mode j, we have a well-known average, called the Bose-Einstein distribution

n̄j = ⟨â†j âj⟩ =
1

eλj − 1
. (C.32)

We can rewrite the density matrix of free bosonic modes in terms of the Bose-Einstein

distribution

ρfree =
n⊗

j=1

1

1 + n̄j

∞∑
nj=0

(
n̄j

n̄j + 1

)nj

|nj⟩ ⟨nj| . (C.33)

From Eq. (4.6) we have that, for a mode j,

⟨q̂2j ⟩ = ⟨p̂2j⟩ = ⟨a†jaj⟩+ 1/2, (C.34)

and hence, using Eq. (C.32), we have

⟨q̂2j ⟩ = ⟨p̂2j⟩ =
1

2
coth(λj/2). (C.35)

For this state ⟨qj⟩ = ⟨pj⟩ = 0, ∀j, so the covariance matrix will be

σij =
1

2
⟨{r̂i, r̂j}⟩

=
1

2
coth(λj/2)δij (C.36)

which means

σ =
1

2
coth

(
Λ

2

)
. (C.37)
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This can also be rewritten as

σ =
n⊕

j=1

νj

1 0

0 1

 , (C.38)

where νj = 1
2
coth

(
λj

2

)
.

Notice that from Eqs. (C.34) and (C.35) we can describe the diagonal covariance

matrix elements in terms of the Bose-Einstein distributions

νj = n̄j +
1

2
. (C.39)

Finally, we can write the density matrix in terms of the diagonal elements of the covari-

ance matrix

ρfree =
n⊗

j=1

1

νj + 1/2

∞∑
nj=0

(
νj − 1/2

νj + 1/2

)nj

|nj⟩ ⟨nj| . (C.40)

C.14 Obtaining symplectic eigenvalues

According to the Williamson’s theorem (Eq. (4.83)), given a positive definite matrix M ,

there is a symplectic matrix S such that

M = SDST, (C.41)

where

D = Dn ⊗ I2, with Dn = diag(d1, d2, · · · , dn), (C.42)

with dj > 0, ∀j.

Notice that the matrix iΩM is hermitian, hence it can be diagonalized as

iΩM = BΛB†, (C.43)

where Λ is a diagonal matrix of eigenvalues and B is a unitary matrix with eigenvectors

as columns. Using the properties of the symplectic matrix S and of the symplectic form

Ω, we can relate Λ to the symplectic eigenvalues, this can be done as follows. From Eq.
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(C.42) we obtain

iΩM = iΩSDS⊤

= iΩS(Dn ⊗ I2)S⊤

= iS−⊤(Ω)(Dn ⊗ I2)S⊤

= iS−⊤(In ⊗ Ω1)(Dn ⊗ I2)S⊤

= iS−⊤(Dn ⊗ Ω1)S
⊤

= S−⊤(Dn ⊗ iΩ1)S
⊤ (C.44)

where in the third equality, we used ΩS = S−⊤Ω.1

Finally, notice that

iΩ1 = −U2σzU
†
2 , (C.45)

where U2 = 1√
2

1 1

i −i,

. The formula above can be shown by direct evaluation, and

applying it in Eq. (C.44), it follows that

iΩM = S−⊤(In ⊗ U2)(Dn ⊗ (−σz))(In ⊗ U †
2)S

⊤, (C.46)

which is in the form of Eq. (C.43). Identifying the unitary B = S−⊤(In ⊗ U2) and

Λ = Dn⊗(−σz) we conclude that we can obtain the symplectic eigenvalues (the diagonal

elements of Dn) by computing the eigenvalues of iΩM and taking their absolute values

(since the eigenvalues of iΩM come in pairs of plus and minus the diagonal elements of

Dn).
1This is a consequence of the fact that, if S is a symplectic matrix, S⊤ also is symplectic (this can

be seen by taking the transpose of Eq. (4.81) and using that Ω⊤ = −Ω). Using this fact, we have that
S⊤ΩS = Ω and applying S−⊤ from the left hand side, we obtain ΩS = S−⊤Ω.
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C.15 Justifying the existence of a Hamiltonian matrix cor-

responding to any symplectic matrix

We want to prove that, given a matrix S ∈ Sp2n,R with strictly positive eigenvalues, then

there exist a real and symmetric matrix H such that S = eΩH . Furthermore, there exists a

unitary Ŝ such that

Sr̂ = Ŝ†r̂Ŝ, (C.47)

for any 2n vector of canonical operators r̂.

Given S ∈ Sp2n,R with strictly positive eigenvalues, we can define the following matrix

H = Ω⊤ logS. (C.48)

By construction, H has positive elements. For proving that H is symmetric, notice that

H⊤ = log
(
S⊤)Ω

= ΩΩ⊤ log
(
S⊤)Ω

= Ω log
(
Ω⊤S⊤Ω

)
= Ω log

(
S−1

)
= −Ω log (S)

= Ω⊤ log (S)

= H, (C.49)

where repeatedly used that −Ω = Ω⊤ = Ω−1 and in the forth equality we used the

fact that ΩS = S−⊤Ω (which is proved in the previous section of this Appendix) which

implies S = Ω⊤S−⊤Ω ⇒ Ω⊤S−1Ω. Since we have that H , given by Eq. (C.48), is real

and symmetric, then we have S = eΩH and, by the construction of Eq. (4.70), there must

be a unitary Ŝ = e−
1
2

r̂†H r̂ such that

Sr̂ = Ŝ†r̂Ŝ. (C.50)
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C.16 Proof for the parametrization of Eq. (4.82)

We can start the proof as follows. Since ρG is a Gaussian state, then (see Eqs. (4.57) and

(4.58)) it can be described as

ρG =
e−

1
2
(r̂−r̄)TM(r̂−r̄)

Z
, (C.51)

whereM is a positive definite matrix andZ is a normalization constant. From Williamson’s

Theorem, we can diagonalize M with the use of a symplectic matrix S. Defining a new

valid vector of canonical operators Ŷ = S(r̂− r̄) and using Eq. (4.83), we can rewrite the

Gaussian state as

ρG =
e−

1
2

Ŷ⊤
DŶ

Z
. (C.52)

Since D is a diagonal matrix, the state ρG in the equation above represents a set of free

non-interacting harmonic oscillators described by the canonical operators in Ŷ. The co-

variance matrix of non-interacting harmonic oscillators has the simple form of (see Eq.

(C.37), and the whole Section for a proof)

σ̃ =
1

2
⟨Ŷ, Ŷ

⊤
⟩

=
1

2
coth

(
D

2

)
. (C.53)

Now, consider the following relations

σ =
1

2
⟨{(r̂ − r̄), (r̂ − r̄)⊤}⟩

=
1

2
⟨{S−1Ŷ, Ŷ

⊤
S−⊤}⟩

=
1

2
S−1⟨{Ŷ, Ŷ

⊤
}⟩S−⊤

= S−1σ̃S−⊤

=
1

2
S−1 coth

(
D

2

)
S−⊤. (C.54)
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We can use the equation above to obtain the relation between M and σ. With the use of

Eq. (C.46), we have

coth

(
iΩM

2

)
= S−1(In ⊗ U2) coth

(
Dn ⊗ (−σz)

2

)
(In ⊗ U †

2)S, (C.55)

where U2 =

1 1

i −i

 and Dn = diag(d1, d2, · · · , dn) such that D = Dn⊗ I2. Using the

fact that coth(•) is a odd function, we have that coth
(

Dn⊗(−σz)
2

)
= coth(Dn/2)⊗(−σz),

and hence

coth

(
iΩM

2

)
= S−1(In ⊗ U2) (coth(Dn/2)⊗ (−σz)) (In ⊗ U †

2)S

= S−1 coth(Dn/2)⊗ (iΩ1)S

= S−1(coth(Dn/2)⊗ I2)(In ⊗ iΩ1)S

= S−1(coth(D/2)iΩS

= S−1(coth(D/2)S−⊤iΩ

= 2σiΩ, (C.56)

where in the second equality we used Eq. (C.45), in the fifth equality we used that

S−⊤Ω = ΩS (with is proved in the previous section of this Appendix) and in the last

equality we used Eq. (C.54).

Applying iΩ in both sides of Eq. (C.56), and using that (iΩ)2 = I, we obtain

iΩcoth

(
iΩM

2

)
iΩ = 2iΩσ. (C.57)

Since iΩ is unitary, the equation above can be rewritten as

2iΩσ = coth

(
MiΩ

2

)
, (C.58)

inverting this result we finally obtain

M = 2arccoth(2iΩσ)iΩ. (C.59)
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C.17 Computation of quasi-probability distributions for

Gaussian states

For computing the Glauber-Sudarshan P-function of a Gaussian state, we use Eq. (4.85)

in Eq. (4.86) for s = 1 and obtain

PG(r) =
1

(2π2)n

∫
R2n

dr′e−
1
2

r′Ω⊤σΩr′−ir′⊤Ωr̄e
1
4

r′⊤r′+ir′⊤Ωr

=
1

(2π2)n

∫
R2n

dr′e−
1
2

r′Ω⊤(σ−I/2)Ωr′+ir′⊤Ω(r−r̄),

(C.60)

where we reordered the terms and used that Ω⊤Ω = −Ω2 = 1 (Eqs. (4.11) and (4.12)) in

the second equality. Now, using the Gaussian integral (Eq. (C.10)) in the equation above,

we obtain

PG(r) =
1

(2π2)n
πn√

det
(
1
2
Ω⊤(σ − I/2)Ω

)e 1
2
(iΩ(r−r̄))⊤(Ω⊤(σ−I/2)Ω)

−1
(iΩ(r−r̄))

=
1

(2π)n
1√

det (σ − I/2)
e−

1
2
(r−r̄)⊤Ω⊤Ω⊤(σ−I/2)−1ΩΩ(r−r̄)

=
1

(π)n
e−

1
2
(r−r̄)⊤(σ−I/2)−1(r−r̄)√
det (σ − I/2)

, (C.61)

where in the second equality we used that Ω−1 = Ω⊤ (Eq. (4.11)) and that det(A.B) =

det(A) det(B) for any matrices A and B, and in the third equality we used that ΩΩ =

Ω⊤Ω⊤ = −1.Finally, we must multiply this result by 1
2n

so that this function obtain the

correct normalization (Eq. (4.51)) under the space of all r, i.e., we must have

∫
R2n

drPG(r) = 1. (C.62)

For the cases of the Husimi Q-function and the Wigner W-function, the proof is ex-

actly analogous for the choice of s = −1 and s = 0, respectively.
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C.18 Proof that the commutator between any second or-

der operators is a second order operator

Given two generic second order operators Ô1 = 1
2

∑
jk O1jkr̂j r̂k +

∑
j µ1j r̂j and Ô2 =

1
2

∑
jk O2jkr̂j r̂k +

∑
j µ2j r̂j , the commutator between them will be

[O1,O2] =
1

4

∑
jklm

O1jkO2lm[r̂j r̂k, r̂lr̂m] +
1

2

∑
jkl

O1jkµ2l[r̂j r̂k, r̂l]

+
1

2

∑
jlm

O2lmµ1j[r̂j, r̂lr̂m] +
∑
jm

µ1jµ2m[r̂j, r̂m]. (C.63)

In order to show that the above commutator is at most of second order, we start by noticing

that

[r̂j r̂k, r̂lr̂m] =r̂j[r̂k, r̂l]r̂m + [r̂j, r̂l]r̂kr̂m + r̂lr̂j[r̂k, r̂m] + r̂l[r̂j, r̂m]r̂k

=ir̂j r̂mΩkl + ir̂kr̂mΩjl + ir̂lr̂jΩkm + ir̂lr̂kΩjm, (C.64)

where in the first equality we used that [AB,CD] = A[B,C]D+[A,C]BD+CA[B,D]+

C[A,D]B an in the second equality we used Eq. (4.14). The above commutator is thus at

most of second order on canonical operators, and using again Eq. (4.14) we can similarly

show that [r̂j r̂k, r̂l], [r̂j, r̂lr̂m] and [r̂j, r̂m] are all at most second order operators. Hence,

we conclude that the commutator of two generic second order Hamiltonians in Eq. (C.63)

is a second order operator, as we intended.
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C.19 Proof of Eq. (4.124)

Analyzing a mode j, notice that

S(ρfreej) = −Tr
[
ρfreej log

(
ρfreej

)]
= −Tr

ρfreej log

 1

νj + 1/2

∞∑
nj=0

(
νj − 1/2

νj + 1/2

)nj

|nj⟩ ⟨nj|


= −Tr

ρfreej log

 ∞∑
nj=0

(
νj − 1/2

νj + 1/2

)nj

|nj⟩ ⟨nj|


+ Tr

[
ρfreej log (νj + 1/2)

]
= −Tr

ρfreej

∞∑
nj=0

log

((
νj − 1/2

νj + 1/2

)nj
)
|nj⟩ ⟨nj|

+ log(νj + 1/2)

= −Tr

ρfreej

∞∑
nj=0

nj log

(
νj − 1/2

νj + 1/2

)
|nj⟩ ⟨nj|

+ log(νj + 1/2)

= − log

(
νj − 1/2

νj + 1/2

)
Tr

ρfreej

∞∑
nj=0

nj |nj⟩ ⟨nj|

+ log(νj + 1/2)

= − log

(
νj − 1/2

νj + 1/2

)
Tr
[
ρfreej n̂j

]
+ log(νj + 1/2)

= − log

(
νj − 1/2

νj + 1/2

)
n̄j + log(νj + 1/2)

= − log

(
νj − 1/2

νj + 1/2

)
(νj − 1/2) + log(νj + 1/2)

= (νj + 1/2) log(νj + 1/2)− (νj − 1/2) log(νj − 1/2). (C.65)

The equation above, together with Eq. (4.123) justifies Eqs. (4.124) and (4.125). In the

Equation above, we used that log (
∑

n(cn) |n⟩ ⟨n|) =
∑

n log(cn) |n⟩ ⟨n| (for any positive

cn) in the forth equality, and we used Eq. (C.39) in the ninth equality.
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C.20 Proof of Simon normal form statement

The statement says that any covariance matrix representing a two-mode Gaussian state

can be reduced, by local single-mode sympectic transformation, to the following form

σS =


a 0 c+ 0

0 a 0 c−

c+ 0 b 0

0 c− 0 b

 , (C.66)

with a and b positive real numbers, and c+ and c− real numbers satisfying the Bona-fide

conditions.

For the proof, suppose that σ is a generic covariance matrix of a two-mode state.

Williamson’s theorem (Eq. (4.83)) states that any single-mode covariance matrix can be

diagonalized by means of a single-mode symplectic transformation into xI, where x > 0.

Consequently, there exist symplectic transformations Sa acting in the first mode and Sb

acting in the second mode, such that

S⊤
b S

⊤
a σSaSb =

 aI C

C⊤ bI

 , (C.67)

where a and b are positive real numbers and C is a 2× 2 real matrix. Since aI and bI are

invariant under transformations which are orthogonal and symplectic, we can apply the

orthogonal and symplcetic transformations needed to diagonalize the off-diagonal block-

matrix C, according to the Singular Value Decomposition (SVD).2

C.21 Proof that S(E(|α⟩ ⟨α|)) = S(E(|0⟩ ⟨0|)) for any Gaus-

sian channel E

The covariance matrix of any coherent state |α⟩ ⟨α| and the vacuum |0⟩ ⟨0| has the same

value, namely I/2, their only difference exists in their first moments.

2See such version of the SVD in Chapter 5 of Ref. [14].
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From the results of Section 4.7, and as it was shown in Eqs. (4.72) and (4.77), the evo-

lution of the first moments and of the covariance matrix for a Gaussian state are decoupled

during all the Stinespring dilation process. Since any quantum channel can be expressed

by a Stinespring dilation, we conclude that any Gaussian channel evolution must have a

decoupled behaviour between the covariance matrix and first moments. Consequently, if

the input of two states with the same covariance matrix are inputs to a quantum channel,

their outputs will also have the same covariance matrix.

Therefore, the outputs of E(|α⟩ ⟨α|) = E(|0⟩ |0⟩) will have the same covariance ma-

trix. Finally, since the entropy of a Gaussian state only depends on its covariance matrix

(Eqs. (4.124) and (4.125)), we conclude that their entropy will be the same.

C.22 Computations to obtain Eq. (4.139)

For obtaining Eq. (4.139), we must compute S(ρAB), S(ρB) and S(E(|0⟩ ⟨0|)).

The entropies S(ρAB) = g(ν−) + g(ν+) and S(ρB) = g(β) are direct consequences

of Eq. (4.124) and from the fact that the local covariance matrix of ρB is already in its

diagonal form.

The entropy of E(|0⟩ ⟨0|) can be obtained from the fact that the covariance matrix

of the vacuum is σvac = I/2 and it’s evolution through the phase-insensitive Gaussian

channel E is given by Eq. (4.129). Hence, the evolved covariance matrix will be I2(τ +

η)/2, which has only the symplectic eigenvalues (τ + η)/2, and the result follows from

Eq. (4.124).

C.23 Two-mode squeezed thermal state, EPR state and

friends

Here we give examples of how to construct the Simon form of the two-mode squeezed

thermal state, EPR state and other kinds of locally thermal states from canonical opera-

tions acting in initial thermal states.
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C.23.1 Two-mode squeezed thermal state

Given two bosonic modes A and B, the Two-mode squeezing operator (for further appli-

cations of the two-mode squeezing, see Refs. [55, 118, 119]) is a unitary operator defined

as

Ŝts(ξ) = eξ
∗âb̂−ξâ†b̂† , (C.68)

where â(b̂) is the annihilator operator and â†(b̂†) is the creation operator acting in the

mode A(B). For a real parameter r, it has the form

Ŝts(ξ)(r) = er(âb̂−â†b̂†). (C.69)

The Hamiltonian matrix that generates this operator is

Hts(r) = r


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

 . (C.70)

Therefore the correspondent symplectic matrix is

Sts(r) = eΩHts(r)

=


cosh(r) 0 sinh(r) 0

0 cosh(r) 0 − sinh(r)

sinh(r) 0 cosh(r) 0

0 − sinh(r) 0 cosh(r)

 . (C.71)

From Eq. (C.37), we have that the thermal state of two bosonic modes A and B with

local Hamiltonians HA(B) = ω
(
â†(b̂†)â(b̂) + 1

2

)
is

σth
AB =


n̄A + 1/2 0 0 0

0 n̄A + 1/2 0 0

0 0 n̄B + 1/2 0

0 0 0 n̄B + 1/2

 , (C.72)
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where n̄A + 1/2 = 1
2
coth

(
ωβA

2

)
and βA(B) is the inverse of the temperature of A(B).

Hence, the two-mode squeezed thermal state is just the two-mode squeezed applied in

this thermal state

σTMST
AB = Sts(r)σ

th
ABS

⊤
ts

=


a 0 c 0

0 a 0 −c

c 0 b 0

0 −c 0 b

 , (C.73)

where a =
(
n̄A + 1

2

)
cosh2(r)+

(
n̄B + 1

2

)
sinh2(r), b =

(
n̄B + 1

2

)
cosh2(r)+

(
n̄A + 1

2

)
sinh2(r)

and c = 1
2
(1 + n̄A + n̄B) sinh(2r).

C.23.2 EPR state

The EPR state is defined as the two-mode squeezed operator applied in the vacuum. The

vacuum is equivalent to a thermal state at 0 temperature, thus a two-mode vacuum state

has covariance matrix σvac
AB = 1

2
I4. Therefore, the EPR covariance matrix for a squeezing

operator Ŝts(r) is

σEPR =
1

2
Sts(r)S

⊤
ts(r)

=


β 0

√
β2 − 1 0

0 β 0 −
√
β2 − 1√

β2 − 1 0 β 0

0 −
√
β2 − 1 0 β

 , (C.74)

where β = 1
2
cosh(2r). If we change the sign of r, i.e., r → −r, then the off-diagonal

terms of the matrix switch sign.
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Obtaining Observables Shifts Using

QBNs

D.1 Proof of Eq. (7.20)

With the use of Eqs. (7.17) and (7.18) we have

PTPM(a0, at) =
∑
bt,b,b1

⟨at, bt|U(t) |a0, b⟩ ⟨a0, b| ρAB(0) |a0, b′⟩ ⟨a0, b′|U †(t) |at, bt⟩ ,

(D.1)

where we just used that IB =
∑

b |b⟩ ⟨b|, for the basis {|b⟩}b and {|b′⟩}b′ of B.

Let the characteristic function for the shift probability of Eq. (7.19) be

GOATPM
(k) =

∫ ∞

−∞
(d∆a) eik∆a pTPM(∆OA = ∆a), (D.2)

from which we have

GOATPM
(k) =

∑
a0,at

eik(at−a0)PTPM(a0, at). (D.3)
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Applying Eq. (D.1) in this characteristic function, we obtain

GOATPM
(k) =

∑
bt,b,b′,a0,at

⟨bt, at|U(t)e−ika0 |a0, b⟩ ⟨a0, b| ρAB(0) |a0, b′⟩ ⟨a0, b′|U †(t)eikat |at, bt⟩

=
∑

bt,b,b′,a0,at

⟨bt, at|U(t)e−ikOA(0) |a0, b⟩ ⟨a0, b| ρAB(0) |a0, b′⟩ ⟨a0, b′|U †(t)eikOA(t) |at, bt⟩

=
∑

bt,a0,at

⟨bt, at|U(t)e−ikOA(0) |a0⟩ ⟨a0| ρAB(0) |a0⟩ ⟨a0|U †(t)eikOA(t) |at, bt⟩

= Tr

{
U(t)e−ikOA(0)

(∑
a0

|a0⟩ ⟨a0| ρAB(0) |a0⟩ ⟨a0|

)
U †(t)eikOA(t)

}
= Tr

{
e−ikOA(0)DOA(0)(ρAB(0))U

†(t)eikOA(t)U(t)
}

= Tr
{
eikU

†(t)OA(t)U(t)e−ikOA(0)DOA(0)(ρAB(0))
}
,

(D.4)

which is the desired equation, where DOA(0)(•) =
∑

a0
|a0⟩ ⟨a0| • |a0⟩ ⟨a0|.
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D.2 Matrices for generating ensembles in Subsection 7.3.1

The matrices used to generate the different ensembles of ρ0AB with the use of Eq. (7.30)

in Subsection 7.3.1 are the following

M1 =


0 0 1

0 −
√
3
2

0
√
3
2

−1
4

0

1
2

√
3
4

0

 , M2 =


0 1 0

0 0 −1
2

√
3
2

0
√
3
4

1
2

0 −3
4

 ,

M3 =
1√
3


0 1 1

1 0 1

1 −1 0

1 1 −1

 , M4 =
1√
3


0 1 1

1 0 −1

1 −1 1

1 1 0

 ,

M5 =


0 0 1

−1
2

−
√
3
2

0
√
3
4

−1
4

0

−3
4

√
3
4

0

 , M6 =


0 1 0

0 0 1

1 0 0

 ,

M7 =


0 cos(0.1) sin(0.1)

0 sin(0.1) − cos(0.1)

1 0 0

 and M8 =


0 cos

(
π
4

)
sin
(
π
4

)
0 sin

(
π
4

)
− cos

(
π
4

)
1 0 0

 .
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Appendix E

Some proofs and definitions in Heat

Exchanged Between Bosonic Modes

E.1 The QBN generated by post-measurements

Suppose we have an observable OC acting on the joint Hilbert space ofA andB described

in the setup of Section 7.1. Given the eigenvalues {|ci⟩}i and eigenvectors {|ci⟩}i of OC ,

we can define the projective measurement {Mi = |ci⟩ ⟨ci|}i. Then, if such projective

measurement is made in the initial joint state ρAB(0) but the outcome is not revealed, the

state is uploaded to the average of all possible backactions

ρ′AB =
∑
i

Pci

MiρAB(0)M
†
i

Pci

=
∑
i

MiρAB(0)M
†
i

=
∑
i

Pci |ci⟩ ⟨ci| , (E.1)

where Pci = Tr
{
MiρAB(0)M

†
i

}
= ⟨ci| ρAB(0) |ci⟩ is the probability of the measure to

have the outcome ci. Hence, the probability distribution generated by

POC
(a0, b0, at, bt) =

∑
i

Pci | ⟨a0, b0|ci⟩ |2| ⟨at, bt|U(t) |ci⟩ |2, (E.2)
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is withe the seed probability Pci the QBN generated by the post-measured density matrix

ρ′AB.

This is exactly the case of Eq. (8.13), where the seed probability Pci is the Husimi

Q-function Q(α, β), representing the probability of having an outcome (αβ) for the pro-

jeticve measurement { 1
π
Mα,β |α, β⟩ ⟨α, β|}α,β and the kets |ci⟩ are coherent states |α, β⟩.

Thus the matrix

ρ′AB =
∑
i

Pci |ci⟩ ⟨ci|

=

∫
C2

d2α d2β Q(α, β) |α, β⟩ ⟨α, β| , (E.3)

is the density matrix after an heterodyne measurement is made without the outcome be-

ing revealed. This interpretation explains the result of Eq. (8.11), i.e., POC
(at, bt) =

⟨at, bt|U(t)ρ′ABU
†(t) |at, bt⟩.

E.2 Computations of Eqs. (8.16) and (8.17)

To compute ⟨α, β| e−ikωâ†â |α, β⟩ we first notice that ⟨α, β| e−ikωâ†â |α, β⟩ = ⟨α| e−ikωâ†â |α⟩

since â†â is an operator that only acts in the Hilbert space of A. Furthermore e−kωâ†â =∑∞
n=0 e

−ikωn |n⟩ ⟨n|, where {|n⟩}n is the Fock basis, then

⟨α| e−ikωâ†â |α⟩ =
∞∑
n=0

e−ikωn| ⟨α|n⟩ |2. (E.4)

From Eq. (4.32), we have

⟨α| e−ikωâ†â |α⟩ =
∞∑
n=0

e−ikωne−|α|2 |α|2n

n!

= e−|α|2
∞∑
n=0

(
|α|2e−ikωn

)n
n!

= e−|α|2e|α|
2e−ikωn

= exp
{
−|α|2(1− e−ikωn)

}
, (E.5)

from which we obtain Eq. (8.16).
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To compute ⟨α, β| e−ikωU†(t)â†âU(t) |α, β⟩, we first call H ′ = U †(t)â†âU(t). Using the

BCH formula, one can show that

U(t)†âU(t) = â cos(gt) + b̂ sin(gt). (E.6)

Using this in H ′, we obtain

H ′ = U †(t)â†U(t)U †(t)âU(t)

= â†â cos2(gt) + (â†b̂+ b̂†â) cos(gt) sin(gt) + b̂†b̂ sin2(gt). (E.7)

This way, H ′ can be rearranged as

H = a⃗†Ma⃗, (E.8)

where

a⃗ =

â
b̂

 and M =

 cos2(gt) sin(gt) cos(gt)

sin(gt) cos(gt) sin2(gt)

 . (E.9)

Now we can diagonalize M = SΛS†, where Λ is a diagonal matrix made of eigenvalues

of M and S is an unitary matrix. With such diagonalization we can redefine the operators

â, â†, b̂ and b̂† by defining c⃗ = S†a⃗, from which we obtain H ′ =
∑

j λj ĉ
†
jcj , where {λj}j

are the eigenvalues of M . Also, we can rewrite |α⃗⟩ = |α, β⟩ and define

α⃗ =

α
β


where α and β are the eigenvalues of â and b̂. Consequently, the eigenvalues of the

operators in c⃗ will be related to α⃗ as |α⃗⟩â =
∣∣S†α⃗

〉
ĉ
, which means that “The vectors

which have eigenvalues α⃗ of â have eigenvalues S†α⃗ of ĉ”. Using this definitions, we
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have

⟨α, β| e−ikωU†(t)â†âU(t) |α, β⟩ = ⟨α⃗|â e
ikωa⃗†Ma⃗ |α⃗⟩â

= ⟨α⃗|â e
ikω

∑
j λj ĉ

†
j ĉj |α⃗⟩â

=
〈
S†α⃗

∣∣
ĉ
eikω

∑
j λj ĉ

†
j ĉj
∣∣S†α⃗

〉
ĉ
,

= exp

{∑
j

(
eikωλj − 1

)
|cj|2

}∣∣∣
cj=(S†α⃗)j

,

where in the last equality we used Eq. (E.5). Finally, if we define a diagonal matrix F

such that Fjj = −(eikωλj − 1), we obtain

I2 = exp

{
−
∑
j

(α⃗†S)jFjj(S
†α⃗)j

}

= exp
{
−α⃗†SFS†α⃗

}
= exp

{
−α⃗†S

(
1− eikωΛ

)
S†α⃗

}
= exp

{
−α⃗†

(
1− eikωSΛS

†
)
α⃗
}

= exp
{
−α⃗† (1− eikωM

)
α⃗
}
,

frim which we obtain Eq. (8.17).

E.3 Isserlis’ Theorem and ⟨Q2
A⟩

Isserlis’ Theorem states that, given a Gaussian probability distribution p(r) for a vector

of real random variables r with covariance matrix σ and zero average, then, for even n

∫
RN

dr p(r)
n∏

j=1

rj =
∑

(i1,··· ,in)

n/2∏
k=1

σi2j−1,i2j , (E.10)

where
∑

(i1,··· ,in) represents the sum of all possible combinations ((i1, i2), · · · , (in−1, in))

for pairs of numbers in (1, · · · , n) and rj is an element of r. Additionally, this integral

is 0 for odd n. For instance, for a vector of random variables r = (qA, pA, qB, pB) with a

205



Appendix E. Some proofs and definitions in Heat Exchanged Between Bosonic Modes

Gaussian probability distribution p(r) with covariance matrix Σ and 0 average, we have

∫
R4

dr p(r)q4A = 3Σ2
1,1,∫

R4

dr p(r)q3ApA = 3Σ1,1Σ1,2,∫
R4

dr p(r)q2Ap
2
A = (Σ1,1Σ2,2 + 2Σ2

1,2),∫
R4

dr p(r)q2ApAqB = (Σ1,1Σ2,3 + 2Σ1,2Σ1,3),∫
R4

dr p(r)qApAqBpB = (Σ1,2Σ3,4 + Σ1,3Σ2,4 + Σ1,4Σ2,3),

... (E.11)

A proof for this theorem can be found in Ref. [150].

The procedure used to obtain ⟨Q2
A⟩ is to expand the integrating of Eq. (8.28) into a

sum of polynomials of (qA, pA, qB, pB) and use the equations of (E.11) to evaluate the

integral, given that P (r) has the form of a classical Gaussian probability distribution with

covariance matrix Σ = σAB − I4/2 and first moments 0.

E.4 Locally thermal states D-plus and D-minus

Suppose we have a bosonic system with two modes A and B initially at a EPR state with

covariance matrix

σEPR =


β 0

√
β2 − 1 0

0 β 0 −
√
β2 − 1√

β2 − 1 0 β 0

0 −
√
β2 − 1 0 β

 . (E.12)

If we have a one-mode Gaussian quantum channel of class D, described in Subsection

4.7.6, then the map will be described by the matrices T =
√

|τ |σz and N = (1+ |τ |)(n̄+

1) where τ < 0 and n̄ ≥ 0. If we apply this channel only in the first mode of the EPR
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state, then, by Eqs. (4.112) and (4.113), the outcome will be

σD+
AB =


β|τ |+ (1 + |τ |)(n̄+ 1) 0

√
|τ |(β2 − 1) 0

0 β|τ |+ (1 + |τ |)(n̄+ 1) 0
√
|τ |(β2 − 1)√

|τ |(β2 − 1) 0 β 0

0
√

|τ |(β2 − 1) 0 β

 .

(E.13)

We call this state the D-plus thermal state and for |τ | ≥ 1 it represents two locally thermal

bosonic modes in the Simon form

σD+
AB =


a 0 c 0

0 a 0 c

c 0 b 0

0 c 0 b

 , (E.14)

where a = β|τ |+ (1 + |τ |)(n̄+ 1) > b = β and c =
√
|τ |(β2 − 1).

If otherwise we start with two modes in a thermal state as in Eq. (C.72) and apply the

two-mode squeezing operator in the state with negative parameter −r (r > 0), we obtain

σTMST
AB (−r) = Sts(−r)σth

ABS
⊤
ts(−r)

=


a 0 −c 0

0 a 0 c

−c 0 b 0

0 c 0 b

 , (E.15)

where a =
(
n̄A + 1

2

)
cosh2(r)+

(
n̄B + 1

2

)
sinh2(r), b =

(
n̄B + 1

2

)
cosh2(r)+

(
n̄A + 1

2

)
sinh2(r)

and c = 1
2
(1 + n̄A + n̄B) sinh(2r). Now, if we apply in the first mode the same Gaussian

channel of class D, as the one defined above, we obtain the following covariance matrix

σD−
AB =


a′ 0 −c′ 0

0 a′ 0 −c′

−c′ 0 b′ 0

0 −c′ 0 b′

 , (E.16)
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where a′ = 1
2
|τ |(n̄A − n̄B + (1 + n̄A + n̄B) cosh(2r)) + (1 + |τ |)(n̄ + 1), b′ = 1

2
(n̄B −

n̄A + (1 + n̄A + n̄B) cosh(2r)) and c′ = 1
2

(
(1 + n̄A + n̄B)

√
|τ | sinh(2r)

)
. We call

this state the D-minus thermal state. It is not difficult to find values of τ, n̄, n̄A, n̄B

and r such that a′ < b′ and σD−
AB is a bona-fide function. For example, if we chose

τ = 0.5, n̄ = 1.5, n̄A = 2, n̄B = 5 and r = 1.1, the covariance matrix will be

σD−
AB =


12.1358 0 −12.6066 0

0 12.1358 0 −12.6066

−12.6066 0 19.7716 0

0 −12.6066 0 19.7716

 , (E.17)

which is bona-fide.
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