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Aos meus pais e irmãos...
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Abstract

This thesis is devoted to the study of systems presenting continuous quantum phase transi-
tions subject to a thermodynamic work protocol. Particularly, we investigated how quan-
tum coherences created by a sudden change in the system Hamiltonian can be quantified
and their relation to its critical behavior. Therefore, the results here presented lie within
the scope of quantum thermodynamics.

The effects of quantum criticality in work protocols have been considerably investi-
gated in recent years. Still, little or nothing was known about the role of quantum coher-
ences. To grasp this, we examined two splittings of entropy production into a classical
and quantum parts, the latter related to quantum coherences.

The first splitting have been used in several contexts and maintains an intimate con-
nection with the resource theory of thermodynamics. However, employing it to a quantum
Ising model driven out of equilibrium by a sudden quench, we verified some shortcom-
ings: namely, counter-intuitive and immutable behavior at low temperatures and unex-
pected nonanalyticities unrelated to critical phenomena. This inspired us to introduce a
new and complementary separation to the entropy produced following a work protocol.

A surprising and intriguing property of these splittings when applied to critical sys-
tems is the fact that they exhibit signatures of the critical point independently of the system
initial temperature. In the new splitting we are capable of explaining this as a consequence
of their close relation to the derivatives of the energy spectrum.

Keywords: Quantum thermodynamics; Quantum phase transitions; Critical phenomena;
Quantum Coherence; Entropy production; Splittings of entropy production; Ising model.
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Resumo

Esta tese dedica-se ao estudo de sistemas que apresentam transições de fase quânticas con-
tínuas sujeitos a um protocolo termodinâmico de trabalho. Particularmente, investigamos
como as coerências quânticas criadas por uma perturbação repentina na Hamiltoniana do
sistema podem ser quantificadas e sua relação com o comportamento crítico. Portanto, os
resultados aqui apresentados residem no âmbito da termodinâmica quântica.

Os efeitos da criticalidade quântica em protocolos de trabalho têm sido consideravel-
mente investigados nos últimos anos. Ainda assim, pouco ou nada se sabia sobre o papel
das coerências quânticas. Para entender isso, examinamos duas divisões da produção
de entropia em uma parte clássica e outra quântica, a última relacionada às coerências
quânticas.

A primeira divisão já foi usada em vários contextos e mantém uma conexão íntima
com a teoria de recursos da termodinâmica. No entanto, aplicando-o a um modelo de
Ising quântico submetido a uma perturbação repentina, verificamos algumas deficiên-
cias: a saber, um comportamento contraintuitivo e imutável em baixas temperaturas e
não analiticidades inesperadas não relacionadas a fenômenos críticos. Isso nos motivou
a introduzir uma nova e complementar separação para entropia produzida seguindo um
protocolo de trabalho.

Uma propriedade surpreendente e intrigante dessas divisões quando aplicadas a sis-
temas críticos é o fato de exibirem assinaturas do ponto crítico independentemente da
temperatura inicial do sistema. Na nova divisão, podemos explicar isso como uma conse-
quência de sua estreita relação com as derivadas do espectro de energia.

Palavras-chave: Termodinâmica quântica; Transições de fase quânticas; Fenômenos
críticos; Coerência quântica; Produção de entropia; Divisões da produção de entropia;
Modelo de Ising.
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Introduction

The superposition principle is at the heart of quantum theory and may be the fundamen-

tal aspect of it leading to its departure from classical physics. Formally, this principle is

translated into the likely existence of off-diagonal elements in the representation of ob-

servables and density operators in a particular basis of the system Hilbert space. These

off-diagonal elements represent the so-called quantum coherences.

The effects of quantum coherences are present in some of the foundational problems

of quantum theory — such as in the wave-like behavior of particles — and also in some

of its most important and successful technological applications — like the laser. In recent

years, the field of quantum information and associated areas have seen and increasing

effort in the attempt at characterizing and quantifying coherences. This culminated with

the formal development of the resource theories of coherences [1, 2]. Since coherence

underlies entanglement, some may regard it as the supreme quantum resource, allowing

the realization of tasks impossible in the domain of classical physics. Altogether, this

makes the understanding of quantum coherences crucial to practical implementations of

quantum sciences.

Coherences are receiving considerable attention in the particular field of quantum

thermodynamics, being the subject of several recent studies. This is a consequence of

the recognition of its elementary role in the field. For instance, at a fundamental level,

energetic coherences are intimately related to the problem of defining work and heat in

quantum systems [3–7]; it also imposes constraints on state transformations in thermal

processes [8–11]; it alters fluctuation-dissipation relations at linear response [12, 13] and

may in fact reverse heat flows [14–17]. Moreover, they can be used to extract work [9,

18–25]; it can enhance the functioning of thermal machines [26–29] and accelerate energy

exchanges [30, 31].
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Introduction

One of the most significant applications of classical thermodynamics is in the study of

phase transitions. These often drastic changes in a system are indicated by a nonanalytic

behavior of some thermodynamic function. In a first-order phase transition the molar en-

tropy and volume as a function of temperature has a discontinuity, while its heat capacity

diverges because of latent heat. Second-order phase transitions, instead, are characterized

by a diverging susceptibility.

At zero temperature, a system can undergo a quantum phase transition. In this case,

the changes in the system are associated with nonanalyticities in its ground state. Indeed,

these singular behaviors may also be reflected in some stochastic or quantum thermody-

namic quantities. For instance, a discontinuity in the average work done on a quenched

system can indicate a first-order quantum phase transition [32]. Alternatively, a singular

behavior of the entropy production signals a second-order transition [32–34].

In a quantum system, the entropy production can be typically split into two contribu-

tions. One is associated to changes in the populations of the system and can be referred

to as a classical contribution; the other comes from the genuinely quantum feature of co-

herences [12, 35–37]. It becomes relevant then to understand the role of each of these

components in these splittings, particularly for quantum critical models.

This thesis explores precisely that. The standard splitting is based on the relative

entropy of coherence [1, 35, 36]. We examine it in a transverse field Ising model [38].

Next, inspired by some initial results obtained in [12, 13], we propose a new and more

appropriate splitting for unitary work protocols [37]. We further analyse its behavior

close to the critical points of a modified quantum Ising model with a transverse field that

alternates values for even and odd sites [39]. We show the individual components of

entropy production can still pinpoint the existence of a quantum phase transition even

when the protocol is realized at arbitrarily high temperatures [40].

The thesis is divided as follows. In Chapter 1 I review the main concepts of phase

transitions and critical phenomena. Chapter 2 is dedicated to introduce the Alternating

Transverse Field Ising Model (ATFIM) which will be used as an example of quantum

critical system. In Chapter 3 I present the thermodynamic Jarzynski-type work protocol,

define entropy production at the stochastic and average levels and discuss its physical

meaning and mathematical properties. Moreover, the behavior of this quantity in the
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Introduction

vicinity of the critical points of the ATFIM following an instantaneous quench protocol is

analysed and discussed. Chapter 4 is dedicated to the first splitting of entropy production,

here called the Γ-splitting. I review its physical motivation and significance, study its be-

havior in a suddenly quenched Ising model and scrutinize its shortcomings. In Chapter 5

our new splitting of entropy production is presented along with its physical meaning. I

refer to it as the Λ-splitting. Its specific properties in the case of instantaneous quenches

are discussed in detail. Next, the behavior of the Λ-quantities near the critical points of the

ATFIM are analysed and an explanation to their singularity at a critical parameter given.

This is followed by a concluding chapter.

Additionally, the thesis includes several appendices. Appendix A is devoted to the

derivation of some mathematical results concerning the ATFIM. Appendix B presents

some quantum mechanics and quantum information definitions, quantities and their prop-

erties. These include, for instance, the time-ordering operator, von Neumann entropy,

quantum relative entropies and the framework of resource theories. Appendix C provides

a rigorous mathematical relation between forward and backward (time-reversed) unitary

dynamics. Finally, in Appendix D I compare thermodynamic quantities derived using

the full Ising model Hamiltonian against the ubiquitous “positive parity approximation"

Hamiltonian. Explicitly, it is revealed the entropy production following a quench protocol

does not exhibit significant discrepancies with this approximation.
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Chapter 1

Critical Phenomena

A phase transition entails fundamental changes in the macroscopic properties of a system.

The quintessential examples are those of solid, liquid, and gaseous transformations. But

they are also at the heart of phenomena like superfluidity and superconductivity, with

potential technological applications.

In equilibrium thermodynamics, these phase shifts are commonly driven by tempera-

ture when it reaches a certain value that places the system on a transition point. In such

points, some thermodynamic quantities will present a nonanalytical behavior, characteriz-

ing the transition. Returning to one of the aforementioned canonical examples, for water

at a pressure of 1 atm, a transition point is attained when the temperature decreases to

0 ºC. The subsequent solidification of water into ice is marked by a discontinuous change

in its specific volume and entropy.

This example constitutes a representative case of a transition involving latent heat:

the water releases a finite amount of energy without altering its temperature as it trans-

forms from one phase to the other. Phase transitions comprising latent heat are classified

as discontinuous or first-order phase transitions because of the discontinuity in the first

derivatives of the free energy.

Otherwise, transitions which do not involve latent heat are denominated continuous

and are often of second-order. In this case, divergences and other singularities appear in

the second (or higher-order) derivatives of the free energy. The most elementary example

is that of a magnetic material in the absence of an external field at the Curie tempera-

ture. Above this temperature the system loses its ferromagnetic property of spontaneous
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Chapter 1. Critical Phenomena

magnetization and becomes a paramagnet.

The singularities in a continuous transition have frequently a power law form and

are associated with diverging length- and time-scales of the system. These peculiar non-

analytical behaviors of physical properties are denominated critical phenomena and the

transition point in this case is termed the critical point.

Thus far, I have discussed thermally driven, or classical, phase transitions. Contrast-

ingly, quantum phase transitions (QPT) take place at zero temperature and concern dis-

tinct changes in the ground state of a many-body system. The phase transformations,

in this case, are driven by quantum fluctuations established by a nonthermal parameter

g which regulates a competition between separate parts of the system Hamiltonian. It

is noteworthy that, although these transitions occur at T = 0, they might nonetheless

produce consequences at finite temperatures.

My focus here will be on QPTs of second order, but the main ideas are readily ex-

tended to higher-order continuous transitions. Similarly to the classical thermal case,

these are linked to a critical point and present critical phenomena, which here are further

identified with a closing energy gap in the thermodynamic limit. Since many of the con-

cepts in critical phenomena are common to both classical and quantum types, I introduce

most of them adopting the more familiar language of the former.

1.1 Thermal phase transitions

Let us consider a system with a Hamiltonian H({Cn}, {θn}), which is a function of the

coupling constants {Cn} and of the dynamical degrees of freedom {θn}. Its free energy

is given by

F = −T lnZ, (1.1)

Z = tr
{
e−βH

}
, (1.2)

where T is the temperature and β = 1/T . Implicitly I am setting the Boltzmann constant

kB = 1 — this is done throughout the thesis. The trace in the definition of the partition

function Z is a sum made over all degrees of freedom of the system - all possible values of
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Chapter 1. Critical Phenomena

the {θn} [41]. As previously noted, a phase transition is associated with a nonanalyticity

of this free energy.

If H is analytic, the sole way in which Eq. (1.1) can be singular is if the partition

function vanishes. But Z represents a sum of positive contributions and, thus, cannot

vanish in a finite system. Nonetheless, this might change in the thermodynamic limit of

an infinite system (infinite degrees of freedom). The reason for this is that the partition

function Z has complex roots that may become real in this limit [42]. Therefore, a phase

transition is precisely defined only in the thermodynamic limit.

Having determined one primary requirement for the existence of a phase transition,

let us analyze some properties of the free energy. Thermodynamic variables come in two

types, extensive and intensive. The former depends on scale or the size of the system,

meaning that if the system is rescaled by a factor l, they also rescale by this factor. Some

examples are energy, volume, entropy and magnetization: they double when the size of the

system is doubled. In contrast, intensive variables do not rescale, and examples include

temperature, pressure and magnetic field.

The free energy is a function of both types of variables. For concreteness and sim-

plicity of discussion, I consider a system of spins residing on the vertices (sites) of a

d-dimensional hypercubic lattice with linear size L. The volume and number of spins in

the system are given by V = N = Ld, assuming a lattice spacing a = 1. In this case F is

a function of the temperature T , an external magnetic field B and N . We should expect

the free energy to be extensive. Increasing the size of the system should increase its free

energy. In fact this is a direct consequence of the extensivity of energy and entropy (and

magnetization), and is captured by the relation

F (T,B,N) = l−1F (T,B, lN) = Nf(T,B), (1.3)

where in the last equality I made l = 1/N . In addition, f(T,B) = F (T,B, 1) is the free

energy per spin.

However, Eq. (1.3) is incompatible with critical behavior [43–45]. To see this, let us

consider the isothermal susceptibility per spin given by χ = −(1/N)(∂2F/∂B2). This is

a significant quantity in the study of critical phenomena in magnetic materials because of

6



Chapter 1. Critical Phenomena

its direct relation to measurable quantities and notable singular behavior. For instance, in

many models, the susceptibility per spin diverges at the critical point.

Hence, suppose we have a finite system at the critical values of temperature, Tc, and

field, Bc. Then the only parameter still not fixed is N . Since we are not at the critical

point (Tc, Bc, N
−1 → 0) yet, χ is finite. Hence, to get a diverging susceptibility per

spin when N → ∞ we must have χ(Tc, Bc, N) ∝ Na, with a > 0. But extensivity (1.3)

demands that χmust be independent ofN in the thermodynamic limit: χ = −(∂2f/∂B2).

To emphasize, f(T,B) is independent of N ; the previous derivative cannot be finite for

N−1 > 0 and diverge when N−1 → 0.

The approach to solving this difficulty is the introduction of a new scaling for the free

energy. Actually, the free energy is typically split in an analytic and a nonanalytic parts,

with the latter responsible for critical behavior. For simplicity I will neglect the regular

part and call the singular part just the free energy.

So, let us assume that, instead of the extensive relation (1.3), the free energy per

particle obeys the generalized homogeneous equation

f(t, B, L−1) = l−df(l1/νt, lyB, lL−1), (1.4)

where I introduce the reduced temperature t = (T − Tc)/Tc and use L−1 instead of N .

In the case of magnetic systems, the critical field usually occurs at Bc = 0. Hence, the

critical point is placed at the origin of the parameter space generated by these variables.

In the end, Eq. (1.4) sacrifices one of the properties of the intensive variables t and B,

which was the absence of a scaling factor upon rescaling.

Next, let us consider the consequences of the scaling form (1.4). I have already men-

tioned that some thermodynamic quantities present a nonanalytical power law behavior

near a critical point. We should hope this ansatz for the free energy functional gives us

that. Only latter I will attempt to justify it.

First, with a little abuse of notation, I denote by f(t, B) = f(t, B, 0) the free energy

per particle in the thermodynamic limit. This quantity, the bulk free energy, is always

7



Chapter 1. Critical Phenomena

finite, including in the critical point. By making l = L in (1.4), we get

f(t, 0) = lim
L→∞

f(t, 0, L−1) = lim
L→∞

L−df(L1/νt, 0, 1), (1.5)

f(0, B) = lim
L→∞

f(0, B, L−1) = lim
L→∞

L−df(0, LyB, 1). (1.6)

In order for f(t, B) to be finite we must require f(x, 0, 1) ∼ |x|q and f(0, x, 1) ∼ |x|p,

with −d + q/ν = 0 and −d + py = 0, when x → ∞. Here, "∼" means functional

dependence on the variable on the right, with coefficients omitted. These lead to f(t, 0) ∼

|t|dν and f(0, B) ∼ |B|d/y, which, again, finiteness demands ν > 0 and y > 0. Moreover,

this means the following scaling relation for f(t, B),

f(t, B) = l−df(l1/νt, lyB) (1.7a)

= |t|dνF±(B/|t|yν), (1.7b)

where I made l1/ν = 1/|t| in the second equality and introduced the scaling function

F±(x) = f(±1, x).

Now it is explicit in (1.7b) that the thermodynamic limit bulk free energy will have

a power law singularity on the distance from the critical temperature t = 0. Further

exploring the consequences of Eqs. (1.4) and (1.7a), one notes this power law singular

behavior is inherited by the thermodynamic quantities derived from the free energy. The

exponents appearing in these derivatives are called critical exponents and are functions of

the dimension d and the previously introduced ν and y.

For instance, it is observed that the specific heat at the critical field behaves as cB=0 ∼

|t|−α near the critical point t = 0. Finiteness of the energy per particle imposes α < 1.

Deriving (1.7b) twice with respect to temperature we obtain this general form with the

critical exponent α = 2− dν, which gives the bound ν > 1/d.

More, deriving (1.7b) with respect to B we obtain the magnetization per spin,

m = − ∂f
∂B

= −|t|(d−y)νF ′±(B/|t|yν). (1.8)

This shows the magnetization at zero field vanishes in the vicinity of the critical point as

8



Chapter 1. Critical Phenomena

m0 = m(B = 0) ∼ |t|β , with β = (d − y)ν and y < d. Indeed, in a ferromagnetic

to paramagnetic transition, m0 possesses a nonzero value in the low temperature ordered

phase, and vanishes for temperatures t > 0. A quantity such as m0, that vanishes in the

high temperature phase and is nonzero in the other, represents a so-called order parame-

ter, and β is the order parameter critical exponent. This behavior also implies F ′+(0) = 0

while F ′−(0) 6= 0.

Another exponent related to the order parameter is the one giving the shape of the

critical isotherm t = 0 near the critical point (B small), and is denoted by δ: m ∼ B1/δ.

It reads δ = y/(d− y).

Finally, deriving one more time with respect to B, we obtain the susceptibility

χ(t, B) = −|t|(d−2y)νF ′′±(B/|t|yν) ∼ |t|−γ (at zero field), (1.9a)

χ(t, B, L−1) = L2y−dFχ(L1/νt, LyB), (1.9b)

where γ = (2y − d)ν. This gives a diverging susceptibility in the critical point when

2y > d. In (1.9b) I wrote the finite-size scaling of the susceptibility to emphasize that

now we get the non extensive behavior we were expecting. If we take the limit L → ∞

in this equation, we can obtain a divergence, which was not compatible with (1.3). Here,

Fχ(x, y) = ∂2
yf(x, y, 1) is another scaling function.

Since all critical exponents are functions of (d, ν, y), several relations may be estab-

lished between them and these are referred to as scaling laws. An example is: α+2β+γ =

2. In addition, the specific heat, magnetization and susceptibility all represent measurable

quantities and these exponents can be determined by experiment. In table 1.1 I summarize

the most commonly used critical exponents.

Therefore, the scaling hypotheses (1.4) and (1.7a) are capable of expressing a singu-

larity in the free energy and give the power law behavior of thermodynamic quantities

characteristic of critical phenomena. The subsequent step is to justify them.

To achieve this, it will be beneficial to consider explicitly the Ising model. This is

likely the simplest model exhibiting a continuous phase transition and it will occupy a
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leading role in this thesis. Its classical version has a Hamiltonian given by

H = −J
∑
〈i,j〉

σiσj −B
∑
i

σi. (1.10)

Here, σi is the spin variable at site i, which may assume one of two configurations, up or

down, or the values ±1. In the first term, the coupling constant J gives the interaction

between spins and 〈i, j〉 means the sum is between nearest neighbors. The second term

represents a coupling between the individual spins and an external (longitudinal) magnetic

field B, which we can assume to be measured in units of energy. The magnetization in

this model is simply given by m = (1/N)
∑

i〈σi〉, where the brackets mean statistical

mechanics average.

For J > 0 and d > 1 the Ising model is known to present a continuous transition

from a ferromagnetic to a paramagnetic phase at vanishing magnetic fields [46–48]. A

ferromagnetic interaction (J > 0) favors alignment of spins in the same direction. Hence,

at T = 0 and zero field, the system has all spins pointing up or down and exhibit a

spontaneous magnetization m0 = ±1, depending on the configuration.

Effectively, the system will choose the up or down state based on the initial conditions,

as in if B approached zero from above or bellow. Let us consider the initial configuration

is of all spins pointing up. That is, the system is in a ferromagnetic phase with spontaneous

magnetization m0 = 1. As T is increased above zero, the spins start to fluctuate, and at

all times, a net fraction of them will point down, reducing the spontaneous magnetization.

At some temperature Tc, this magnetization eventually drops to zero, and above it, the

system will be found in a paramagnetic phase.

Before returning to the problem of justifying the scaling hypothesis (1.7a), let me

present another important concept common in many critical phenomena. If we look at the

Ising Hamiltonian (1.10), we note H({J,B = 0}, {σi}) is invariant under the operation

{σi} → {−σi}. This symmetry is reflected on the magnetization in the paramagnetic

phase, m0 ∝ 〈σi〉 = 0. However, this is untrue in the ferromagnetic phase, where m0 ∝

〈σi〉 6= 0. This nonpreservation of a symmetry of the Hamiltonian in the statistical average

〈σi〉 below the critical point is denoted an spontaneous symmetry breaking.

10
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Next, I introduce the two-point correlation function between spins i and j given by

G(ri, rj) = 〈σiσj〉 − 〈σi〉〈σj〉

= 〈(σi − 〈σi〉)(σj − 〈σj〉)〉,
(1.11)

where ri,j gives the position of spin i, j. The second equality shows that G measures

the correlation of the fluctuations from the average magnetization of the two spins. This

function is manifestly translational invariant for periodic boundary conditions but this

also holds for open boundary conditions in the thermodynamic limit. Hence, G is in fact

a function of only the distance between spins, G = G(r = |ri − rj|).

Working with the partition function of (1.10), it is easy to demonstrate that

χ =
1

T
N−1

∑
i,j

G(i, j)

=
1

T

∑
r

G(r),

=
a−d

T

∫
ddrG(r),

(1.12)

where I utilized the translational invariance of G to get the second equality and the ther-

modynamic and continuous limits to convert the sum into an integral. In the third line, a is

the lattice spacing - the distance between vertices. The susceptibility is an example of a re-

sponse function; it tells how the system reacts, by changing its magnetization, to a varying

magnetic field. Equation (1.12) is an example of the more general fluctuation-dissipation

theorem, relating a response function to the fluctuations in the associated extensive vari-

able.

Hence, the behavior of the susceptibility is regulated by the integral on the right, and

any divergence of it must come from a long-ranged correlation. Indeed, for sufficiently

long distances and T 6= Tc, the correlation function behaves as [43, 49]

G(r) ∼ e−r/ξ

r(d−1)/2ξ(d−3+2η)/2
, (1.13)

where ξ is called the correlation length, and provides a measure of the extent over which

11
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the fluctuations in the spins are correlated. Clearly this quantity must depend on the

temperature of the system. The fast decaying of correlations at long distances when T 6=

Tc gives a nondivergent susceptibility.

In contrast, right at Tc we have [43, 44, 49],

G(r) ∼ 1

rd−2+η
, (1.14)

where η is another critical exponent describing the behavior of the correlation function

precisely at Tc. Through the relation between the correlation function and susceptibility

we get new scaling laws, like γ = (2y− d)ν = (2− η)ν, which can be used to determine

y.

Now, the sole way in which Eqs. (1.13) and (1.14) can be made compatible is through

the divergence of the correlation length at the critical point. As a matter of fact, the critical

exponent ν introduced on Eq. (1.7a) is precisely the one associated with the divergence

of ξ,

ξ ∼ |T − Tc|−ν ∼ |t|−ν . (1.15)

Having said that, all singularities of critical phenomena can be understood as resulting

from this divergent correlation length [43, 50]. To appreciate this, we note the bulk free

energy (1.7a) divided by T has dimensions of [length]−d. As a result, we may hope for an

expansion in the form [43, 44]

f(t, B)

T
= ξ−d

(
A0 + A1

(a1

ξ

)λ1
+ A2

(a2

ξ

)λ2
+ ...

)
, (1.16)

where an are other length scales of the system — such as the lattice spacing a —, An are

some function coefficients with nonsingular behavior, and λn are nonnegative exponents.

Thence, sufficiently close to the critical point, ξ becomes the dominant length scale, and

all other terms may be ignored, leading to

f ∼ ξ−d ∼ |t|dν , (1.17)

exactly what we obtained starting with the scaling hypothesis (1.4). Indeed, the diver-

gence of a length scale is the trademark of critical phenomena [43–45, 49].
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A qualitative discussion of the results above can be made as follows [44]. At very

large temperatures, thermal noise is the completely dominant factor and the spins fluctuate

wildly and at total randomness. In this situation there are little correlations between them

and the correlation length is small, of the order of one lattice spacing. As T is decreased,

the interaction J is able to form small clusters of correlated spins, which can arbitrarily

point up or down, and are spread over the system. These clusters will have an average

volume given by ξd. Further decreasing the temperature, increases the correlation length;

the volume of the clusters grows on average.

Now looking at the ordered phase, close to zero temperatures, the spins will be aligned

up or down and there is little fluctuations, which occur at random. Once more, the cor-

relation length is small, of the order of the lattice spacing. However, as T is raised,

fluctuations increase and allows the interaction between neighbors to produce small clus-

ters of flipped spins. These will have an average volume ξd, and will be dispersed over

the system. As the temperature is further raised, the average volume of these clusters

increase.

Near the critical temperature, the competition between the tendency to order imposed

by the interaction and of disordering imposed by the thermal noise is fierce [44]. Just

above Tc there is a nearly spontaneous magnetization in the system, and, therefore, there

must exists large agglomerations of spins aligned in the same direction. Hence, a large

correlation length. A similar picture applies just below Tc. Again, there will be massive

clusters of spins pointing up and down, and only a minor fraction makes the difference to

give a nonzero magnetization. Additionally, since these large clusters constitute by them-

selves macroscopic systems, they must contain several other clusters of inverted spins

with sizes ranging from 0 to ξ. This means fluctuations occur on all length scales of

the system. In the thermodynamic limit, and right at Tc (and Bc), the correlation length

diverges.

We are in the position now to discuss the issue with the extensivity of the free en-

ergy (1.3) close to the critical point. Extensivity is built on the idea that subsystems may

be added together to form a larger system and that the properties of these subparts can be

simply extended to the whole. It works as long as interactions are sufficiently short ranged

and the pertinent length scales of the subsystems are small, so that boundary effects can

13
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be neglected. Clearly, that is not the case when we have an increasing correlation length

as the critical point is approached. In this scenario, the idea of adding subsystems to build

a whole can make sense only if applied to the aforementioned clusters, which have an av-

erage volume ξd. If the total system has N spins, the number of clusters should be close

to N/ξd, and the total free energy would be given by F = (N/ξd)fξ ∼ N |t|dνfξ, where

fξ is the free energy of a cluster. This gives a free energy per spin F/N ∼ |t|dν , once

again consistent with our previous results. Precisely at the critical point, ξ →∞, and the

entire system must be treated as a single unit.

The divergence of the correlation length also implies a new symmetry to the sys-

tem [43, 49]. Since the system is highly correlated for distances of order ξ, we may

consider the treatment of blocks of spins of linear dimension la � ξ as a single spin

unity [50]. The block-spin variables can be constructed to possess the same range of val-

ues as the originals — σblock = ±1 in the Ising model — and be placed at the center of the

blocks. After this coarse-graining, the system will consist of interacting spins separated

by a distance la. In terms of the new length scale unity la, the correlation length would

be smaller and the block system would appear as if more distant from criticality. If now

we rescale all lengths by a factor l, x → x/l, we essentially recover the original lattice

but with an effective Hamiltonian with different coupling constants {C ′n}.

This two-step procedure forms a renormalization group transformation [43]. And is

made in such ways that it preserves the symmetries of the original Hamiltonian, and the

partition function and statistical averages, in the sense that [43, 44, 49]

Z({t′, C ′n}) = Z({t, Cn}) (1.18)

〈•〉{t′,C′n} = 〈•〉{t,Cn}. (1.19)

In (1.19) each side gives averages which are functions of the specified coupling constants.

The fixed points of a renormalization group transformation determine the stable phases

as well as the critical point of a system. At the latter, the system becomes scale invariant

for distances r � a, which is reflected on the correlation function (1.14) at Tc, where

G(r/l) = ld−2+ηG(r). That is, the physics of correlations remain the same under this
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transformation. More generally, however, we have

G(r; t, B) = l−(d−2+η)G(r/l; l1/νt, lyB), (1.20)

where I made explicit the dependence of G on t and B through the correlation length ξ.

The relation (1.20) for the correlation function mirror the scaling hypothesis of the

free energy (1.7a). In fact, these generalized homogeneous equations steam from the

rescaling of the parameters and physical quantities of the system under a renormalization

group transformation. Particularly, for a renormalization parametrized by l, a coupling

constant set {t, Cn} gets rescaled to {t′, C ′n} = {l1/νt, lynCn}, with these scaling expo-

nents determined amidst the transformation. Meanwhile the free energy per spin changes

as f({t, Cn}) = l−df({t′, C ′n}), since N scales with ld; the form of our starting scaling

hypothesis.

Having justified the scaling hypothesis (1.4) and (1.7a), I move to the concepts of uni-

versality and crossover phenomena. The exponents ν and yn associated with the scaling

of the coupling constants may be positive, negative or null, and this has great impact on

the behavior of the system. To illustrate this, let us revisit Eq. (1.7b), that shows the bulk

free energy in a magnetic system may be written as

f(t, B) = |t|dνF±(B/|t|yν). (1.21)

If y > 0, the limiting behavior we get from F± depends crucially on whether or not B

is exactly zero when the critical limit t→ 0 is approached. When the field is at its critical

value B = 0 we get F±(0), otherwise it is the limit F±(x → ∞) that matters when we

take t → 0. Hence, in this example, the presence of a nonzero field takes the system

away from criticality. For this reason, coupling constants associated with positive scaling

exponents are termed relevant variables. To be at a critical point, they must be adjusted to

their exactly critical values. The temperature exponent 1/ν is obviously positive, or else

it would be impossible for thermally driven phase transitions to exist at all.

Contrarily, if y was negative, it would be inconsequential whether B 6= 0, since the

combined variable B/|t|yν would always vanish as t→ 0. Therefore, coupling constants

associated with negative exponents constitute irrelevant variables.
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Ordinary critical points have two relevant variables. For magnetic systems they are

temperature and the external magnetic field (or, to be more precise, B/kBT ); for the

liquid-gas critical point, they are temperature and pressure. But it is possible to have

more than two.

That said, suppose we start with a Hamiltonian containing several parameters describ-

ing microscopic details of the system, such that the associated free energy is a function

of f(t, C2, C3, C4, ...). Sufficiently close to an ordinary critical point, what matter is al-

most invariably the limit f(t, C2, 0, 0, ...) because of the distinction between relevant and

irrelevant variables.

It is already clear from this argument that an infinitude of systems differing by distinct

microscopic details, expressed in the irrelevant variables, can have similar critical behav-

ior. Concretely, this behavior is characterized by the values of the critical exponents, e.g.

ν and η. And it is observed that these exponents depend only on very general features like

the dimensionality of the system, the symmetries of the Hamiltonian and range of interac-

tions. This leads to the concept of universality: microscopically distinct systems sharing

only general features have similar critical behavior. Thence, critical systems character-

ized by the same exponents form an universality class. For instance, the Ising universality

classes also contains various liquid-gas transitions.

The idea of universality also implies the critical behavior of a number of systems can

be understood by examining just the simplest model in the same class. This model would

focus solely on the relevant variables. The Ising Hamiltonian precisely gives an example

of such a model.

Next, from the above discussion on the behavior of parameters under a renormaliza-

tion group transformation, we note the size of the system constitute a relevant variable.

In particular, L−1 has an scaling exponent yL = 1, and, consistently, has to be adjusted to

the appropriate value L−1 = 0 for the system to be at the critical point.

Let us consider again our magnetic system at the critical field B = 0. For a finite

system we have

f(t, L−1) = l−df(l1/νt, lL−1)

= |t|dνF±L (L−1|t|−ν),
(1.22)
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Table 1.1: Summary of common critical exponents. I use magnetic systems as an ex-
ample. In the last column I specify their values in the two-dimensional Ising universality
class.

Quantity exponent relation d = 2 Ising

specific heat α cB=0(t→ 0) ∼ |t|−α 0 (log)

order parameter β m0(t→ 0−) ∼ (−t)β 1/8

susceptibility γ χ(t→ 0, B = 0) ∼ |t|−γ 7/4

critical isotherm δ m(t = 0, B → 0) ∼ |B|1/δ 15

correlation length ν ξ(t→ 0, B = 0) ∼ |t|−ν 1

critical correlation η G(r; t = 0, B = 0) ∼ r−(d−2+η) 1/4

equilibration time z τeq(t→ 0, B = 0) ∼ ξz 1

where for simplicity I omitted the dependence on B completely, and F±L (x) = f(±1, x)

is a scaling function.

Under these circumstances, there is a region of large enough L and small enough t

such that L−1|t|−ν � 1 and the asymptotic behavior of F±L is the same as if the system

was infinite. That is, we get the limit x → 0 of F±L (x). For an experimentalist working

on this regime, the thermodynamic properties of the system look critical.

However, when |t| is further lowered and placed nearer the critical value t = 0, one

enters the limit L−1|t|−ν � 1, and, therefore, gets the limit x→∞ of F±L (x). In a finite

system sufficiently close to the transition temperature, the asymptotic scaling behavior is

deviated from the critical one.

This change in asymptotic behavior is called crossover phenomena. As a consequence

of the finiteness of the system, the correlation length cannot surpass the length L as t→ 0.

The usual divergences of thermodynamic quantities are then replaced by rounded peaks

with their maxima displaced from the infinite system transition temperature.

To finish, thus far I made no reference to dynamics, and considered only static prop-

erties. The reason for this is the that in classical statistical mechanics, the kinetic and
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potential parts of a Hamiltonian usually decouple. If we consider a classical Hamiltonian

H(q,p) = Hkin(p) + Hpot(q), where q and p are generalized coordinates and momenta,

the partition function separates into ZkinZpot. The first part usually steams from Gaus-

sian integrals, and, therefore, will present no singularities. This fact greatly simplifies the

study of classical critical phenomena, since it allows the use of time-independent models,

such as (1.10).

Nonetheless, as we saw, the increase in the correlation length near a critical point

means larger regions of fluctuations of the system about its equilibrium condition. Conse-

quently, we could expect the time the system takes reequilibrating to also becomes longer.

This phenomenon is known as critical slowing down. A phenomenological dynamical the-

ory [43] of the order parameter shows that, as the system approaches the critical point,

the time it takes to reequilibrate diverges as

τeq ∼ ξz ∼ |t|−zν , (1.23)

where z is called the dynamical critical exponent and is independent of the critical expo-

nents presented before.

Moreover, I have been implicitly assuming dl < d < du, where dl and du are called

the lower and upper critical dimensions [43]. Their meaning is that when d 6 dl, the

fluctuations on the system are too strong and no ordered phase can exist at T > 0. On the

other hand, when d > du, fluctuations are no longer important for determining the critical

exponents; they no longer depend on d and can be obtained using mean-field theory [43,

44, 49].

1.2 Quantum phase transitions

Quantum phase transitions occur at zero temperature and are driven by quantum fluctua-

tions, instead of thermal. At the limit T = 0, the free energy is equivalent to the ground

state energy, and statistical averages are replaced by ground state averages. A quantum

phase of matter, therefore, is characterized by specific properties of the ground state of a

quantum many-body system. Accordingly, a quantum phase transition is associated with
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singularities of this ground state as a function of some nonthermal parameter g in the

system Hamiltonian. To give some examples, g can be a pressure, a magnetic field or a

chemical potential.

This nonanalyticity may result, for instance, from a reordering of the ground and an

excited energy levels at some point g1. Where this level crossing occurs, the derivative

of the ground state energy has a discontinuity, and the transition is of first-order — see

Fig. 1.1(a). First-order transitions can happen even if the system is finite.

Let us consider now the Hamiltonian

H(g) = H0 + gH1, (1.24)

where H0 and H1 are independent of g, and [H0, H1] 6= 0; i.e. they do not commute.

This noncommutativity of H1 with H0 introduces fluctuations of a quantum nature in the

system, controlled by the parameter g. Furthermore, g establishes a clear competition

between the two parts of this Hamiltonian. To illustrate, in the limit g � 1, the system

ground state is close to that of H0, while in the opposite limit, g � 1, it is close to that of

H1.

In a finite system, the eigenvalues and eigenstates of H(g) are analytic functions of

g. Suppose there is a point gc where an avoided level crossing between ground and first-

excited energy levels occurs, a point where the energy gap is minimum — see Fig. 1.1(b).

In the thermodynamic limit, this gap might close, and a singularity may develop in the

ground state and ground state energy. This constitutes a continuous quantum phase tran-

sition, gc being the quantum critical point.

Indeed, as the system approaches the quantum critical point at gc, this gap closes as

∆ ∼ |g − gc|zν , (1.25)

where z and ν are the dynamic and correlation length critical exponents introduced before.

Since a diverging time scale is a mark of critical phenomena, by the time-energy uncer-

tainty relation, we should expect quantum criticality to be characterized by a vanishing

energy scale.

This can be made formal by a mapping between the partition function of a d-dimensional
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Figure 1.1: Behavior of the two lowest energy levels of H(g) as a function of g. In (a)
[H0, H1] = 0, and there is a level crossing. These are associated with first-order transi-
tions. In (b) [H0, H1] 6= 0, and there is an avoided level crossing. In the thermodynamic
limit the gap might close, in association with the emergence of a singularity. This com-
prises a continuous transition.

quantum system and a (d+ z)-dimensional classical model [49, 51–53]. Under this map-

ping, the inverse of the quantum energy gap maps onto a diverging correlation length in a

"time" direction in the classical model. This, in turn, diverges with an exponent zν.

The general idea is to write the canonical operator e−βH as an imaginary-time propa-

gator e−N(τ/~)H , with τ → 0, N →∞, such that N(τ/~) = β. Then use the path-integral

formulation of quantum mechanics to map the quantum partition function onto the parti-

tion function of a higher dimensional classical system [53],

Z = tr
{
e−βH

}
=
∑
n0

〈n0|e−βH |n0〉

=
∑
n0

∑
n1

...
∑
nN

〈n0|e−(τ/~)H |n1〉〈n1|e−(τ/~)H |n2〉...〈nN |e−(τ/~)H |n0〉.

(1.26)

Above I introduced complete sets of orthonormal bases vectors {|ni〉}. The numbers ni

play the role of the classical dynamical variables.

Such a map is certainly better understood with an example. The most straightforward

case involves the one-dimensional classical Ising model and a single qubit.

The d = 1 classical Ising Hamiltonian at zero field is given by

HC = −J
N∑
i=1

σiσi+1, (1.27)

where N is the number of spins in the chain, and σi = ±1. I consider periodic boundary
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conditions: σN+1 = σ1. Then the chain is in fact a ring.

The corresponding partition function for a chain at a temperature TC reads [43, 49]

Z =
∑
σ1=±1

...
∑

σN=±1

e−HC/TC =
∑
σ1=±1

...
∑

σN=±1

N∏
i=1

Tσi,σi+1
= tr

{
TN
}
, (1.28)

where T is a so-called transfer matrix and, in this case, is given by

T =

 T1,1 T−1,1

T1,−1 T−1,−1

 =

 eJ/TC e−J/TC

e−J/TC eJ/TC

 = eJ/TC (1 + e−2J/TCσx). (1.29)

In the last equality, σx is the Pauli matrix

σx =

0 1

1 0

 . (1.30)

The transfer matrix receives this name because it transfers the trace from one site to

the next. In the case of a two-dimensional lattice, the transfer is between one row to the

next. If d = 3, the transfer is between one plane to another. And so on.

One can also compute the system correlation function, which in the thermodynamic

limit N →∞ is given by [43, 49]

G(i, i+ j) = 〈σi+jσi〉 = e−jτξ,

ξ =
τ

ln coth(J/TC)
,

(1.31)

where τ is the lattice spacing. As one can see, for TC > 0 these correlations decay

exponentially, and in the one-dimensional model an ordered state exists only at zero tem-

perature.

As TC → 0 the correlation length diverges as 2ξ/τ ≈ e2J/TC . Using this on (1.29) we

get

T ≈ eJ/TC
(

1 +
τ

2ξ
σx
)
≈ e−(τ/~)HQ , (1.32)

Z = tr
{
TN
}
≈ tr

{
e−HQ/TQ

}
, (1.33)
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where I introduced the single qubit Hamiltonian

HQ = e0 −
∆

2
σx, (1.34)

with e0 = −(~/τ)J/TC , an energy gap ∆, and at a temperature TQ given by

∆ = ~/ξ, (1.35)

TQ =
1

N(τ/~)
. (1.36)

The quantum partition function on the right hand side of (1.33) and the classical one on

the left become equivalent precisely in the limit ξ →∞ (or τ → 0) [49].

This example illustrates the general features of the quantum-classical mapping. To

begin, we see there is an intimate relation between quantum evolution over an imaginary

time, represented by e−(τ/~)HQ , and the transfer matrix of the classical model. This is the

reason for calling this direction of "transfering" in the classical system a "time" direction.

Note that τ is the lattice spacing in the time direction.

Next, the temperature of the quantum system is completely unrelated with the temper-

ature of the equivalent classical model, and indeed only defines the size of its extra "time"

dimension. In the limit TQ → 0, the classical system is infinite along the "time" axis.

Finally, what is mapped onto the temperature of the classical system, responsible for

its phase transitions, is a coupling constant of the quantum Hamiltonian HQ. This is

expressed by the relation between the quantum gap and the correlation length in (1.35).

Therefore, TC on the classical partition function represents a measure of the quantum

fluctuations in the equivalent quantum system.

Actually, the relation between an energy gap and a correlation length can me made

more general. Let us consider the imaginary time Heisenberg representation of an ob-

servable O; this is given by — henceforth making ~ = 1 —

O(τ) = eτHQOe−τHQ . (1.37)

Hence, for a quantum system at zero temperature, we have the following correlation func-
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tion for such an observable

G(τ) = 〈0|O(τ)O|0〉 =
∑
n

e−(εn−ε0)τ |〈0|O|n〉|2, (1.38)

where HQ |n〉 = εn |n〉 are the quantum Hamiltonian eigenvalues and eigenvectors, with

|0〉 the ground state.

According to the quantum-classical mapping, this correlation function is equivalent to

the spatial correlators derived from the partition function of the related classical model [49].

The existence of an energy gap, therefore, ensures that for large τ (long distances) the

correlation function will decay exponentially with a characteristic length given by ξ ∼

1/∆ = 1/(ε1 − ε0).

However, there are also some particularities in this illustration of such a mapping.

First, in this example, d = 0 in the quantum system and the classical model has only

the "time" dimension. When d > 0, the spatial dimensions of the quantum system are

mapped onto an equal number of spacial dimensions in the classical model. Additionally,

in our example, the correlation length diverges exponentially as a function of TC , and not

in a power law form. As we saw, the latter is the standard fashion in continuous phase

transitions and defines the critical exponent ν. Moreover, here the dynamical critical

exponent z is equal to unity. Although common, this is not general, and z can have other

values, depending on the kinetic part of the quantum Hamiltonian [49, 51–53].

In contrast with classical systems, in quantum mechanics, the kinetic and potential

parts of the Hamiltonian generally do not commute. In the quantum regime, dynamics and

statics are coupled. This is the reason why the quantum partition function also contains

information about the dynamics of the system [49, 51–53]. As explored above, there is

an equivalence between the canonical operator e−βH and the imaginary time evolution

operator e−τH over the interval τ ∈ [0, β]. Naturally, one is usually interested in the real-

time dynamics of correlators in the quantum system. In principle, this can be obtained

from (1.38) by an analytic continuation τ → it [49, 53].

It is clear now that the concepts introduced before in the context of classical critical

phenomena are readily extended to quantum criticality. Second-order — or, more gen-

erally, continuous — quantum phase transitions are also marked by diverging correlation
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Figure 1.2: Schematic representation of the two possible phase diagrams in the vicinity
of a quantum phase transition. In (a), an ordered phase exists solely at T = 0 and below
a critical value gc. This is indicated by the blue line. Above the quantum critical point
seats a region loosely bounded by T ∼ |g − gc|νz where the temperature scaling can
be observed. In (b), order is maintained for some temperature range. The line of finite
temperature critical points in indicated in red and terminate in the quantum critical point.
In the shaded area around it, classical critical phenomena are observed. Based on figures
of Refs. [49, 52].

lengths and times in the vicinity of a quantum critical point. And this leads to scaling,

universality and power law singularities.

For instance, at zero temperature and in the vicinity of the quantum critical point, the

ground state energy per particle satisfies [51, 52]

f0(g − gc, B) = l−(d+z)f0(l1/ν(g − gc), lyB). (1.39)

This is parallel to Eq. (1.7a) with the nonthermal parameter g−gc replacing t. The (d+z)

exponent in the right-hand side also reemphasizes the relation between quantum phase

transitions in d dimensions and classical phase transitions in (d+ z) spatial dimensions.

Similar homogeneous equations hold for other quantities. Of particular interest is the

susceptibility related to the control parameter g, which is given by the second derivative

of the ground state energy density (or the free energy, more generally). This quantity

replaces in quantum critical phenomena the role of the classical specific heat. In quantum

phase transitions it is this susceptibility which diverges with an exponent α.

Since any experiment is necessarily performed at finite temperatures, quantum phase

transitions become really interesting and important if they cause some effect at T > 0.
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Chapter 1. Critical Phenomena

The outcome of a nonzero temperature on the quantum system can be one of two

types. For once, it can completely dismantle any ordered state at T > 0. In this scenario,

a critical point exists only at T = 0, and no phase transition can be observed in a real

experiment — Fig 1.2(a).

The low temperature phase diagram is then divided in three parts, delimited by the

preponderance of thermal or quantum fluctuations. On the left, where g < gc, thermal

fluctuations dominate and are responsible for the destruction of long-range order. Con-

versely, on the right, as in T = 0, it is quantum fluctuations that dominates and is respon-

sible for disorder. In both these regions, the excitations on the system are amenable to a

classical treatment [49].

In between there exists a region where both classical and quantum fluctuations are

relevant. This is termed the quantum critical region and is loosely bounded by T >

|g − gc|νz. In this part of the phase diagram, quantum effects are always important [49,

51–53]. As a consequence, here the system looks critical and obeys scaling relations,

particularly the so-called temperature scaling. Taking the free energy as an illustrative

quantity, it satisfies [51–53]

f((g − gc), B, T ) = l−(d+z)f(l1/ν(g − gc), lyB, lzT )

= T−(1+d/z)FT (T 1/νz(g − gc), T y/zB).

(1.40)

Such a behavior can be detected on an experiment at low temperatures and is evidence

of an underlying quantum critical point.

On another case, the system may support an ordered phase at low temperatures. Then

the phase diagram contains a line of continuous phase transitions that terminates on the

quantum critical point at T = 0 — Fig. 1.2(b).

Quantum mechanics can be indispensable for the understanding of many finite-temperature

ordered phases, like in superfluids and superconductors. Nonetheless, I have insisted that

quantum phase transitions, i.e. those that are driven by quantum fluctuations, exists only

at zero temperature. The physical argument for this can be presented as follows [51, 52].

Suppose we have a quantum system at T > 0, and that a phase transition occurs

at a temperature Tc. As discussed in the previous section, near the critical point t =
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Chapter 1. Critical Phenomena

(T − Tc)/Tc = 0 the fluctuations on the system take place over diverging distances dur-

ing diverging times. In accordance, they must have a vanishing typical frequency ωc.

Following (1.23) we have

ωc ∼ |t|νz. (1.41)

The character of these fluctuations is determined through a comparison between the

quantum energy scale ~ωc and the thermal energy kBT . At this point I write the physical

constants for clarity. Quantum effects are significant as long as ~ωc & kBT , while the

fluctuations become effectively classical if ~ωc � kBT .

Asymptotically close to t = 0, the condition ~ωc � kBTc is always satisfied, estab-

lishing the dominance of classical behavior on the critical fluctuations. This is why there

are no quantum phase transitions at finite T . In transitions at finite temperatures, quantum

effects may play a role at microscopic scales, but it is thermal fluctuations that matter on

the macroscopic scales relevant for critical phenomena.

If the transition temperature Tc is distinctly low, however, the asymptotic classical

limit can be extremely narrow, perhaps even becoming inaccessible in some experiment.

Then quantum fluctuations remain relevant very close to the critical point. In this sce-

nario there will be a crossover from quantum critical to classical critical behavior as the

transition is approximated.

From the quantum-classical mapping, one can see this is equivalent to a dimensional

crossover. As long as the characteristic time τeq is lower than the "time" direction length

1/T , the system behaves as if it was (d+ z)-dimensional. When the transition is so close

that τeq would surpass 1/T , the system becomes effectively d-dimensional and behaves

classically.

In this type of systems, the quantum critical region is again present in the vicinity of

the quantum critical point at relative high temperatures [49, 51, 52].

All these effects are expected to occur at very low temperatures compared to some

other energy scale set by the system Hamiltonian [49]. In the case of the Ising model, for

instance, this scale is set by the exchange interaction J [49].

In the sequence of this thesis, I will consider the nonequilibrium thermodynamic pro-

tocol presented in Chapter 3 applied to a system that exhibits continuous quantum phase

transitions. One of our chief results is to show there are quantities which display a signa-
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Chapter 1. Critical Phenomena

ture of the quantum critical point even for systems initially in an arbitrarily high temper-

ature.

But before we get there, I need to introduce our player model in the next chapter.

Although our major results are general, it will be interesting and instructive to consider

them in this particular example.
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Chapter 2

Ising Model in an Alternating

Transverse Field

The one-dimensional Ising model in a transverse field is arguably the simplest system

displaying a continuous quantum phase transition. The model was introduced in [54–56]

and its Hamiltonian may be written as

H = −J
N∑
j=1

(
σxj σ

x
j+1 + gσzj

)
, (2.1)

whereN is the total number of spins in the chain and J > 0 is the ferromagnetic exchange

coupling between nearest neighbors. The intensity of the external transverse magnetic

field is controlled by the dimensionless parameter g.

The quantum operators σx,y,zj acting on a spin-1/2 at site j are the well-known Pauli

matrices. These are conventionally written as

σz =

1 0

0 −1

 , σx =

0 1

1 0

 , σy = i

0 −1

1 0

 , (2.2)

and obey the commutation relations

[σaj , σ
b
j ] = 2iεabcσ

c
j , (2.3a)

[σaj , σ
b
l ] = 0 for j 6= l, (2.3b)
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Chapter 2. Ising Model in an Alternating Transverse Field

where i2 = −1, a, b, c = x, y, z and εabc is the Levi-Civita symbol.

The Ising Hamiltonian (2.1) is invariant under the transformation

σxj → −σxj , (2.4)

which is called the Z2 symmetry, and is generated by the parity operator

P =
N∏
j=1

σzj . (2.5)

This further means the Ising Hamiltonian and the parity operator commute,

[H,P ] = 0, (2.6)

and, thus, share a common eigenbasis.

In the limit g → +∞, the Hamiltonian (2.1) is dominated by the second term, and its

ground state is the completely polarized vector

|0〉 =
N∏
j=1

|↑〉j , (2.7)

where σzj |↑〉j = |↑〉j and σzj |↓〉j = − |↓〉j are the eigenstates and eigenvalues of σzj . In

this state, the longitudinal magnetization per spin is identically zero,

mx = 〈0|σxj |0〉 = 0, (2.8)

consistent with the symmetry property of the Hamiltonian.

Conversely, at zero external field, g = 0, this model is equivalent to the classical Ising

chain (1.27) and its ground state is one of the two states

|0〉 =
N∏
j=1

|→〉j or |0〉 =
N∏
j=1

|←〉j (2.9)

where |→〉j and |←〉j are the eigenstates of σxj with eigenvalues 1 and −1, respectively.
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Chapter 2. Ising Model in an Alternating Transverse Field

In this case, the order parameter of the model, mx, evaluates to

mx = 〈0|σxj |0〉 = ±1, (2.10)

depending on whether the spins point right or left. The existence of this nonzero magne-

tization implies an spontaneous breaking of the aforementioned Z2 symmetry.

In terms of the σx eigenstates, the z-component Pauli matrix reads

σzj = | →〉j〈← |+ | ←〉j〈→ |.

Clearly, the effect of a nonzero field g is to cause the initially ordered spins to flip. In

an infinite system, as g increases, these quantum fluctuations continuously reduce the

spontaneous magnetization mx until it vanishes when gc = J [49, 56]. At this point, there

is a quantum phase transition from an ordered, symmetry broken, ferromagnetic phase to

a quantum paramagnetic phase.

Indeed, under the quantum-classical mapping, the transverse field Ising model is

equivalent to the classical d = 2 Ising model at zero (longitudinal) field. Therefore,

their critical points belong to the same universality class, and their critical exponents are

the ones given in Table 1.1.

Because of its simplicity and notable analytical results, the Ising model serves as a

playground for testing and unraveling new concepts and techniques. A limited list of

examples includes the study of dynamical phase transitions [57]; the development of nu-

merical techniques [58, 59]; the relation between non-Markovianity, decoherence and

criticality [60]; and the study of work statistics [61, 62] and work protocols [33, 36–

38] in quantum thermodynamics, of course. Moreover, this is a conventional model em-

ployed in the testing of quantum information theoretic quantities as tools for detecting

critical points. These include fidelity measures [63–66], correlations measures like entan-

glement [67–69] and discord [70, 71], and coherence measures [40, 72–74]. The model

now is also experimentally realizable [75] or simulated [76].

Here I will consider in detail a slightly modified version of the transverse field Ising

model. One in which this field assumes distinct values at even or odd lattice positions.
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Chapter 2. Ising Model in an Alternating Transverse Field

We studied this model in [39], and its Hamiltonian may be written as

H = −J
N∑
j=1

[
σxj σ

x
j+1 + (g − (−1)jh)σzj

]
. (2.11)

That is, the system contains a regularly alternating transverse field of period 2. At odd

sites, it assumes the value g + h, while this changes to g − h at even sites.

The reason for introducing such a feature is twofold. From a theoretical perspective,

the enlargement of parameters to be considered can greatly enrich the phase diagram

of a model, including the appearance of new critical points [77–80]. Then the analytic

treatment possible in one-dimensional transverse field spin systems allows the thorough

study of quantum critical points associated with distinct universality classes.

In addition, different magnetic ions couple differently with an external field. That

is, have different g-factors. There are several compounds where regularly alternating g-

factor values are observed [81–87]. This can be mapped onto an effective Hamiltonian

containing a term with an alternating field like the one in (2.11) — see [88].

In the following section, I diagonalize this Hamiltonian and study its gap and critical

behavior in detail.

2.1 Hamiltonian diagonalization and gap

The starting point in the diagonalization of the Alternating Transverse Field Ising Model

(ATFIM) Hamiltonian (2.11) is its transformation to a model of spinless fermions.

I begin by noting we can associate the eigenstate |↓〉j of σzj with a spinless fermion

occupying an orbital j, and the eigenstate |↑〉j with an empty orbital. Accordingly, the

action of the operator σ−j = (σxj − iσ
y
j )/2 of flipping a spin from up to down is equivalent

to the creation of a fermion. Conversely, σ+
j = (σ−j )† = (σxj + iσyj )/2 corresponds to

annihilation.

The problem with this analogy, though, is that spin operators acting on different sites

always commute, while fermionic operators anticommute. This issue was overcomed by

Jordan and Wigner [89, 90] who introduced a counting factor that produces the correct

commutation relations.
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Chapter 2. Ising Model in an Alternating Transverse Field

Letting aj be the annihilation fermionic operator at site j, the Jordan-Wigner transfor-

mation reads

σ+
j = exp

(
iπ

j−1∑
l=1

a†lal

)
aj.

The string eiπ
∑j−1
l=1 a

†
l al is, actually, a partial parity operator. It counts the number of

fermions to the left of j and returns the value 1 or −1 if this number is even or odd.

The transformation can also be inverted to give

aj =

j−1∏
l=1

(σzl )σ
+
j .

Using this and the commutation relations (2.3) it is straightforward to show the operators

{aj} indeed satisfy the canonical fermionic anticommutation relations,

{aj, a†l} = δjl, {aj, al} = {a†j, a
†
l} = 0,

where {x, y} = xy + yx.

In our case, because of the alternating field, it is convenient to consider two fermion

species and define

σ+
2j+1 = exp

(
iπ

j−1∑
l=0

a†2l+1a2l+1 + iπ

j∑
l=1

b†2lb2l

)
a2j+1, (2.12)

σ+
2j = exp

(
iπ

j∑
l=1

a†2l−1a2l−1 + iπ

j−1∑
l=1

b†2lb2l

)
b2j, (2.13)

with

{aj, a†l} = {bj, b†l} = δjl, (2.14)

and all other anticommutators vanishing.

Next, some assumptions are necessary. I will consider periodic boundary conditions:

σaN+1 = σa1 . For convenience I further take N/2 even. This makes the problem more

symmetric, with an equal number of degrees of freedom for the two fermionic species.

The reader interested in the case N/2 odd can have a look at it in [39]. Without loss of

generality I also set J = 1.
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With this, the Hamiltonian (2.11) becomes

H =−
N/2−1∑
j=1

[
r(a2j−1, b2j) + r(b2j, a2j+1)

]
− r(aN−1, bN)− r(bN , a1)P

−
N/2∑
j=1

[(g + h) t(a2j−1) + (g − h) t(b2j)]

(2.15)

where

r(aj, bl) = (a†j − aj)(b
†
l + bl), (2.16)

t(aj) = (1− 2a†jaj), (2.17)

and P is again the parity operator,

P =
N∏
j=1

σzj = exp

(
iπ

N/2∑
l=1

a†2l−1a2l−1 + iπ

N/2∑
l=1

b†2lb2l

)

=

N/2∏
j=1

(1− 2a†2j−1a2j−1)(1− 2b†2jb2j).

(2.18)

As indicated above, this operator has eigenvalue +1, or −1, when the state of the

system has an even, or odd, number of spins pointing down. Equivalently, we could think

in terms of an even or odd number of fermions. The projectors onto these positive and

negative parity subspaces are defined by

P± =
1

2
(1± P ). (2.19)

Utilizing these we obtain

H = P+H+P+ + P−H−P−, (2.20)

H± = −
N/2∑
j=1

[
r(a2j−1, b2j) + r(b2j, a2j+1) + (g + h)t(a2j−1) + (g − h)t(b2j)

]
, (2.21)
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with the boundary conditions

aN+1 = −a1 for H+, (2.22)

aN+1 = a1 for H−. (2.23)

BecauseH and P commute and share a common set of eigenstates, we can diagonalize

the former independently in each parity subspace.

Let us consider first the positive parity subspace. To explore the translational invari-

ance in our system we can introduce the Fourier transform

a2j−1 =
e−iπ/4√
N

∑
k∈K+

(ak + bk)e
ik(2j−1), b2j =

e−iπ/4√
N

∑
k∈K+

(ak − bk)eik(2j), (2.24)

K+ =
{
k = ±(2n+ 1)

π

N
; n = 0, 1, ..., N/4− 1

}
, (2.25)

where ak and bk are fermionic operators, and the pseudo-momenta k ∈ K+ satisfy the

condition (2.22). The above equations implicitly set the lattice spacing to a = 1. It is easy

to show this transformation preserves both parity and particle number,

N/2∑
j=1

(
a†2j−1a2j−1 + b†2jb2j

)
=
∑
k∈K+

(
a†kak + b†kbk

)
. (2.26)

In terms of these new operators the positive parity Hamiltonian is given by

H+ = 2
∑
k∈K+

>

A†kHkAk, (2.27)

where K+
> is the set with only the positive elements of K+, and

Ak =


ak

a†−k

bk

b†−k

 , Hk =


g − cos k sin k h 0

sin k −g + cos k 0 −h

h 0 g + cos k − sin k

0 −h − sin k −g − cos k

 . (2.28)

The matrix Hk is real and symmetric. This means there exists a real and orthogonal
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matrix Ok that diagonalizes it,

Hk = OkDkO
†
k, OkO

†
k = O†kOk = 1. (2.29)

The matrix Dk = diag(−ε−k , ε
−
k ,−ε

+
k , ε

+
k ) is the diagonal matrix whose entries are the

eigenvalues of Hk. These are given by

ε±k =

√
1 + g2 + h2 ± 2

√
g2h2 + g2 cos2 k + h2 sin2 k. (2.30)

The general expression for Ok, on the other hand, is immensely complicated, and not

at all informative. Latter I will consider a particular case and will write it explicitly.

In addition, the transformation O†kAk also defines a new set of fermionic operators

{ηk,±} satisfying the (anti)commutation relations [90]

{ηk,s, η†k′,s′} = δk,k′δs,s′ , {ηk,s, ηk′,s′} = {η†k,s, η
†
k′,s′} = 0, (2.31)

where s = + or s = −. This transformation is such that it does not preserve the number

of particles, but, of course, it preserves parity.

In terms of the η-fermions we can write [90]

H+ =
∑
k∈K+

∑
s=+,−

εsk(2η
†
k,sηk,s − 1). (2.32)

In fact, the eigenstates of H+ are classified by the number of η-fermions they contain.

In particular, since ε±k > 0, the ground state is the state annihilated by all ηk,±. One can

show that in terms of the original a and b fermions the ground state is given by [91]

ηk,+
∣∣0+
〉

= ηk,−
∣∣0+
〉

= 0, ∀ k ∈ K+,∣∣0+
〉

=
∏
k∈K+

>

|0〉k ,

|0〉k =
(
αk1 + αk2a

†
ka
†
−k + αk3b

†
kb
†
−k + αk4a

†
kb
†
−k + αk5a

†
−kb
†
k + αk6a

†
ka
†
−kb
†
kb
†
−k
) ∣∣0+

ab

〉
,

where
∣∣0+
ab

〉
is the state annihilated by all ak and bk, and the coefficients αkj satisfy
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∑
j |αkj |2 = 1. Indeed the ground state has an even number of the a and b fermions

in it, and, therefore, has a parity +1.

From (2.32) we obtain that the ground state energy in the positive parity subspace is

given by

ε+ = −
∑
k∈K+

(ε−k + ε+k ). (2.33)

Next we can move to the negative parity subspace. The first step is again the Fourier

transform (2.24), but with the different momenta

K− =
{
k = 0, k = ±2n

π

N
, k =

π

2
; n = 1, ..., N/4− 1

}
, (2.34)

such that the periodic condition (2.23) is satisfied.

Proceeding in the same manner as before, one arrives at

H− = 2
∑
k∈K−>

A†kHkAk + A†0H0A0 + A†π
2
Hπ

2
Aπ

2
, (2.35)

where K−> = {k = 2nπ/N ; n = 1, 2, ..., N/4−1}, Ak and Hk are the ones in (2.28), and

A0 =


a0

a†0

b0

b†0

 , H0 =


g − 1 0 h 0

0 −g + 1 0 −h

h 0 g + 1 0

0 −h 0 −g − 1

 ,

Aπ
2

=


aπ

2

a†π
2

bπ
2

b†π
2

 , Hπ
2

=


g 0 h −1

0 −g 1 −h

h 1 g 0

−1 −h 0 −g

 .

(2.36)

These matrices are all real and symmetric, and, therefore, diagonalizable. We already

saw the eigenvalues of Hk are ±ε±k , given in (2.30). In the case of H0 and Hπ
2
, they are

±(g ±
√

1 + h2) and ±(
√

1 + g2 ± h), respectively.

Moreover, the diagonalizing orthogonal matricesO0 andOπ
2

have a simple expression,
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and the fermionic operators they define are given by

η0,− = sin(θ0/2)a0 − cos(θ0/2)b0, (2.37)

η0,+ = cos(θ0/2)a0 + sin(θ0/2)b0, (2.38)

where cos θ0 = 1/
√

1 + h2, and

ηπ
2
,− =

1√
2

[
sin
(
θπ

2
/2
)
(aπ

2
+ bπ

2
)− cos

(
θπ

2
/2
)
(a†π

2
− b†π

2
)
]
, (2.39)

ηπ
2
,+ =

1√
2

[
sin
(
θπ

2
/2
)
(aπ

2
− bπ

2
) + cos

(
θπ

2
/2
)
(a†π

2
+ b†π

2
)
]
, (2.40)

where cos θπ
2

= g/
√

1 + g2. It is straightforward to check they satisfy the proper (anti)commutation

relations.

Therefore, the negative parity Hamiltonian is given in diagonal form by

H− =
∑
k∈K−

∑
s=+,−

εsk(2η
†
k,sηk,s − 1), (2.41)

where I define

ε±0 = g ±
√

1 + h2, (2.42)

ε±π
2

=
√

1 + g2 ± h. (2.43)

Note that ε±0 and ε±π
2

are not the same as doing k = 0 or k = π/2 on ε±k . For instance, ε±0,π
2

can be negative, while ε±k never are.

By definition, the negative parity ground state have an odd number of particles in it.

This means an odd number of the fermionic modes (k, s) must be occupied. We showed

in [39] that the lowest energy is always obtained when the mode (0,−) is excited. Hence,

the ground state energy in the negative parity subspace is given by

ε− = −
∑

k∈K−\{0,π}

(ε−k + ε+k )− 2
√

1 + g2 − 2
√

1 + h2. (2.44)

We are in the position now to analyse the ground state energy gap in this model. We
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may start with the identification of the candidates for the quantum critical points, i.e., the

points where the gap closes.

A zero gap means an excitation can be created in the system without any energy

expenditure. Scrutinizing the dispersion relations (2.30) we find this is possible when

|g2 − h2| = 1, (2.45)

in the limit N → ∞. Indeed in [92, 93] the authors showed that for an Ising model

with random exchange couplings (J1, J2, ..., JN) and transverse fields (g1, g2, ..., gN), the

critical points must satisfy
N∏
j=1

gi =
N∏
j=1

Ji,

which is in agreement with Eq. (2.45).

Hence, the zero temperature phase diagram of the ATFIM is marked by hyperbolic

critical curves separating the ordered and disordered phases. This is represented by the

red lines in Fig. 2.1.

Next, we want to compute

∆ = ε− − ε+. (2.46)

To do this I introduce the Fourier series

ε+k =
∞∑
l=0

ul cos(2kl), (2.47)

ε−k =
∞∑
l=0

vl cos(2kl), (2.48)

where the coefficients ul and vl are given by

ul =
2

π

∫ π
2

−π
2

dk cos(2kl)ε+k , vl =
2

π

∫ π
2

−π
2

dk cos(2kl)ε−k . (2.49)

After some lengthy calculations I leave to Appendix A, we observe the behavior of the

gap ∆ is indeed divided into three regimes, delimited by: |g2−h2| < 1, |g2−h2| = 1 and

|g2 − h2| > 1. These are expected to be in correspondence with the ordered, critical and

quantum paramagnetic phases. In the sequence I consider them separately. The results
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g

h νz = 2

νz = 2

νz = 1
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Figure 2.1: Zero temperature phase diagram of the ATFIM. The red hyperbolic critical
lines marks the transition from an ordered phase, interior to these curves, to a quantum
paramagnetic phase, exterior to these curves. Most of these critical points belong to the
d = 2 classical Ising universality class. The blue dots at (g = ±1, h = 0) and (g =
0, h = ±1) are possible exceptions. This is explained in the text. External to the red
curves, the ground state energy gap ∆ never vanishes. Along the critical lines, the gap
closes as ∆ = O(1/N) as a function of the system size N . Inside it, ∆ is exponentially
small in the thermodynamic limit. The dashed diagonal lines, marks an exact degeneracy
in the system ground state for any system size.

are summarized in Fig. 2.1.

Region |g2 − h2| < 1:

The gap in this region is given by

∆ = |g2−h2|
N
2

4N

π

∫ 1

0

dt tN−1

1− (|g2 − h2| 12 t)2N

[√
(1− t2)[1− |g2 − h2|2t2]

t2
+R2−R

] 1
2

,

(2.50)

where I define

R = 1 + g2 + h2. (2.51)

The first conclusion we can establish about (2.50) is that for N/2 even, the ground

state of the system has a positive parity. Therefore, Eq. (2.33) corresponds to the ground

state energy. In [39] we showed that a negative parity ground state is only possible when

N/2 is odd and g2 − h2 < 0.
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Chapter 2. Ising Model in an Alternating Transverse Field

Second, the system has an exact degeneracy on the diagonals g2 = h2 for any system

size. These diagonals are indicated by the dashed lines in Fig. 2.1 and may be viewed as

an extension of the point g = 0 in the homogeneous field model. The exact degeneracy

can be understood in terms of a symmetry acquired by the Hamiltonian (2.11) on these

lines.

When g = h, the transverse field vanishes on the even sites. As a consequence,

the spin operators σx2j commute with the Hamiltonian, [H, σx2j] = 0. In contrast, they

anticommute with the parity operator, Pσx2j = −σx2jP . Let |p, ε〉 be an eigenstate of P

with parity p and of H with energy ε, we have that

P (σx2j |p, ε〉) = −p(σx2j |p, ε〉),

H(σx2j |p, ε〉) = ε(σx2j |p, ε〉).
(2.52)

Hence, if |p, ε〉 belongs to the subspace of lowest energy of H , so does the opposite

parity state σx2j |p, ε〉. When g = −h, the same reasoning can be applied with σx2j+1

replacing σx2j .

Moreover, in [39] (see also Appendix A) we show the gap (2.50) is bounded by

|g2 − h2|N2√
2R

max

{
2√
π

√
1− |g2 − h2|√

N
,

4|g2 − h2| 12
πN

}
6 ∆ 6

|g2 − h2|
N
2

√
2(1 + |g2 − h2|)

(
π|g2 − h2| 12

2N − 1
+ 2

√
1− |g2 − h2|√

N − 1

) (2.53)

with equality again when g2 = h2.

This exponentially vanishing gap in the thermodynamic limit N → ∞ is completely

similar to the behavior found in the homogeneous field case [94]. Moreover, this is con-

sistent with a symmetry broken phase where the spins are found to be highly correlated

over a length [39]

ξ ∼ 1∣∣ ln |g2 − h2|
∣∣ . (2.54)

That is, for |g2−h2| < 1 the system exhibits a (longitudinal) spontaneous magnetization,

a fact that was already noted in [93] and further numerically verified in [95].

Assuming (2.54) to be the correlation length in the infinite system, we see in most
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cases this diverges as

ξ ∼ |g − g∗|−1, (2.55)

rendering the critical exponent ν = 1. Here I considered h fixed and a varying g, thus

g∗ = ±
√

1 + h2. We may equivalently consider interchanged roles g ↔ h and obtain

similar results.

An exception to this behavior occurs when h = ±1 and g → 0. In this case, the

correlation length diverges with a critical exponent ν = 2,

ξ ∼ |g|−2. (2.56)

Note that it is important here that h is fixed and we approach this critical point by

varying g. Conversely, if we fix g = 0 and vary h, instead, we obtain ν = 1. Replacing

the roles of g and h, the point (g = 1, h = 0) approached along the line h = 0 corresponds

to the usual critical point of the homogeneous Ising model; therefore, it must have ν = 1.

The previous analysis is consistent with the numerical results of [95]. Therefore, our

analytical evaluation of the ground state gap allowed us to derive the asymptotic behavior

of the correlation length of this model without ever calculating any correlation function.

The latter has a nonlocal character in the fermionic representation, and this makes it really

difficult to compute in general [56, 90, 96, 97].

Furthermore, the authors in [95] found that for most critical points, where ν = 1, the

other critical exponents are α = 0, β = 1/8, η = 1/4 and z = 1. Therefore, these points

belong to the same universality class of the homogeneous transverse field Ising model and

the d = 2 square lattice classical model.

In comparison, for the points where ν = 2, the other critical exponents are α = −2,

β = 1/4, η = 1/4 and z = 1 [95]. Hence, these points belong to a different universality

class. They are represented by blue dots in Fig. 2.1.
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Lines |g2 − h2| = 1:

Next, we may move to the critical lines. Along them, the expression for the gap reads,

∆ =
4N

π

∫ 1

0

dt
tN−3/2

1− t2N

√√
(1− t2)2 + (2G2t)2 − 2G2t, (2.57)

where G2 = g2 for g2 − h2 = 1 and G2 = h2 for g2 − h2 = −1.

Here the gap is bounded by [39] (Appendix A)

1

2
√
G2

[
2 tanh

(
π

4N

)
+

π

6N

]
6 ∆ 6 4 tanh

(
π

4N

)
. (2.58)

Indeed, in the thermodynamic limit the gap closes as

∆ ∼ 1/N. (2.59)

Again this is analogous to the behavior in the homogeneous field case. At these points

the spontaneous magnetization vanishes [93].

Regions |g2 − h2| > 1:

Over this region the gap is given by

∆ =2
(
|g| −

√
1 + h2

)
Θ
(
|g| −

√
1 + h2

)
+ 2
(
|h| −

√
1 + g2

)
Θ
(
|h| −

√
1 + g2

)
+

4N

π|g2 − h2|N2

∫ 1

0

dt tN−1

1− (t/|g2 − h2| 12 )2N

[√
(1− t2)[|g2 − h2|2 − t2]

t2
+R2 −R

] 1
2

,

(2.60)

where I remember R = 1 + g2 + h2.

Therefore, for |g2 − h2| > 1, the gap is manifestly nonzero even in the in thermo-

dynamic limit. This ensures the Z2 symmetry is not broken. There is no spontaneous

magnetization in this case. Here the system is found in a quantum paramagnetic phase.

From (2.60) we may also confirm that, for fixed h and g → g∗ = ±
√

1 + h2, the gap

closes as

∆ ∼ |g − g∗|1, (2.61)
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meaning νz = 1. Combined with (2.55) this corroborates that z = 1.

On the other hand, when h→ 1+ and g → 0, we obtain

∆ ∼ g2, (2.62)

rendering νz = 2 and z = 1.

This ends the analysis about the gap behavior in the alternating transverse field Ising

model. Before concluding this chapter, let us analyse the ground state energy in some

detail.

As noted above, the ground state energy is given by (2.33). Taking the thermodynamic

limit N →∞ we may convert this sum into an integral,

1

N
ε0 = − 1

2π

∫ π
2

−π
2

dk(ε+k + ε−k ), (2.63)

where ε0/N is the ground state energy per spin.

Let us consider h = 0, and so we are dealing now with the homogeneous transverse

field Ising model. This integral evaluates to

1

N
ε0 = − 1

2π

∫ π
2

−π
2

dk(
√

1 + g2 + 2|g| cos k +
√

1 + g2 − 2|g| cos k)

= − 1

2π

∫ π

−π
dk
√

1 + g2 − 2g cos k

= − 2

π
|g + 1|E

(
4g

(1 + g)2

)
,

(2.64)

where E(x) is the complete elliptic integral

E(x) =

∫ π
2

0

dk
√

1− x sin2 k.

If we Taylor expand (2.64) around the critical point g∗ = 1 we find there is a singular

contribution to the ground state energy per particle given by

1

N
ε0 ∼ (g − 1)2 ln |g − 1|. (2.65)
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This leads to a logarithmically diverging transverse susceptibility per spin

χ = − 1

N
∂2
gε0 ∼ ln |g − 1|. (2.66)

The divergence of this second derivative of the ground state energy shows this criti-

cal point is indeed associated with a second-order continuous quantum phase transition.

Moreover, the transverse susceptibility plays in the quantum Ising model the equivalent

role of the specific heat in a thermal phase transition. Its critical exponent α, in this case,

vanishes, α = 0.

Finally, I emphasize this quantum critical point is representative of all critical points

in its universality class. This means, all points in the red critical lines of Fig. 2.1 will

exhibit analogous behavior.

Conversely, let us take h = 1. It was shown in [93] that, in this case, the singularity in

the ground state energy is of the form

1

N
ε0 ∼ g4 ln |g|. (2.67)

As a consequence, the transverse susceptibility here is finite, and only its second

derivative exhibits a logarithmic divergence,

χ ∼ g2 ln |g|, (2.68)

∂2
gχ ∼ ln |g|. (2.69)

Therefore, the distinct critical points in the ATFIM (2.11), represented by blue dots

in Fig. 2.1, are not associated with second-order but, in fact, with fourth-order quantum

phase transitions [93]. The main concepts of continuous second-order phase transitions

discussed in the previous chapter are readily extended to high-order transitions. The dif-

ference being the divergences occurring on the higher-order derivatives of the ground state

energy.

In the next chapter I introduce a nonequilibrium quantum thermodynamic protocol

which will be applied to this model. In particular I will be interested in the entropy

production in the vicinity of these quantum critical points.
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Chapter 3

Thermodynamics of a Driven Isolated

Quantum System

Thermodynamics was initially developed to deal with macroscopic systems in equilib-

rium. The colossal number of particles in these situations makes the probability of ob-

taining the value of some thermodynamic quantity different from the average and most

likely one negligible [41]. However, as classical systems with smaller degrees of freedom

are considered, fluctuations become increasingly relevant and the second law of thermo-

dynamics holds only on average [98, 99].

For quantum systems, we additionally have the effects of coherence and the backac-

tion of quantum measurements. These features greatly enrich (or complicate) the possi-

bilities for defining work and heat [28, 100–112], and even entropy (production) [113–

118] in quantum thermodynamics. In fact, different definitions may acquire operational

value in specific scenarios and, in light of this, here I present these concepts as suitable

for this thesis and its results in subsequent chapters.

Therefore, I regard the von Neumann entropy as the appropriate thermodynamic en-

tropy. Heat is defined as the energy change in the bath or environment coupled to the

system of interest. Finally, irreversibility, quantified by entropy production, will emerge

as a consequence of disregarding any correlations between the system and the bath as well

as the bath itself [113, 117]. Furthermore, the stochastic approach will be based on the

Two Point Measurement (TPM) scheme, formalized in [107]. Since I will always con-

sider the system to be initially incoherent in the energy basis, i.e. to commute with the
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Chapter 3. Thermodynamics of a Driven Isolated Quantum System

initial Hamiltonian, we will not need to be concerned with the limitations of this approach

[3].

As a final comment on nomenclature, I shall consider any system that evolves accord-

ing to a unitary dynamics as an isolated system. A driven isolated system thus comprises

an isolated system with a time-dependent Hamiltonian.

3.1 Work and entropy production in unitary drives

Suppose a finite isolated quantum system with Hamiltonian H(g(t)) that is driven ac-

cording to some work protocol gt = g(t). Here, the work parameter g is controlled by

some external agent or experimenter. It may represent the action of a piston that controls

the volume of the system or an applied magnetic field, for instance. A work protocol is

performed when this agent changes g in a prescribed way — see Fig. 3.1.

Let ρ(t) be the state of the system at time t, then its internal energy is identified as

E(t) = tr{ρ(t)H(t)}. (3.1)

Assume that for t < 0 the work parameter is kept fixed at g0 = g(t = 0) and the

system is not isolated but in contact with a heat bath at temperature T . This will force the

system to thermal equilibrium — Fig. 3.1a). Thus, we consider that at t = 0 the state of

the system is the thermal (or Gibbs) state

ρth
0 =

e−βH(g0)

Z0

, (3.2)

where β = 1/T is the inverse temperature and Z0 = tr
{
e−βH(g0)

}
is the partition func-

tion. Here and throughout this thesis we set the Boltzmann constant to kB ≡ 1. The

Gibbs state can be regarded as the quantum equivalent of the canonical ensemble of clas-

sical statistical mechanics. It is the state that maximizes the von Neumman entropy for

a fixed internal energy - or, conversely, the state that minimizes the internal energy for a

fixed von Neumman entropy. Then β is recognized as the Lagrange multiplier associated

with the constraint.

Next, at t = 0 the system is decoupled from the bath, becoming isolated. The work
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(a) (b) (c)

g0 gt

gτ

ρ0

thT ρ0

th ρτ
Ug ρτ ρτ

thT

Figure 3.1: Example of the work protocol for a system consisting of a gas inside a con-
tainer whose volume is altered by a moving piston. a) For t < 0, with the work parameter
fixed at g0, the system is in contact with a bath at temperature T which forces it to equi-
librium. b) During 0 6 t 6 τ the work protocol gt is applied (the piston is shaken in a
prescribed way), and the state of the system evolves from the initial thermal state ρth

0 to
a final state ρτ according to the unitary Ug. c) For t > τ with fixed gτ , the system is put
again in contact with a bath at the same initial temperature T and eventually reaches the
equilibrium state ρth

τ .

parameter g is then changed according to the driving protocol gt that lasts for a total time

τ . We emphasize that no further restriction is placed on this driving: it can mean a violent

perturbation on the system; a wiggling movement of the piston, for instance — Fig. 3.1b).

Let Ug(τ, 0) be the unitary time-evolution operator associated with the protocol gt. This

is given by

Ug(τ, 0) = T exp
(
− i
∫ τ

0

dtH(gt)

)
, (3.3)

where T is the time-ordering operator — see Appendix B. We also set the reduced

Planck’s constant to ~ ≡ 1 throughout this thesis. Accordingly, at the end of the drive,

the final nonequilibrium state of the system will be given by

ρτ = Ug(τ, 0)ρth
0 U
†
g (τ, 0). (3.4)
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Since during the work protocol the system is isolated, all changes in its internal energy

results from the work done by the external agent. Hence, the first law of thermodynamics

dictates that the average work associated with this drive is given by

W = tr{ρτH(gτ )} − tr
{
ρth

0H(g0)
}
, (3.5)

where gτ = g(t = τ). We consider here the convention that W > 0 means work was

done on the system, while W < 0 means work was extracted from it.

Subsequently, at t = τ and with the work parameter kept fixed at gτ , the system is

again put in contact with a reservoir at the same initial temperature T . Ultimately, the

system will reach the thermal equilibrium state

ρth
τ =

e−βH(gτ )

Zτ
, (3.6)

where Zτ = tr
{
e−βH(gτ )

}
— Fig. 3.1c). Note that since g remains constant, no work is

performed during this step.

At the end of this thermalization process, the system will have evolved from an initial

equilibrium state to a final one, generally being far from equilibrium in the intermediate.

Between these two endpoint states, there is a difference in equilibrium free energy given

by ∆F = −T lnZτ/Z0.

From the second law, we expect the work performed on the system in a generic situa-

tion to be larger, or at least equal, than this free energy change,

W > ∆F, (3.7)

with equality only in the case of an isothermal quasistatic evolution, such that the system

remains in equilibrium at all times.

This is predominantly not the case for an arbitrary work protocol, and it already sug-

gests the definition of an entropy production given by

Σ = β(W −∆F ). (3.8)
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Indeed, using Eqs. (3.2), (3.5), (3.6) and the definition of equilibrium free energy, this

thermodynamic formula can be neatly rewritten as a nonnegative information-theoretic

expression [119]:

Σ = tr
{
−ρτ ln ρth

τ − ρth
0 ln ρth

0

}
= − tr

{
ρτ ln ρth

τ

}
+ S(ρth

0 )

= S(ρτ ||ρth
τ ) > 0,

(3.9)

where I introduced the von Neumann entropy S(ρ) = − tr{ρ ln ρ} and used its invariance

under unitary transformations, S(UρU †) = S(ρ). The von Neumann entropy can be

viewed as a thermodynamic entropy. The latter property is thus regarded as equivalent

to the classical invariance of entropy under reversible processes. In the last equality,

S(ρ||σ) = tr{ρ(ln ρ− lnσ)} > 0 is the quantum relative entropy, which is a measure of

distinguishability between states. More details about these two quantities are provided in

Appendix B.

However, since the work protocol is described by a unitary, and unitaries do not

change the von Neumann entropy, where does this entropy production comes from? To

show that Eq. (3.9) truly quantifies an entropy production, let us consider the relaxation

of the nonequilibrium state ρτ generated by the drive (3.3) to the equilibrium state ρth
τ .

Suppose HE is the Hamiltonian of the bath coupled to the system at the end of the

work protocol, which is initially in the thermal state ρth
E = e−βHE/ tr

{
e−βHE

}
. Assume

also the composite system and bath to be completely isolated, and the thermalization

process to be described by a joint unitary USE , where S labels the system. Let us require

USE to satisfy strict energy conservation,

[USE, H(gτ ) +HE] = 0. (3.10)

This is a standard assumption in the resource-theoretic approach to quantum thermody-

namics and defines a thermal operation [9, 120–122] — see Appendix B. Moreover, such

a description can be seen as closely related to the weak coupling approximation [117].

Two notable consequences follow from (3.10). First, the thermal state ρth
τ is a global
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fixed point of the dynamics, meaning

USE(ρth
τ ⊗ ρth

E)U †SE = ρth
τ ⊗ ρth

E. (3.11)

And second, it implies that any energy change in the system must equal an opposite energy

change in the bath:

∆ES = −∆EE. (3.12)

Initially, system and bath are uncorrelated, and their global state is given by ρτ ⊗

ρth
E . For t > τ , this global state will evolve to something which predominantly contains

correlations. At the end of the thermalization process, the reduced state of the system will

be precisely ρth
τ = trE{ρ′SE}, where ρ′SE = USE(ρτ ⊗ ρth

E)U †SE . Let ρ′E = trS{ρ′SE} be

the reduced state of the environment. The (von Neumann) entropy change in the system

is given by

∆SS = S(ρth
τ )− S(ρτ ) = − trS{ρth

τ ln ρth
τ } − S(ρτ ) = − tr

{
ρ′SE ln ρth

τ

}
− S(ρτ )

= − tr
{
ρ′SE ln

(
ρth
τ ⊗ ρth

E

)}
− S(ρτ ) + trE{ρ′E ln ρth

E}.

Using Eq. (3.11) we may rewrite tr
{
ρ′SE ln

(
ρth
τ ⊗ ρth

E

)}
= tr

{
(ρτ ⊗ ρth

E) ln
(
ρth
τ ⊗ ρth

E

)}
and so

∆SS = Σ− ΦE, (3.13)

where Σ is given in (3.9) and ΦE = trE{(ρth
E − ρ′E) ln ρth

E}. Equation (3.13) possesses

the form of the usual slicing of entropy change in an entropy production, Σ > 0, and an

entropy flux ΦE , which can be positive or negative [123]. If we now use that the initial

state of the bath is thermal at inverse temperature β, we obtain

ΦE ≡ βQ = β trE{(ρ′E − ρth
E)HE} = −β trS{(ρth

τ − ρτ )H(gτ )}, (3.14)

where we used (3.12) to arrive at the last equality. Here, we define the heatQ as the energy

change in the bath, which is also equal to the opposite energy change in the system. This
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allows us to recover the Clausius-like expression

Σ = ∆SS + βQ, (3.15)

which is a conventional definition of entropy production [117, 123].

Some essential remarks are in order now. To begin with, we note that β entering (3.15)

is the inverse temperature of the initial equilibrium state of the bath. After system and bath

interact, the bath is typically out of equilibrium and is not even possible, in general, to

define its temperature. Because of this, Eq. (3.15) might seem odd at first sight. Its sig-

nificance and utility, however, are in no sense more limited than what one obtains in a

classical setting. In classical thermodynamics and statistical mechanics a weak coupling

between system and bath is almost invariably assumed, which leads to (3.12) holding ap-

proximately. Equivalently then, we could have started with the right-hand side of (3.15),

defined Q as the energy exchanged between the system and the bath and arrived at (3.9).

Therefore, Eq. (3.9) precisely quantifies the entropy produced in the relaxation of the

driven system from the final state ρτ to the equilibrium state ρth
τ .

Next, the previous paragraphs reveal us that entropy is produced truly during the ther-

malization of the system. But once more, since the global evolution of system and bath is

unitary, and therefore preserves the global von Neumann entropy, where does this entropy

production comes from? To answer this, we notice the entropy production is equivalently

given by [113, 117]

Σ = ∆SS + ΦE = S(ρth
τ )− S(ρτ ) + tr

{
(ρth
E − ρ′E) ln ρth

E

}
= −S(ρ′E)− tr

{
ρ′E ln ρth

E

}
+ S(ρth

τ ) + S(ρ′E)− S(ρτ )− S(ρth
E)

= S(ρ′E||ρth
E) + I(ρ′SE),

(3.16)

where the last term is the mutual information — see Appendix B,

I(ρ′SE) = S(ρ′SE||ρth
τ ⊗ ρ′E)

= S(ρth
τ ) + S(ρ′E)− S(ρ′SE)

(3.17)
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and once again we use the invariance of the von Neumman entropy under unitarity trans-

formations

S(ρ′SE) = S(USE(ρτ ⊗ ρth
E)U †SE) = S(ρτ ) + S(ρth

E).

Therefore, the entropy production essentially comes from the fact that we are merely

interested in, or have control only over, the system and ignore/discard the bath in the end

of the process. When we do this, we irreversibly lose information about the correlations

shared by the system and the bath — quantified by I(ρ′SE), and information about the

bath itself — quantified by S(ρ′E||ρth
E). It is this irreversible loss of information that

amounts to the entropy production given by Eq. (3.9) [113, 117]. One satisfying aspect of

this notion and perspective of irreversibility and entropy production is its straightforward

generalization to nonthermal situations [124, 125].

Lastly, although Eq. (3.9) quantifies the entropy produced in the thermalization step

described above, we still associate it with the unitary drive (3.3). This is because it is this

drive that forces the system out of equilibrium in the first place. Indeed, it is customary

to make no reference at all to the thermalization process and to define Eq. (3.9) in sole

connection with the protocol given by (3.3). When that is the case, Eq. (3.9) is often

referred to as the nonequilibrium lag. I shall consider this synonym to entropy production

in this thesis.

3.2 Stochastic approach and fluctuation theorems

Until now I have considered only average quantities, which result from multiple realiza-

tions of the same protocol gt. This section defines the stochastic quantities associated with

these averages, obtained from a unique quantum trajectory. I also introduce a backward

process in relation to a time-reversed protocol g̃t to arrive at the so-called fluctuation the-

orems. For irreversible scenarios, the second law is usually stated as an inequality. These

theorems allow its reformulation as an equality instead [98, 99, 126–129].

It is clear from thermodynamics that work results from a process and therefore cannot

be identified with a quantum observable (Hermitian operator) in general. In this spirit, the

two point measurement scheme [107] provides a way of defining the stochastic work done

on a system in terms of two projective energy measurements. These two measurements
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are made at times t = 0 and t = τ , and the work performed in a unique realization of gt

is defined as the difference between the two energies.

Suppose the initial Hamiltonian of the system has the eigendecomposition

H(g0) =
∑
i

ε0iΠ
0
i , (3.18)

where ε0i are the energy eigenvalues and Π0
i the corresponding eigenprojectors. The initial

state of the system thus reads

ρth
0 =

∑
i

p0
iΠ

0
i ; p0

i =
e−βε

0
i

Z0

. (3.19)

Similarly, the final Hamiltonian H(gτ ) may be written as

H(gτ ) =
∑
j

ετjΠ
τ
j . (3.20)

At t = 0, the first energy measurement is performed and the eigenvalue ε0i is obtained

with probability

tr
{

Π0
i ρ

th
0

}
= r0

i p
0
i , (3.21)

where r0
i = tr{Π0

i } gives the degeneracy of the eigenvalue ε0i . As a result of the backac-

tion of the measurement, the state of the system is updated to

ρ0
i =

1

r0
i p

0
i

Π0
i ρ

th
0 Π0

i =
1

r0
i

Π0
i . (3.22)

The work protocol gt is then applied to the system, and its state evolves, dictated by

the unitary Ug in (3.3), to

ρτi = Ug(τ, 0)ρ0
iU
†
g (τ, 0). (3.23)

At t = τ the second energy measurement is realized and the eigenvalue ετj is obtained

with probability

pg(i→ j) = tr
{

Πτ
jρ

τ
i

}
=

1

r0
i

tr
{

Πτ
jUg(τ, 0)Π0

iU
†
g (τ, 0)

}
. (3.24)
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In connection with the measurement outcomes, we may define the quantum trajectory

i→ j with forward path probability

PF [i, j] = r0
i p

0
i pg(i→ j) = p0

i tr
{

Πτ
jUg(τ, 0)Π0

iU
†
g (τ, 0)

}
. (3.25)

The work performed on the system in a particular realization of the protocol is thus defined

as

w[i, j] = ετj − ε0i . (3.26)

And the corresponding work probability distribution is given by

pF (w) =
∑
i,j

δ(w − w[i, j])PF [i, j], (3.27)

where δ is the Dirac delta function. Utilizing this, it is straightforward to verify that the

average 〈w〉 with respect to pF (w) produces the correct result

W = 〈w〉 =

∫ +∞

−∞
dw pF (w)w = tr{ρτH(gτ )} − tr

{
ρth

0H(g0)
}
. (3.28)

Before defining the stochastic entropy production, let us consider the backward or

time-reversed version of this process. In this backward process, one performs on the

system the work protocol

g̃t = gτ−t (3.29)

during the time 0 6 t 6 τ . Hence, g̃t reverses the temporal sequence of values of the

work parameter g — see Fig. 3.2a). Associated to this time-reversed protocol there will

be a unitary Ug̃(t, 0) that drives the system.

Let Θ be the quantum time-reversal operator. This is an antilinear operator, Θc = c∗Θ

for c ∈ C, that reverses magnetic fields and linear and angular momenta but keeps po-

sition unchanged [130]. Let us assume the Hamiltonian of the system H(g) is invari-

ant under time reversal: ΘHΘ−1 = H; or in case H depends on a magnetic field B,

that ΘH(B)Θ−1 = H(−B). As a consequence, the thermal states ρth
0 = e−βH(g0)/Z0

and ρth
τ = e−βH(gτ )/Zτ are also time-reversal invariant1. Furthermore, as shown in Ap-

1In case H depends on a magnetic field, the field must be reversed also in these states. Their eigenvalues
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Figure 3.2: Forward and backward evolutions. a) In the time-reversed protocol, the tem-
poral sequence of values of the work parameter g is reversed: g̃t = gτ−t. b) In a time-
reversal symmetric system, if a initial state ρi evolves up to time tf to a final state ρf
according to the unitary Ug, then the time-reversed state ΘρfΘ

−1 evolves up to time tf to
ΘρiΘ

−1 under the action of the unitary Ug̃. This suggests that Ug̃(t, 0) = ΘU †g (t, 0)Θ−1,
which is made mathematically precise in Appendix C.

pendix C, the unitary Ug̃ of the time-reversed drive is then related to the unitary of the

forward process Ug by

Ug̃(t, 0) = ΘU †g (t, 0)Θ−1. (3.30)

Finally, assume the thermal state ρth
τ to be the initial state in the backward process.

Then, the first energy measurement at time t = 0 in the time-reversed protocol gives the

eigenvalue ετj with probability

tr
{

Πτ
jρ

th
τ

}
= rτj p

τ
j , (3.31)

where pτj = e−βε
τ
j /Zτ and rτj = tr

{
Πτ
j

}
gives the degeneracy of ετj . After the measure-

ment, the state of the system is updated to ρ̃τj = (1/rτj )Πτ
j and then evolves according

to the unitary Ug̃ up to time t = τ . The Hamiltonian of the system at the end of the

time-reversed process, when the second energy measurement is performed, is H(g0).

Hence, in this second measurement, the eigenvalue ε0i is obtained with probability

pg̃(j → i) =
1

rτj
tr
{

Π0
iUg̃(τ, 0)Πτ

jU
†
g̃ (τ, 0)

}
. (3.32)

will remain the same as those of the "forward" state, but their eigenprojectors will be related with "forward"
ones by Πτ Θ

i = ΘΠτ
i Θ−1.
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Analogously to (3.25), we compute the time-reversed path probability as

PB[j, i] = rτj p
τ
jpg̃(j → i) = pτj tr

{
Π0
iUg̃(τ, 0)Πτ

jU
†
g̃ (τ, 0)

}
. (3.33)

The stochastic entropy production σ is then simply defined as the log-ratio between

the forward and backward quantum trajectory probabilities [131]

σ[i, j] = ln
PF [i, j]

PB[j, i]
= ln

p0
i

pτj
, (3.34)

where I used Eq. (3.30) to obtain the last equality.

Manipulating the right-hand side of this equation, it is straightforward to show the

stochastic entropy production is connected to the stochastic work by σ[i, j] = β(w[i, j]−

∆F ). Since ∆F is a constant, this means the statistics of the random variables σ and w

are directly linked. Moreover, given the probability distribution of σ,

pF (σ) =
∑
i,j

δ(σ − σ[i, j])PF [i, j], (3.35)

we have

Σ = 〈σ〉 =

∫ +∞

−∞
dσpF (σ)σ = S(ρτ ||ρth

τ ). (3.36)

Thus far we have verified that the stochastic definitions of work (3.26) and entropy

production (3.34) are consistent with the averages discussed in the previous section. Fur-

thermore, it worth noticing their relation is parallel to (3.8). More interesting than that,

though, they allow us to arrive at some impressive results.

First, from Eq. (3.34) and the fact that PB[j, i] is a probability distribution, it directly

follows the Integral Fluctuation Theorem (IFT)

〈e−σ〉 =
∑
i,j

e−σ[i,j]PF [i, j] =
∑
i,j

PB[j, i] = 1. (3.37)

Or in terms of the work, we obtain the Jarzysnki relation [98]

〈e−βw〉 =
∑
i,j

e−βw[i,j]PF [i, j] =
∑
i,j

e−βw[i,j]eσ[i,j]PB[j, i] = e−β∆F . (3.38)
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Exploiting (3.34) in (3.35) we get the Detailed Fluctuation Theorem (DFT), from which

the IFT (3.37) is a direct consequence:

pF (σ) =
∑
i,j

δ(σ − σ[i, j])PF [i, j] =
∑
i,j

δ(σ − σ[i, j])eσ[i,j]PB[j, i]

= eσ
∑
i,j

δ(σ − σ[i, j])PB[j, i] = eσ
∑
i,j

δ(σ + σ[j, i])PB[j, i]

= eσpB(−σ),

(3.39)

where pB(σ) is the probability distribution of the entropy production in the backward

protocol. This may be rewritten in the more familiar form

pF (σ)

pB(−σ)
= eσ. (3.40)

A similar result, known as the Tasaki-Crooks fluctuation theorem, holds for the distribu-

tion of work,
pF (w)

pB(−w)
= eβ(w−∆F ). (3.41)

The fluctuation theorems (3.37) - (3.41) may be regarded as a deeper manifestation of

the second law [126, 127, 129]. They impose not only a constrain in the first moment Σ

(or W ) but reveal a symmetry property of the distribution pF (σ) (pF (w)). Using Jensen’s

inequality, 〈ex〉 > e〈x〉, they imply the traditional form of the second law,

Σ = β(W −∆F ) > 0, (3.42)

as well as linear response theory [129].

Along the work protocol gt, the system will generally pass through nonequilibrium

states. Nonetheless, Eq. (3.38) means, on one hand, that the average 〈e−βw〉 depends

only on the initial and final equilibrium states via e−β∆F . And on the other hand, that

the equilibrium free energy difference ∆F can be determined from this nonequilibrium

process by making many realizations of it. That is, the fluctuations of the stochastic work

w generated by the driving encompass information about equilibrium quantities. This

is equally true for Eq. (3.41). Moreover, the IFT (3.37) entails not only that stochastic
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violations of the second law, meaning σ < 0, do occur, but in fact that they must occur

for it to hold.

All of this make fluctuation theorems a highly desirable and valuable property for

stochastic thermodynamic quantities.

Customarily, instead of working with the distribution pF (σ), it is easier to consider its

Cumulant Generating Function (CGF)

Kσ(u) ≡ ln〈e−uσ〉 = ln

∫
dσpF (σ)e−uσ =

+∞∑
n=1

κn(σ)
(−1)nun

n!
, (3.43)

where κn is the n-th cumulant, and is given by

κn(σ) = (−1)n
d

du
Kσ(u)|u=0. (3.44)

The cumulants of a probability distribution are an alternative to the moments. In

particular, the first cumulant gives the average κ1(σ) = Σ, and the second one gives the

variance κ2(σ) = 〈(σ − Σ)2〉. Moreover, the CGF is a polynomial of order two only

if the distribution is Gaussian, and has the advantage of being additive for statistically

independent variables.

In terms of the CGF, the fluctuation theorems may be stated as

Kσ(1) = 0⇔ 〈e−σ〉 = 1 (3.45)

Kσ(u) = KB
σ (1− u)⇔ pF (σ)

pB(−σ)
= eσ, (3.46)

where KB
σ (u) is the CGF associated with the backward distribution pB(σ).

Finally, employing Eq. (3.34), the CGF of entropy production can be explicitly written

as

Kσ(u) = ln tr
{

(ρth
τ )u(ρτ )

1−u} = (u− 1)Su(ρ
th
τ ||ρτ ), (3.47)

where Su(ρ||σ) = (u−1)−1 ln tr{ρuσ1−u} are the Rényi divergences — see Appendix B.

Before concluding this Chapter, it is necessary to mention that fluctuation theorems

were first derived for classical systems evolving under a Hamiltonian dynamics [98, 132].

They are further encountered in several contexts: For classical and quantum systems,
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open or closed/isolated, and evolving under several types of dynamics. They may apply

to entropy production, work or heat exchange. Additional comments on this may be

encountered, for instance, in the reviews [99, 126–129]. In quantum systems, the usual

recipe for their derivation involves an initial equilibrium state, time-reversal symmetry of

the dynamics and the TPM scheme [128, 129]. A notable exception is given by [4] where

neither the initial state is thermal nor the TPM scheme is used.

Concerning their experimental validation in the specific scenario considered in this

Chapter, in Refs. [133, 134] the authors proposed an interferometric scheme which allows

the determination of the characteristic function of work χFw(u) = eKw(iu) — i.e., the

Fourier transform of the distribution pF (w) — by means of measurements on a single

qubit probe. This method also enables the circumvention of having to perform the two

projective energy measurements at the beginning and the end of the work protocol.

Adopting this strategy, in Ref. [135] the authors were able to determine χF,Bw for

an isolated driven qubit system. Applying an inverse Fourier transform they obtained

pF,B(w) and verified both the Jarzynski relation (3.38) and the Tasaki-Crooks theorem (3.41).

In addition, since the entropy production is connected with the work by σ = β(w−∆F ),

the experiment permits the establishment of pF (σ) and Σ. This was further exploited

in [136] to compare the thermodynamic expression (3.8) with the information-theoretic

Eq. (3.9). The quantum relative entropy was determined by performing quantum state

tomography on the qubit system.

The work distribution pF (w) may also be directly accessed through a generalized

quantum measurement (POVM) [137]. One way to achieve this is to couple the system

to an ancilla described by a continuous degree of freedom, like position. Then let the two

evolve via a particular entangling interaction (see [137]) applied before and after the work

protocol described by Ug. Ultimately, a measurement of the translated state of the ancilla

will reveal the work w with probability pF (w). This procedure was implemented in [138]

using cold atoms representing an effective two-level system. The experiment also allowed

the verification of the Jarzynski relation (3.38).

Employing some actual projective measurements, in Ref. [139] the authors were able

to determine the path probabilities PF [i, j] in a trapped-ion system behaving as an effec-

tive qubit. They further computed the free-energy difference ∆F , average entropy pro-
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duction Σ and tested Eq. (3.37) (in fact ln〈e−σ〉 = 0). They also analysed the fluctuation-

dissipation relation Σ = (1/2)β2〈(σ − Σ)2〉, valid in the linear response regime.

To conclude, Ref. [140] proposed a general method for obtaining the transition prob-

abilities r0
i pg(i → j) = rτj pg̃(j → i) = tr

{
Πτ
jUg(τ, 0)Π0

iU
†
g (τ, 0)

}
in a many-body

system. The essential idea goes as follows. Suppose an easily measurable observable O

that commutes with the final Hamiltonian H(gτ ). Its expected value at the end of the

protocol is given by

〈O〉 = tr{Oρτ} =
∑
i,j,α

oj,αp
0
i pα,

pα = 〈ψτj,α|Ug(τ, 0)Π0
iU
†
g (τ, 0)|ψτj,α〉,

where Πτ
i =

∑
α |ψτj,α〉〈ψτj,α|, oj,α = 〈ψτj,α|O|ψτj,α〉 and, crucially,

∑
α pα = r0

i pg(i→ j).

Note that the probabilities pα are independent of O, and of the initial temperature. There-

fore, by measuring many such observablesO and/or using different temperatures, one can

determine the pα’s, and from them, the desired transition probabilities. Implementing this

method, the authors were capable of verifying the detailed fluctuation theorem (3.41) in

an interacting system of two qubits [140].

3.3 Entropy production in the quantum Ising model

We are in the position now to apply the work protocol described in the previous sections

to a quantum critical system. We are particularly interested in one specific example of it:

the instantaneous and infinitesimal quench.

The instantaneous quench is likely the simplest possible work protocol. It consists

of performing a single change in the working parameter g with a vanishing duration,

τ → 0. This considerably simplifies the problem because in this case we do not have to

be concerned with some complicated and specific details of the dynamics generated by a

more general protocol gt.

In mathematical terms, since the duration of the protocol goes to zero, the unitary

associated with the drive is simplified to the identity Uquench = 1. Therefore, the final

state,

ρτ = Uquenchρ
th
0 U
†
quench, (3.48)
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is equal to the initial thermal state ρth
0 . The system is, nonetheless, driven out of equilib-

rium because its Hamiltonian is transformed from H0 = H(g0) to Hτ = H(gτ ).

Although simple, this protocol still exhibits attractive features. For instance, it allows

analytical insight even when applied to many-body systems. And, as we will see, its

fundamental quantities, work and entropy production, display peculiar behaviors linked

to phase transitions [32, 33]. The latter, in particular, presents critical behavior. For

this reason, the instantaneous quench protocol has been employed in a number of studies

involving phase transitions and critical phenomena [32, 33, 37, 38, 40, 141–146].

Let us consider as our system here the alternating transverse field Ising model (AT-

FIM) presented in Chapter 2. To recap, this model is described by the Hamiltonian

H = −
N∑
j=1

[
σxj σ

x
j+1 + (g − (−1)jh)σzj

]
, (3.49)

and have critical curves in the thermodynamic limit defined by

|g2 − h2| = 1. (3.50)

As saw in Chapter 2, most of this model critical points belong to the same universality

class of the homogeneous transverse field Ising model, to which it reduces when h = 0.

However, the critical points (g = 0, h = ±1) and (g = ±1, 0), when approached by some

specific paths, fall into a different universality class. Moreover, they are associated not

with second-order phase transitions but with fourth-order transitions.

Both external fields g and h may be viewed as the working parameter that is varied

and drives the system out of equilibrium. For simplicity, I will assume that during the

quench h is fixed and only g is changed. This still allows us to reach the two types of

critical points in the model.

As previously shown, after a series of transformations, the Hamiltonian (3.49) can be

written as

H(g) = P+H+(g)P+ + P−H−(g)P−, (3.51)
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where I write H = H(g) to emphasize that g is the varying parameter, and

P± =
1

2
(1± P ), P =

N∏
j=1

σzj ,

are the projectors onto the positive and negative parity subspaces. That is, the subspaces

of states with even and odd number of down spins, or fermions (see below), respectively.

The Hamiltonians H± assume the diagonal form

H±(g) =
∑
k∈K±

∑
s=−,+

εsk(g)(2η†k,s(g)ηk,s(g)− 1), (3.52)

where the sets K± are given by

K+ =
{
k = ±(2n+ 1)

π

N
; n = 0, 1, ..., N/4− 1

}
, (3.53)

K− =
{
k = 0, k = ±2n

π

N
, k =

π

2
; n = 1, ..., N/4− 1

}
, (3.54)

and {ηk,s} are fermionic operators,

{ηk,s, η†k′,s′} = δk,k′δs,s′ , {ηk,s, ηk′,s′} = 0. (3.55)

Finally, the single-particle energies read

ε±k (g) =

√
1 + g2 + h2 ± 2

√
g2h2 + h2 cos2 k + g2 sin2 k, (3.56)

ε±0 (g) = g ±
√

1 + h2, (3.57)

ε±π
2
(g) =

√
1 + g2 ± h. (3.58)

In what follows, it is convenient to make an approximation and consider

H(g) = H+(g). (3.59)

This amounts to ignoring the change in the Hamiltonian when the system changes to the

negative parity subspace. And, again, greatly simplifies all expressions for the thermo-
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dynamic quantities we are interested in. Moreover, this is an almost ubiquitous approx-

imation in one-dimensional spin chains, and is expected to produce exact results in the

thermodynamic limit.

Actually, for a finite homogeneous transverse field Ising model, this approximation

gives a 50% error on the partition function at low temperatures in the region corresponding

to the ferromagnetic phase [147]. This is typically the region of greater interest, and the

discrepancy occurs because the approximation ignores the degeneracy of the ground state

in the thermodynamic limit [147]. As shown in Eq. (2.53), the energy gap between the

positive and negative parity ground states of H vanishes exponentially with the system

size.

We are more interest here in ratios of partition functions, and, therefore, our quantities

are not subjected to such errors. Although our main focus is on the thermodynamic limit,

for completeness, we compare the thermodynamics of the full and positive parity only

Hamiltonians in Appendix D.

Moving forward, our protocol begins with the system prepared in a thermal state at

temperature T = 1/β, with initial field g0. Thus, we write

ρth
0 =

e−βH0

Z0

=
∏
k∈K+

∏
s=−,+

eβε
s
k|0|0k,s〉〈0k,s|+ e−βε

s
k|0|1k,s〉〈1k,s|

2 cosh
(
βεsk|0

) , (3.60)

where ηk,s |0k,s〉 = 0 and |1k,s〉 = η†k,s |0k,s〉 are fermionic states, and ε±k|0 = ε±k (g0).

Next we apply the instantaneous quench protocol, where the external field is suddenly

changed from g0 to gτ . Since, the state of the system remains the same, the work associ-

ated with this drive is given by

W = tr
{

(Hτ −H0)ρth
0

}
= tr

{
∆Hρth

0

}
. (3.61)

To compute this trace I will use a trick of crucial importance in one of our chief results

in Chapter 5. First, let {Π0
i } be the eigenprojectors of H0 and ρth

0 . That is, assume

H0 =
∑
i

ε0iΠ
0
i . (3.62)
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The eigenvalues ε0i are made of linear combinations of ε±k|0 and the eigenprojetors Π0
i of

|0k,s〉〈0k,s| and |1k,s〉〈1k,s|.

Next, I note that

tr
{

∆Hρth
0

}
= tr

{
∆Hdρth

0

}
, (3.63)

where

∆Hd =
∑
i

Π0
i∆HΠ0

i , (3.64)

is the part of the perturbation ∆H that is diagonal in the initial energy basis. I refer to it as

the dephased, or incoherent, part of the perturbation. Its complement, ∆Hc = ∆H−∆Hd

is the coherent part. This separation of the perturbation ∆H plays a key role in Chapter 5

where I introduce a new quantum/classical split for the entropy production.

Now, since H(g) is continuous and linear on g we must have

∆H = Hτ −H0 = δg (∂gH(g))|g0 ,

= δg
∑
i

(∂g0ε
0
i )Π

0
i + δg

∑
i

ε0i (∂g0Π
0
i ),

(3.65)

where δg = gτ−g0, and, with some abuse of notation, ∂g0ε
0
i = ∂gεi(g)|g0 and similarly for

∂g0Π
0
i . Note that for systems presenting continuous, second- or higher-order, transitions,

these derivatives are continuous functions of g. In particular, for second-order systems,

they will have a kink or cusp at a critical point but are still well-defined.

From (3.65) we readily obtain that

∆Hd = δg
∑
i

(∂g0ε
0
i )Π

0
i , (3.66)

∆Hc = δg
∑
i

ε0i (∂g0Π
0
i ). (3.67)

That is, the dephased and coherent parts of the perturbation are directly linked to the

derivatives of the system eigenenergies and eigenbasis, respectively.

Equivalently, we may write

∆Hd = δg
∑
k∈K+

∑
s=−,+

(∂g0ε
s
k|0)(2η†k,sηk,s − 1). (3.68)
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The work (3.61) associated with the instantaneous quench protocol is now easily com-

puted,

W = −δg
∑
k∈K+

∑
s=−,+

(∂g0ε
s
k|0) tanh

(
βεsk|0

)
. (3.69)

After the sudden quench, if the system is in contact with a bath at temperature T , it

will relax to the final equilibrium state

ρth
τ =

e−βHτ

Zτ
=
∏
k∈K+

∏
s=−,+

eβε
s
k|τ |0τk,s〉〈0τk,s|+ e−βε

s
k|0|1τk,s〉〈1τk,s|

2 cosh
(
βεsk|τ

) , (3.70)

where, similarly to (3.60), ηk,s(gτ )
∣∣0τk,s〉 = 0, η†k,s(gτ )

∣∣0τk,s〉 =
∣∣1τk,s〉, and ε±k|τ = ε±k (gτ ).

Hence, the entropy production in a sudden quench reads

Σ = S(ρth
0 ||ρth

τ ) = β(W −∆F )

=
N

2π

∑
s=−,+

∫ π
2

−π
2

dk

{
ln

[
cosh

(
βεsk|τ

)
cosh

(
βεsk|0

)]− βδg(∂g0ε
s
k|0) tanh

(
βεsk|0

)}
,

(3.71)

where I took the thermodynamic limit N →∞ to convert the sum over k into an integral.

I remark the first equality highlights that, in this protocol, the entropy production is a

measure of the distinguishability between the equilibrium states associated with the pre-

and postquench Hamiltonians. This general formula is valid for any fixed field h and any

quench size δg.

Let us consider now some particular cases. We start with h = 0. This reduces our

system to the usual homogeneous transverse field Ising model, which was studied in [33].

As noted earlier, the critical point of this model located at g = 1 is representative of all

critical points in the same universality class — all points in the red lines of Fig. 3.4 (see

also Fig. 2.1). From now on I refer to it as the Ising critical point.

In Fig. 3.3 it is shown the behavior of the entropy production as a function of the initial

field g0 at several inverse temperatures β. Each point in these curves corresponds to the

value of Σ in a realization of the protocol which starts at g0 and has a quench amplitude

δg = 0.01.

The results may be interpreted as follows [33, 38]. Let us consider first the low tem-
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Figure 3.3: Entropy production per spin in the vicinity of the Ising critical point. (a) The
behavior at low temperatures (large β). In this case Σ generally scales linearly with β.
The increase in the height of the peak at g0 = 1 indicates a logarithmic divergence at this
point in the limit T → 0 (β →∞). (b) Behavior at high temperatures. Here Σ scales with
β2 when β → 0. In this limit there is no indication of the quantum critical point from Σ.
In all points, δg = 0.01.

perature regime — Fig.3.3(a). Near the critical point the gap is close to zero, and hence,

even a small quench is able to create excitations on the system [33]. As a consequence,

there is an increase in the production of entropy in the vicinity of the critical point.

The entropy production can, otherwise, be seen as a measure of distinguishability

between the equilibrium states associated with the initial and final Hamiltonians. Then,

its sharp increase near g0 = 1 at low temperatures, demonstrate that in the critical region

a subtle change in the transverse field leads to a substantial change in the equilibrium

state [33].

Contrastingly, at high temperatures — Fig. 3.3(b), the large presence of thermal fluc-

tuations obliterates any sign of the quantum criticality [33]. There is no distinct feature,

such a pronounced peak or singularity, on the behavior of Σ as a function of the initial

field g0. Particularly, in the limit T → ∞ (β → 0) the curve for Σ/Nβ2 as a function of

g0 becomes flat.

Moving forward, the increasing height of the peak at g0 = 1 with decreasing tem-

peratures in Fig. 3.3(a) indicates the possibility of a divergence of the entropy production

at T → 0. In fact, it is straightforward to show that, for an infinitesimal quench, Σ is
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proportional to the transverse magnetic susceptibility. One merely has to note that

W = tr
{

∆Hρth
0

}
= δg tr

{
(∂g0H0)ρth

0

}
= δg ∂g0F (g0),

∆F = F (gτ )− F (g0) = δg∂g0F (g0) +
1

2
δg2∂2

g0
F (g0) +O(δg3).

Hence, to leading order on the perturbation [34, 61, 117, 148],

Σ =
βδg2

2
χ, (3.72)

where χ = −∂2
g0
F (g0) is the (total) transverse magnetic susceptibility. As we saw

in (2.66), this quantity diverges logarithmically at the Ising critical point. Accordingly,

Σ/Nβ diverges at g0 = 1 when T → 0 (β →∞).

To conclude our analysis on the behavior of the entropy production in the vicinity of a

second-order quantum critical point, we note the above result is obviously more general.

Equation (3.72) holds for any system subjected to the small and sudden quench work

protocol. Hence, in any system exhibiting a second-order continuous quantum phase

transition, the entropy production will exhibit critical behavior in a similar way to the

susceptibility of the control parameter.

Next we may wish to probe the other type of critical point in the alternating transverse

field Ising model. One such a point is located at (g = 0, h = 1) - blue dot in Fig. 3.4 - and

is associated with a fourth-order transition. We should note this point is surrounded by

Ising-type (second-order) critical points — red lines in Fig. 3.4. The transverse magnetic

susceptibility of this model diverges on these Ising-type critical points at T = 0, while

it is only its second derivative with respect to g which diverges at the fourth-order point.

This means the entropy production grows faster near the red lines than near the blue dot in

Fig. 3.4. Hence, we should be extra careful on how we approach the latter and use a path

that keeps us sufficiently far from the other points in the critical hyperbolas. In this way,

the behavior of the entropy production in the vicinity of the blue dot will not be spoiled

by the adjacent second-order critical points.

In Fig. 3.5 it is shown the behavior of the entropy production and its second derivative

as a function of the initial field g0 at several inverse temperatures. The path chosen to

approach the critical point in these plots was through the curve h = 1 + 10g2. That
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g

h

Figure 3.4: Piece of the zero temperature phase diagram of the ATFIM. The hyperbolic
red lines are composed of Ising critical points for which the big red point at (g = 1, h = 0)
is a representative. The model also has some fourth-order critical points, of which the blue
dot at (g = 0, h = 1) is an example.

is, in each realization of the quench protocol, h is kept fixed at the same initial value

h0 = 1 + 10g2
0 and only the field g is changed by an amount δg = 0.01. This ensures the

general expression (3.71) holds.

As expect, in this case the entropy production is always finite at the critical point

and only its second derivative diverges. The peak in Fig. 3.5(a) is again explained by an

increase in the amount of excitations created by the quench as the gap closes in the vicinity

of the critical point. I note the entropy production scales linearly with β at sufficiently

low temperatures. A transient regime is what makes the curves for β = 3 and β = 10 lie

above the others in Fig. 3.5(a).

With rising temperatures, thermal fluctuations cause a broadening of this peak until

its eventual disappearance in the limit T →∞ (β → 0) — Fig. 3.5(b).

In Fig. 3.5(c) it is further shown the behavior of the second derivative of the entropy

production with respect to the initial field g0. This quantity is proportional to the sec-

ond derivative of the transverse magnetic susceptibility, which diverges logarithmically at

g0 = 0 when T = 0. This divergence is indicated by the increasing depth of the minimum

at the critical field.

Significantly, I must highlight that if the fourth-order critical point at (g = 0, h = 1)

is approached by a different path, one can obtain qualitatively different behaviors for the
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Figure 3.5: Entropy production per spin in the vicinity of the fourth-order critical point
in the ATFIM. (a) The behavior at low temperatures, where Σ generally scales linearly
with β. The curves for β = 3 and β = 10 are above the others because in these cases
Σ is still growing faster than linearly with β. (b) Behavior at high temperatures. (c) The
second derivative of the entropy production ∂2

g0
Σ/Nβ diverges in the limit β →∞. Note

that we must go to extremelly low temperatures to capture this. In all points, δg = 0.01.

entropy production. For instance, if we approach it along the line h = 1, the entropy pro-

duction will display a minimum at this point and not a maximum as shown in Fig. 3.5(a)

and (b). As explained above, this happens because of the proximity to the Ising critical

points to the left and right of g = 0 along this path. This makes the entropy production

grows faster on these regions than it does on the vicinity of the fourth-order critical point,

and this is why one obtains a minimum.

This brings to an end the examination of the entropy production behavior on the vicin-

ity of the critical points of the ATFIM. The take-home message is that in an infinitesimally

and instantaneously quenched quantum critical system, the entropy production is related

to the susceptibility of the control (working) parameter. Therefore, the entropy production

will exhibit a maximum at the critical parameter that becomes a divergence in the limit

T = 0 if the system presents a second-order quantum phase transition. For higher order

transitions, it is one of its derivatives which diverges, instead.

This behavior makes the entropy production an effective tool, at least theoretically,

to detect quantum critical points at low but finite temperatures [32–34]. In the following

two chapters I will present two ways in which the entropy production may be split into

a classical and quantum contributions. As previously mentioned, one of the essential

goals in this thesis is to show these separate contributions can provide an even superior
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performance as instruments for detecting quantum critical points.

For completeness, I also mention that in [32] the authors showed a relation between

the work performed in a quench and a first-order phase transition. In this case, there is a

discontinuity in the work as a function of the control parameter at the transition point in

the limit T → 0.
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Chapter 4

Populations and Coherences: Relative

Entropy of Coherence

Quantum coherences are associated with off-diagonal elements of observables and density

operators in a particular basis of the system Hilbert space. Hence, it is evident from its

definition that quantum coherences depend on the particular basis being used.

In principle, all conceivable orthonormal bases for a system Hilbert space are com-

pletely equivalent, meaning they are equally appropriate to describe the quantum system.

Nonetheless, the interaction with an environment and/or the existence of some con-

servation law, perhaps, may impose a preferred basis [149, 150].

For instance, in Chapter 3, I considered the relaxation of a system from a state ρτ to an

equilibrium state ρth
τ = e−βHτ/Zτ , at temperature T = 1/β, through a thermal operation.

Such an operation is described by a globally energy conserving unitary acting jointly on

the system and an environment E initially in the thermal state ρth
E = e−βHE/ZE .

This energy conserving condition enforces severe restrictions on the evolved state of

the system of interest. Concretely, let us take the spectrum of the system Hamiltonian

Hτ to be nondegenerate. Then, if ρτ is incoherent — in other words diagonal — in

the eigenbasis of Hτ , so is any subsequent state of the system evolving under a thermal

operation [1, 9, 35, 121, 122]. To put it another way, thermal operations cannot create

coherences in the energy basis. Moreover, these coherences can be separated in modes

defined by energy differences ωij = |εj−εi|, where {εi} are eigenvalues ofHτ . Then if ρτ

contains coherences in the energy basis, each coherence mode evolve independently from
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the others and the state populations — i.e. the diagonal elements — evolve independently

of all coherences [9–11, 35].

In no other basis, such a decoupled evolution of populations and coherences in this

process is possible. In this sense, the eigenbasis of Hτ emerges as a preferred basis in the

described scenario.

Inspired by these observations, reference [35] proposed the following splitting for the

entropy production (3.9),

Σ = Γcl + Γqu, (4.1)

Γcl = S(DHτ (ρτ )||ρth
τ ), (4.2)

Γqu = S(ρτ ||DHτ (ρτ )), (4.3)

where

DHτ (ρ) =
∑
j

|jτ 〉〈jτ |ρ|jτ 〉〈jτ |, (4.4)

is the dephasing operator in the eigenbasis {|jτ 〉} of Hτ . Its effect is to remove all coher-

ences in the state ρ in this basis. I will often refer to Eqs. (4.1)-(4.3) as the Γ-splitting of

entropy production.

Both terms in (4.1) are given by relative entropies and, therefore, are nonnegative by

construction. In particular, Eq. (4.3) vanishes if and only if ρτ is incoherent [1].

Therefore, Eq. (4.2) quantifies the contribution to the entropy production coming from

the mismatch in populations between DHτ (ρτ ) and the equilibrium state ρth
τ . Since both

these states are diagonal in the same basis, Γcl is equivalent to a relative entropy between

classical probability distributions.

Precisely, if {qτj }, with

qτj = 〈jτ |ρτ |jτ 〉, (4.5)

are the populations of ρτ in the basis {|jτ 〉}, and {pτj} are those of the equilibrium state

ρth
τ ,

Γcl =
∑
j

qτj ln
qτj
pτj
, (4.6)

where in the right-hand-side we have the Kullback-Leibler divergence. Hence, (4.2) may
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be regarded as a classical part of the total entropy production.

In contrast, the second term (4.3) is the relative entropy of coherence [1]. This quanti-

fies the contribution to the entropy production steaming from the coherences in ρτ in the

final energy basis {|jτ 〉}. Therefore, Γqu accounts for an authentic quantum contribution

to the production of entropy. One that, being nonnegative, demonstrates the presence of

coherences increases the entropy production total amount.

In general, the Hamiltonian Hτ will be degenerate. In this case, the previous argu-

ments are equivalently valid if we consider as incoherent states those which commute

with Hτ . Moreover, the dephasing operator becomes

DHτ (ρ) =
∑
j

Πτ
jρΠτ

j , (4.7)

where Πτ
j are the eigenprojectors of Hτ . The difference between (4.4) and (4.7) is that the

latter eliminates only coherences between different energy subspaces of Hτ , maintaining

those in the same subspace intact. Conversely, the former removes all coherences in a

given basis.

The two quantities (4.2) and (4.3) fulfil an important role in the thermodynamic re-

source theory defined by thermal operations [9, 117, 120–122]. This is because both of

them are monotones of the theory. Explicitly, let us consider a system with Hamiltonian

HS in the initial state ρS , and a thermal bath with HamiltonianHE in the equilibrium state

ρth
E = e−βHE/ZE . If

ρ′S = trE{U(ρS ⊗ ρth
E)U †}, [U,HS +HE] = 0, (4.8)

is the state of the system after the thermal operation (4.8), then

Γcl(ρ
′
S) 6 Γcl(ρS), (4.9)

Γqu(ρ
′
S) 6 Γqu(ρS). (4.10)

In this resource theory, the thermal state ρth
S = e−βHS/ZS is the free state and fixed

point of the dynamics. It is the state from which no work can be extracted. Therefore,
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any other incoherent state is endowed with the resource of athermality [117, 121, 122].

This is the resource consumed in work extraction through a thermal operation. Moreover,

if a state contains energetic coherences, this state is further endowed with the resource of

coherence of asymmetry [9–11, 117]. In the presence of another source of coherence, this

resource can also be converted into work [9, 18].

The meaning of Eqs. (4.9) and (4.10) is, thus, that these resources are never created

and can only be consumed under a thermal operation. In fact, the relative entropy of

coherence is a monotone in several other resource theories [2], including the closely re-

lated resource theory of asymmetry [151] and the resource theory of coherences [1] —

see also Appendix B. Moreover, Γqu is also related to the failure of a system to follow an

adiabatic evolution [36] and to coherent ergotropy [25]. The quantities Γcl and Γqu were

further employed to characterize the thermal equilibrium versus nonequilibrium steady

state regimes in a quantum optical system [152].

The splitting in the entropy production given in (4.1)-(4.3) was also independently

proposed by [36] in connection with the work protocols presented in Chapter 3.

The interpretation of Γcl and Γqu given by [36] in this case goes as follows. The work

protocol gt lasting a total time τ drives the system out of the initial equilibrium state

ρth
0 =

e−βH0

Z0

, (4.11)

to the final state

ρτ = Ug(τ, 0)ρth
0 U
†
g (τ, 0), (4.12)

where Ug is the unitary associated with the drive gt. Besides a change in the energy

eigenvalues, the Hamiltonian of the system at two different times will generally not com-

mute, [Ht1 , Ht2 ] 6= 0 for t1 6= t2. Therefore, the drive will generally imbue the system

with nonthermal populations and quantum coherences in the final energy basis. Then, Γqu

quantifies the contribution to the entropy production coming from the energetic coher-

ences contained in the state of the system, ρτ , at the end of the drive. Complementarily,

Γcl computes the part of the entropy production steaming from the population imbalances
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ρ0
th= e

-βH0
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g(t)

ρτ=Ugρ0
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-βHτ

Zτ

Σ

Hτ
(ρτ)

Γqu

Γcl

Figure 4.1: Γ-splitting of the entropy production in the work protocol described in Chap-
ter 3. The entropy production Σ - represented by the gray dashed line - may be split into
two contributions Γcl and Γqu. This is achieved by introducing the dephased state DHτ (ρτ )
- yellow dot. Γqu steam from energy coherences in the system state at the end of the drive,
ρτ , while Γcl is related to a mismatch in populations between ρτ and ρth

τ .

between ρτ and the updated equilibrium state

ρth
τ =

e−βHτ

Zτ
. (4.13)

This is schematically represented in Fig. 4.1.

Furthermore, [36] also provided a stochastic formulation for these quantities in the

framework of work protocols and the two-point measurement scheme.

To recapitulate — see Sec. 3.2 —, by performing energy measurements in the begin-

ning and the end of the work protocol, one may define the stochastic entropy production

σ[i, j] = ln
p0
i

pτj
= β(w[i, j]−∆F ). (4.14)

In the last equality, w[i, j] = ετj − ε0i is the stochastic work done on the system, while

β∆F = − lnZτ/Z0 is the change in free energy between ρth
0 and ρth

τ . Moreover, ε0i and ετj

are the respective energy eigenvalues obtained in the measurements, and p0
i = e−βε

0
i /Z0

and pτj = e−βε
τ
j /Zτ are the corresponding thermal populations of the initial and final
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equilibrium states.

The entropy production has a probability distribution given by

pF (σ) =
∑
i,j

δ(σ − σ[i, j])PF [i, j], (4.15)

where

PF [i, j] = p0
i tr
{

Πτ
jUg(τ, 0)Π0

iU
†
g (τ, 0)

}
(4.16)

is the forward path probability of the quantum trajectory [i, j]; Π0
i and Πτ

j being the re-

spective eigenprojectors of H0 and Hτ associated with the eigenvalues ε0i and ετj .

With this at hand, it is straightforward to show that

Σ = 〈σ〉 =

∫ +∞

−∞
dσpF (σ)σ = S(ρτ ||ρth

τ ), (4.17)

and that σ satisfy the integral fluctuation theorem

〈e−σ〉 = 1. (4.18)

Now, the final state of the system at the end of the work protocol dephased in the final

energy basis may be written as

DHτ (ρτ ) =
∑
j

Πτ
jρτΠ

τ
j =

∑
j

qτjΠτ
j . (4.19)

Here,

qτj = tr
{
ρτΠ

τ
j

}
=
∑
i

PF [i, j], (4.20)

are the populations of the final state in this basis and is equal to the marginal distribution

of the final energy measurements.

Similarly to (4.14), we can define the stochastic versions of Γcl and Γqu [36, 37]

γcl[i, j] = ln qτj /p
τ
j , (4.21)

γqu[i, j] = ln p0
i /q

τ
j . (4.22)
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Clearly, σ[i, j] = γcl[i, j] + γqu[i, j].

Assuming these stochastic variables follow the probability distributions

pF (γcl) =
∑
i,j

δ(γcl − γcl[i, j])PF [i, j], (4.23)

pF (γqu) =
∑
i,j

δ(γqu − γqu[i, j])PF [i, j], (4.24)

it is simple to show that we obtain the expected averages,

Γcl = 〈γcl〉, (4.25)

Γqu = 〈γqu〉. (4.26)

Remarkably, these variables, moreover, satisfy individual integral fluctuation theo-

rems

〈e−γcl〉 = 〈e−γqu〉 = 1. (4.27)

As I did for work and entropy production in Sec. 3.2, it is often more convenient to

consider the cumulant generating functions (CGF) of these random variables. The full

statistics of a random variable is equally well characterized by its cumulants.

It is fruitful in this case to take into account the joint probability distributions of γcl

and γqu,

pF (γcl, γqu) =
∑
i,j

δ(γcl − γcl[i, j])δ(γqu − γqu[i, j])PF [i, j].

Then, the joint CGF of these variables reads

Kγcl,γqu(v, u) = ln〈e−vγcl−uγqu〉

= ln tr
{

(ρth
τ )v(DHτ (ρτ ))

u−v(ρτ )
1−u}. (4.28)

Several remarks can be made now. To begin, the fact that (4.28) cannot, in general, be

written as a sum of individual CGFs of these two variables, means γcl and γqu are typically

statistically dependent. Second, the reduced CGFs of γcl and γqu are obtained from the
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joint CGF (4.28) by setting u = 0 and v = 0, respectively. They read

Kγcl(v) = ln tr
{

(ρth
τ )v(DHτ (ρτ ))

1−v} = (v − 1)Sv(ρ
th
τ ||DHτ (ρτ )), (4.29)

Kγqu(u) = ln tr
{

(DHτ (ρτ ))
u(ρτ )

1−u} = (u− 1)Su(DHτ (ρτ )||ρτ ), (4.30)

where in the first equation I used that DHτ (ρτ ) and ρτ have the same populations in the

basis of ρth
τ . In addition, Sα(ρ||σ) is the α-Rényi divergence — see Appendix B. It is

straightforward to derive from the previous relations that their respective first cumulants

are given by Eqs. (4.2) and (4.3).

Furthermore, it is interesting to note the CGF of the entropy production σ is obtained

from (4.28) by making u = v — see Eq. (3.47).

The discussion thus far makes evident the significance of the splitting (4.1) of the en-

tropy production in characterizing the nonequilibrium thermodynamics of quantum sys-

tems. Namely, the two components in this division bear a notable interpretation in ther-

modynamic resource theory and satisfy individual fluctuation theorems when analysed

from the perspective of work protocols. In the subsequent section I apply it to the prob-

lem of an infinitesimally and instantaneously quenched critical system. The results will

show that despite all its merits and qualities, this splitting has also some shortcomings.

4.1 Γ-splitting in the quantum Ising model

In [38], we studied the behaviors of Γcl and Γqu in the vicinity of a quantum critical point.

I repeat the analysis here. For this, let us start with our model Hamiltonian

H = −
N∑
j=1

[
σxj σ

x
j+1 + (g − (−1)jh)σzj

]
. (4.31)

As in Sec. 3.3, I will consider an instantaneous quench protocol, for which Uquench = 1

and ρτ = ρth
0 . Moreover, I will again ignore the change in the Hamiltonian of our spin

chain caused by the parity and make the approximation H(g) = H(g)+.

Furthermore, to compute the dephased state DHτ (ρτ ), we need to know the relation

between the eigenbasis of the initial Hamiltonian H0 = H(g0) and the final Hamiltonian
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Hτ = H(gτ ). Ultimately, this amounts to obtaining the exact form of the matrices Ok

diagonalizing the matrices (2.28),

Ak =


ak

a†−k

bk

b†−k

 , Hk =


g − cos k sin k h 0

sin k −g + cos k 0 −h

h 0 g + cos k − sin k

0 −h − sin k −g − cos k

 ,

giving the single-particles eigenenergies of H(g),

ε±k =

√
1 + g2 + h2 ±

√
g2h2 + g2 cos2 k + h2 cos2 k.

As discussed in Chapter 2, these matrices are immensely complicated for general

values of g and h. On that account, I will consider only the case h = 0 in this section.

Accordingly, Ok assumes the simple form

Ok =


cos
(
θ−k /2

)
sin
(
θ−k /2

)
0 0

− sin
(
θ−k /2

)
cos
(
θ−k /2

)
0 0

0 0 cos
(
θ+
k /2

)
− sin

(
θ+
k /2

)
0 0 sin

(
θ+
k /2

)
cos
(
θ+
k /2

)

 ,

where

(cos θ±k , sin θ±k ) =

(
g ± cos k

ε±k
,

sin k

ε±k

)
,

ε±k (g) =
√

1 + g2 ± 2g cos k,

such that

OkHkO
†
k = diag(ε−k ,−ε

−
k , ε

+
k ,−ε

+
k ).

Hence, the Hamiltonian (4.31) with h = 0 and the parity approximation can be written

in diagonal form as

H(g) =
∑
k∈K+

∑
s=−,+

εsk(2η
†
k,sηk,s − 1),
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where

K+ =
{
k = ±(2n+ 1)

π

N
; n = 0, 1, ..., N/4− 1

}
,

and

ηk,− = cos
(
θ−k /2

)
ak + sin

(
θ−k /2

)
a†−k, ηk,+ = cos

(
θ+
k /2

)
bk − sin

(
θ+
k /2

)
b†−k.

The fermionic operators ak and bk were introduced in Chapter 2.

Everything may be further simplified by noticing we can make [90, 94]

bk =


ak−π, if 0 < k < π/2,

ak+π, if − π/2 < k < 0,

and that

ε+k = ε−k±π, (cos θ+
k , sin θ+

k ) = (cos θ−k±π, − sin θ−k±π).

This allows us to write

H(g) =
∑
k∈K+

I

εk(g)(2η†kηk − 1), (4.32)

where

K+
I =

{
k = ±(2n+ 1)

π

N
; n = 0, 1, ..., N/2− 1

}
(4.33)

εk(g) =
√

(g − cos k)2 + sin2 k =
√

1 + g2 − 2g cos k, (4.34)

(cos θk, sin θk) =

(
g − cos k

εk
,

sin k

εk

)
, (4.35)

ηk = cos(θk/2)ak + sin(θk/2)a†−k, (4.36)

with {ηk} satisfying the fermionic anticommutation relations

{ηk, ηk′} = 0, {ηk, η†k′} = δk,k′ . (4.37)

80



Chapter 4. Populations and Coherences: Relative Entropy of Coherence

It is worth emphasizing {ηk} are functions of the transverse field g.

In this section I work with the specialized Eqs. (4.32)-(4.37). We can finally move

forward.

At the beginning of the work protocol, the system is prepared in the thermal state

ρth
0 =

∏
k∈K+

I>

1∑
n0
−k, n

0
k=0

e2βε0k(1−n0
k−n

0
−k)

4 cosh2(βε0k)
|n0
−kn

0
k〉〈n0

−kn
0
k|, (4.38)

where ε0k = εk(g0), K+
I> is the set composed of only the positive elements of (4.33), and∣∣n0

−kn
0
k

〉
are the joint eigenstates of η0 †

−kη
0
−k and η0 †

k η
0
k.

Subsequently an instantaneous quench is applied changing the transverse field to a

final value gτ . This transforms the Hamiltonian of the system to Hτ , leaving its state

unaffected. The varying Hamiltonian establishes a new equilibrium state at temperature

T = 1/β. It reads

ρth
τ =

∏
k∈K+

I>

1∑
nτ−k, n

τ
k=0

e2βετk(1−nτk−n
τ
−k)

4 cosh2(βετk)
|nτ−knτk〉〈nτ−knτk|, (4.39)

where ετk = εk(gτ ) and
∣∣nτ−knτk〉 are the eigenstates of ητ †−kη

τ
−k and ητ †k η

τ
k .

In general, H0 and Hτ do not commute, which means the state of the system at the

end of drive ρτ = ρth
0 will contain coherences in the final energy basis. From Eqs. (4.35)

and (4.36) we obtain that the postquench operators {ητk} are related to the prequench {η0
k}

by [33]

ητk = cos(∆k/2)η0
k + sin(∆k/2)η0 †

−k. (4.40)

Here, ∆k = θτk − θk is the difference between the post- and prequench Bogoliubov an-

gles (4.35) and satisfy

sin ∆k = −δg sin k

ετkε
0
k

, (4.41)

where, again, δg = gτ − g0.

From (4.40) we have the following relations between the energy states of the initial
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and final basis

∣∣00
−k0

0
k

〉
= cos(∆k/2)

∣∣0τ−k0τk〉− sin(∆k/2)
∣∣1τ−k1τk〉 , (4.42)∣∣10

−k1
0
k

〉
= sin(∆k/2)

∣∣0τ−k0τk〉+ cos(∆k/2)
∣∣1τ−k1τk〉 , (4.43)

while the states with a single particle occupying the mode k or −k remain equal.

Working with the above relations, we may express the initial state ρth
0 in the final

energy basis and then dephase it to obtain

DHτ (ρ
th
0 ) =

∏
k∈K+

I>

{
1

4

(
1 + tanh2(βε0k) + 2 tanh

(
βε0k
)

cos ∆k

)
|0τ−k0τk〉〈0τ−k0τk|

+
1

4

(
1 + tanh2(βε0k)− 2 tanh

(
βε0k
)

cos ∆k

)
|1τ−k1τk〉〈1τ−k1τk|

+|1τ−k0τk〉〈1τ−k0τk|+ |0τ−k1τk〉〈0τ−k1τk|
}
.

(4.44)

We are ready now to compute the two components of the entropy production (4.2)

and (4.3) in a quenched Ising model. For the latter, I further notice Γqu is a very spe-

cial relative entropy since it can be written as the difference between two von Neumann

entropies [1],

Γqu = S(ρτ ||DHτ (ρτ )) = S(DHτ (ρτ ))− S(ρτ ).

Hence, the results are [38]

Γqu =N

∫ π

0

dk

2π

{
− 1

4

(
1 + tanh2(βε0k)

)
ln
(
1 + sinh2(2βε0k) sin2 ∆k

)

+
1

2
tanh

(
βε0k
)[

ln

(
1 + tanh(2βε0k)

1− tanh(2βε0k)

)
− cos ∆k ln

(
1 + tanh(2βε0k) cos ∆k

1− tanh(2βε0k) cos ∆k

)]}
,

(4.45)
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and

Γcl =N

∫ π

0

dk

2π

{
2 ln

(
cosh(βετk)

cosh(βε0k)

)
+

1

4

(
1 + tanh2(βε0k)

)
ln
(
1 + sinh2(2βε0k) sin2 ∆k

)

−1

2
tanh

(
βε0k
)

cos ∆k

[
ln

(
1 + tanh(2βε0k)

1− tanh(2βε0k)

)
− ln

(
1 + tanh(2βε0k) cos ∆k

1− tanh(2βε0k) cos ∆k

)]}
,

(4.46)

where I used the thermodynamic limit N →∞ to convert the sums over k into integrals.

For completeness and comparison, I also write down the full entropy production [33,

62]

Σ = N

∫ π

0

dk

2π
2

{
ln

(
cosh(βετk)

cosh(βε0k)

)
− β(ετk cos ∆k − ε0k) tanh

(
βε0k
)}
. (4.47)

Note that ετk cos ∆k−ε0k = δg cos θk = δg(∂gεk)|g0 . This can be compared with Eq. (3.71).

Figure 4.2 displays the behaviors of these contributions to the entropy production as

functions of the initial field g0 at several inverse temperatures β. In all points, the size of

the quench is given by δg = 0.01.

The general expressions for Γcl and Γqu are not at all instructive. To explain these

results, we can consider first the low-temperature limit and note that to leading order on

β, Eqs. (4.45)-(4.47) become [38]

Γqu/N =

∫ π

0

dk

2π

[
− pk ln pk − (1− pk) ln(1− pk)

]
(4.48)

Γcl/N = 4β

∫ π

0

dk

2π
ετkpk − Γqu/N, (4.49)

Σ/N = 4β

∫ π

0

dk

2π
ετkpk, (4.50)

where pk = sin2(∆k/2).

From Eqs. (4.42)-(4.43), we see pk gives the probability of the±k modes to transition

from a prequench fully unoccupied/occupied state to fully occupied/unoccupied state after

the quench. Together with (4.50), this confirms the interpretation of the increase in en-
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Figure 4.2: Γqu and Γcl per spin in the vicinity of the Ising critical point. Above, the
behaviors at low temperatures (large β) of (a) Γqu and (b) Γcl. In this limit, Γcl scales
linearly with β at sufficiently low temperatures, while Γqu is bounded. The divergence
in the entropy production at g0 = 1 in the limit T → 0 (β → ∞) comes from the
classical part Γcl. Below, the behaviors at high temperatures of (c) Γqu and Γcl. Here both
contributions scale with β2 at sufficiently high temperatures. Contrarily to the full entropy
production, even in this limit the quantum critical point is indicated by a kink in Γqu and
Γcl. In all points, δg = 0.01.
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tropy production near a quantum critical point as resulting from the creation of excitations

by the quench.

Moreover, the contribution from coherences in this limit steam from the integrated bi-

nary entropy associated with the probability pk. Since the maximum of a binary entropy

is ln 2, Γqu per spin cannot diverge and, in fact, is bounded by 1
2

ln 2. Such a maximum

would be obtained only if pk = 1/2 for all k’s. This finiteness of the coherence contribu-

tion to the entropy production per spin is illustrated by the curve β → ∞ on Fig. 4.2(a).

This was plotted using (4.48).

Considering that Σ/N begins to diverge as T → 0, the finitude of Γqu/N further

means the relative contribution from coherences to the entropy production decreases with

lowering temperature. Intuitively, one would expect precisely the opposite of this, with

quantum coherences fulfilling a more prominent role at low temperatures. We will see

more on this in the next section.

Curiously, the height of the cusp at the critical field g0 = 1 of Γqu/N scales linearly

with δg when T = 0. In contrast, I will show later Σ/N always scales with δg2 in an

infinitesimal instantaneous quench.

This result on the behavior of the coherent contribution Γqu may be proven as fol-

lows [38]. The integral in (4.48) is dominated by the contributions at low pseudomo-

menta k → 0. The idea is then to replace the complicated integrand Ck = −pk ln pk −

(1− pk) ln(1− pk) by a more tractable function that is close to it in the appropriate limit.

This is achieved by the following function,

Fk = −1 + fk
2

ln
1 + fk

2
− 1− fk

2
ln

1− fk
2

,

fk =
k(1 + δg/2)√
δg2 + (1 + δg)k2

(4.51)

where fk is equal to cos ∆k = 1 − 2pk at g0 = 1 when k is small. Note in the interval

2 < k < π, Ck is of order δg2 ln δg2, when δg2 is small. Moreover, when 0 < k < 2, one

can check Ck − Fk is a monotonically increasing function of k, and Fk=2 → 0. That is,

this difference is also of order δg2 ln δg2. Thus, at T = 0 and g0 = 1,

Γqu/N =

∫ 2

0

dk

2π
Fk +O(δg2 ln δg2). (4.52)
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Lastly, ∫ 2

0

dk

2π
Fk =

1

4
δg +O(δg2 ln δg2), (4.53)

which completes the proof.

Continuing, the creation of excitations near a quantum critical point at low temper-

atures is captured by the populations part of the entropy production in the Γ-splitting.

Hence, Γcl/N is the contribution responsible for the divergence of Σ/N in the limit T = 0.

Precisely, at zero temperature Γcl/Nβ ∼ ln ||g0| − 1|. This asymptotically singular be-

havior is indicated by the increasing height of the peaks in Fig. 4.2(b) — this should be

compared with Fig. 3.3(a).

Next, let us move to the high-temperature limit. In this case, Eqs. (4.45)-(4.47) may

be written, at sufficiently high temperatures, as [38]

Γqu/N = β2

∫ π

0

dk

2π
(ε0k)

2 sin2 ∆k, (4.54)

Γcl/N = β2

∫ π

0

dk

2π
(ετk − ε0k cos ∆k)

2, (4.55)

Σ/N = β2

∫ π

0

dk

2π

[
(ετk)

2 − 2ετkε
0
k cos ∆k + (ε0k)

2
]
. (4.56)

These equations show that, to leading order, all three quantities scale in the same manner

as a function of β in the high-temperature limit. Moreover, these are valid for any quench

size. If we further consider a small quench, we obtain [38]

Γqu/N = β2δg2

∫ π

0

dk

2π
sin2 θk, (4.57)

Γcl/N = β2δg2

∫ π

0

dk

2π
cos2 θk, (4.58)

Σ/N =
1

2
β2δg2, (4.59)

also to leading order on the perturbation δg. In addition, I remember

(cos θk, sin θk) =
(g0 − cos k

ε0k
,

sin k

ε0k

)
. (4.60)
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Equation (4.59) shows indeed, as discussed in Sec. 3.3, the entropy production be-

comes a flat function of the initial field g0 at high temperatures and small quench sizes.

Contrarily to the full entropy production, the individual contributions Γcl and Γqu still

exhibit a signature of the quantum critical field, manifested as a kink, even this high-

temperature limit — Fig. 4.2(c) and (d). In fact, looking at Fig. 4.2, no matter the tem-

perature, the classical and quantum parts of the entropy production consistently present a

kink or cusp singularity at the critical field g0 = 1. As previously discussed, particularly

at T = 0, the cusp on Γcl becomes a divergence.

Analysing Eqs. (4.45) and (4.46), one can hardly give any intuitive reason for such

eccentric (singular) behaviors. I will approach this problem again when a new splitting for

the entropy production is proposed. For now, let us return to the analysis of the behaviors

of Γqu and Γcl at high temperatures.

Figure 4.2(c) shows the relative entropy of coherence behaves differently in the re-

gions of g0 corresponding to different phases in the model. Precisely, in the limit T →∞

(β → 0), Γqu exhibits a plateau for field values associated with the ferromagnetic phase,

while it monotonically decreases in the region corresponding to the quantum paramagnet.

Complementarily, Γcl presents a flat depression for g0 < 1 and increases monotonically

when g0 > 1 — Fig. 4.2(d).

Indeed, Eq. (4.57) can be analytically evaluated to give [38]

Γqu/N =
1

4
β2δg2

1, for |g0| 6 1,

1/|g0|2, for |g0| > 1,

(4.61)

consistent with the aforementioned behavior. Comparing this to Eq. (4.59), we see the

contribution from coherences amounts to half the total entropy production in the high-

temperature limit and g0 6 1. Therefore, in the Γ-splitting, the relative contribution to

the entropy production coming from quantum coherences is considerably high at high

temperatures, but, afterwards, decreases as the temperature is lowered. This is again

counter-intuitive.

In Fig. 4.3 I further show the behavior of the ratio Γqu/Σ both as a function of β and

as a function of the initial field g0. The purple curve in the center of Fig. 4.3(a) confirms
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Figure 4.3: Ratio Γqu/Σ (a) as a function of the initial field g0 for several β; and (b) as
a function of β for different values of the initial field g0 associated with the ferromag-
netic, critical point and paramagnetic phases. It is lucid from these figures that there is
an optimal temperature near β = 2 where the contribution from coherences reaches its
maximum value. In all points, δg = 0.01.

the results in Eq. (4.61). At very high temperatures and g0 6 1, Γqu amounts to 50% of

the total entropy production. As the temperature decreases (β increases), there is an initial

increase in the ratio Γqu/Σ up to an optimal temperature close to β = 2. But then, further

lowering the temperature decreases this ratio. As we will see in the subsequent section,

this is related to a fundamental change in the behaviors of Γqu and Γcl near this point.

Namely, these two functions cease to be analytic in terms of the perturbation δg. That

is, we can no longer make a Taylor expansion on them in terms of the quench amplitude.

This is already obvious from (4.48).

At very low temperatures, the ratio Γqu/Σ becomes increasingly small, approaching

zero. This is expected following the previous discussion on the low-temperature behavior

of this splitting of the entropy production. Notwithstanding, there is still a considerable

increase on Γqu/Σ in the vicinity of the critical field value g0 = 1. This is related to the

sharp cusp on Γqu shown in Fig. 4.2(a) in the vicinity of this point.

This concludes the analysis of the Γ-splitting in a suddenly quenched Ising model.

The somewhat strange and counter-intuitive behaviors of this splitting of the entropy pro-

duction illustrated here, actually, reflects general features of these quantities when applied

to work protocols. In the next section I discuss in detail the roots of such shortcomings.
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4.2 Shortcomings of the Γ-splitting

Now I address the flaws in the Γ-splitting. There are mainly two, and we pointed them

out firstly on [37].

As a start, thus far I have largely considered instantaneous quenches with an amplitude

δg � 1. The consideration of such small perturbations naturally leads to the question of

whether the quantities of interest can be analyzed perturbatively.

Indeed, as shown bellow, given an quench amplitude δg, the entropy production is an

analytical function of this perturbation over a large range of temperatures. However, that

is not the case with Γcl and Γqu [37]. When we try a Taylor expansion of these quantities

on δg, we obtain a radius of convergence that goes exponentially fast to zero as β increases

(T decreases). The reason is that δg on the expressions for Γcl and Γqu usually appears

multiplied by an exponentially increasing function of β [37].

This feature is obvious, for instance, in Eqs. (4.45) and (4.46). I recall sin ∆k =

−δg sin θk/ε
τ
k, thus, the term containing

ln
(
1 + sinh2(2βε0k) sin2 ∆k

)
on them does not have a converging Taylor expansion on δg unless sinh2(2βε0k) sin2 ∆k <

1. But the first part, sinh2(2βε0k), means this function scales exponentially with β, while

the second part, sin2 ∆k, makes it scale only polynomially with the perturbation. The

condition on δg for convergence, therefore, becomes scandalously unreasonable at low

temperatures. To illustrate this, at g0 = 0, ε0k = 1 for all k’s and sin ∆k is maximum

for k → π/2; if we consider δg = 0.01, we have sinh2(2βε0k=π
2
) sin2 ∆k=π

2
< 1 only if

β < 2.6492.

There is no such an issue with the full entropy production Σ, which is also obvious

from (4.50). Concretely, using matrix analysis, one can show the final thermal state after

the quench can be written as [12, 153, 154]

ρth
τ =

e−β(H0+∆H)

Zτ
= ρth

0 − β
(
Jρth

0
[∆H]− ρth

0 〈∆H〉0
)

+O(β2∆H2), (4.62)

where, from now on, 〈•〉0 = tr
{
• ρth

0

}
, ∆H = Hτ − H0 is the perturbation on the
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Figure 4.4: Comparison between Eqs. (4.47) and (4.65) as functions of β for initial fields
(a) g0 = 0, (b) g0 = 1 and (c) g0 = 2. Only at the critical field the discrepancy becomes
important. In all points, δg = 0.01, and the curves are rescaled by 1/δg2.

Hamiltonian of the system and Jρ is the superoperator

Jρ[X] =

∫ 1

0

dx ρxXρ1−x. (4.63)

This leads to an entropy production following an instantaneous quench given by [12]

Σ = S(ρth
0 ||ρth

τ ) =
1

2
β2

(
tr
{

∆HJρth
0
[∆H]

}
− 〈∆H〉20

)
, (4.64)

to leading order on ∆H . In the cases we are interested in, the Hamiltonian is linear on the

working parameter g. Hence, it is clear from the above equation that Σ scales with δg2.

In the case of the homogeneous transverse field Ising model, Eq. (4.64) becomes [37]

Σ/N = β2δg2

∫ π

0

dk

2π

(
sech2(βε0k) cos2 θk +

tanh(βε0k)

βε0k
sin2 θk

)
. (4.65)

In Fig. 4.4 I compare Eqs. (4.47) and (4.65) as a function of β for quenches of amplitude

δg = 0.01 and several initial fields. It is evident from this figure that the latter equation

effectively provides an excellent approximation to the former and is applicable for a con-

siderably broader range of temperatures than β . 3. As one could expect, the discrepancy

may be important near the critical field.
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Peculiarly, the second term on (4.65) goes onto Γqu at high temperatures — we just

need to make tanh(βε0k) ≈ βε0k to obtain (4.57) — while it goes to Γcl at low tempera-

tures — this can be checked by Taylor expanding ετkpk on δg in (4.49) and remembering

tanh(x)→ 1 when x→∞.

The expansion in (4.62) and subsequently (4.64), work because thermal states form an

smooth family of full rank density operators in terms of the parameter β [154]. However,

the same is not true for the dephased state DHτ (ρ
th
0 ) that enters the components Γcl and

Γqu of the entropy production.

We can try an expansion similar to (4.62) for the dephased state. In this case, it is

beneficial to note the dephasing map (4.7) may be written as

DH(ρ) = lim
s→∞

1

s

∫ s

0

dt e−iHtρeiHt.

This allows us to obtain [37]

DHτ (ρ
th
0 ) = ρth

0 + lim
s→∞

i

s

∫ s

0

dt

∫ 1

0

dx te−ixH0t[ρth
0 ,∆H]eixH0t, (4.66)

to leading order on ∆H . Contrarily to (4.62) this expansion is not on a power series of

β∆H , and the dependence on β can be particularly intricate. This is behind the problem

of analyticity of Γcl and Γqu and becomes, perhaps, more clear when we consider below

the stochastic version of the Γ-splitting.

Next let us move to the second and, possibly, most important shortcoming of Γcl and

Γqu. For a protocol starting with a system in a thermal state at low temperatures, Γcl

will consistently dominate and be much larger than Γqu. As a consequence, it is virtually

impossible to have a low-temperature protocol where the coherence term prevails [37].

This can be explained as follows [37].

As noted before, the contribution from the coherences in the Γ-splitting after the driv-

ing protocol is given by a difference between two von Neumann entropies,

Γqu = S(DHτ (ρτ ))− S(ρτ ), (4.67)

where ρτ = Ugρ
th
0 U
†
g . Hence, when the temperature of the initial state is low (β → ∞),
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ρth
0 tends to a pure state and so does ρτ . Accordingly, this leads to a vanishing entropy

S(ρτ ) → 0. On the other hand, S(DHτ (ρτ )) is bounded from above by ln d, where d is

the dimension of the system Hilbert space. This makes Γqu finite.

Conversely, Γcl can grow unboundedly when β →∞. The reason is that ρth
τ also tends

to a pure state in this case, while that is typically not the case with the dephased state

DHτ (ρτ ). Then the support of the latter may intersect the kernel of the former leading to

a divergence in their relative entropy [155] — see Appendix B.

The contribution Γqu is supposed to measure how much of the entropy production

steam from quantum features. From the last two paragraphs, it would appear that there is

nothing quantum in the entropy production at low temperatures following a work protocol.

Notwithstanding, precisely at T = 0, a thermal state is insensitive to any changes

in the spectrum of the system Hamiltonian and is affected merely by variations in the

energy eigenbasis. Therefore, the entropy production in such a scenario possesses indeed

an intrinsically quantum nature - there is nothing classical on rotating noncommuting

eigenbases. However, this is not captured by the Γ-splitting. Even in this situation, the

"classical" part Γcl gives the dominant contribution. This happens because this splitting

does not quantify how coherent the driving protocol is, but, instead, how populations and

off-diagonal elements on ρτ contribute to the entropy production.

These shortcomings of the Γ-splitting can complementarily be analysed from the per-

spective of its stochastic version [37].

For simplicity, let us assume the Hamiltonian of the system is nondegenerate. In an

instantaneous quench, the path probability (4.16) associated with a quantum trajectory

|i0〉 → |jτ 〉 becomes

PF [i, j] = p0
i |〈jτ |i0〉|2,

where {|i0〉} and {|jτ 〉} are eigenstates of the initial and final Hamiltonians, respectively;

and p0
i , the populations of the initial thermal state ρth

0 .

Assuming the quench is further small, standard perturbation theory, up to second order
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on ∆H , leads to

|〈jτ |i0〉|2 =


|∆Hij |2
(ε0j−ε0i )2

, if j 6= i

1−
∑

`6=j |〈jτ |`0〉|2, if j = i,

(4.68)

where ε0i are the eigenvalues of H0 and ∆Hij = 〈i0|∆H|j0〉. Moreover, the final energy

eigenvalues are given by

ετj = ε0j + ∆Hjj + E
(2)
j , (4.69)

with

E
(2)
j =

∑
`6=j

|∆Hj`|2

ε0j − ε0`
.

With this at hand, we can Taylor expand the populations {qτj } and {pτj} of the de-

phased and final thermal states. They read

qτj = p0
j(1− sj), (4.70)

pτj = p0
j(1− fj), (4.71)

where

fj = β(1− β〈∆Hd〉0)(∆Hjj − 〈∆Hd〉0) +
1

2
β2(∆H2

jj − 〈(∆Hd)2〉0

+β
(
E

(2)
j − 〈E(2)〉0

)
, (4.72)

sj =
∑
` 6=j

1− ε−β(ε0`−ε
0
j )

(ε0j − ε0`)2
|∆Hj`|2, (4.73)

with 〈E(2)〉0 =
∑

i p
0
iE

(2)
i , and ∆Hd is the diagonal part of the perturbation in the initial

energy basis,

∆Hd =
∑
i

∆Hii|i0〉〈i0|. (4.74)

Inserting Eqs. (4.70) and (4.71) onto the definitions of the stochastic version of the
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Γ-splitting (4.21)-(4.22) we arrive at

σ[i, j] = ln p0
i /p

0
j − ln(1− fj), (4.75)

γcl[i, j] = ln(1− sj)− ln(1− fj) (4.76)

γqu[i, j] = ln p0
i /p

0
j − ln(1− sj). (4.77)

We may now investigate the analyticity of the stochastic entropy production and the

Γ-splitting quantities. First, p0
i /p

0
j = e−β(ε0i−ε0j ) is a well-behaved function. Moreover,

a series expansion of ln(1− x) is convergent only if |x| < 1. Therefore, the analyticity

of σ is conditioned on having |fj| < 1. Looking at (4.72), this is roughly satisfied if

β|∆Hij| . 1, showing σ is indeed expanded in a power series of β∆H .

Conversely, the analyticity of γcl and γqu depend on |sj| < 1. Looking at (4.73), we

note sj is a sum over all elements ∆H`j , with ` 6= j, weighted by a function of β and

the energies ε0` . At low temperatures (large β), the energies for which ε0` > ε0j contribute

negligibly to the sum. However, those for which ε0` < ε0j add an exponentially large

contribution. This shows, contrarily to σ, the expansion of γcl and γqu is in powers of

∆H with coefficients that are exponential functions of β. In conclusion, violating the

condition |sj| < 1 is exponentially easier at low temperatures than violating |fj| < 1.

Moreover, except for the ground-state populations, p0
i and pτj are exponentially small

at low temperatures. In contrast, the populations qτj are only polynomially small on the

perturbation ∆H ,

qτj 6=0 = pτj 6=0(1− sj 6=0)
β→∞−−−→ |∆H0j|2

(ε0j − ε00)2
, (4.78)

where ε00 is the ground-state energy. Hence, when we compute Γqu, we compare a state

with a support exponentially close to zero with another that is effectively full rank - its

support is only polynomially close to zero. However, the converse occurs when we com-

pute Γcl. As a consequence, the latter becomes considerably larger than the former on this

regime of temperatures.

The discussion on this section can be neatly illustrate with a single qubit model [37].

Consider a qubit with an initial Hamiltonian H0 = ωσz, where σx,y,z are the Pauli opera-

tors, prepared in the thermal state ρth
0 = e−βH0/Z0. This system is then suddenly quenched
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Figure 4.5: Σ, Γcl and Γqu as functions of βω for quench rotations (a) θ = 0.1, (b) θ = 1
and (c) θ = π/2. As the temperature is lowered, Γcl always surpasses and dominates over
Γqu.

to Hτ = ω(cos θσz + sin θσx). The work parameter here is the angle θ.

The effect of this process is to solely rotate the energy eigenbasis by an amount θ,

while the energy eigenvalues remain the same. Accordingly, this constitutes a truly quan-

tum mechanical process. It is straightforward to verify the associated entropy production

is given by

Σ = 2t tanh−1(t) sin2(θ/2), (4.79)

where t = tanh(βω). Besides, the Γ-contributions read,

Γqu = t tanh−1(t)− t cos θ tanh−1(t cos θ)− 1

2
ln
(
1 + sinh2(βω) sin2 θ

)
, (4.80)

Γcl = −t cos θ
(

tanh−1(t)− tanh−1(t cos θ)
)

+
1

2
ln
(
1 + sinh2(βω) sin2 θ

)
. (4.81)

The entropy production is manifestly an analytical function of θ; in fact, for any β.

It can be readily expanded in a power series. However, that is markedly false for Γcl and

Γqu. In this case, the functions are analytic only if β is small enough to make the series

expansion of the second and last term in (4.80)-(4.81) convergent.

Moreover, in Fig. 4.5, I show the behaviors of these quantities as functions of βω for

several quench-sizes θ. As already argued, the process here is highly quantum, but, yet,

Γcl inevitably delivers the dominant contribution at low temperatures. Further counter-
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Figure 4.6: Comparison between Eqs. (4.82) and (4.83) as a function of βω for θ =
0.1. The condition for analyticity of γcl and γqu is quickly violated as the temperature
decreases, while the one for σ holds over a much larger range of temperatures.

intuitively, the more the energy eigenbasis is rotated, the faster the coherence term be-

comes less important. Although I am focusing on quenches, I emphasize the dominance

of Γcl also occurs in more general protocols. This is exemplified in [37], and should be

clear also from the arguments presented in this section.

At the stochastic level, the problem of analyticity of the Γ-splitting comes from the

term — see Eq. (4.73),

s1 =
(

1− e2βω
)(sin θ

2

)2

. (4.82)

The corresponding term associated with the analyticity of σ is given by

f1 = 2(1 + t) tanh−1(t) sin2(θ/2)[1 + 2t tanh−1(t) sin2(θ/2)] +
1− t

2
tanh−1(t) sin θ.

(4.83)

In Fig. 4.6 I compare the two as a function of βω. The condition |s1| < 1 for ana-

lyticity of γcl and γqu is swiftly violated as the temperature is lowered. In contrast, the

condition |f1| < 1 and, hence, the analytical behavior of σ, holds over a much larger

range of temperatures.

In addition, p0, p
τ
1 ∝ e−βω go exponentially to zero at low temperatures, while qτ1 →

sin2(θ/2). This ratify the discussion around Eq. (4.78). That is, the lower the temperature,
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the less the thermal states ρth
0 and ρth

τ are effectively full rank compared with the dephased

state DHτ (ρτ ). This leads to Γcl being considerably larger than Γqu at low temperatures.

This section demonstrates that regardless of its pleasant properties, the Γ-splitting

does not provide a complete satisfactory characterization of the classical and quantum

features of entropy production in nonequilibrium drives. This is specially true if we shift

perspective and ask how much quantum or classical is the work protocol itself. This mo-

tivated us to introduce a new splitting for the entropy production particularly suitable to

work protocols [37]. I present it in the subsequent chapter. Moreover, the new splitting

will elucidate why the individual components of entropy production display a singular-

ity at a quantum critical parameter even when the system is initially in arbitrarily high

temperatures [40].
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Chapter 5

Populations and Coherences: a New

Splitting

The previous chapter demonstrates that splitting the entropy production in a nonequilib-

rium process into a classical and a quantum parts is not a trivial task. In fact, the customary

mixing of populations and coherences makes an overall clear separation of classical and

quantum contributions likely impossible.

On the other hand, the nonuniqueness of such a splitting offers the possibility of differ-

ent insights. And, in the spirit of thermodynamics, we may hope for a particular division

to enjoy an operational meaning in specific contexts.

All of these features are well illustrated in the Γ-splitting. For instance, if we consider

anything coming from coherences as quantum, the association of its contribution related

to populations with something classical is not strictly accurate. In a work protocol, its

‘quantum’ part Γqu, is related only to how much the energy eigenbasis is rotated and,

therefore, with the creation of coherences. In contrast, Γcl depends not only on how much

the energy eigenvalues are changed by the drive, but on the basis rotation too. In this

sense, there is something quantum on Γcl.

Nonetheless, when we consider a thermalization process within the framework of a

thermodynamic resource theory, this splitting appears handy and satisfactory.

As we argued in Section 4.2, though, besides analyticity issues, the Γ-splitting does

not properly reveal how much coherent, meaning thereby quantum, is a work protocol.

Noticing that, in [37] we proposed a new splitting for the entropy production which
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better captures the difference between coherent and commuting processes. Specifically,

as aforesaid, the nonequilibrium driving gt modifies the system Hamiltonian H(gt) by

altering the energy eigenvalues and by rotating the energy eigenbasis. The former may

be viewed as a (semi)classical transformation. The latter, however, leads to quantum

coherences and is associated with the noncommutativeness of the Hamiltonian at different

times: [H(gt1), H(gt2)] 6= 0, for t1 different from t2. This corresponds, accordingly, to

an inherent quantum feature distinguishing the protocol gt from a classical (commuting)

driving. The idea of our splitting is to more accurately evaluate the weight of these two

types of processes in the entropy production.

Therefore, for convenience, we write the entropy production following a work proto-

col Eq. (3.9) in yet another form. First, I introduce the nonequilibrium free energy

F (ρ,H, T ) = tr{ρH} − TS(ρ). (5.1)

This is a function of the temperature T , the Hamiltonian H and the sate of the system ρ.

In what follows, I will always consider the same temperature and the same Hamiltonian

Hτ . This is the Hamiltonian of the system at the end of the work protocol and, T is the

reference temperature in which the system is initially prepared. For this reason, I simplify

notation and denote the nonequilibrium free energy simply as a function of the state, F (ρ).

This allows us to write the entropy production as

Σ = β
(
F (ρτ )− F (ρth

τ )
)
. (5.2)

Again, β = 1/T is the inverse temperature, and

F (ρth
τ ) = tr

{
ρth
τ Hτ

}
− TS(ρth

τ ) = −T lnZτ ,

is just the equilibrium free energy associated with the thermal state ρth
τ .

The essential ingredient in the definition of the Γ-splitting was the introduction of an

intermediate state DHτ (ρτ ). This is nothing but the state of the system at the end of the

driving, ρτ , dephased in the basis of the final Hamiltonian, Hτ .

Our splitting follows an analogous reasoning, but instead of dephasing ρτ in the basis
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of Hτ , we do the inverse and dephase Hτ in the basis of ρτ . That is, we introduce the

dephased Hamiltonian

Dρτ (Hτ ) =
∑
i

Π̃τ
iHτ Π̃

τ
i . (5.3)

Here, the eigenprojectors Π̃τ
i of the state ρτ are related to the eigenprojectors of the initial

thermal state ρth
0 (and Hamiltonian H0) through

Π̃τ
i = Ug(τ, 0)Π0

iU
†
g (τ, 0).

In Chapter 4 I argued the eigenbasis of Hτ was a preferred basis in the thermalization

of the system with this Hamiltonian fixed and a globally energy conserving evolution. In

the context of work protocols, we may view the eigenbasis of the final state ρτ as a special

basis imposed by the external agent performing the drive.

Next we define the intermediate state [37]

ρ̃th
τ =

exp
(
− βDρτ (Hτ )

)
tr
{

exp
(
− βDρτ (Hτ )

)} . (5.4)

This is a thermal state based solely on the incoherent part of the final Hamiltonian Hτ on

the eigenbasis of ρτ . It further means, ρτ and ρ̃th
τ commute ([ρτ , ρ̃th

τ ] = 0).

We are in the position now to define our new splitting [37],

Σ = Λcl + Λqu, (5.5)

Λcl = β
(
F (ρτ )− F (ρ̃th

τ )
)
, (5.6)

Λqu = β
(
F (ρ̃th

τ )− F (ρth
τ )
)
. (5.7)

I will often refer to Eqs. (5.5)-(5.7) as the Λ-splitting of entropy production.

As in the Γ-splitting, both terms in Eq. (5.5) are nonnegative by construction. This is

effortlessly shown to be the case for Λcl by noticing this can equally written as a relative

entropy,

Λcl = S(ρτ ||ρ̃th
τ ). (5.8)
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However, the same is not true for Λqu. Namely, in this case we have

Λqu = tr
{
ρτ (ln ρ̃

th
τ − ln ρth

τ )
}
. (5.9)

Nonetheless, we can still prove Λqu is nonnegative and vanishes if and only if ρτ has

no coherences in the final energy basis; i.e., if and only if [ρτ , Hτ ] = 0. The proof goes as

follows [37]. To begin, notice

F (ρ̃th
τ ) = tr

{
ρ̃th
τ Hτ

}
− TS(ρ̃th

τ ) = tr
{
ρ̃th
τ Dρτ (Hτ )

}
− TS(ρ̃th

τ ), (5.10)

where the trace operation and the fact that [ρτ , ρ̃
th
τ ] = 0 allows us to replace Hτ by

Dρτ (Hτ ). But since the latter Hamiltonian is the same appearing in the definition of ρ̃th
τ ,

the free energy (5.10) is in fact the equilibrium free energy associated with this thermal

state.

Next, note we can write Hτ = Dρτ (Hτ ) + Hc
τ , where Hc

τ = Hτ − Dρτ (Hτ ). Then,

from the Bogoliubov variational theorem [156] (also Klein’s Inequality) we obtain

F (ρth
τ ) 6 F (ρ̃th

τ ) + tr
{
ρ̃th
τ H

c
τ

}
. (5.11)

However, by construction, the coherent Hamiltonian Hc
τ possesses solely off-diagonal

elements in the common eigenbasis of ρ̃th
τ and ρτ . As a consequence, the second term in

the above inequality vanishes, which leads directly to the nonnegativeness of Λqu:

Λqu = β
(
F (ρ̃th

τ )− F (ρth
τ )
)
> 0.

Secondly we prove Λqu = 0 if and only if ρτ is incoherent in the eigenbasis of Hτ , i.e.

iff [ρτ , Hτ ] = 0. For the if part, we notice when ρτ is incoherent, Dρτ (Hτ ) = DHτ (Hτ ) =

Hτ and, hence, ρ̃th
τ = ρth

τ , which leads to Λqu = 0.

Conversely, assuming Λqu = 0, we must have F (ρ̃th
τ ) − F (ρth

τ ) = 0, for β > 0. This

implies
+∞∑
`=0

(−β)`

`!
tr
{

(Hτ )
` − [Dρτ (Hτ )]

`
}

= 0,
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which requires

tr
{

(Hτ )
` − [Dρτ (Hτ )]

`
}

= 0, ∀` ∈ N. (5.12)

Now, for the case ` = 0 the equality is trivial and for ` = 1 the equality follows directly

from the definition of Dρτ (Hτ ).

For ` = 2, notice

tr
{

(Hτ )
2
}

= tr
{

[Dρτ (Hτ ) +Hc
τ ]

2
}

= tr
{

[Dρτ (Hτ )]
2 + 2Dρτ (Hτ )H

c
τ + (Hc

τ )
2
}
.

Also from the definition of Dρτ (Hτ ), one easily verifies tr{Dρτ (Hτ )H
c
τ} = 0, and we are

left with

tr
{

(Hτ )
2 − [Dρτ (Hτ )]

2
}

= tr
{

(Hc
τ )

2
}

= 0.

But since Hc
τ = Hτ − Dρτ (Hτ ) is also Hermitian, this second equality means Hτ −

Dρτ (Hτ ) = 0. Straightaway, the condition Dρτ (Hτ ) = Hτ implies (5.12) follows trivially

and, more importantly, that [ρτ , Hτ ] = 0. That is, ρτ must be incoherent in the final energy

basis. This completes the proof that Λqu = 0 iff [ρτ , Hτ ] = 0.

After discussing the mathematical properties of Λcl and Λqu let us consider their mean-

ing. The former, Λcl, computes the nonequilibrium free energy, or relative entropy, be-

tween the two commuting states ρτ and ρ̃th
τ and, therefore, is connected to their populations

mismatch.

Conversely, Λqu compares the thermal states associated with the Hamiltonians Hτ and

Dρτ (Hτ ). It, therefore, quantifies the difference in equilibrium free energy associated with

quantum coherences due to the noncommutativeness between ρτ and Hτ . The Λ-splitting

of entropy production is schematically represented in Fig. 5.1.

Throughout this chapter, as we work with this new splitting, I provide additional

physical insight and justification for it. Notably, as shown in a subsequent section, the

Λ-splitting corrects the shortcomings of the Γ-splitting and is remarkably suitable in the

scenario of instantaneous quenches.

In [37] we likewise constructed a stochastic version of the Λ-splitting. This was again

done within the framework of the two-point measurement scheme [107].

As discussed in Sec. 3.2, the stochastic formulation of the entropy production in a
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ρ0
th= e

-βH0

Z0

g(t)

ρτ=Ugρ0
thUg

ρτ
th= e

-βHτ

Zτ

Σ

ρ

τ
th

Λqu

Λcl

Figure 5.1: Λ-splitting of the entropy production in the work protocol described in Chap-
ter 3. The entropy production Σ — represented by the gray dashed line — may be split
into two contributions Λcl and Λqu. This is achieved by introducing the thermal state ρ̃th

τ

— yellow dot — related to the incoherent part of Hτ in the basis of ρτ (see text for de-
tails). Λcl is related to a mismatch in populations between the commuting states ρτ and
ρ̃th
τ . Conversely, Λqu steam from the difference in equilibrium free energy associated with

the coherent part of Hτ in the basis of ρτ and ρ̃th
τ .

work protocol is grounded on the outcomes of two energy measurements. One is made

immediately before the driving and returns one of the eigenvalues ε0i of the initial Hamil-

tonian H0. The second is performed at the end of the driving and returns an eigenvalue ετj

of the final Hamiltonian Hτ . The path probability associated with the forward trajectory

i→ j is given by

PF [i, j] = p0
i tr
{

Πτ
jUg(τ, 0)Π0

iU
†
g (τ, 0)

}
,

and the stochastic entropy production reads

σ[i, j] = ln
p0
i

pτj
= β(w[i, j]−∆F ),

where p0
i = e−βε

0
i /Z0 and pτj = e−βε

τ
j /Zτ are the populations of the thermal states asso-

ciated with H0 and Hτ while Π0
i and Πτ

j are their respective eigenprojectors. Moreover,

w[i, j] = ετj − ε0i is the stochastic work along the trajectory and ∆F = −T lnZτ/Z0 the
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difference in equilibrium free energy between these states.

This variable is distributed according to

pF (σ) =
∑
i,j

δ(σ − σ[i, j])PF [i, j].

As we saw, Σ = 〈σ〉 is simply its average. Moreover, σ satisfies the integral fluctuation

theorem 〈e−σ〉 = 1.

To construct the stochastic versions of Λcl and Λqu, I notice the intermediate thermal

state ρ̃th
τ can be written as

ρ̃th
τ =

∑
i

p̃τi Π̃
τ
i , (5.13)

where I recall Π̃τ
i = Ug(τ, 0)Π0

iU
†
g (τ, 0), and

p̃τi = exp
{
−β
(
ε̃τi − F (ρ̃th

τ )
)}

=
e−βε̃

τ
i

Z̃τ
, (5.14)

with ε̃τi = tr
{

Π̃τ
iHτ

}
the eigenvalues of the dephased Hamiltonian Dρτ (Hτ ) and Z̃τ =

e−βF (ρ̃th
τ ) its partition function.

Next, we define [37]

λcl[i, j] = ln p0
i /p̃

τ
i , (5.15)

λqu[i, j] = ln p̃τi /p
τ
j , (5.16)

distributed according to

pF (λcl) =
∑
i,j

δ(λcl − λcl[i, j])PF [i, j], (5.17)

pF (λqu) =
∑
i,j

δ(λqu − λqu[i, j])PF [i, j]. (5.18)

Hence, we have σ[i, j] = λcl[i, j]+λqu[i, j] and it is straightforward to show we obtain
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the expected averages

Λcl = 〈λcl〉, (5.19)

Λqu = 〈λqu〉. (5.20)

Moreover, as is the case with σ, λcl satisfies an integral fluctuation theorem [37]

〈e−λcl〉 = 1. (5.21)

In contrast, this is not the case with λqu, and in general 〈e−λqu〉 6= 1. However, I will

show in what follows that this attribute is also claimed by λqu in the instantaneous and

infinitesimal quench scenario.

Moving forward, I present the cumulant generating functions (CGFs) of these vari-

ables. Considering the joint probability distribution

pF (λcl, λqu) =
∑
i,j

δ(λcl − λcl[i, j])δ(λqu − λqu[i, j])PF [i, j], (5.22)

we obtain the joint CGF

Kλcl,λqu(v, u) = ln〈e−vλcl−uλqu〉

= ln tr
{

(ρth
τ )u(ρ̃th

τ )v−u(ρτ )
1−v}. (5.23)

Likewise the Γ-splitting, the fact that this CGF cannot be written as a sum of CGFs of

the two variables λcl and λqu means they are generally statistically dependent. Moreover,

the reduced CGFs of these variables are obtained from the joint one by setting u = 0 and

v = 0, respectively,

Kλcl(v) = ln tr
{

(ρ̃th
τ )v(ρτ )

1−v} = (v − 1)Sv(ρ̃
th
τ ||ρτ ), (5.24)

Kλqu(u) = ln tr
{

(ρth
τ )u(ρ̃th

τ )−uρτ
}
. (5.25)

Again — see Eq. (4.28), the CGF of the full entropy production σ is obtained from
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the joint CGF (5.23) by setting u = v,

Kσ(v) = Kλcl,λqu(v, v) = (v − 1)Sv(ρ
th
τ ||ρτ ).

This concludes the formulation of our new splitting of the entropy production follow-

ing a work protocol. The Λ-splitting can be applied for general drivings gt and associated

unitaries Ug. In [37] we considered a spin of varying dimension evolving under a finite-

time coherent pulse and computed the probability distributions and first four cumulants of

σ and the Γ- and Λ-splittings. The results verified the behavior of the latter is much more

intuitive and consistent with that of σ itself. In this thesis, though, I am largely concerned

with the averages Λcl and Λqu, specially in sudden quench protocols. For this reason, I

particularize to this scenario in the following section.

5.1 Instantaneous and infinitesimal quenches

Let us consider again the particular case of an instantaneous quench, where Uquench = 1.

In this case, the state of the system at the end of the protocol is the same initial thermal

state, ρτ = ρth
0 . Thus, dephasing in the eigenbasis of ρτ becomes equivalent to dephasing

in the eigenbasis of ρth
0 and, hence, of the initial Hamiltonian H0. That is, the dephased

Hamiltonian becomes

Dρτ (Hτ ) = DH0(Hτ ). (5.26)

If we denote the perturbation by ∆H = Hτ −H0, we have

DH0(Hτ ) = H0 + ∆Hd, (5.27)

where

∆Hd =
∑
i

Π0
i∆HΠ0

i , (5.28)

and {Π0
i } the eigenprojectors of H0.

The dephased part of the perturbation ∆Hd following an instantaneous quench was

106



Chapter 5. Populations and Coherences: a New Splitting

already introduced in Sec. 3.3 alongside the coherent complement

∆Hc = ∆H −∆Hd. (5.29)

The Λ-splitting is based on the intermediate thermal state (5.4). In this case, this state

reads

ρ̃th
τ =

exp
[
− β(H0 + ∆Hd)

]
tr
{

exp
[
− β(H0 + ∆Hd)

]} . (5.30)

From now on, let us consider ∆H to be small. In Sec. 4.2 I showed the final reference

thermal state ρth
τ = e−β(H0+∆H)/Zτ could be Taylor expanded as [12, 154]

ρth
τ = ρth

0 − β
(
Jρth

0
[∆H]− ρth

0 〈∆H〉0
)

+O(β2∆H2),

where 〈•〉0 = tr
{
• ρth

0

}
and

Jρ[X] =

∫ 1

0

dx ρxXρ1−x.

This culminates in an entropy production to leading order on ∆H given by

Σ =
1

2
β2

(
tr
{

∆HJρth
0
[∆H]

}
− 〈∆H〉20

)
. (5.31)

Following the same logic, we obtain for the intermediate thermal state (5.30),

ρ̃th
τ = ρth

0 − β
(
Jρth

0
[∆Hd]− ρth

0 〈∆Hd〉0
)

+O(β2(∆Hd)2). (5.32)

Note that 〈∆Hd〉0 = 〈∆H〉0, or, equivalently, 〈∆Hc〉0 = 0. Then, it follows that,

Σ = Λcl + Λqu, (5.33)

Λcl =
1

2
β2

(
tr
{

∆HdJρth
0
[∆Hd]

}
− 〈∆Hd〉20

)
, (5.34)

Λqu =
1

2
β2 tr

{
∆HcJρth

0
[∆Hc]

}
. (5.35)

Therefore, in the instantaneous and infinitesimal quench protocol, Λcl and Λqu are
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related to Σ through a simple separation of the perturbation ∆H into a dephased and

coherent parts. Additionally, in contrast with the Γ-splitting, the Λ-splitting is analytic in

a similar range of parameters as Σ. This follows from the intermediate state in the latter

splitting being also a thermal state, leading to completely analogous series expansions

for Λcl and Λqu as the one for Σ. This is further noticeable from the similarity between

Eqs. (5.31) and (5.34)-(5.35).

Moreover, as shown in a moment, Λqu is indeed the dominant contribution at low

temperatures and highly coherent protocols. Thus, in summary, the shortcomings of the

Γ-splitting discussed in Sec. 4.2 disappear in the Λ-splitting.

Next, I provide further physical insight to Λcl and Λqu. Since we are considering a

small perturbation ∆H , we are in the regime of linear response theory. In a classical

(commuting) process, Jρth
0
[∆H] = ∆Hρth

0 , and Eq. (5.31) can be recast as [98]

Σ =
1

2
β2 Var0[∆H], (5.36)

where the subscript 0 is a short notation for ρth
0 and

Varρ[X] = tr
{
X2ρ

}
− tr{Xρ}2

is the variance of X in the state ρ.

Equation (5.36) establishes a connection between the equilibrium fluctuations of the

perturbation ∆H with a response of the system given by Σ. In fact, β2Var0[∆H] gives the

fluctuations of entropy production itself [12, 13] — this is demonstrated below. Hence,

this constitutes an example of a fluctuation-dissipation relation (FDR). In addition, in this

case of commuting drives, the higher order cumulants of the entropy production van-

ish [12, 13], which makes its probability distribution Gaussian — see below. As a con-

sequence, Eq. (5.36) further means, in this situation of classical (commuting) drives, the

entropy production probability distribution is completely characterized by the average Σ.

However, for a general work protocol, the FDR (5.36) does not hold and instead we

have [12, 13]

Σ =
1

2
β2
(
Var0[∆H]−Q

)
, (5.37)
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where

Q =

∫ 1

0

dyIy(ρth
0 ,∆H) > 0. (5.38)

The quantity in the integrand is the Wigner-Yanase-Dyson skew information [157,

158],

Iy(ρ,X) = −1

2
tr
{

[ρy, X][ρ1−y, X]
}
,

which is always nonnegative and vanishes if and only if [ρ,X] = 0. In the same way

as the relative entropy of coherence, the skew information is a monotone in the resource

theories of asymmetry and thermal operations [151, 159] — see also Appendix B.

Therefore, the term Q accounts for a purely quantum feature: it becomes nonzero as

soon and as long as energetic coherences are created by drive.

As another consequence, the creation of coherences further implies a breaking in the

Gaussianity of the entropy production probability distribution [12]. That is, the distri-

bution ceases to be characterized by the average alone and its reconstruction requires

knowledge of higher order cumulants.

Indeed, this follows directly from the integral fluctuation theorem 〈e−σ〉 = 1 [12]:

Kσ(1) = ln〈e−σ〉 = −Σ +
1

2
〈(σ − Σ)2〉+

+∞∑
n=3

(−1)n

n!
κσn = 0, (5.39)

where Kσ is the entropy production CGF and I denoted by κσn its cumulants. As stated

before and shown at the end of the section, the variance, or second cumulant, of the

entropy production is given by 〈(σ − Σ)2〉 = β2 Var0[∆H]. Hence, combining the above

with Eq. (5.37), we obtain that Q 6= 0 implies nonvanishing higher order cumulants [12,

13]

Q = 2β−2

+∞∑
n=3

(−1)n+1

n!
κσn. (5.40)

Similarly, employing exactly the same reasoning to Λcl and Λqu, we obtain [37]

Λcl =
1

2
β2 Var0[∆Hd], (5.41)

Λqu =
1

2
β2
(
Var0[∆Hc]−Q

)
. (5.42)
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Hence, the classical part of our splitting of entropy production obeys the standard

fluctuation-dissipation relation, whereas in the quantum part this gets modified by the

quantum term Q. Moreover, this means the probability distribution of λcl is Gaussian,

while that of λqu, and consequently of σ, deviates from this behavior.

Moving forward, the expressions (5.37) and (5.41)-(5.42) also facilitates the analysis

of the high- (β → 0) and low-temperature (β → ∞) limits of Σ and the Λ-splitting.

Beginning with the former (β → 0), it is straightforward to show

Var0[∆H (d,c)] = Var1/d[∆H(d,c)] +O(β),

Q = O(β),

where the latter follows from κσn = O(βn) and 1/d is the maximally mixed state for a

system with dimension d. Thus, to leading order on β → 0 [37],

Λcl =
β2

2
Var1/d[∆Hd], Λqu =

β2

2
Var1/d[∆Hc], Σ = Λcl + Λqu. (5.43)

Without loss of generality we can assume the Hamiltonian of the systemH(g) is linear

on the working parameter g. In this case, ∆H (d,c) ∝ δg, where δg is the quench amplitude.

Hence, at sufficiently high temperatures all quantities scale with β2δg2. Moreover, the

relative contributions from Λcl and Λqu to the total entropy production will depend on the

relative sizes of the variances of ∆Hd and ∆Hc on the maximally mixed state; that is,

on the details of the process. Accordingly, a highly coherent protocol will mean a large

contribution from Λqu even in this limit of temperatures.

Next, consider the opposite limit β → ∞. To leading order on β we can replace the

thermal state ρth
0 by the projector onto the ground-state of the initial Hamiltonian, Π0

i . In

this case,

Var0[∆Hd]→ tr
{

(∆Hd)2Π0
i

}
− tr

{
∆HdΠ0

i

}2
= ∆H2

ii −∆H2
ii = 0,

Var0[∆Hc]−Q → tr
{

Π0
i∆H

cΠ0
i∆H

c} 6= 0 (in general),

where the first equation follows from (5.28). Hence, at low temperatures Λcl → 0 while
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that is generally not the case for Λqu. That is, the quantum part dominates the entropy pro-

duction in this limit, as intuitively expected. Therefore, we can conclude the Λ-splitting

corrects both the shortcoming of the previous Γ-splitting. Namely, the quantum Λqu is

the dominant contribution at low temperatures and highly coherent processes and both

contributions are analytic over a range of temperatures similar to Σ.

Although the above results are obtained for the instantaneous and infinitesimal quench

protocol, we believe them to be more general. In fact, this is corroborated by results

in [37] where we also used other types of protocols.

After discussing the properties of the Λ-splitting in the instantaneous and infinitesimal

quench protocol at the level of averages, let us consider next its stochastic formulation.

For simplicity, let us consider the Hamiltonian of the system to be nondegenerate. As

showed in Sec. 4.2, in this case, the forward path probability becomes

PF [i, j] = p0
i |〈jτ |i0〉|2,

where {|i0〉} and {|jτ 〉} are the eigenstates of the initial and final Hamiltonians. Again,

p0
i = e−βε

0
i /Z0 are the populations of the initial thermal state ρth

0 .

Moreover, up to second order on ∆H , we have

|〈jτ |i0〉|2 =


|∆Hij |2
(ε0j−ε0i )2

, if j 6= i

1−
∑

`6=j |〈jτ |`0〉|2, if j = i,

and

ετj = ε0j + ∆Hjj + E
(2)
j ,

with

E
(2)
j =

∑
`6=j

|∆Hj`|2

ε0j − ε0`
.

where ετj are the eigenvalues of Hτ and ∆Hij = 〈i0|∆H|j0〉.

To discuss the issue of analyticity of the Λ-splitting at the stochastic level, we Taylor

expand the populations {p̃τi } and {pτj} of the intermediate and final thermal states. They
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read [37]

p̃τi = p0
i (1− f̃i), (5.44)

pτj = p0
j(1− fj), (5.45)

where

f̃i = β(1− β〈∆Hd〉0)(∆Hii − 〈∆Hd〉0) +
1

2
β2(∆H2

ii − 〈(∆Hd)2〉0 (5.46)

fj = f̃j + β
(
E

(2)
j − 〈E(2)〉0

)
, (5.47)

with 〈E(2)〉0 =
∑

i p
0
iE

(2)
i . Equations (5.45) and (5.47) repeat Eqs. (4.71) and (4.72).

Similarly to what was done in Sec. 4.2 for the Γ-splitting, we insert Eqs. (5.44)

and (5.45) on Eqs. (5.15)-(5.16) to obtain [37]

σ[i, j] = ln p0
i /p

0
j − ln(1− fj), (5.48)

λcl[i, j] = − ln
(

1− f̃i
)

(5.49)

λqu[i, j] = ln p0
i /p

0
j + ln

(
1− f̃i

)
− ln(1− fj). (5.50)

As showed in the aforementioned section, in the Γ-splitting, a function sj given

in (4.73) performs an analogous role to that of f̃i and fj on the above. This function

sj depends polynomially on the perturbation ∆H but increases exponentially with β.

Hence, the bound |sj| < 1 required for analyticity of the Γ-quantities is swiftly saturated

with decreasing temperatures.

In contrast, f̃i and fj are polynomial functions of β∆H . Therefore, the conditions

|f̃i| < 1 and |fj| < 1 for analyticity of σ and λcl and λqu are satisfied over a considerably

broader and similar range of temperatures. This shows the Λ-quantities will be analytical

in the same range of parameters as Σ [37].

Lastly, utilizing Eqs. (5.49) and (5.50) we may easily compute the joint CGF of the

Λ-slitting (5.23) for an instantaneous and infinitesimal quench. To leading order on ∆H
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it reads [37]

Kλcl,λqu(v, u) = Kλcl(v) +Kλqu(u), (5.51)

where

Kλcl(v) =
β2

2
(v2 − v) Var0[∆Hd], (5.52)

Kλqu(u) =
β2

2
(u2 − u) Var0[∆Hc] +

β2

2

∫ u

0

dx

∫ 1−x

x

dyIy(ρth
0 ,∆H

c). (5.53)

Moreover, since Kσ(v) = Kλcl,λqu(v, v) [12, 37],

Kσ(v) = Kλcl(v) +Kλqu(v). (5.54)

We can make several important remarks about these results. To begin with, the sep-

aration of Kλcl,λqu onto the two CGFs in Eq. (5.51) means the variables λcl and λqu be-

come statistically independent in the instantaneous and small quench limit. What is more,

from (5.54), we note not only Σ = Λcl + Λqu but all cumulants of σ get split in terms of

cumulants of λcl and λqu [12, 37]:

κn(σ) = κn(λcl) + κn(λqu). (5.55)

Also from (5.54), it follows that, in this limit, λqu satisfies an integral fluctuation theorem

〈e−λqu〉 = 1. (5.56)

Next, for all practical purposes, the total decoupling of λcl and λqu signify these com-

ponents of entropy production can be regarded as emerging from completely indepen-

dent processes [12, 37]. The entropy production Λcl is associated with a quench from

H0 → DH0(Hτ ), where only the energy eigenvalues are altered. Conversely, Λqu is the

entropy production steaming from a second quench, from DH0(Hτ ) → Hτ , where the

energy eigenbasis is rotated [12].

The splitting of the CGF of entropy production in (5.54) was first noted in [12], where

the authors were studying a quasi-isothermal process as a series of quantum quenches.
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In fact, it was the incompatibility of Eqs. (5.37) and (5.54) with the Γ-splitting and its

shortcomings what motivated us to construct the alternative Λ-splitting [37].

With Eqs. (5.52) and (5.53) at hand we can finally prove the variance of the entropy

production κ2(σ) = 〈(σ − Σ)2〉 is equal to β2 Var0[∆H]. From the former it is evident

that

κ2(λcl) =
d2

dv2
Kλcl(v)|v=0 = 〈(λcl − Λcl)

2〉 = β2 Var0[∆Hd]. (5.57)

Moreover,

κ2(λqu) = 〈(λqu − Λqu)
2〉

= β2 Var0[∆Hc]− β2

2

(
I1(ρth

0 ,∆H
c) + I0(ρth

0 ,∆H
c)
)

= β2 Var0[∆Hc],

(5.58)

since I0(ρ,X) = I1(ρ,X) = 0. Therefore,

κ2(σ) = 〈(σ − Σ)2〉 = β2 Var0[∆H]. (5.59)

An interesting feature of the Γ- and Λ-splitting of entropy production is the fact

that they coincide at sufficiently high temperatures for instantaneous and infinitesimal

quenches. That is, if T (β) is large (small) enough so that we can treat the Γ-splitting

perturbatively, then Γcl = Λcl and Γqu = Λqu. This is shown as follows.

For an instantaneous quench, we have

Γcl = 〈γcl〉 =
∑
i,j

ln
qτj
pτj
p0
i |〈jτ |i0〉|2. (5.60)

To order ∆H2, we know pτj = p0
j(1− fj), fj given by (5.47), and qτj = p0

j(1− sj), where

sj is given by Eq. (4.73),

sj =
∑
` 6=j

1− p0
`/p

0
j

(ε0j − ε0`)2
|∆H`j|2.
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Moreover,

|〈jτ |i0〉|2 = δij

(
1−

∑
`6=j

|∆H`j|2

(ε0j − ε0`)2

)
+ (1− δij)

|∆Hij|2

(ε0i − ε0j)2
. (5.61)

Hence, if |sj| < 1, to order ∆H2,

Γcl =
∑
i,j

ln

(
1− sj
1− fj

)
p0
i |〈jτ |i0〉|2 =

∑
i,j

(fj − sj)p0
i |〈jτ |i0〉|2

=
∑
i

(fi − si)p0
i

=
∑
i

β2

2
(∆H2

ii − 〈(∆Hd)2〉0)p0
i −

∑
j 6=i

p0
i − p0

j

(ε0i − ε0j)2
|∆Hij|2

=
∑
i

β2

2
(∆H2

ii − 〈(∆Hd)2〉0)p0
i =

β2

2
Var0[∆Hd] = Λcl,

(5.62)

where the last line follows from

∑
j 6=i

p0
i − p0

j

(ε0i − ε0j)2
|∆Hij|2 =

∑
j 6=i

p0
j − p0

i

(ε0j − ε0i )2
|∆Hji|2 = −

∑
j 6=i

p0
i − p0

j

(ε0i − ε0j)2
|∆Hij|2 = 0,

with the second equality obtained by a simple exchange of the indices i and j. As a

consequence, also Γqu = Λqu.

5.2 Λ-splitting in the quantum Ising model

At last, we are in the position to study the behaviors of Λcl and Λqu in a quantum critical

system. This is complementary to what I presented in Sec. 4.1 for the Γ-splitting and

Sec. 3.3 for the total entropy production.

Let us begin, yet again, with our general Hamiltonian for the alternating transverse

field Ising model,

H = −
N∑
j=1

[
σxj σ

x
j+1 + (g − (−1)jh)σzj

]
. (5.63)

In Sec. 2.1, we saw this Hamiltonian has critical points at |g2 − h2| = 1 and could
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be exactly diagonalized. After the mapping to a fermionic system, this Hamiltonian splits

into two parts, depending on if the system contains an even or odd number of particles;

or spins pointing down. However, to more easily compute our quantities of interest, we

can make an approximation and ignore this change in the Hamiltonian when we change

parity (number of down spins). The approximation becomes exact in the thermodynamic

limit N →∞.

Also, as before, at each realization of the work protocol, I consider the field h to be

fixed. That is, I take g to be the working parameter.

With all of this, we saw we can write our Hamiltonian in diagonal form as

H(g) =
∑
k∈K+

∑
s=−,+

εsk(g)(2η†k,s(g)ηk,s(g)− 1), (5.64)

where K+ = {k = ±(2n+ 1)π/N ; n = 0, 1, ..., N/4− 1},

ε±k (g) =

√
1 + g2 + h2 ± 2

√
g2h2 + g2 cos2 k + h2 sin2 k (5.65)

are the dispersion relations and {ηk,s} are fermionic operators,

{ηk,s, η†k′,s′} = δk,k′δs,s′ , {ηk,s, ηk′,s′} = 0. (5.66)

At the start of the work protocol, the system is prepared in the thermal state

ρth
0 =

e−βH0

Z0

=
∏
k∈K+

∏
s=−,+

eβε
s
k|0|0k,s〉〈0k,s|+ e−βε

s
k|0|1k,s〉〈1k,s|

2 cosh
(
βεsk|0

) , (5.67)

where g0 is the initial field, β = 1/T is the inverse temperature, ε±k|0 = ε±k (g0) and |0k,s〉

(|1k,s〉) is the state annihilated (created) by ηk,s(g0) (η†k,s(g0)).

Next, with the system isolated, we perform an instantaneous quench that changes the

working parameter g to a final value gτ = g0 +δg. Accordingly, the reference equilibrium

state of the system is updated to

ρth
τ =

e−βHτ

Zτ
=
∏
k∈K+

∏
s=−,+

eβε
s
k|τ |0τk,s〉〈0τk,s|+ e−βε

s
k|τ |1τk,s〉〈1τk,s|

2 cosh
(
βεsk|τ

) , (5.68)
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where, following the same logic, ε±k|τ = ε±k (gτ ),
∣∣0τk,s〉 = 0 is the state annihilated by

ηk,s(gτ ) and
∣∣1τk,s〉 = η†k,s(gτ )

∣∣0τk,s〉.
The Λ-splitting of entropy production following an instantaneous quench is based on

the intermediate thermal state

ρ̃th
τ =

exp
[
− β(H0 + ∆Hd)

]
tr
{

exp
[
− β(H0 + ∆Hd)

]} ,
where ∆Hd is the dephased part of the perturbation ∆H = Hτ −H0 in the eigenbasis of

the initial thermal state ρth
0 ; consequently, the eigenbasis of H0.

In Sec. 3.3, I showed that since our Hamiltonian H is continuous and linear on g we

must have
∆H = δg (∂gH(g))|g0 ,

= δg
∑
i

(∂g0ε
0
i )Π

0
i + δg

∑
i

ε0i (∂g0Π
0
i ),

(5.69)

where ε0i and {Π0
i } are the eigenvalues and eigenprojectors of H0, which are given by

linear combinations of ε±k|0 and |0k,s〉〈0k,s| and |1k,s〉〈1k,s|. Moreover, I denote by ∂g0ε
0
i =

∂gεi(g)|g0 and similarly for ∂g0Π
0
i . Equation (5.69) holds as long as h is kept fixed during

the protocol. Importantly, since the system presents only continuous transitions, these

derivatives are continuous functions of g and, hence, well-defined even at a critical point.

From the previous relation we immediately verify that

∆Hd = δg
∑
i

(∂g0ε
0
i )Π

0
i , (5.70)

∆Hc = δg
∑
i

ε0i (∂g0Π
0
i ), (5.71)

where ∆Hc = ∆H−∆Hd is the coherent part of the perturbation in the eigenbasis ofH0.

In words, these equations mean the dephased and coherent parts of the perturbation are

directly connected to the derivatives of the system initial eigenenergies and eigenbasis,

respectively.

Instead of Eqs. (5.70) and (5.71), however, it is more practical to consider the equiva-
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lent forms,

∆Hd = δg
∑
k∈K+

∑
s=−,+

(∂g0ε
s
k|0)(2η†k,sηk,s − 1), (5.72)

∆Hc = δg
∑
k∈K+

∑
s=−,+

2εsk|0(∂g0η
†
k,sηk,s). (5.73)

As a particular but significant case, for the homogeneous field Ising model (h = 0),

these can be written as [37]

∆Hd = 2δg
∑
k∈K+

I>

cos θk(η
†
kηk + η†−kη−k − 1), (5.74)

∆Hc = 2δg
∑
k∈K+

I>

sin θk(η
†
−kη

†
k − η−kηk), (5.75)

where K+
I , ε0k, {ηk}, cos θk and sin θk are defined in Eqs. (4.32)-(4.37) — see also below.

Finally, the intermediate thermal state ρ̃th
τ can be explicitly written as

ρ̃th
τ =

∏
k∈K+

∏
s=−,+

eβε̃
s
k|τ |0k,s〉〈0k,s|+ e−βε̃

s
k|τ |1k,s〉〈1k,s|

2 cosh
(
βε̃sk|τ

) , (5.76)

where ε̃±k|τ = ε±k|0 + δg(∂g0ε
±
k|0) are the single-particle energies associated with the de-

phased Hamiltonian H0 + ∆Hd.

It is now straightforward to compute the general expressions for Λcl and Λqu in the

quenched alternating transverse field Ising model. Already taking the thermodynamic

limit N →∞, they read

Λcl =
N

2π

∑
s=−,+

∫ π
2

−π
2

dk

{
ln

[
cosh

(
βε̃sk|τ

)
cosh

(
βεsk|0

)]− βδg(∂g0ε
s
k|0) tanh

(
βεsk|0

)}
, (5.77)

and

Λqu =
N

2π

∑
s=−,+

∫ π
2

−π
2

dk ln

[
cosh

(
βεsk|τ

)
cosh

(
βε̃sk|τ

)]. (5.78)

I emphasize these general formulae are valid for an instantaneous quench with fixed field

h but any quench size δg. Thus far, I have not assumed the latter to be small.
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Adding the two contributions, we recover the full entropy production given in (3.71),

Σ =
N

2π

∑
s=−,+

∫ π
2

−π
2

dk

{
ln

[
cosh

(
βεsk|τ

)
cosh

(
βεsk|0

)]− βδg(∂g0ε
s
k|0) tanh

(
βεsk|0

)}
. (5.79)

As was done in Sec. 3.3 for Σ, let us begin considering the particular case h = 0. That

is, let us start our analysis with the homogeneous field Ising model. In this case, for easier

comparison with the Γ-splitting, it is more convenient to rewrite our Λ-quantities as [37]

Λqu = N

∫ π

0

dk

2π
2 ln

[
cosh(βετk)

cosh(βε̃τk)

]
, (5.80)

Λcl = N

∫ π

0

dk

2π
2

{
ln

[
cosh(βε̃τk)

cosh(βε0k)

]
− βδg cos θk tanh

(
βε0k
)}
, (5.81)

Σ = N

∫ π

0

dk

2π
2

{
ln

[
cosh(βετk)

cosh(βε0k)

]
− βδg cos θk tanh

(
βε0k
)}
, (5.82)

where εtk = εk(gt) =
√

1 + g2
t − 2gt cos k and ε̃τk = ε0k + δg cos θk, with

(
cos θk, sin θk

)
=

(
g0 − cos k

ε0k
,

sin k

ε0k

)
. (5.83)

Equations (5.80) and (5.81) are easily obtained using (5.74) and (5.75) and should be

contrasted with Γqu and Γcl in (4.45) and (4.46).

In Fig. 5.2 I compare the classical and quantum parts of the Γ- and Λ-splittings of

entropy production as a function of β for the homogeneous transverse field Ising model.

I considered an initial field g0 = 0.5 here, and quenches of size δg = 0.01. As expected

from the discussion in the previous section, at high temperatures, the two splittings coin-

cide; that is, we have Γcl = Λcl and Γqu = Λqu. However, as the initial temperature of the

system is lowered, Γcl and Γqu begin to severely differ from Λcl and Λqu. The region of

starting deviation agrees with the point where Γcl and Γqu cease to be analytic.

Notably, at high temperatures T → ∞ (β → 0) all quantities scale with β2. On the

other hand, as T → 0, Γcl grows linearly with β while Λcl approaches zero. Contrastingly,

for the quantum parts, Γqu saturates at low temperatures while Λqu grows linear with β.
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Figure 5.2: Comparison between the (a) classical and (b) quantum parts of the two split-
tings of entropy production as a function of β for g0 = 0.5. At high temperatures the two
coincide. However, they differ at low temperatures. In all points δg = 0.01.

These behaviors of Λcl and Λqu are further confirmed by their Taylor expansion on the

perturbation δg. To leading order on it, we obtain

Λcl/N = β2δg2

∫ π

0

dk

2π
sech2(βε0k) cos2 θk, (5.84)

Λqu/N = β2δg2

∫ π

0

dk

2π

tanh(βε0k)

βε0k
sin2 θk. (5.85)

When β → 0, sech2(βε0k) and tanh(βε0k)/βε
0
k are close to 1, while the former approaches

zero and the latter tends to 1/βε0k as β →∞.

Hence, at low temperatures, the quantum part Λqu gives the dominant contribution in

the Λ-splitting. These results agree with the general analysis in Sec. 5.1.

Moving forward, let us consider the Λ-splitting in the vicinity of the Ising critical

point at (g = 1, h = 0). In Fig. 5.3 I show the behaviors of Λcl and Λqu per particle as a

function of the initial field g0 for several β and quench-sizes δg = 0.01.

At low temperatures, the quantum part Λqu presents a peak near the critical field g0 =

1 which becomes sharper with decreasing temperatures. In the Λ-splitting, this is the

contribution associated with the ensuing divergence of the total entropy production in the

limit T → 0 (β → ∞). Contrarily, in this limit, Λcl is much smaller in general, and

suddenly drops to zero at g0 = 1.
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Figure 5.3: Λqu and Λcl per spin in the vicinity of the Ising critical point. Above, the
behaviors at low temperatures (large β) of (a) Λqu and (b) Λcl. In this limit, Λqu display
a cusp at g0 = 1 which becomes a divergence in the limit T = 0. On the other hand,
Λcl experiences a sudden drop at this point. The divergence in the entropy production,
thus, comes from the quantum part Λqu. Below, the behaviors at high temperatures of
(c) Λqu and Λcl. Here both contributions scale with β2 at sufficiently high temperatures.
Moreover, in this regime Λqu = Γqu and Λcl = Γcl for an instantaneous quench. Again,
contrarily to the full entropy production, even in this limit the quantum critical point is
indicated by a kink in Λqu and Λcl. In all points, δg = 0.01.
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As noted before, the increase in entropy production near a critical point at low tem-

peratures results from the creation of excitations in the modes ±k, when the quench is

performed [38]. This is particularly clear in Eq. (4.50),

Σ/N = β

∫ π

0

dk

2π
ετkpk,

where pk = sin2(∆k/2) ≈ (1/4)δg2 sin2 θk/(ε
0
k)

2 provides the probability of such transi-

tions to occur.

In the Γ-splitting, this enters Γcl as a population mismatch between the pre- and

postquench equilibrium states ρth
0 and ρth

τ on the final energy basis. Consequently, this

corresponds to the most substantial component of the entropy production.

Conversely, pk can be equivalently regarded as a measure of the rotation in the energy

eigenbasis resulting from the quench [37]. In the Λ-splitting, any contributions to the

entropy production steaming from a basis change and, hence, from quantum coherences,

enters Λqu. Hence, the increase in this quantity in the vicinity of the critical field.

The drop in Λcl at g0 = 1 can also be understood as follows [37]. In our quenched

Ising model, this component merely quantifies the contribution to the entropy production

associated with a change in the energy levels given by ε̃τk − ε0k = δg cos θk. At low

temperatures, the ground and low lying excited states are the most relevant, and close

to the critical point g0 = 1, the latter corresponds to creating excitations with momenta

k → 0. But one can easily show that at g0 = 1, cos θk = | sin(k/2)|, which goes to zero

when k → 0 and, hence, the drop in Λcl.

Let us consider in the sequence the high-temperature limit. In this case, Γcl = Λcl and

Γqu = Λqu and the plots in Fig. 5.3(c) and (d) are exactly the same as in Fig. 4.2(c) and

(d).

Notably, Λcl and Λqu behave differently depending if the initial field g0 is associated

with a ferromagnetic or paramagnetic phase of the model at T = 0. Particularly, in

the limit T → ∞ (β → 0), Λqu presents a plateau for field values identified with the

ordered phase and decreases monotonically if the contrary. In contrast, Λcl increases

monotonically for g0 > 1 while exhibiting a flat depression in the region g0 < 1.

Moreover, they both present kinks at the quantum critical field g0 = 1, although that
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is not the case for the total entropy production, as showed in Fig. 3.3(b).

As argued before, the Γ-splitting gives no intuition as to why theses kinks appear in

the components of entropy production even in the high-temperature limit. In light of the

Λ-splitting we are able to explain these behaviors. This goes as follows [40].

In Sec. 5.1 I showed that for sufficiently high temperatures and leading order on β and

δg, we have — see (5.43)

Λcl =
β2

2
Var1/d[∆Hd], Λqu =

β2

2
Var1/d[∆Hc], (5.86)

where 1/d is the maximally mixed state of a system with dimension d.

By construction, tr{∆Hc} = 0, but without loss of generality we can also assume this

to be the case for ∆Hd; i.e., consider tr
{

∆Hd
}

= 0. Next, we utilize the dephased and

coherent parts of the perturbation are related to the derivatives of the initial Hamiltonian

eigenenergies and eigenbasis, Eqs. (5.70) and (5.71).

This allows us to write [40]

Λcl =
1

2
β2δg2

∑
i

di
d

(∂g0ε
0
i )

2, (5.87)

Λqu =
1

2
β2δg2

∑
i

||ε0i (∂g0Π0
i )||2

d
, (5.88)

where ||X|| =
√

tr{X†X} is the Hilbert-Schmidt norm of X and di = tr{Π0
i } is the

dimension of projector Π0
i .

Therefore — in this limit of infinitesimal quenches and extremely high temperatures

— Λcl and Λqu are given by a weighted sum of the square of the first derivatives of the

initial Hamiltonian eigenvalues and eigenprojectors, respectively.

Now, by definition, the ground-state and ground-state energy of a quantum critical

system are singular in the vicinity of a critical point. Particularly, if it is a second-order

critical point, their first derivatives will have a kink/cusp at such a point. Moreover, in fact,

many low-lying energy levels present the ground state singular behavior in the asymptotic

regime N →∞. These first derivatives singularities are precisely what is captured by Λcl

and Λqu and it is why their plots in Figs. 5.3 present a kink at g0 = 1 [40].
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More generally, when ρth
0 cannot be replaced by 1/d, the derivatives in Eqs. (5.87)

and (5.88) appear multiplied by some continuous functions of β and the energy eigenval-

ues ε0i — see Eqs. (5.84) and (5.85). These function-coefficients come, for instance, from

the thermal averages of the eigenprojectors Π0
i . As a consequence, the kinks on Λcl and

Λqu — ultimately steaming from the kink singularities on the Hamiltonian spectrum at a

critical point — persist at every finite temperature [40].

This argument can be easily checked. Starting with Λcl, we have

Λcl =
β2

2
Var0[∆Hd] =

β2

2

(
tr{(∆Hd)2ρth

0 } − tr{∆Hdρth
0 }2
)

=
β2δg2

2

[∑
i

(∂g0ε
0
i )

2 tr
{

Π0
i ρ

th
0

}
−

(∑
i

(∂g0ε
0
i ) tr

{
Π0
i ρ

th
0

})2]
,

(5.89)

It is evident in the above equation the presence of the ground state energy derivative ∂g0ε
0
0

multiplied by a continuous function of β and ε0i . If this derivative has a kink/cusp, this

gets inherited by Λcl.

For Λqu, we have

Λqu =
β2

2

(
Var0[∆Hc]−Q

)
=
β2

2

∫ 1

0

dy tr{(ρth
0 )y∆Hc(ρth

0 )1−y∆Hc}

=
1

2
β
∑
j 6=i

p0
i − p0

j

(ε0j − ε0i )
tr{Π0

i∆H
cΠ0

j∆H
c}.

(5.90)

In general, the function-coefficients (p0
i − p0

j)/(ε
0
j − ε0i ) are continuous and smooth,

though a possibly exception would occur when ε0j → ε0i . Hence, close to a critical point,

we need to be careful with the ground and first-excited levels. For this reason, let ∆ > 0

be their energy gap. Then,
p0

0 − p0
1

ε01 − ε00
= p0

0

1− e−β∆

∆
. (5.91)

However, as long as β is finite (T > 0), (1 − e−β∆)/∆ is finite, since this approaches β

as ∆→ 0.

Finally, the kinks on Λqu arise from the fact that tr{Πi∆H
cΠj∆H

c} contains the

singular but continuous first derivatives of Hamiltonian eigenprojectors.
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It is crucial to note this reasoning applies to a system presenting only continuous

transitions. In this case, the free energy is itself a continuous function with continuous

first-order derivatives and so is the thermal state ρth
0 . Otherwise, in the case of a system

presenting first-order transitions, singularities could appear because of a kink in the free

energy itself.

Following these results, in [40] we proposed Λcl and Λqu as tools for detecting second-

order quantum critical points. This adds to a plethora of already used information-

theoretic quantities ranging from fidelities [57, 63, 64, 66]; passing through entangle-

ment [67, 69] and quantum discord [70, 71, 160, 161]; to other coherence quantifiers [72–

74, 162–165]; and, of course, the full entropy production itself [33].

Most of these quantities, however, possess singularities at g = gc only precisely at

T = 0, and are capable of sharply estimating the position of the critical point only at

extremely low temperatures. In fact, this is completely reasonable since a quantum critical

point truly exists exactly at zero temperature. The advantage of Λcl and Λqu, therefore,

is that they still present a singularity at g = gc even when the system is prepared in an

arbitrarily high temperature.

The viability of these quantities as quantum critical point detectors, however, depends

on ones ability to measure them. In [40] we further proposed a scheme to determine Λcl

and Λqu experimentally. I will not enter into details here and defer this to a subsequent

section.

This concludes the analysis on the behavior of Λcl and Λqu in the vicinity of the Ising

critical point at (g = 1, h = 0).

An extra advantage of the Λ-splitting in comparison with the Γ, is that the former is

generally much more tractable mathematically.

This simplicity allows us to analyse the behaviors of Λcl and Λqu also circa the fourth-

order critical point of the alternating transverse field Ising model located at (g = 0, h =

1).

As shown in Chapter 2, this fourth-order critical point is surrounded by second-order

Ising-type critical point. Particularly, there is one such point precisely in the same spot

as the fourth-order type. Hence, we have to be careful with the path selected to approach

this point so that we effectively capture the behavior we are interested in here.
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Figure 5.4: Λqu and Λcl per spin in the vicinity of the fourth-order critical point in the
alternating transverse field Ising model. Above, the behaviors at low temperatures (large
β) of (a) Λqu and (b) Λcl. Below, the behaviors at high temperatures of (c) Λqu and Λcl. The
kink at g0 = 0 on Λcl and Λqu on this limit does not come from the fourth-order CP but,
in fact, from a singularity in the middle of the energy spectrum. In all points, δg = 0.01.
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As was done with the full entropy production Σ in Sec.3.3, I choose to approach this

point along the path h = 1+10g2. That is, in each realization of the instantaneous quench

protocol, h is kept fixed at the same initial value h0 = 1 + 10g2
0 while g is changed by an

amount δg = 0.01. This way, Eqs. (5.77) and (5.78) always hold.

In Fig. 5.4 I show the behaviors of Λcl and Λqu per spin as a function of the initial field

g0 at several inverse temperatures β.

At low temperatures, Fig. 5.4(a), Λqu presents a smooth peak at the critical value

g0 = 0 and scale linearly with β for sufficiently low temperatures. A transient regime from

a β2 dependence to linear makes the curves for β = 3 and β = 10 lie above the others

in this figure. Λqu is the dominant contribution to the entropy production. Conversely, the

classical component Λcl display a sharp drop at the critical field g0 = 0. This is similar

to its behavior in the vicinity of the Ising critical point discussed before. Since we are

probing now a fourth-order critical point, no singularities appear on Λcl and Λqu in this

limit.

Increasing the system temperature causes a broadening of the peak/dip in Λqu/Λcl near

g0 = 0 — Fig. 5.4(c) and (d). When β → 0 both quantities scale with β2. Curiously, in

the high-temperature limit, Λcl and Λqu exhibit a kink at g0 = 0. This singularity, however,

is not a signature of the fourth-order critical point. Instead, they occur due to singularities

in the middle of the Hamiltonian spectrum at g0 = 0. For instance, the energy per spin of

one such singular level is given in thermodynamic limit by

1

N
εmid = −

∫ π
2

−π
2

dk

2π
(ε+k|0 − ε

−
k|0), (5.92)

where ε±k|0 are the single-particle energies associated with the η+- and η−-fermions. This

is the energy level obtained when all η+ modes are grounded and all η− modes are excited.

In particular, the first derivative of εmid/N possesses a kink singularity at g0 = 0 due a

logarithmical divergence in its second derivative — this is the same behavior of the ground

state energy of the homogeneous transverse field model at g = 1.

In fact, the ground state of each η-fermion species have such Ising-like singularities.

These cancel each other out on the ground state of the whole system. However, exciting all

modes of one species is equivalent to changing the sign of its ground state singularity. In
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this case the singularities of each species add to each other in levels like (5.92). Therefore,

it is these first derivatives kink singularities in the middle of the Hamiltonian spectrum

which are being imprinted on Λcl and Λqu at high temperatures. Since these levels are

unoccupied at low temperatures, the kinks disappear in this limit.

This shows the Λ-quantities provide a true glance at the spectrum of the system Hamil-

tonian at high temperatures.

This finishes the analysis of the Λ-splitting of entropy production in the vicinity of

both types of critical point in the alternating transverse field Ising model.

5.3 Experimental evaluation of Λcl and Λqu

Let us return now to the discussion on how the classical and quantum contributions to the

entropy production, Λcl and Λqu, could, in principle, be assessed experimentally. Our idea

relies on the stochastic formulation of the Λ-splitting using the two-point measurement

(TPM) scheme and the fact that they obey fluctuation theorems [40].

Let us assume for simplicity a nondegenerate Hamiltonian and recapitulate. Our pro-

tocol starts with the system prepared in the thermal state

ρth
0 =

e−βH0

Z0

=
e−βε

0
i

Z0

|i0〉〈i0|

where β is the inverse temperature and H0 =
∑

i ε
0
i |i0〉〈i0| is the initial Hamiltonian.

In the TPM scheme, we perform an energy measurement at t = 0. As a result, we

obtain the eigenvalue ε0i with probability p0
i = e−βε

0
i /Z0, while the state of the system is

updated to |i0〉 due to the measurement backaction.

Next, we apply our instantaneous quench protocol, changing the system Hamiltonian

to Hτ = H0 + ∆H =
∑

j ε
τ
j |jτ 〉〈jτ |, and, subsequently, perform the second energy

measurement. The result will be the eigenvalue ετj with probability pquench(i → j) =

|〈jτ |i0〉|2.

Hence, the path probability associated with the stochastic trajectory |i0〉 → |jτ 〉 reads

PF [i, j] = p0
i |〈jτ |i0〉|2. The stochastic entropy production is defined by [36]

σ[i, j] = β(ετj − ε0i )− β∆F, (5.93)
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wherew[i, j] = ετj−ε0i is the stochastic work done on the system, and ∆F = −T lnZτ/Z0

is the change in equilibrium free energy.

As we saw, 〈σ〉 =
∑

i,j σ[i, j]PF [i, j] = Σ produces the correct average. Moreover, σ

satisfies an integral fluctuation theorem [128, 129], 〈e−σ〉 = 1, from which it follows the

Jarzynski relation 〈e−βw[i,j]〉 = e−β∆F [98].

Therefore, if in an experiment, one can determine the work w[i, j] and the path proba-

bility PF [i, j], one readily obtains ∆F from the Jarzynski relation and, finally, the entropy

production Σ = β(〈w〉 −∆F ). In Chapter 3 I presented several experimental proposals

and implementations to determine these quantities, including one that is applicable, in

principle, to a many-body system [140].

Having said that, note the stochastic versions of Λcl and Λqu in Eqs. (5.15)-(5.16) can

be equivalently written as

λcl[i, j] = ln p0
i /p̃

τ
i = β(ε̃τi − ε0i )− β∆F̃τ0, (5.94)

λqu[i, j] = ln p̃τi /p
τ
j = β(ετj − ε̃τi )− β∆F̃ττ , (5.95)

where ε̃τi = ε0i + ∆Hii = ε0i + δg(∂gε
0
i ), with ∆Hii = 〈i0|∆H|i0〉, are the eigenener-

gies associated with the dephased Hamiltonian H0 + ∆Hd. Moreover, we have ∆F̃τ0 =

−T ln Z̃τ/Z0 and ∆F̃ττ = −T lnZτ/Z̃τ , with Z̃τ = tr
{
e−β(H0+∆Hd)

}
. The former

indicates the change in equilibrium free energy associated with incoherent part of the per-

turbation ∆Hd =
∑

i ∆Hii|i0〉〈i0|. Conversely, the latter yields the additional difference

in free energy associated with the perturbation’s coherent part ∆Hc = ∆H −∆Hd.

Once more, from these stochastic definitions we recover the averages Λcl = 〈λcl〉 =∑
i,j λcl[i, j]PF [i, j] and Λqu = 〈λqu〉 =

∑
i,j λqu[i, j]PF [i, j]. Additionally, λcl satisfies

the integral fluctuation theorem, 〈e−λcl〉 = 1, and this is equally valid for λqu in the in-

finitesimal and instantaneous quench limit — see Sec. 5.1.

Now we observe that, up to second-order on the perturbation δg, the final energy
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eigenvalues are given by

ετj = ε0j + δg(∂gε
0
j) +

1

2
δg2(∂2

gε
0
j)

= ε0j + ∆Hjj +
1

2

∑
`6=j

|∆Hj`|2

ε0j − ε0`
,

(5.96)

where ∆Hij = 〈i0|∆H|j0〉.

Therefore, in this limit of instantaneous and infinitesimal quenches, the first term in

Eq. (5.94), wd[i, i] = ε̃τi − ε0i , is approximated by wd[i, i] ≈ w[i, j]δij [40]. This approxi-

mation is certainly fine away from a critical point. In the latter case, the third term on the

r.h.s. of Eq. (5.96) can become relevant, though. Nevertheless, the smaller δg is, the better

the approximation and smaller the interval where it breaks down. In the limit δg → 0, it

fails only precisely at the critical point.

Consequently, we may obtain wd from the measured stochastic work w by post-

selecting the cases where after the second measurement the system is found in a state

with the same j = i [40]. With wd at hand, we use again a Jarzynski relation, 〈e−βwd〉 =

e−β∆F̃τ0 , to get ∆F̃τ0 and, ultimately, Λcl = β(〈wd〉−∆F̃τ0). From Λcl and Σ, we further

obtain Λqu = Σ− Λcl [40].

This approach, therefore, conveniently enables the determination of Λcl and Λqu trough

a simple post-selection of the experimental data obtained from the two-point measurement

protocol [40].

Since no experiment is performed on a infinite system, let us also analyse the behavior

of an Ising model with a finite number of spins N . In this case, Λcl and Λqu become

smooth functions of the initial field g0. However, as shown bellow, the thermodynamic

limit behavior is swiftly approached with increasing N [40]. This means our proposal

could be tested in a system with a somewhat small number of spins.

For simplicity I take h = 0 in our general Hamiltonian (5.63) and work with the

homogeneous transverse field Ising model. Moreover, I focus on the infinitesimally small

quench and sufficiently high-temperature limit, which allows us to use Eqs. (5.43). That

is, I assume the initial thermal ρth
0 state can be treated as the maximally mixed state. Thus,
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Figure 5.5: Plots of (a) Λqu and (b) Λcl per spin scaled by β2δg2 as functions of the
initial field g0, for several values of N . The figure shows the limit N → ∞ is quickly
approached with increasing N in the limit T → ∞ (β → 0). In fact, away from the
critical value g0 = 1, the error in approximating a finite N plot by the N →∞ is of order
1/N2.

in light of (5.74) and (5.75), we have [40]

Λcl =
β2

2
tr

{
1

2N
(∆Hd)2

}
= β2δg2

∑
k>0

cos2 θk, (5.97)

Λqu =
β2

2
tr

{
1

2N
(∆Hc)2

}
= β2δg2

∑
k>0

sin2 θk, (5.98)

where 2N is the dimension of the Hilbert space of a system with N spins, k = ±(2n +

1)π/N , n ranging from 0 to N/2− 1, and, again,

(
cos θk, sin θk

)
=
(g0 − cos k

ε0k
,

sin k

ε0k

)
,

with ε0k =
√

1 + g2
0 − 2g0 cos k and g0 the initial transverse field.

In Fig. 5.5 I plot Λcl and Λqu per spin as functions of g0 for several N . The plots

show the thermodynamic limit behaviors — indicated by the black curves — are quickly

approximated with increasing N .

These results may be further elucidated as follows [40]. Equations (5.97) and (5.98)
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can be rewritten as

Λcl

Nβ2δg2
=
∑
k>0

cos2 θk
∆k

2π
, (5.99)

Λqu

Nβ2δg2
=
∑
k>0

sin2 θk
∆k

2π
, (5.100)

where ∆k = 2π/N .

If we consider a partition

P =

{[
0,

2π

N

]
,

[
2π

N
,
4π

N

]
, ...,

[
π − 2π

N
, π

]}

of the interval [0, π], the r.h.s. of (5.99) and (5.100) are equivalent to midpoint Riemann

sums of the functions cos2 θk and sin2 θk over [0, π] with partition P .

The absolute difference between these sums and the respective thermodynamic limit

integrals in (5.84) and (5.85), with the appropriate limit β → 0, is bounded by∣∣∣∣∣
∫ π

0

dk

2π
f(k)−

∑
k>0

f(k)
∆k

2π

∣∣∣∣ 6 Mπ3

6N2
, (5.101)

where f(k) is either cos2 θk or sin2 θk, and M = maxk∈[0,π] |∂2
kf(k)| is the maximum

absolute value of the second derivative of f(k) in the interval [0, π]. Clearly, f is also

a function of the initial field g0, but I omit this to simplify the notation. This second

derivative reads

|∂2
kf(k)| = 2

(ε0k)
4
| sin2 θk(g

2
0 − 1)2 + ε0k cos θk(1− g0 cos k) cos k|. (5.102)

It is straightforward to graphically verify the maximum of this function occurs at the

boundary k = 0 for g0 > 0. Precisely, we have

M =
2

(g0 − 1)2
, if g0 > 0. (5.103)

That is, except at g0 = 1, the functions Λcl/N and Λqu/N for a finite chain converge to

the thermodynamic limit behavior with a swiftly decreasing error of order 1/N2. The
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divergence of M at g0 = 1 further clarifies the slower convergence in this region.
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A summary of our results is propitious now. In this thesis I have shown how a quantum

thermodynamic work protocol may be used to probe quantum critical systems. It was

already known the entropy production at low temperatures exhibits a peak near a second-

order quantum critical point, signaling its existence. In fact, this quantity is intimately

related to the susceptibility of the control parameter of the phase transition, which diverges

at zero temperature at the critical point. Naturally, as I showed in Chapter 3, in the case

of higher-order quantum critical points it is a derivative of the entropy production which

diverges in this limit.

Moving forward, I revealed further insight may be gained by considering a splitting

of the entropy production into a classical and quantum parts or, yet, into populations im-

balances and coherences. In Chapter 4 I analysed a previous known separation, where the

quantum part is based on the relative entropy of coherence. It turned out, although of great

significance in the broader field of quantum thermodynamics, this splitting presents some

weaknesses in the scenario of Jarzynski-type work protocols. Notably, the dominance of

the ‘classical’ part at low temperatures and highly coherent protocols and the failure in

analyticity when no such issue arises in the total entropy production. Nonetheless, this

partitioning demonstrated these individual components could signal the existence of a

quantum critical point with protocols realized at any temperature, again in contrast with

their sum. As an additional flaw, however, the splitting offered no intuition on as to why

this happens.

In Chapter 5 I presented a new splitting, which corrects the shortcomings of the previ-

ous one and offers a more consistent and intuitive picture in the context of work protocols.

This was shown to be remarkably accurate in the case of instantaneous quenches. In this

scenario, the classical and quantum parts of the new splitting are intrinsically connected
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with the diagonal and coherent parts of the perturbation Hamiltonian. For a system with a

linear dependence on the control parameter, this is respectively equivalent to a connection

with the first derivatives of the unperturbed energy eigenvalues and eigenbasis.

The quantum critical point signatures on these components of entropy production was

then explained as arising from the kinks on the derivatives energy spectrum. The kinks

on the classical and quantum parts of the splitting occur even in protocols performed at

arbitrarily high temperatures and mean they can function as valuable quantum critical

points detectors. I concluded the chapter with a proposal on how these quantities could be

determined experimentally using their stochastic formulation within the two-point mea-

surement framework.

As a general conclusion, this work reveals how it can be highly non-trivial to distin-

guish the quantum contribution to the entropy production in a nonequilibrium process.

In this case, it seems different approaches suit better different contexts. In a way, this is

similar to the splitting of energy in a quantum system into work and heat.

As a direct follow-up, we could investigate the behaviors of the higher-order cumu-

lants of entropy production and its splittings in a critical system like the Ising model.

Also, it would be interesting to consider more general time-dependent protocols in these

types of many-body systems. Then, a connection could be established with some recent

studies on quantum batteries using finite-time charging protocols [30, 166, 167].

Moreover, the new splitting of entropy production presented here could be tested on

different scenarios. For instance, in the context of heat exchange or in general open

systems, including open work protocols. For a system evolving in contact with a heat

bath, one could investigate under what conditions, if any, the components of the new

splitting constitute monotones in a resource theory.
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Gap and Bounds in the ATFIM

In this Appendix I provide the steps necessary to obtain the gap expressions given in

Section 2.1. We derived these in [39]. The arguments closely follows the ones first

presented in [94].

A.1 Gap Expressions

Using the Fourier series (2.47)-(2.48) and the fact that ε±−k = ε±k , we obtain

ε+ = −2
∞∑
l=0

(ul + vl)
∑
k∈K+

>

cos(2kl), (A.1)

ε− = −2
∞∑
l=0

(ul + vl)
∑
k∈K−>

cos(2kl)− 2
√

1 + g2 − 2
√

1 + h2. (A.2)

Next we make use of the relations

m−1∑
n=0

cos(x+ ly) = cos[x+ (m− 1)y/2] sin(my/2) csc(y/2),

lim
x→nN/2

1

2

sin(πx)

sin(2πx/N)
=
N

4
(−1)n, for n ∈ N,
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to derive that ∑
k∈K+

>

cos(2kl) =
N

4
(−1)nδl,nN/2,

∑
k∈K−>

cos(2kl) =
N

4
δl,nN/2 − δl,2n,

(A.3)

for n ∈ N.

Then,

ε+ = −N
2

[(
u0 + v0

)
−
(
uN/2 + vN/2

)
+
(
uN + vN

)
−
(
u3N/2 + v3N/2

)
+ . . .

]
, (A.4)

ε− = −N
2

[(
u0 + v0

)
+
(
uN/2 + vN/2

)
+
(
uN + vN

)
+
(
u3N/2 + v3N/2

)
+ . . .

]
+2
(
u0 + u2 + u4 + . . .−

√
1 + h2

)
+ 2
(
v0 + v2 + v4 + . . .−

√
1 + g2

)
. (A.5)

For the latter, however, we note

ε+k=0 =
∞∑
l=0

ul cos(0) = u0 + u1 + u2 + u3 + . . . =
∣∣∣|g|+√1 + h2

∣∣∣, (A.6)

ε+k=π
2

=
∞∑
l=0

ul cos(πl) = u0 − u1 + u2 − u3 + . . . =
∣∣∣|h|+√1 + g2

∣∣∣, (A.7)

ε−k=0 =
∞∑
l=0

vl cos(0) = v0 + v1 + v2 + v3 + . . . =
∣∣∣|g| − √1 + h2

∣∣∣, (A.8)

ε+k=π
2

=
∞∑
l=0

vl cos(πl) = v0 − v1 + v2 − v3 + . . . =
∣∣∣|h| −√1 + g2

∣∣∣. (A.9)

Hence,

u0 + u2 + u4 + . . .−
√

1 + h2 + v0 + v2 + v4 + . . .−
√

1 + g2

=
1

2

(∣∣∣|g|+√1 + h2

∣∣∣+
∣∣∣|g| − √1 + h2

∣∣∣)−√1 + h2

+
1

2

(∣∣∣|h|+√1 + g2

∣∣∣+
∣∣∣|h| −√1 + g2

∣∣∣)−√1 + g2

=
(
|g| −

√
1 + h2

)
Θ
(
|g| −

√
1 + h2

)
+
(
|h| −

√
1 + g2

)
Θ
(
|h| −

√
1 + g2

)
.

(A.10)
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where

Θ(x) =

1 if x > 0,

0 if x < 0,

is the Heaviside step function.

Finally,

ε− = 2
(
|g| −

√
1 + h2

)
Θ
(
|g| −

√
1 + h2

)
+ 2
(
|h| −

√
1 + g2

)
Θ
(
|h| −

√
1 + g2

)
− N

2

[(
u0 + v0

)
+
(
uN/2 + vN/2

)
+
(
uN + vN

)
+
(
u3N/2 + v3N/2

)
+ . . .

]
.

(A.11)

Subtracting (A.4) from (A.11) we arrive at

∆ =2
(
|g| −

√
1 + h2

)
Θ
(
|g| −

√
1 + h2

)
+ 2
(
|h| −

√
1 + g2

)
Θ
(
|h| −

√
1 + g2

)
−N

∞∑
l=0

(
u(2l+1)N/2 + v(2l+1)N/2

)
.

(A.12)

It is worth noticing that the first line vanishes when |g2 − h2| 6 1.

To compute the sum in the above expression we use that since ε±k > 0, (ε+k + ε−k ) =√
(ε+k + ε−k )2, and, thus,

ul + vl =
2

π

∫ π
2

−π
2

dk cos(2kl)(ε+k + ε−k )

=

√
2

π

∫ π

−π
dk cos(kl)

[
1 + g2 + h2 +

√
sin2 k +

[
(g2 − h2)− cos k

]2] 1
2

.

(A.13)

Now we have to consider the cases |g2 − h2| = 0, 0 6= |g2 − h2| 6= 1 and |g2 − h2| = 1

separately.

Let us begin with |g2 − h2| = 0. Then,

ul + vl =

√
2

π

∫ π

−π
dk cos(kl)

√
2 + g2 + h2 = 4

√
1 + (g2 + h2)/2 δl,0. (A.14)

Hence,

∆ = 0, if g2 − h2 = 0. (A.15)
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Re(z)

Im(z)

0 r< 1/r<

0 < r< = g2 − h2 < 1

Figure A.1: Illustration of the branch cuts and integration path used to obtain Eq. (A.21).

Next, we take 0 6= |g2 − h2| 6= 1. Then we make the change of variables z = eik to

obtain,

ul + vl = −i
√

2

π

∮
|z|=1

dz zl−1

[
1 + g2 + h2 +

√
[z − (g2 − h2)][1− (g2 − h2)z]

z

] 1
2

.

(A.16)

Consider first 0 < g2 − h2 = r< < 1. To solve this integral we make branch cuts

over the interval (0, r<) ∪ (1/r<,∞) and deform the integration contour. The procedure

is represented in Fig. A.1 This results in

ul + vl = i
2
√

2

π
rl<

∫ 1

0

dt t2l−1
(√

Z(t)−
√
Z(t)

)
, (A.17)

where

Z(t) = R + i
√

(1− t2)(1− r2
<t

2)/t2, (A.18)

R = 1 + g2 + h2, (A.19)

and Z(t) is its complex conjugate.
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Since Re(Z) > 0 and Im(Z) > 0, we have

√
Z(t)−

√
Z(t) = i

√
2
√
|Z| − Re(Z). (A.20)

Therefore

ul + vl = − 4

π
rl<

∫ 1

0

dt t2l−1

[√
(1− t2)(1− r2

<t
2)

t2
+R2 −R

] 1
2

, (A.21)

for 0 < r< = g2 − h2 < 1.

For the other intervals for which 0 6= |g2 − h2| 6= 1, we follow basically these same

steps, adjusting the branch cuts. In the end we obtain

ul + vl = − 4

π
|g2 − h2|l

∫ 1

0

dt t2l−1

[√
(1− t2)(1− |g2 − h2|2t2)

t2
+R2 −R

] 1
2

, (A.22)

ul + vl = − 4

π|g2 − h2|l

∫ 1

0

dt t2l−1

[√
(1− t2)(|g2 − h2|2 − t2)

t2
+R2 −R

] 1
2

, (A.23)

for |g2 − h2| < 1 and |g2 − h2| > 1, respectively.

Replacing Eq. (A.22) in (A.12), and using that

∞∑
l=0

xl =
1

1− x
, |x| < 1,

we arrive at Eq. (2.50). Similarly, using (A.23) in (A.12) instead, we get (2.60).

Finally, for |g2− h2| = 1 we take the limits g2− h2 → ±1 in Eqs. (A.22) and (A.23),

or equivalently, in Eqs. (2.50) and (2.60), to obtain Eq. (2.57).

A.2 Bounds on the gap

We can derive bounds for the size of the gap using the above expressions.

Let us start with the gap for |g2 − h2| = 1. This is the condition for the lines of

quantum critical points.
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First we observe that Eq. (2.57) may be rewritten as

∆ =
4N

π

∫ 1

0

dt
tN−3/2

1− t2N
1− t2√√

(1− t2)2 + (2G2t)2 + 2G2t
. (A.24)

Now, the function f(t) =
√√

(1− t2)2 + (2G2t)2 + 2G2t is monotonically increasing

in the interval t ∈ [0, 1], for G2 > 1. Hence,

1

2
√
G2

4N

π

∫ 1

0

dt
tN−3/2(1− t2)

1− t2N
6 ∆ 6

8N

π

∫ 1

0

dt
tN−3/2(1− t)

1− t2N
. (A.25)

where I also used that 1− t2 6 2(1− t) to obtain the right hand side.

Next, we have that

4N

π

∫ 1

0

dt
tN−3/2(1− t)

1− t2N
= 2 tan

(
π

4N

)
, (A.26)

4N

π

∫ 1

0

dt
tN−1/2(1− t)

1− t2N
=

4

π

[
ψ(0)

(1

2
+

3

4N

)
− ψ(0)

(1

2
+

1

4N

)]
=

1

πN

∞∑
n=0

1

(n+ 1
2

+ 3
4N

)(n+ 1
2

+ 1
4N

)

>
1

πN

∞∑
n=0

1

(n+ 1)2
=

π

6N
, (A.27)

where ψ(0)(z) = d
dz

ln Γ(z) is the Digamma function [168].

This leads directly to Eq. (2.58)

1

2
√
G2

[
2 tanh

(
π

4N

)
+

π

6N

]
6 ∆ 6 4 tanh

(
π

4N

)
. (A.28)

Now let us consider the case where |g2 − h2| < 1. This is the region of parameters

associated with an ordered phase in the thermodynamic limit.
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In this case we have, for the lower bound,

∆ = −N
∞∑
l=0

(
u(2l+1)N/2 + v(2l+1)N/2

)
> −N(uN/2 + vN/2)

= |g2 − h2|
N
2

4N

π

∫ 1

0

dt tN−
3
2 [
√

(1− t2)(1− |g2 − h2|2t2) +R2t2 −Rt]
1
2

= |g2 − h2|
N
2

4N

π

∫ 1

0

dt tN−
3
2

√
(1− t2)(1− |g2 − h2|t2)

[
√

(1− t2)(1− |g2 − h2|2t2) +R2t2 +Rt]
1
2

.

(A.29)

The second line follows from the observation that −(ul + vl) > 0;

Now we use again that the function in the denominator of this integral is monotoni-

cally increasing in the interval t ∈ [0, 1]. Hence,

∆ >
1√
2R
|g2 − h2|

N
2

4N

π

∫ 1

0

dt tN−3/2
√

(1− t2)(1− |g2 − h2|2t2)

>
1√
2R
|g2 − h2|

N
2

4N

π

∫ 1

0

dt tN−3/2
√

(1− t)(1− |g2 − h2|t).
(A.30)

To arrive at the second line I used
√

(1 + t)(1 + |g2 − h2|t) > 1.

The next step is to notice that

√
(1− t)(1− |g2 − h2|t) =

√
(1− t)(1− |g2 − h2|) + |g2 − h2|(1− t)2

> max{
√

1− |g2 − h2|
√

1− t,
√
|g2 − h2|(1− t)}

(A.31)

and then integrate. Further using 16N/π(4N2 − 1) > 4/πN and Γ(N − 1/2)/Γ(N) >

1/
√
N , it follows,

∆ >
|g2 − h2|N2√

2R
max

{
2√
π

√
1− |g2 − h2|√

N
,

4|g2 − h2| 12
πN

}
. (A.32)

142



Appendix A. Gap and Bounds in the ATFIM

Now, for the upper bound,

∆ = −N
∞∑
l=0

(
u(2n+1)N/2 + v(2n+1)N/2

)

=
∞∑
l=0

4N

π

∫ 1

0

dt
t(2l+1)N−3/2 |g2 − h2|

(2l+1)N
2

√
(1− t2)(1− |g2 − h2|2t2)[√

(1− t2)(1− |g2 − h2|2t2) +R2t2 +Rt
] 1

2

6
√

2(1 + |g2 − h2|)
∞∑
l=0

∫ 1

0

dt 4Nt(2l+1)N |g2−h2|
(2l+1)N

2

πt
3
2

√
(1− t)(1− |g2 − h2|t),

(A.33)

where I used the monotonicity of the function in the denominator on the second line and

that
√

(1 + t)(1 + |g2 − h2|t) 6
√

2(1 + |g2 − h2|) to arrive at the last line.

Next we observe that

√
(1− t)(1− |g2 − h2|t) =

√
(1− t)(1− |g2 − h2|) + |g2 − h2|(1− t)2

6
√

1− |g2 − h2|
√

1− t+
√
|g2 − h2|(1− t),

(A.34)

and integrate to obtain

∆ 6 2N
√

2(1 + |g2 − h2|)|g2 − h2|
N
2

(
|g2 − h2|

1
2

2

π

∞∑
l=0

|g2 − h2|lN

(2l + 1)2N2 − 1/4

+

√
1− |g2 − h2|√

π

∞∑
l=0

Γ((2l + 1)N − 1/2)

Γ((2l + 1)N + 1)
|g2 − h2|lN

)
,

(A.35)

where Γ(z) is the Gamma function.

Finally, we use [94]

1

l2 − 1/4
<

1

l2
2N

2N − 1
,

Γ(l − 1/2)

Γ(l + 1)
<

1

l
3
2

√
N

N − 1
, (A.36)

and perform the sums replacing |g2 − h2|lN by 1.

Further using (2
√

2− 1)ζ(3/2)/2
√

2π < 1, the final result is

∆ 6 |g2 − h2|
N
2

√
2(1 + |g2 − h2|)

(
π|g2 − h2| 12

2N − 1
+ 2

√
1− |g2 − h2|√

N − 1

)
. (A.37)
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Elements of Quantum Information

In this Appendix I review some of the concepts of quantum mechanics and quantum

information theory applicable to this thesis.

A finite isolated driven system, described by a time-dependent Hamiltonian H(t),

with initial density operator ρ(0), evolves according to

ρ(0)→ ρ(t) = U(t, 0)ρ(0)U †(t, 0), (B.1)

where U †(t, 0) = U−1(t, 0) is the unitary time-evolution operator satisfying

U(t, 0)U †(t, 0) = U †(t, 0)U(t, 0) = 1, (B.2)

U(t, 0) = U(t, t′)U(t′, 0). (B.3)

Moreover, U obeys the Schrödinger equation

∂

dt
U(t, 0) = −iH(t)U(t, 0), U(0, 0) = 1, (B.4)

where I made ~ = 1 and 1 is the identity operator.
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The formal solution to equation (B.4) is given by

U(t, 0) = T exp

{
−i
∫ t

0

H(t′) dt′
}

= 1+
∞∑
n=1

(−i)n

n!

∫ t

0

dt1

∫ t

0

dt2...

∫ t

0

dtnT H(t1)H(t2)...H(tn),

(B.5)

where T establishes an increasing time-ordering from right to left. That is, T is such that

T H(t1)H(t2) =

H(t1)H(t2) if t1 > t2,

±H(t2)H(t1) if t1 < t2,

(B.6)

where "±" depends on whether the operators H(t) obey canonical commutation (+) or

anticommutation relations (−).

Let H be the Hilbert space associated with the quantum system. For every state ρ

representing the system we may compute its von Neumann entropy, given by

S(ρ) = − tr{ρ ln ρ}. (B.7)

This is an always nonnegative quantity,

S(ρ) > 0,

that vanishes only for pure states. In addition, if H has dimension d, it’s maximal value

equals ln d and occurs for the maximally mixed state 1/d. Hence, the von Neumman

entropy may be interpreted as measuring the mixedness of the state ρ.

Other notable properties of the von Neumann entropy are its invariance under unitary

operations and subadditivity,

S(UρU †) = S(ρ), (B.8)

S(ρ12) 6 S(ρ1) + S(ρ2), (B.9)

where U is a unitary, ρ12 is the state of a bipartite system with Hilbert space H = H1 ⊗
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H2, and ρ1 = tr2{ρ12} and ρ2 = tr1{ρ12} are the reduced states of systems 1 and 2,

respectively.

In this thesis the von Neumann entropy is considered to be an appropriate thermody-

namic entropy. Equation (B.8), therefore, may be seen as equivalent to the thermodynamic

requirement that entropy remains constant for a reversible (unitary) transformation.

In (B.9), equality holds if only if ρ12 = ρ1 ⊗ ρ2. The general increase in entropy

in its right-hand side may be interpreted as a consequence of the loss of information

when correlations between the two systems are discarded. This constitutes an important

ingredient in the definition of entropy production in this thesis. Particularly, the mismatch

between both sides of (B.9) defines the quantum mutual information,

I(ρ12) = S(ρ1) + S(ρ2)− S(ρ12) > 0. (B.10)

The mutual information is a measure of the total amount of correlations shared by the

systems 1 and 2 in the state ρ12.

A related quantity is the quantum relative entropy. For two states ρ and σ it reads

S(ρ||σ) = tr{ρ(ln ρ− lnσ)}. (B.11)

This is also a nonnegative quantitiy [155],

S(ρ||σ) > 0, (B.12)

with equality if and only ρ = σ. Hence, the relative entropy is regarded as a measure

of the distinguishability between two quantum states. In terms of it, the quantum mutual

information may be written as

I(ρ12) = S(ρ12||ρ1 ⊗ ρ2), (B.13)

making the previous interpretation of the mutual information clear.

In contrast with the von Neumann entropy, however, the quantum relative entropy is

not bounded from above. In particular, when the support of ρ intersects the kernel of σ,
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S(ρ||σ) diverges:

S(ρ||σ) = +∞, if supp(ρ) ∩ ker(σ) 6= 0. (B.14)

Another significant property of the quantum relative entropy is its monotonicity under

any completely positive and trace preserving (CPTP) map. If E is CPTP, then [155]

S(E(ρ)||E(σ)) 6 S(ρ||σ). (B.15)

The relative entropy can be generalized by the Rényi divergences

Sα(ρ||σ) =
1

α− 1
ln tr

{
ρασ1−α}, (B.16)

for α ∈ (0, 1)∪(1,∞). The special cases α = 0, 1, ∞ are obtained by appropriate limits.

Noticeably,

lim
α→1

Sα(ρ||σ) = S(ρ||σ). (B.17)

The Rényi entropies are also nonnegative,

Sα(ρ||σ) > 0

with equality if and only ρ = σ.

In several parts of the main text, I refer to some resource theories and monotones

within them.

A resource is some physical feature or property of a quantum system that can be

consumed to perform a specific task. A resource theory is thus defined by a set of free

states and a set of free operations. The former is composed by those states which do not

contain the resource, and the latter by operations, i.e. quantum maps, which cannot create

it.

There are several examples of resource theories. Perhaps, the most famous one is the

resource theory of entanglement. In this case, entanglement is the resource, obviously;

the set of free states is composed by all separable states — those which are not entangled;

and the free operations are Local Operations and Classical Communications (LOCC) —

these operations can only decrease the entanglement of a system.
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Reference [1] formalized a resource theory of coherences — see also [2] for a review.

Since coherence is a basis depend property, the first step is to introduce a reference

orthonormal basis of the system Hilbert space. Let us denote this reference basis by the set

{|i〉}. The free states in this resource theory are all states which are incoherent (diagonal)

in the reference basis. If I|i〉 is the set of free states, ρ ∈ I|i〉, means

ρ =
∑
i

pi|i〉〈i|. (B.18)

The free operations in this case, called incoherent operations, are composed by quan-

tum maps with Kraus decomposition EIO(.) =
∑

mKm(.)K†m, such that for any m and

any incoherent state ρf ∈ I|i〉,

KmρfK
†
m

tr
{
KmρfK

†
m

} ∈ I|i〉. (B.19)

In this approach, coherence is defined as a resource under the set of incoherent operations

EIO.

Given a resource theory, a monotone is any function satisfying

1. f(ρf ) = 0 for any free state ρf .

2. f(Efree(ρ)) 6 f(ρ), for any free operation Efree.

That is, a monotone is a nonnegative function from states to real numbers that vanishes

for free states and is nonincreasing under the set of free operations.

As showed in [1], the relative entropy of coherence

C(ρ) = min
σ∈I|i〉

S(ρ||σ) = S(ρ||D|i〉(ρ)) = S(D|i〉(ρ))− S(ρ), (B.20)

where

D|i〉(ρ) =
∑
i

|i〉〈i|ρ|i〉〈i|, (B.21)

is a monotone in the resource theory of coherences defined by incoherent operations. Its

monotonicity follows directly from (B.15).
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An alternative to the aforementioned resource theory is the resource theory of coher-

ence as asymmetry with respect to a translation group [151, 159].

In this case, given a fixed operator, which I will assume is a time-independent Hamil-

tonian H , the free states are all those states which are translationally invariant,

e−itHρfe
itH = ρf , ∀t ∈ R. (B.22)

In fact, this is equivalent to the set of states that commute with the Hamiltonian. Conse-

quently, the resourceful states are those containing energy coherences. Denoting by IH
the set of incoherent states, the three conditions are equivalent:

ρ ∈ IH ⇐⇒ [ρ,H] = 0⇐⇒ e−itHρeitH = ρ. (B.23)

Similarly, the set of free operations is composed of the quantum maps that are trans-

lationally invariant (TIO); i.e., those for which

e−itHETIO(ρ)eitH = ETIO(e−itHρeitH), ∀t ∈ R, (B.24)

for any state ρ.

Such maps are implemented by applying a globally energy preserving unitary acting

jointly on the system of interest and an environment prepared in an incoherent state [159].

One monotone of this resource theory is the Wigner-Yanase-Dyson skew informa-

tion [151, 159]:

Iy(ρ,H) = −1

2
tr
{

[ρy, H][ρ1−y, H]
}
. (B.25)

This satisfies Iy(ρ,H) > 0, with equality if and only if ρ ∈ IH [157, 158].

Moreover, since translationally invariant operations are a subset of incoherent opera-

tions [2, 159], the relative entropy of coherence is also a monotone in the resource theory

of asymmetry [2, 159].

One also have resource theories of thermodynamics. In this case, the resources are

anything that can be converted into work.

The resource theory of thermodynamics is commonly defined in terms of thermal

operations [120, 121], and is closely related to the resource theory of asymmetry.
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As in TIOs, thermal operations (TOs) are implemented by energy conserving unitaries

acting on the system and an environment. The difference is that the initial incoherent state

of the environment is required to be a thermal state. Thus, a TO can be written as

Eth(ρS) = trE{USE(ρS ⊗ ρth
E)U †SE}, [USE, HS +HE] = 0, (B.26)

where HS/E is the Hamiltonian of the system/environment and ρth
E = e−βHE/ tr

{
e−βHE

}
is a thermal state of the environment at inverse temperature β = 1/T .

Thermal operations satisfy [9, 10]:

e−itHSEth(ρS)eitHS = Eth(e
−itHSρSe

itHS), (B.27)

Eth(ρ
th
S ) = ρth

S (B.28)

where ρth
S = e−βHS/ tr

{
e−βHS

}
.

The first equation means TOs are translationally invariant with respect to the system

Hamiltonian HS . The second, that the thermal state ρth
S is the free state of the resource

theory — this means no work can be extracted from it, and that we cannot drive the system

out of equilibrium without performing work.

Therefore, thermal operations constitute a subset of translationally invariant opera-

tions. As a consequence, both the Wigner-Yanase-Dyson skew information and the rela-

tive entropy of coherence are monotones in the resource theory of thermodynamics [9].

Two other important monotones in this case are

S(Eth(ρS)||ρth
S ) 6 S(ρS||ρth

S ), (B.29)

which is used to define entropy production, and

S(Eth(ρS)||DH(Eth(ρS))) 6 S(ρS||DH(ρS)), (B.30)

where

DH(ρ) =
∑
i

ΠiρΠi, (B.31)
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with Πi the eigenprojectors of H and DH the dephasing map on the energy subspaces.

Equation (B.30) is used to define the resource of athermality [121]. Note that DH and

Eth commute [9]. Equation (B.31) is a generalization of (B.21) for the cases where the

spectrum of H is degenerate.
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Time-Reversed Dynamics

Although its name suggests the change t → −t, what the time-reversal operation really

reverses is the "motion" of the system. Meaning, it reverses linear and angular momenta,

as well as magnetic fields.

In quantum theory, the time-reversal operator Θ is the operator satisfying [130]

ΘQΘ−1 = Q, ΘPΘ−1 = −P,

ΘJΘ−1 = −J, ΘBΘ−1 = −B,
(C.1)

where Q, P and J are, respectively, the position, linear and angular momentum opera-

tors; while B stands for a magnetic field. Therefore, Θ must be an antiunitary operator,

meaning it fulfills

Θc = c∗Θ, for any complex number c, (C.2)

〈Θψ|Θφ〉 = 〈ψ|φ〉∗, for any two vectors |ψ〉 , |φ〉 ∈ H, (C.3)

∃Θ−1 | Θ−1Θ = 1, (C.4)

where "∗" denotes complex conjugation and H is the system Hilbert space. Condi-

tion (C.2) states the antilinearity of Θ, while (C.3) and (C.4) show that the operation

preserves probability and norm and is invertible.

Let us consider now a Hamiltonian H(g(t);B), where g is a parameter that changes

in time. We assume this Hamiltonian is invariant under time-reversal operation with the
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change B→ −B,

ΘH(g(t);B)Θ−1 = H(g(t);−B). (C.5)

As in Chapter 3, let us consider that in the forward process the work parameter g

changes during the time 0 6 t 6 τ according to a function gt. We denote by Ug(t, 0;B)

the unitary time-evolution operator generated by the protocol gt. Conversely, in the back-

ward process, g changes according to g̃t = gτ−t. That is, the temporal sequence of values

of g is reversed. We denote by Ug̃(t, 0;B) the backward time-evolution operator.

For a system with time-reversal symmetry (C.5), we may expect the following: Sup-

pose we start in a state ρi and drive it in accordance with the protocol gt up to some

time tf . At this point, we perform a time-reversal operation and subsequently apply

g̃t for the same amount of time. In the end we time-reverse the system again. This

should result in the same state ρi. Put differently, if a system is initially in a state ρi and

evolves according to the unitary Ug(tf , 0) to the state ρf = Ug(tf , 0;B)ρiU
†
g (tf , 0;B);

then the time-reversed state ΘρfΘ
−1 should evolve under the action of Ug̃(tf , 0) to the

state ΘρiΘ
−1 = Ug̃(tf , 0;−B)ΘρfΘ

−1U †g̃ (tf , 0;−B). A simple exercise gives

Ug̃(t, 0;−B) = ΘU †g (t, 0;B)Θ−1. (C.6)

The proof of Eq. (C.6) goes as follows [169]. The unitary Ug obeys the Schrödinger

equation
∂

∂t
Ug(t, 0;B) = −iH(gt;B)Ug(t, 0;B), Ug(0, 0;B) = 1, (C.7)

while for Ug̃,

∂

∂t
Ug̃(t, 0;B) = −iH(g̃t;B)Ug̃(t, 0;B), Ug̃(0, 0;B) = 1. (C.8)

Making the change of variable t→ τ − t in (C.7), we get

∂

∂t
Ug(τ − t, 0;B) = iH(gτ−t;B)Ug(τ − t, 0;B). (C.9)

Applying Θ to the left, multiplying by U †g (τ, 0;B)Θ−1 to the right and using that gτ−t =
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g̃t, this becomes

∂

∂t
ΘUg(τ − t, 0;B)U †g (τ, 0;B)Θ−1 = −iΘH(g̃t;B)Ug(τ − t, 0;B)U †g (τ, 0;B)Θ−1.

(C.10)

Now, one should note thatUg(τ−t, 0;B)U †g (τ, 0;B) = U †g (t, 0;B) and ΘU †g (0, 0;B)Θ−1 =

1. Finally, using that the Hamiltonian is time-reversal invariant, i.e., satisfies (C.5), we

see that ΘU †g (t, 0;B)Θ−1 obeys the same linear differential equation with the same initial

condition as Ug̃(t, 0;−B). In other words,

∂

∂t
ΘU †g (t, 0;B)Θ−1 = −iH(g̃t;−B)ΘU †g (t, 0;B)Θ−1, ΘU †g (0, 0;B)Θ−1 = 1.

(C.11)

Hence, we must have Ug̃(t, 0;−B) = ΘU †g (t, 0;B)Θ−1 for 0 6 t 6 τ .

154



Appendix D

Full vs. Positive Parity

Thermodynamics

In this Appendix I compare the entropy production after an instantaneous quench using

the positive parity and the full Ising Hamiltonians.

For simplicity, lets us take h = 0 in (2.11), and work with the usual homogeneous

transverse field Ising model. Moreover, we set J = 1.

In this case, the homogeneous transverse field Ising Hamiltoian,

HI = −
N∑
j=1

(
σxj σ

x
j+1 + gσzj

)
, (D.1)

may be written as [94]

HI = P+H+
I P

+ + P−H−I P
−, (D.2)

where P± are the projectors onto the positive and negative subspaces of the parity opera-

tor,

P± =
1

2
(1± P ), P =

N∏
j=1

σzj . (D.3)

As shown in Sec 4.1 for the positive parity Hamiltonian, but with completely similar

results for the negative parity part, we may write them in diagonal form as

H±I =
∑
k∈K±I

εk(2η
†
kηk − 1). (D.4)
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Here, {ηk} are fermionic operators,

K+
I =

{
k = ±(2n+ 1)

π

N
; n = 0, 1, ..., N/2− 1

}
, (D.5)

K−I =
{
k = 0, k = ±2n

π

N
, k = π; n = 1, ..., N/2− 1

}
, (D.6)

where I assumed N is an even number, and

εk =
√

(g − cos k)2 + sin2 k, (D.7)

εk=0 = g − 1, (D.8)

εk=π = g + 1, (D.9)

are the dispersion relations.

Moreover, the following commutation relations hold

[HI, P ] = [H±I , P
±] = 0. (D.10)

In Chapter 2 I argued the transformation that diagonalizes H±I does not preserve par-

ticle number, but it, nonetheless, preserves parity. So, let us assume we can write

P± =
1

2
± 1

2
exp

iπ ∑
k∈K±I

η†kηk

 (D.11)

Let us compute the partition function,

ZF = tr
{
e−βH

}
= tr

{
P+e−βH

+

+ P−e−βH
−
}

=
1

2

(
tr
{
e−βH

+
}

+ tr

exp

iπ ∑
k∈K+

I

η†kηk

e−βH+


+ tr

{
e−βH

−
}
− tr

exp

iπ ∑
k∈K−I

η†kηk

e−βH−

)
.

(D.12)
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We can evaluate each term individually,

Zc+ = tr
{
e−βH

+
}

=
∏
k∈K+

I

tr
{
e−βεk(2η†kηk−1)

}
=
∏
k∈K+

I

2 cosh(βεk), (D.13)

Zs+ = tr

exp

iπ ∑
k∈K+

I

η†kηk

e−βH+

 =
∏
k∈K+

I

tr
{
e(iπ−2βεk)η†kηk+βεk

}
(D.14)

=
∏
k∈K+

I

2 sinh(βεk),

Zc− = tr
{
e−βH

−
}

=
∏
k∈K−I

tr
{
e−βεk(2η†kηk−1)

}
=
∏
k∈K−I

2 cosh(βεk), (D.15)

Zs− = tr

exp

iπ ∑
k∈K−I

η†kηk

e−βH−
 =

∏
k∈K−I

tr
{
e(iπ−2βεk)η†kηk+βεk

}
(D.16)

=
∏
k∈K−I

2 sinh(βεk),

The total partition function is, thus, given by

ZF =
1

2

(
Zc+ + Zs+ + Zc− − Zs−

)
. (D.17)

This result was also obtained in [55] following a similar reasoning and in [147] using a

different method.

We may also compute the internal energy

E = tr

{
H
e−βH

ZF

}
= tr

{
1

ZF

(
P+H+e−βH

+

+ P−H−e−βH
−
)}

. (D.18)

Following the same steps employed in the calculation of the partition function we
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obtain,

E = − 1

2ZF

(
Zc+

∑
k∈K+

εk tanh(βεk) + Zs+
∑
k∈K+

εk coth(βεk)

+Zc−
∑
k∈K−

εk tanh(βεk)− Zs−
∑
k∈K−

εk coth(βεk)

)
.

(D.19)

Similarly, in an infinitesimally and instantaneously quenched system, the work done

is given by

WF = tr
{

∆Hρth} = tr
{

∆Hdρth} (D.20)

= − δg

2ZF

(
Zc+

∑
k∈K+

∂gεk tanh(βεk) + Zs+
∑
k∈K+

∂gεk coth(βεk) (D.21)

+Zc−
∑
k∈K−

∂gεk tanh(βεk)− Zs−
∑
k∈K−

∂gεk coth(βεk)

)
, (D.22)

where I used that the dephased part of the perturbation ∆Hd is given by

∆Hd = P+
∑
k∈K+

δg(∂gεk)(2η
†
kηk − 1) + P−

∑
k∈K−

δg(∂gεk)(2η
†
kηk − 1). (D.23)

Finally, the full Hamiltonian entropy production is given by

ΣF = β(WF −∆F ) = ln
ZF |τ
ZF |0

+ βWF , (D.24)

where ZF |0/τ is the full partition function associated with the field value g0/gτ .

Let us compare now the full partition function (D.17) with the positive parity partition

function Zc+. The comparison is shown in Fig. D.1(a) and (b) for chains of a hundred

and a thousand spins, respectively. At high temperatures and/or the paramagnetic region,

g > 1, the approximation ZF ≈ Zc+ is precise. However, at low temperatures and

in the ferromagnetic region, g < 1, Zc+ corresponds to only half of the total partition

function ZF . The area covered by the error slightly decreases with increasing number of

spins [147]. As explained in [147], this deviation at low temperatures occurs because of
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Figure D.1: Comparison between the partition functions of the full Ising Hamiltonian
ZF , and the positive parity Hamiltonian Zc+. (a) For a chain of 100 spins. (b) For a chain
of 1000 spins.

the exponentially vanishing energy gap between the positive and negative parity ground

states (see Eq. (2.53)) in the ferromagnetic region.

We can make a similar comparison between the full entropy production (D.24) and

the positive parity entropy production,

Σ+ =
∑
k∈K+

I

(
ln

cosh(βετk)

cosh(βε0k)
− β(gτ − g0) cos θk tanh

(
βε0k
))
, (D.25)

where εαk = εk(gα) and ∂g0ε
0
k = cos θk = (g0 − cos k)/ε0k.

The results are shown in Fig. D.2. Contrary to what happens for the partition function,

the approximation ΣF ≈ Σ+ is extremely suitable for almost all points in the β−g plane,

even for a fairly small chain of 50 spins — Fig. D.2(a). There is only a small deviation of

around 10% in the vicinity of the critical field. As expected, when N increases, the region

of discrepancy decreases — Fig. D.2(b) for a 100 spins and (c) for 200 spins.

In Fig. D.3 I further compare the shape of the curves of the full and positive parity

entropy production as a function of the initial field g0. The plots are for an inverse tem-

perature β = 100, quench amplitude δg = 0.01 and chain sizes of (a) 100, (b) 1000 and

(c) 10000 spins. The curves are quiet close to each other with a small discrepancy in the

vicinity of the critical field g0 = 1. Again, the difference decreases as the size of the chain

increases.
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Figure D.2: Comparison between the entropy production of the full Ising Hamiltonian
ΣF , and the positive parity Hamiltonian Σc+ for chains of (a) 50 (b) 100 and (c) 200 spins.
In all points, the quench amplitude is δg = 0.01.
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Figure D.3: Comparison between the entropy production per spin of the full Ising Hamil-
tonian ΣF/N , and the positive parity Hamiltonian Σc+/N as a function of the initial field
g0 for chains of (a) 100 (b) 1000 and (c) 1000 spins. Other parameters values are β = 100
and quench amplitude δg = 0.01. The curves are also scaled by δg2.
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