
            

PAPER • OPEN ACCESS

Contributions from populations and coherences in
non-equilibrium entropy production
To cite this article: Adalberto D Varizi et al 2021 New J. Phys. 23 063027

 

View the article online for updates and enhancements.

You may also like
Diatomic molecule in a strong infrared
laser field: level-shifts and bond-length
change due to laser-dressed Morse
potential
Sandor Varro, Szabolcs Hack, Gábor
Paragi et al.

-

Tribological and microstructure studies of
LM26/SiC metal matrix composite
materials and structures for high
temperature applications
Suyash Y. Pawar, Soheil Gohari, Mizan
Ahmed et al.

-

An innovative approach to the improved
radiating divertor concept by supersonic
molecular beam injection on HL-2A
Guoliang Xiao, Hailong Du, Dongmei Fan
et al.

-

This content was downloaded from IP address 128.151.150.25 on 16/06/2023 at 18:27

https://doi.org/10.1088/1367-2630/abfe20
/article/10.1088/1367-2630/acde9e
/article/10.1088/1367-2630/acde9e
/article/10.1088/1367-2630/acde9e
/article/10.1088/1367-2630/acde9e
/article/10.1088/2053-1591/acde4b
/article/10.1088/2053-1591/acde4b
/article/10.1088/2053-1591/acde4b
/article/10.1088/2053-1591/acde4b
/article/10.1088/1741-4326/acdd13
/article/10.1088/1741-4326/acdd13
/article/10.1088/1741-4326/acdd13


New J. Phys. 23 (2021) 063027 https://doi.org/10.1088/1367-2630/abfe20

OPEN ACCESS

RECEIVED

2 March 2021

REVISED

29 April 2021

ACCEPTED FOR PUBLICATION

5 May 2021

PUBLISHED

11 June 2021

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the
title of the work, journal
citation and DOI.

PAPER

Contributions from populations and coherences in
non-equilibrium entropy production

Adalberto D Varizi1,2 , Mariana A Cipolla1, Martí Perarnau-Llobet3 ,
Raphael C Drumond4 and Gabriel T Landi1,∗

1 Instituto de Física da Universidade de São Paulo, 05314-970 São Paulo, Brazil
2 Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 30123-970, Belo Horizonte, Minas

Gerais, Brazil
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Abstract
The entropy produced when a quantum system is driven away from equilibrium can be
decomposed in two parts, one related with populations and the other with quantum coherences.
The latter is usually based on the so-called relative entropy of coherence, a widely used quantifier
in quantum resource theories. In this paper we argue that, despite satisfying fluctuation theorems
and having a clear resource-theoretic interpretation, this splitting has shortcomings. First, it
predicts that at low temperatures the entropy production will always be dominated by the classical
term, irrespective of the quantum nature of the process. Second, for infinitesimal quenches, the
radius of convergence diverges exponentially as the temperature decreases, rendering the functions
non-analytic. Motivated by this, we provide here a complementary approach, where the entropy
production is split in a way such that the contributions from populations and coherences are
written in terms of a thermal state of a specially dephased Hamiltonian. The physical
interpretation of our proposal is discussed in detail. We also contrast the two approaches by
studying work protocols in a transverse field Ising chain, and a macrospin of varying dimension.

1. Introduction and preliminary results

Quantum coherence and quantum correlations play a key role in the thermodynamics of microscopic
systems [1, 2]. They can be exploited to extract useful work [3–9], speed-up energy exchanges [10–13], and
improve heat engines [14–19]. On a more fundamental level, they alter the possible state transitions in
thermodynamic processes [20–22], lead to new forms of work and heat fluctuations [23–28], modify the
fluctuation–dissipation relation (FDR) for work [29–31] and may even generate heat flow reversals
[32–35]. Understanding the role of coherence in the formulation of the laws of quantum thermodynamics
is therefore a major overarching goal in the field, which has been the subject of considerable recent
interest.

When a system relaxes to equilibrium, in contact with a heat bath, quantum coherences are known to
contribute an additional term to the entropy production [21, 36, 37], which quantifies the amount of
irreversibility in the process. A similar effect also happens in unitary work protocols [38, 39]. To be
concrete, we focus on the latter and consider a scenario where a system is described by a Hamiltonian
Ht = H(gt), depending on a controllable parameter gt . The system is initially prepared in thermal
equilibrium at a temperature T, such that its initial state is the thermal state ρth

0 ≡ ρth(g0) = e−βH0/Z0,
where β = 1/T and Z0 = tr e−βH0 is the partition function. At t = 0, a work protocol gt , that lasts for a
total time τ , is applied to the system, driving it out of equilibrium [40, 41]. Letting U denote the unitary
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Figure 1. Difficulties in identifying the classical and quantum contributions to the entropy production. (a) A work protocol
H(gt ) can modify the Hamiltonian in two ways: altering the energy level spacings, which can be viewed as a semi-classical effect,
and rotating the energy eigenbasis, which is a fully quantum property with no classical counterpart. (b) The entropy production
(2) compares the final state ρτ with the reference thermal state ρth

τ . To understand its classical and quantum contributions, the
splitting (3) uses an intermediate state DHτ (ρτ ). Conversely, in this paper we introduce the splitting (10), which uses the state ρ̃th

τ ,
in equation (17). (c) The contributions Γqu and Γcl of equation (3) in a minimal qubit model, as a function of βω, plotted using
equations (6) and (7) with θ = 1.1 (see text for details). (d) The new splitting (10) (see also equation (11)), which yields
physically more reasonable results at low temperatures.

generated by the drive, the state of the system after a time τ will be

ρτ = Uρth
0 U†. (1)

In general, ρτ will be very different from the corresponding equilibrium state ρth
τ = e−βHτ /Zτ . This

difference is captured by the entropy production (also called non-equilibrium lag in this context) [42–45],

Σ = S
(
ρτ‖ρth

τ

)
, (2)

where S
(
ρ||σ

)
= tr {ρ(ln ρ− lnσ)} is the quantum relative entropy. The non-equilibrium lag is directly

proportional to the irreversible work [46–48], Σ = β
(
〈W〉 −ΔF

)
, where 〈W〉 = tr

(
Hτ ρτ − H0ρ

th
0

)
is the

work performed in the process and ΔF = F(gτ ) − F(g0) is the change in equilibrium free energy,
F(g) = tr

{
H(g)ρth(g)

}
− TS(ρth(g)) (with S (ρ) = −tr{ρ ln ρ} being the von Neumann entropy). Due to

its clear thermodynamic interpretation, has been widely used as a quantifier of irreversibility, both
theoretically [45–53] and experimentally [54–65].

The entropy production Σ in equation (2) contains contributions of both a classical and quantum
nature. This is linked with the fact that the work protocol gt can modify the Hamiltonian H(gt) in two ways.
On the one hand, it may alter the spacing of the energy levels; and, on the other, it may rotate the
eigenvectors (figure 1(a)). The latter is directly associated with quantum coherence and to the fact that
[H(gt1 ), H(gt2 )] �= 0, for two different times t1, t2. It therefore has no classical counterpart, and corresponds
to a fundamental feature distinguishing classical and quantum processes. In general, these two processes will
become mixed, and hence identifying how each physical process contributes to Σ is in general a challenging
task. In the literature, a popular choice is the splitting put forward in [20, 21, 36, 38]:

Σ = Γcl + Γqu, (3)

where

Γcl = S
(
DHτ (ρτ )‖ρth

τ

)
, (4)

Γqu = S
(
ρτ‖DHτ (ρτ )

)
= S

(
DHτ (ρτ )

)
− S(ρτ ), (5)

with DH(ρ) being the super-operator that completely dephases the state ρ in the eigenbasis of H (explicitly
defined below, in equation (12)). The first term, Γcl, measures the entropic distance between the
populations of the actual final state ρτ and those of the reference thermal state ρth

τ , and is generally
identified with the classical contribution. The term Γqu, in turn, is known as the relative entropy of
coherence and compares the final state ρτ with the dephased state DHτ (ρτ ). It hence captures the
contribution from coherences in the energy basis. By construction, Γcl and Γqu in equation (3) are both
non-negative, which shows that coherences increase the entropy production in the process, as compared to
a fully classical (incoherent) scenario. One should also clarify that, since the changes in populations and
coherences are inevitably mixed, the terminology ‘classical’ vs ‘quantum’ is not entirely precise, nor is there
a one-to-one relationship between this and the terms ‘populations’ and ‘coherences’. For instance, while Γqu

depends only on the basis rotation (coherences), depends on both the changes in energy eigenvalues, as well
as the eigenbasis rotation. Notwithstanding, as we will show, in the case of infinitesimal quenches, these
distinctions can be made precise.
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The splitting (3), first analyzed in [20], has been studied in the context of the resource theory of
thermodynamics [21], relaxation towards equilibrium [36, 37], thermodynamics of quantum optical
systems [66] and work protocols in the absence of a bath [9, 38, 39]. At the stochastic level, both Γqu and Γcl

satisfy individual fluctuation theorems [38], which is a very desirable property. Moreover, Γcl has a
resource-theoretic interpretation within the resource theory of athermality [67, 68], while Γqu is a natural
monotone in the resource theory of coherence [69, 70]. These facts make the splitting (3) a valuable tool in
understanding the relative contribution of classical and quantum features to non-equilibrium processes.
However, working with various models, we have observed that this splitting behaves strangely, even in some
simple protocols. More specifically, we identify two main shortcomings.

The first concerns the relative magnitudes of Γqu and Γcl: at low temperatures, Γcl will always be much
larger than Γqu. The reason is purely mathematical: Γqu is a special kind of relative entropy because it can be
expressed as a difference between two von Neumann entropies, as in the second equality of (5). As β →∞,
ρth

0 tends to a pure state and hence S(ρτ ) tends to zero, while S(DHτ (ρτ )) ∈ [0, ln d], where d is the
dimension of the Hilbert space. As a consequence, Γqu will always remain finite. The term Γcl, on the other
hand, generally diverges when the support of ρτ is not contained in that of ρth

τ [71], meaning Γcl will grow
unbounded when β →∞. This implies that it is impossible to construct a low-temperature process where
the quantum term dominates.

More precisely, consider again the two types of drivings depicted in figure 1(a): one that alters the
spacing of the energy levels (associated here to a classical process), and one which may rotate eigenvectors
(associated here to a quantum process). At strictly zero temperature, a Gibbs state is invariant under the
first class of protocols, and hence we may expect that any entropy production in (2) has a quantum origin.
However, the opposite identification arises in the splitting (3). The reason for this apparent contradiction is
rather simple: the splitting (3) is not characterising whether the driving generates quantum coherence or
not; rather, given a possibly coherent process, it characterises how much the final diagonal and off-diagonal
terms contribute to the total entropy production.

This issue can be neatly illustrated by a minimal qubit model. Consider a qubit which starts at
H0 = ωσz and is suddenly quenched (U = 1) to Hτ = ω(σz cos θ + σx sin θ) (where σα are Pauli matrices).
In this quench the energy levels remain intact and all that happens is that the eigenbasis is rotated by an
angle θ. This is thus, by all accounts, a highly quantum process. The entropy production (2) for this model
reads

Σ = 2t tanh−1(t)sin2(θ/2), (6)

where t = tanh(βω) ∈ [0, 1]. On the other hand, the coherent contribution Γqu in equation (5), reads

Γqu = t tanh−1(t) − t cos θ tanh−1(t cos θ) − 1

2
ln
(
1 + sinh2(βω)sin2 θ

)
. (7)

A plot of Γqu and Γcl = Σ− Γqu is shown in figure 1(c) as a function of βω, for θ = 1.1. As can be
seen, in general both quantities are comparable in magnitude. But, as the temperature goes down (β goes
up), the classical contribution becomes increasingly larger and eventually dominates. Thus, at very low
temperatures, most of Σ comes from the population term Γcl and very little from coherences.

The above considerations highlight the fact that splitting the total entropy production (2) in a classical
and quantum contribution may be highly non-trivial, and that different splittings might provide different
insights. In particular, we argue that the splitting in equation (3) does not appropriately distinguish
coherent from non-coherent drivings (see figure 1), but instead characterises how populations and
off-diagonal terms contribute to entropy production. In this work, we will propose a new complementary
splitting that better incorporates the difference between coherent and non-coherent drivings.

A second issue with the splitting (3) concerns infinitesimal quenches. This is a very important scenario,
widely studied in the context of critical systems [72–75] and quasi-isothermal processes [29, 30]. The idea is
to analyze the entropy production perturbatively, for a small instantaneous quench of the work parameter,
from g to g + δg. The problem with Γqu and Γcl in this case is that, as will be shown, the parameter δg
appears multiplied by a factor that increases exponentially with β. Hence, the radius of convergence of Γqu

and Γcl, in δg, tends to zero exponentially fast as β →∞. For Σ, no such issue arises.
This is again well illustrated by the qubit example in equations (6) and (7), where the quench parameter

is now the angle θ. We see that Σ in (6) can be readily expanded in powers of θ, for any temperature β (or
any t = tanh(βω)). The same is not true for Γqu, however. The problem is in the third term of equation (7),
which is a function of x = sinh2(βω)sin2θ . This quantity appears inside a logarithm, in the form ln (1 + x).
However, a series expansion of ln (1 + x) only converges if |x| < 1. And since the prefactor sinh2(βω) grows
exponentially with β, at low temperatures, extremely small values of are required to validate a series
expansion.

3
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Figure 2. Splitting of the entropy production in a cyclic qubit model, Hτ = H0 = ωσz . The unitary is generated by an x-pulse
with a duration τ ; that is, U = e−iτ(H0+hxσ

x ), where hx is the pulse intensity. The curves were computed using
equations (14)–(16) and (18) and (19), with ω = 1, hx = 1.3 and two different values of τ : in (a) and (b) τ = 0.4 and in (c) and
(d) τ = 1.

More generally, one can readily show that for Σ this issue does not arise. If we use Σ = β
(
〈W〉 −ΔF

)
,

we find in the case of infinitesimal quenches that

Σ = βtr
{
ΔHρth(g0)

}
− βΔF, (8)

where ΔH = H(g0 + δg) − H(g0) and ΔF = F(g0 + δg) − F(g0). A series expansion of Σ in δg therefore
amounts to two things. First, an expansion of ΔH in powers of δg, which is entirely independent of β. And
second, an expansion of F(g), which is an analytic and generally smooth function (except possibly at a
critical point [73]). Indeed, if H(g) is linear in g, the leading order contribution to the expansion
becomes [74]

Σ � −1

2
βδg2 ∂

2 F

∂g2
0

, (9)

showing that Σ is simply proportional to the equilibrium susceptibility, a textbook quantity used
throughout equilibrium statistical mechanics.

The above results show that, despite its interesting properties (individual fluctuation theorems and
resource-theoretic interpretation), the splitting (3) is not a fully satisfying splitting of the entropy
production into a classical and quantum contribution (in the sense described in figure 1(a)). In order to
capture the difference between coherent and non-coherent drivings, in this paper we propose a different
splitting, which is inspired by the recent results of [30]. We label it as

Σ = Λcl + Λqu. (10)

The actual definitions of Λqu and Λcl will be given below in section 2 and a stochastic trajectories
formulation will be given in section 3. A comparison in the case of the minimal qubit example is also
presented in figure 1(d). In this case, using the results of section 2, one finds the following elegant
expression for Λqu (to be contrasted with equation (7)):

Λqu =
1

2
ln

(
1 − tanh2(βω cos θ)

1 − tanh2(βω)

)
. (11)

As seen in figure 1(d), Λqu and Λcl behave as desired: since the process is highly coherent, Λcl is very small;
and as the temperature goes down, Λqu grows monotonically, showing that cold processes have higher
contributions from the coherences.

4
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Table 1. Comparison between Λqu, Λcl, Γqu and Γcl.

Λqu Λcl Γqu Γcl

Fluctuation theorem � � �
Fluctuation theorem when ΔH → 0 � �
Analytic when ΔH → 0 and low T �
Resource-theoretic interpretation �
Vanishing for commuting protocols � — � —
Dominant for highly coherent protocols � — —
Dominant at low temperatures � — —

The features discussed in figure 1 are not restricted to quenches. To illustrate that we show in figure 2
another qubit example, where the process is assumed to be cyclic, with Hτ = H0 = ωσz, and the unitary is
taken to be generated by an x-pulse with a duration τ ; that is, U = e−iτ(H0+hxσ

x), where hx is the pulse
intensity. Figure 2 illustrates the results for ω = 1, hx = 1.3 and two choices of τ : in the upper panels
τ = 0.4 and in the lower panels τ = 1. The results show that for (3) the behavior is always roughly the
same, with Γcl always eventually dominating at low temperatures. Conversely, for the new splitting (10) a
richer competition is observed. Depending on the parameters we may either have Λqu dominating, or Λcl,
or both.

As we will show in this paper, our new splitting (10) more accurately distinguishes which part of the
entropy production is generated by a commuting or non-commuting drive. This provides a complementary
approach to the standard splitting in equation (3), which instead describes how populations and coherences
in the final state contribute to entropy production. On the other hand, we also note that Λqu and Λcl do not
share some of the nice properties of Γqu and Γcl. First, Λqu cannot be directly linked with a monotone for
coherence or asymmetry [70]. Second, while Λcl always satisfies an individual fluctuation theorem, Λqu only
does so in the case of infinitesimal quenches. Different properties of each splitting are highlighted in table 1.
We also show that for infinitesimal quenches at high temperatures, both splittings coincide—see
section 3.3.

To illustrate the usefulness of our results, we analyze our new splitting in two quantum many-body
problems. Previous works have focused on the behavior of the statistics of work and entropy production Σ

for quantum quenches [72–77], with emphasis in quantum phase transitions [73, 78–85]. Motivated by
this, we analyze in section 4 the transverse field Ising model (TFIM), and discuss the behavior of (10) in the
vicinity of the quantum critical point. This is complementary to the analysis put forth in [39], which
studied equation (3). Then, in section 5, we consider a macrospin of varying size and focus on the full
statistics of Λqu and Λcl, including their probability distributions and their first four cumulants. We finish
with conclusions and future perspectives in section 6.

2. Splittings of the entropy production

In this section we introduce our alternative splitting of the entropy production (equation (10)). We focus
for now at the level of averages; the corresponding stochastic formulation will be presented in section 3.

Let O denote any Hermitian observable and decompose it as O =
∑

αoαΠα, where Πα are projectors
onto the subspaces with eigenvalues oα. We define the dephasing operation

DO(•) =
∑
α

Πα •Πα. (12)

The rationale of the splitting equation (3) was to introduce an intermediate step, associated with the state
DHτ (ρτ ) (figure 1(b)). This represents the final state ρτ dephased in the eigenbasis of the final Hamiltonian.
If the process generates coherences, this state will differ from the actual final state ρτ and their entropic
distance will be precisely Γqu in equation (5).

For convenience, we introduce the non-equilibrium free energy, associated with the final
Hamiltonian Hτ

F(ρ) = tr {Hτρ} − TS(ρ). (13)

Non-equilibrium free energies depend on two parameters, H and ρ. However, in this paper, we will
henceforth only need free energies defined with respect to Hτ , so we write it more simply as F(ρ). In terms
of F, the entropy production (2) can be written as

Σ = β
{

F(ρτ ) − F(ρth
τ )

}
. (14)

5



New J. Phys. 23 (2021) 063027 A D Varizi et al

Similarly, one can also express Γqu and Γcl in terms of free energy differences. Since
tr {HτDHτ (ρτ )} = tr {Hτ ρτ}, one finds that

Γqu = β
{

F(ρτ ) − F
(
DHτ (ρτ )

)}
, (15)

Γcl = β
{

F
(
DHτ (ρτ )

)
− F(ρth

τ )
}

, (16)

which clearly add up to Σ.
The splitting (3) uses DHτ (ρτ ) as intermediate state. Our new splitting (10) follows a similar logic, but in

reverse: instead of working with ρτ dephased in the basis of Hτ , we work with Hτ dephased in the basis of
ρτ . More precisely, we define

ρ̃th
τ =

exp{−βDρτ (Hτ )}
tr
(
exp{−βDρτ (Hτ )}

) , (17)

which is a thermal state based only on the incoherent part of Hτ , in the basis of ρτ (as a consequence,
[ρ̃th

τ , ρτ ] = 0). With this in mind, we now define

Λcl = β
{

F(ρτ ) − F(ρ̃th
τ )

}
, (18)

Λqu = β
{

F(ρ̃th
τ ) − F(ρth

τ )
}

, (19)

which add up to Σ, as in equation (10). The first term, Λcl, compares the two commuting states ρτ and ρ̃th
τ

and is hence associated with their population mismatch. The nonnegativity of Λcl becomes evident by
noting that it can also be written as

Λcl = S(ρτ‖ρ̃th
τ ). (20)

The term Λqu, on the other hand, compares ρth
τ ∝ e−βHτ with ρ̃th

τ ∝ e−βDρτ (Hτ ). Unlike Λcl, the contribution
Λqu cannot be written as a relative entropy. In fact, written down explicitly, it reads

Λqu = tr
{
ρτ

(
ln ρ̃th

τ − ln ρth
τ

)}
. (21)

Notwithstanding, as shown in appendix A, it turns out that Λqu is still non-negative, and zero if and only if
[ρτ , Hτ ] = 0.

Throughout this paper we will provide several additional justifications as to why the choices (18) and
(19) are physically reasonable, starting in section 2.1. But before doing so, let us briefly revisit the minimal
qubit model defined above equation (6). The process is a quench (U = 1), so ρτ = ρth

0 . Hence, all we need
to do in order to compute Λqu is to dephase the final Hamiltonian Hτ = ω(σz cos θ + σx sin θ) in the basis
of ρth

0 . Or, what is equivalent, in the basis of H0. The result is thus simply Dρτ (Hτ ) = ω cos(θ)σz. Using this
in (19) yields equation (11), which is the result plotted in figure 1(d) and discussed in section 1.

2.1. Infinitesimal quenches
The physics of the problem becomes particularly simpler in the case of infinitesimal quenches. We therefore
now specialize the above results to this scenario. This will provide strong justifications in favor of the new
splitting (10). Furthermore, in this limit the splitting (10) becomes equivalent to the one recently put
forward in [30]. More precisely, in [30] the authors describe quasi-isothermal processes as a series of
infinitesimal quenches, and in particular consider how Σ splits into a classical and quantum contribution.
Focusing on a single infinitesimal quench, both approaches become directly comparable and, as we will
show, agree with each other.

We thus analyze what happens if we take U = 1, and assume that H changes only by a small amount
ΔH(i.e., we write Hτ = H0 +ΔH). Since U = 1, the state of the system remains unchanged: ρτ = ρth

0 .
Therefore, dephasing Hτ in the basis of ρτ is equivalent to dephasing in the basis of H0:

Dρτ (Hτ ) = Dρth
0

(Hτ ) = DH0 (Hτ ). (22)

Let us define the dephased (incoherent) and coherent parts of the perturbation ΔH, in the initial energy
basis, ΔHd = DH0 (ΔH) and ΔHc = Hτ − DH0 (Hτ ). Then, following a procedure detailed in appendix B of
reference [30], one may show that,

ρ̃th
τ = ρth

0 − βJρth
0

[ΔHd − 〈ΔHd〉0] +O(ΔH2), (23)

ρth
τ = ρth

0 − βJρth
0

[ΔH − 〈ΔH〉0] +O(ΔH2), (24)

6
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where 〈. . . 〉0 = tr{. . . ρth
0 } and Jρ is a super-operator defined as

Jρ[•] =

∫ 1

0
ρt • ρ1−t dt. (25)

We see that both ρth
τ and ρ̃th

τ can be expanded essentially in a power series in βΔH. Conversely, the same is
not true for the state DHτ (ρth

0 ) entering (16) and (15). In fact, one may show that to order ΔH [86]

DH0+ΔH(ρth
0 ) = ρth

0 + lim
s→∞

i

s

∫ s

0
dt

∫ 1

0
dx t e−ixH0t[ρth

0 ,ΔH]eixH0t . (26)

Even though this is an expansion in ΔH, the dependence on β enters in a highly non-trivial way. This
explains the non-analytic behavior of Γcl and Γqu at low temperatures, discussed in section 1.

Plugging (23) and (24) in equations (2), (20) and (21) leads, up to second order, to

Σ =
β2

2
tr

{
ΔH Jρth

0
[ΔH − 〈ΔH〉0]

}
= Λcl + Λqu, (27)

Λcl =
β2

2
tr

{
ΔHd

Jρth
0

[ΔHd − 〈ΔHd〉0]
}

, (28)

Λqu =
β2

2
tr

{
ΔHc

Jρth
0

[ΔHc]
}

, (29)

where we used the fact that 〈ΔH〉0 = 〈ΔHd〉0. The interesting aspect of these results is that, within this
infinitesimal quench limit, Λcl and Λqu are found to be related to Σ via the simple separation of the
perturbation, , into a dephased and a coherent part. These results also coincide with the splitting proposed
in [30].

An additional justification for the splitting (10) can be given in terms of the FDR. As shown in
references [29, 30], equation (27) can also be written as

Σ =
1

2
β2 Var0[ΔH] − βQ, (30)

where Var0[ΔH] = 〈ΔH2〉0 − 〈ΔH〉2
0, is the variance of the perturbation, and

Q =
β

2

∫ 1

0
dy Iy(ρth

0 ,ΔH) � 0, (31)

is a measure of quantum coherence, associated with the so-called Wigner–Yanase–Dyson skew
information [87]

Iy(�, X) = −1

2
tr
{

[�y, X][�1−y, X]
}
. (32)

For incoherent processes one recovers the usual FDR Σ = β2

2 Var0[ΔH] [46]. But when the process is
coherent, the FDR is broken by a term −βQ. Repeating the same procedure for Λcl and Λqu, one readily
finds that

Λcl =
β2

2
Var0[ΔHd], Λqu =

β2

2
Var0[ΔHc] − βQ. (33)

Whence, Λcl always satisfies a standard FDR, and all violations are associated to Λqu. This provides
additional justification as to why Λqu is referred to as a quantum contribution.

In the case of high temperatures (β → 0), one may show that Q̃O(β3). Moreover, the state entering the
variances in equation (33) can be replaced with the maximally mixed state I/d. As a consequence, we find
that to leading order in β,

Λcl =
β2

2
VarI/d[ΔHd], Λqu =

β2

2
VarI/d[ΔHc]. (34)

Both contributions are thus found to scale as β2 in this limit, which agrees with the observations in
figures 1(c) and (d). However, their relative contribution will be determined by the variance of ΔHd and
ΔHc in the maximally mixed state; hence, which term will be dominant will depend on the details of the
process (either a commuting or a non-commuting drive). This is also expected to remain true for general
drives.
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3. Stochastic trajectories

We now discuss how to formulate the splittings (3) and (10) at the level of stochastic trajectories, based on a
standard two-point measurement (TPM) scheme [48]. Since Σ = β

(
〈W〉 −ΔF

)
, the statistics of Σ can be

obtained solely from measurements in the eigenbasis of the initial and final Hamiltonians. As first shown in
[38], a major advantage of the original splitting (3) is that this remains true when assessing the individual
contributions Γcl and Γqu; that is, no additional measurements are necessary. As we will now show, the same
is also true for Λcl and Λqu (equation (10)). This means that both splittings can be assessed, at the stochastic
level, with the same amount of information as a standard TPM.

Irrespective of the splitting one is interested in, the protocol may therefore be described as follows.
Initially the system is in the thermal state ρth

0 , associated with the Hamiltonian H0 =
∑

iε
0
i |i0〉〈i0|. The first

measurement is performed in the basis |i0〉, which occurs with probability p0
i = e−βε0

i /Z0. Conversely, the
second measurement is performed at time τ , after the map (1), and in the eigenbasis of the final
Hamiltonian Hτ =

∑
jε
τ
j |jτ 〉〈jτ |. The bases {|i0〉} and {|jτ 〉} are, in general, not compatible.

The conditional probability of finding the system in |jτ 〉 given that it was initially in |i0〉 is |〈jτ |U|i0〉|2.
The probability associated with the forward protocol |i0〉 → |jτ 〉 is thus PF[i, j] = |〈jτ |U|i0〉|2p0

i . The
dynamics is defined as being incoherent when |〈jτ |U|i0〉|2 = δi,j , which means U is not able to generate
transitions between states of the initial and final Hamiltonians. Similarly, in the backward protocol the

system starts in ρth
τ and one measures first in the basis of Hτ , yielding |jτ 〉 with probability pτj = e−βετj /Zτ .

The time-reversed unitary U† is then applied, after which one measures in the basis |i0〉 of H0. This yields
the backward distribution PB[i, j] = |〈i0|U†|jτ 〉|2pτj .

The entropy production associated to the trajectory |i0〉 → |jτ 〉 is now defined as usual:

σ[i, j] = ln
PF[i, j]

PB[i, j]
= ln p0

i /pτj . (35)

The second equality follows from the fact that |〈i0|U†|jτ 〉|2 = |〈jτ |U|i0〉|2 . As a consequence, σ[i, j]
depends only on the equilibrium populations p0

i and pτj , associated with the initial and final Hamiltonians.
As can be readily verified, 〈σ[i, j]〉 =

∑
i,jσ[i, j]PF[i, j] = Σ, returns precisely equation (2). In addition,

σ[i, j] also satisfies an integral fluctuation theorem 〈e−σ〉 = 1 (see equation (43) for more details).

3.1. Stochastic definitions for the splittings (3) and (10)
Following [38], we now define stochastic quantities associated to Γcl and Γqu. In order to do that, we first
write the dephased state DHτ (ρτ ) as DHτ (ρτ ) =

∑
jq

τ
j |jτ 〉〈jτ |, where

qτj = 〈jτ |ρτ |jτ 〉 =
∑

i

|〈jτ |U|i0〉|2p0
i . (36)

In passing, we note that qτj =
∑

iPF[i, j], so qτj can also be interpreted as the marginal distribution of the
final measurement. As shown in [38], we may now define

γcl[i, j] = ln qτj /pτj , (37)

γqu[i, j] = ln p0
i /qτj . (38)

Clearly γcl[i, j] + γqu[i, j] = σ[i, j], which is the stochastic analog of (3). Moreover, 〈γcl[i, j]〉 = Γcl and
〈γqu[i, j]〉 = Γqu.

Similarly, we construct stochastic quantities for the new quantities Λcl and Λqu in equation (10). The
central object now is the thermal state ρ̃th

τ , defined in equation (17) and associated with the Hamiltonian
Dρτ (Hτ ). Since the system evolves unitarily, ρτ = Uρth

0 U† =
∑

ip
0
i |ψi〉〈ψi|, where |ψi〉 = U|i0〉. That is, ρτ

has the same populations p0
i as ρth

0 , but a rotated eigenbasis. Based on this, we can now write
equation (17) as

ρ̃th
τ =

∑
i

p̃τ
i |ψi〉〈ψi|, p̃τi = e−β(ε̃τi −F(ρ̃th

τ )), (39)

where ε̃τi = 〈ψi|Hτ |ψi〉 are the eigenvalues of the dephased Hamiltonian Dρτ (Hτ ) and F(ρ̃th
τ ) is the same free

energy as that appearing in equation (18). We then define

λcl[i, j] = ln p0
i /p̃τi , (40)

λqu[i, j] = ln p̃τi /pτj . (41)

These quantities satisfy λcl[i, j] + λqu[i, j] = σ[i, j], as well as 〈λcl[i, j]〉 = Λcl and 〈λqu[i, j]〉 = Λqu.

8
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3.2. Cumulant generating functions
For all stochastic quantities in the previous section, we can define their corresponding probability
distributions or, what is more convenient, their cumulant generating functions (CGFs). For instance, from
(35) we define

P(σ) =
∑

i,j

PF[i, j]δ(σ − σ[i, j]), (42)

from which we may compute the CGF, Kσ(v) = ln〈e−vσ〉. With some manipulations, this can be neatly
written as [53, 88]

Kσ(v) = ln tr
{

(ρth
τ )v(ρτ )1−v

}
= (v − 1)Sv(ρth

τ ‖ρτ ). (43)

The second equality expresses the CGF in terms of the Rényi divergences
Sv(ρ‖σ) = (v − 1)−1 ln tr

{
ρvσ1−v

}
, which may be convenient in some situations. Setting v = 1 yields

Kσ(1) = 0, which is the integral fluctuation theorem [40, 41]

〈
e−σ

〉
= 1. (44)

In addition, from the CGF we may compute any cumulant of σ as

κn(σ) = (−1)n∂
nKσ

∂vn

∣∣∣∣
v=0

, (45)

with κ1(σ) = Σ being the mean in equation (2).
We may also compute the joint CGF of γcl and γqu, defined as Kγcl,γqu(v, u) = ln〈e−vγcl−uγqu〉. With

similar manipulations, it may be written as

Kγcl,γqu(v, u) = ln tr
{

(ρth
τ )v

[
DHτ (ρτ )

]u−v
(ρτ )1−u

}
. (46)

The CGF of σ = γcl + γqu, equation (43), is recovered by setting u = v; that is Kσ(v) = Kγcl,γqu (v, v). The
reduced CGFs of γcl and γqu are found by setting u = 0 or v = 0, respectively:

Kγcl
(v) = ln tr

{
(ρth

τ )v
[
DHτ (ρτ )

]−v
ρτ

}
, (47)

Kγqu (u) = ln tr
{[
DHτ (ρτ )

]u
(ρτ )1−u

}
. (48)

From this one may verify that γcl and γqu individually satisfy fluctuation theorems

〈e−γcl〉 = 〈e−γqu〉 = 1. (49)

Note also that, except in certain particular cases, equation (46) cannot be written as a sum of two CGFs,
which means γcl and γqu are statistically dependent.

Similarly, we compute the joint CGF of λcl and λqu, defined as Kλcl,λqu (v, u) = ln〈e−vλcl−uλqu〉. It reads

Kλcl,λqu (v, u) = ln tr
{

(ρth
τ )u(ρ̃th

τ )v−u(ρτ )1−v
}
. (50)

The reduced CGFs of λcl and λqu are again found by setting u = 0 an v = 0,

Kλcl
(v) = ln tr

{
(ρ̃th

τ )v(ρτ )1−v
}

(51)

Kλqu (u) = ln tr
{

(ρth
τ )u(

˜
ρth
τ )−uρτ

}
. (52)

Once again, λcl and λqu are, in general, statistically dependent. Equation (51) implies that λcl satisfies a
fluctuation theorem,

〈e−λcl〉 = 1. (53)

But the same is not true for λqu. Notwithstanding, as we will show, this property is recovered in the limit of
infinitesimal quenches.
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3.3. Infinitesimal quenches
As before, we now specialize the above expressions to the case of infinitesimal quenches. Since U = 1, the
path probability reduces to PF[i, j] = |〈jτ |i0〉|2p0

i . Moreover, since ΔH is assumed to be small, |jτ 〉 will be
close to |i0〉 and ετj will be close to ε0

j . For concreteness, we assume that the spectra of H0 is non-degenerate.
Standard perturbation theory then yields, to order ΔH2,

ετj = ε0
j +ΔHjj + E(2)

j , (54)

where ΔHij = 〈i0 |ΔH| j0〉 and E(2)
j =

∑
l �=j|ΔHjl|2/(ε0

j − ε0
l ). Note that if we split ΔH = ΔHd +ΔHc, the

first non-trivial contribution of the former is ΔHjj, while that of the latter is E(2)
j . Similarly, the eigenstates

|jτ 〉 of the final Hamiltonian can be expanded as

|〈jτ |i0〉|2 =
|ΔHij|2

(ε0
j − ε0

i )2
, (55)

for i �= j while |〈jτ j0〉| 2 = 1 −
∑
� �=j

|〈jτ �0〉|2.

Using this, we can expand all relevant probabilities {p̃τj }, {qτj } and {pτj } entering in the stochastic
definitions (35), (37), (38), (40) and (41):

p̃τi = p0
i (1 − f̃ i), (56)

pτj = p0
j (1 − fj), (57)

qτj = p0
j (1 − sj) (58)

where

f̃ j = β(ΔHjj − 〈ΔHd〉0) + β2〈ΔHd〉0(ΔHjj − 〈ΔHd〉0) +
1

2
β2[ΔH2

jj − 〈(ΔHd)2〉0], (59)

fj = f̃ j + β[E(2)
j − 〈E(2)〉0], (60)

sj =
∑
� �=j

1 − e−β(ε0
�
−ε0

j )

(ε0
j − ε0

�)2
|ΔH�j|2, (61)

and 〈E(2)〉0 =
∑

ip
0
i E(2)

i . Note how f̃ j depends only on the diagonal part of the perturbation, ΔHd. This is in
line with equation (23). Conversely, fj, which is associated with the full probabilities pτj , also has an

additional contribution from E(2)
j , which is the term associated to coherences.

Inserting equations (56) and (57) into equations (35), (37), (38), (40) and (41) we obtain,

σ[i, j] = ln p0
i /p0

j − ln(1 − fj), (62)

γcl[i, j] = ln(1 − sj) − ln(1 − fj), (63)

γqu[i, j] = ln p0
i /p0

j − ln(1 − sj), (64)

λcl[i, j] = − ln(1 − f̃ i), (65)

λqu[i, j] = ln p0
i /p0

j + ln(1 − f̃ i) − ln(1 − fj). (66)

We are now in the position to discuss the analyticity of the entropy production and its splittings, at the

stochastic level. A series expansion of ln(1 − x) is convergent only for |x| < 1. Thus, since p0
i /p0

j = e−β(ε0
i −ε0

j )

is a well behaved function, the analyticity of σ, λcl and λqu are all conditioned on having |fj| < 1 and

|f̃ j| < 1, which is satisfied if β|ΔHij| � 1, as intuitively expected. Thus, the quantities of our new proposed
splitting (10) behave, from an analytical point of view, similarly to the full entropy production.

On the other hand, equations (63) and (64) rely on |sj| < 1. Each sj in (61) is a weighted contribution
from all energies ε0

� , with � �= j. At low temperatures, those energies for which ε0
� < ε0

j will yield an

exponentially large contribution 1 − e−β(ε0
�
−ε0

j ) to the sum. Conversely, those with ε0
� > ε0

j will contribute
negligibly. The expansion is thus not in powers of βΔH, which is also visible from (26). Instead, it is an
expansion in powers of ΔH, with coefficients that depend exponentially in β. Violating the condition
|sj| < 1 is thus exponentially easier at low temperatures. These results show that the shortcomings
illustrated in section 1, are in fact absolutely general.
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Figure 3. Analyticity of thermodynamic quantities at the stochastic level, for the minimal qubit model of figure 1. The figure
compares equation (67) (red-solid), (68) (blue-dashed) and (69), as a function of βω for θ = 0.1. The condition |s1| < 1, for the
analyticity of γcl and γqu, is quickly violated. For σ, λcl and λqu, on the other hand, the conditions |f1| < 1 and |̃f 1| < 1 are
satisfied for a much larger range of temperatures.

To better illustrate this discussion, we revisit the minimal qubit model example treated in section 1.
Initially the system’s Hamiltonian is H0 = ωσz, and after an instantaneous quench it becomes
H1 = ω(σz cos θ + σx sin θ), where we consider θ to be small. The problematic term in this case is s1

(equation (61)), which is given by

s1 =
(
1 − e2βω

)( sin θ

2

)2

. (67)

In comparison, we have

f̃ 1 = 2βω sin2(θ/2)(1 + tanh βω)
[
1 + 2βω sin2(θ/2) tanh βω

]
(68)

f1 = f̃ 1 +
1

2
βω sin θ(1 − tanh βω). (69)

In figure 3 we plot equations (67)–(69) as a function of βω, for θ = 0.1. The condition for analyticity of γcl

and γqu in this case, |s1| < 1, is rapidly violated with increasing βω. For σ, λcl and λqu, instead, |f1| < 1 and

|f̃ 1| < 1 for a much larger range of temperatures. It is also interesting to note that, at low temperatures, the
excited state thermal probabilities p0

1, p̃τ1 and pτ1 ∝ e−βω all tend to zero exponentially as e−βω . Conversely, qτ1
tends to sin2( θ

2 ). This corroborates the use of thermal states, such as (17), as intermediate states for the
splitting of Σ, as it ensures that the resulting functions are analytic.

We now move on to discuss what becomes of the CGFs of section 3.2 in the infinitesimal quench regime.
We start with the CGFs of σ, λcl and λqu in equations (43), (50)–(52). Using equations (62), (65) and (66),
together with the path probability PF[i, j] = p0

i |〈jτ |i0〉|2, we find to order ΔH2, that

Kλcl,λqu (v, u) = Kλcl
(v) + Kλqu (u), (70)

where

Kλcl
(v) =

β2

2
(v2 − v)Var0[ΔHd], (71)

Kλqu (u) =
β2

2
(u2 − u)Var0[ΔHc] +

β2

2

∫ u

0
dx

∫ 1−x

x
dyIy(ρth

0 ,ΔHc). (72)

These results are quite illuminating. Equation (70) implies λcl and λqu become statistically independent in
this limit. Moreover, since Kσ(v) = Kλcl,λqu (v, v), we now find that

Kσ(v) = Kλcl
(v) + Kλqu (v). (73)

This means that all cumulants of σ can be split as a sum of the cumulants of λcl and λqu:
κn(σ) = κn(λcl) + κn(λqu). For all intents and purposes, the two channels of entropy production, Λcl and
Λqu, may thus be regarded as stemming from independent processes: Λcl gives the entropy production
associated with a quench from H0 → DH0 (Hτ ), while Λqu is associated with a second quench from
DH0 (Hτ ) → Hτ . We also note that, from equation (73), it can now be seen that in this limit λqu satisfies an
integral fluctuation theorem: 〈e−λqu〉 = 1.
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In contrast, for the original splitting (3), we have

Kγcl,γqu(v, u) = ln
∑

i,j

(p0
j /p0

i )u(1 − sj)
u−v(1 − fj)

vp0
i |〈jτ |i0〉|2. (74)

Once again, a series expansion of (1 − sj)−x is convergent only if |sj| < 1. However, if |sj| < 1 is satisfied,
which happens for sufficiently high temperatures, one may show that, to order ΔH2, we can also split
Kγcl,γqu (v, u) = Kγcl

(v) + Kγqu (u). And, what is more important, Kγcl
and Kγqu coincide with Kλcl

and Kλqu

respectively. Whence, at sufficiently high temperatures the splittings (3) and (10) coincide, even at the
stochastic level. However, this is only true for infinitesimal quenches. Otherwise, the two splittings may
differ, even at high temperatures.

4. Transverse field Ising model

We now turn to discuss applications of our framework. We begin with the behavior of the splitting (10) in
the one-dimensional TFIM, which is a prototypical model of a quantum critical system. An analysis of (3)
for the same model was recently made in [39]. Here we aim to contrast those results with our new splitting
(10). We thus restrict the analysis to quench protocols, and study the problem at the level of the averages Λcl

and Λqu (equations (18) and (19)). Non-trivial unitaries and higher order statistics will be studied in
section 5, for a different model.

We begin by introducing the model and delineating the steps to compute Λcl and Λqu. To make the
paper self-consistent, some additional details are provided in appendices B and C. Consider a linear chain of
N spins, each described by Pauli operators σx,y,z

j and interacting via the Hamiltonian

H(g) = −
N∑

j=1

(
Jσx

j σ
x
j+1 + gσz

j

)
, (75)

where g is the applied magnetic field and J is the coupling strength, which we henceforth set to unity
(J = 1). We consider periodic boundary conditions, σα

N+1 = σα
1 . This model presents critical points at

g = ±1, where the system changes from a ferromagnetic phase, for |g| < 1, to a paramagnetic phase, for
|g| > 1.

After a series of transformations (see appendix B) this Hamiltonian can be written as

H(g) =
∑

k

εk(g)
(

2η†kηk − 1
)

, (76)

where {ηk} are fermionic operators and

εk(g) =
√

(g − cos k)2 + sin2 k, (77)

are the single-particle energies. Here, k = ±(2n + 1)π
N , with n = 0, 1, ..., N/2 − 1, denotes the system’s

quasi-momenta. We consider that the system initially has a transverse field g0 and is prepared in the thermal
state ρth

0 = e−βH0/Z0. The full expression for ρth
0 can be found in appendix C. Due to the structure of (76), it

can be decomposed as a product over individual modes, which greatly facilitates the calculation of all
thermodynamic quantities.

The system is then decoupled from the reservoir and undergoes an instantaneous quench, where the
field is changed to gτ = g0 + δg. Since the quench is instantaneous, the state of the system remains the
same, but its Hamiltonian changes, from H0 to Hτ = H0 +ΔH, where ΔH = −δg

∑
jσ

z
j . Full details on the

computation of Λcl and Λqu are provided in appendices B and C. The overall contributions of the diagonal
vs off-diagonal is described by the Bogoliubov angle cos θk = (g0 − cos k)/ε0

k and sin θk = sin k/ε0
k . And

the state (17), associated with the dephased final Hamiltonian, is described by the modified energies
ε̃τk = ε0

k + δg cos θk.
We are interested in the thermodynamic limit (N very large), where k sums can be converted to integrals

and all quantities become extensive in N. In this case, we ultimately find that

Λcl = N

∫ π

0

dk

2π
2

{
ln

[
cosh

(
βε̃τk

)
cosh

(
βε0

k

)
]
+ β

(
ε0

k − ε̃τk
)

tanh
(
βε0

k

)}
, (78)

and

Λqu = N

∫ π

0

dk

2π
2 ln

[
cosh

(
βετk

)
cosh

(
βε̃τk

)
]
. (79)
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Figure 4. Comparison between (a) Γcl and Λcl, and (b) Γqu and Λqu, for the TFIM, as a function of β, with g0 = 0.75 and
δg = 0.01.

Adding both contributions recovers the full entropy production Σ, which was computed in [39, 73, 83] and
reads

Σ = N

∫ π

0

dk

2π
2

{
ln

[
cosh

(
βετk

)
cosh

(
βε0

k

)
]
+ β

(
ε0

k − ε̃τk
)

tanh
(
βε0

k

)}
. (80)

For comparison, in appendix D we also present the formulas for the splitting (3), which were developed in
[39]. We also mention, in passing, that equations (78) and (79) are not perturbative in the quench
magnitude. That is, they hold for arbitrary quenches δg. The only assumption is that U = 1. For
completeness, their behavior in the infinitesimal case is presented in equations (C13) and (C14).

Figure 4 compares the two splittings (3) and (10) as a function of β, with fixed g0 = 0.75 (outside
criticality) and δg = 0.01. At high temperatures, one clearly sees how both splittings coincide. This
corresponds to the region of parameters where Γcl and Γqu are analytic. But as the system is cooled, they
eventually begin to differ. In particular, Γcl tends to grow linearly with β, while Λcl tends to zero. For the
quantum components the opposite is observed: Γqu tends to saturate while Λqu tends to grow. Thus, at
very low temperatures Λqu becomes the dominant contribution in (10), while becomes the dominant one in
(3).

Next we turn to the behavior near criticality. In figure 5 we plot Γcl, Γqu, Λcl and Λqu as a function of the
initial field g0, for different values of β (focusing on low temperatures) and fixed quench magnitude of
δg = 0.01. The full entropy production Σ behaves similarly to Λqu in figure 5(a); for any finite T it presents
a peak at g0 = 1, which eventually tends to a divergence as β →∞. As is clear by comparing figures 5(a)
and (b), the dominant contribution to the splitting (10) is Λqu. Moreover, Λqu is found to always grow (and
eventually diverge) with β at g0 = 1, while Λcl sharply drops to zero. Conversely, for the splitting (3), we
find in figures 5(c) and (d) that the dominant contribution is instead that of the populations Γcl. Crucially,
we find that in this case Γqu remains finite as β →∞, while Γcl diverges [39]. We also call attention to the
non-monotonic dependence on β, of the quantities in figure 5(c). This is an artifact of the fact that Γqu is
scaled by β. The quantity Γqu itself is monotonic, but its behavior changes from β2 at high temperatures, to
in low temperatures [39].

As highlighted in [39], the entropy production in this limit results entirely from the changes in
occupations, i.e. creation/annihilation of particles, in the modes ±k, when the quench is performed. This
enters in Γcl as a population mismatch between the initial and final equilibrium states. Conversely, in the
split (10), it enters in Λqu as resulting from the rotating energy basis. On the other hand, Λcl only quantifies
the contribution to the entropy production resulting from a change in the energy levels given by
ε̃τk − ε0

k = δg cos θk. In the low temperature limit, only the ground and low lying excited states are relevant,
and close to the critical point g0 = 1, the latter corresponds to creating excitations with momentum k → 0;
but one can easily show that at g0 = 1, cos θk = | sin(k/2)|, which goes to zero when k → 0. This explains
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Figure 5. Λqu, Λcl, Γqu and Γcl for the TFIM as a function of g0, for different values of β (in the low temperature regime) and
δg = 0.01. All quantities are scaled by βδg2.

the drop in Λcl at this point. Overall, figure 5 therefore shows that the critical properties of these quantities
depend crucially on the type of splitting used.

5. Macrospin model

Finally, we analyze our framework from the stochastic perspective developed in section 3. To emphasize the
generality of our results, we also focus on non-quench scenarios (U �= 1). We consider a macrospin model,
with d = 2S + 1 levels and spin operators Sx, Sy, Sz[89]. We consider a scenario similar to that of figure 2:
the initial and final Hamiltonians are taken to coincide, being given by H0 = Hτ = −hzSz. And the unitary
is driven by a magnetic pulse in the x direction, so U = exp{−iτ(H0 − hxSx)}. Since the Hamiltonian is
cyclic, the eigenbases |i0〉 and |jτ 〉 coincide. However, since the unitary is now non-trivial, the final state
ρτ = Uρth

0 U† will contain coherences in the Sz-basis.
A panel summarizing the results for the splitting (10) is shown in figure 6, where we plot the first four

cumulants of λcl (images (a)–(d)) and those of λqu (images (f)–(i)), as a function of the Hilbert space
dimension d and for different values of β. In figures 6(e) and (j), we also show exemplary plots of the full
distributions P(λcl) and P(λqu), for fixed d = 200 and two values of β. For comparison, a similar panel, but
for the quantities in (3), is shown in figure 7. Note also that some cumulants are scaled by either d or β,
whenever a simple scaling rule could be found.

From these plots the following conclusions can be drawn. Concerning figure 6, all cumulants of λcl are
found to be intensive, saturating at a finite value when d →∞. Conversely, all cumulants of λqu are
extensive, scaling proportionally to d. The cumulants of λqu also scale with powers of β at low temperatures
(figures 6(f)–(i)), but for higher order cumulants this scaling only becomes good at very low temperatures.
For the splitting (3) the situation is reversed: now the cumulants of γcl become extensive (and quite similar
to those of λqu), while those of γqu tend to saturate. The only exception is κ1(γqu), which is found to grow
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Figure 6. Statistics of the splitting (10) for the macrospin model, as a function of the Hilbert space dimension d and different
values of β, as shown in image (f). (a)–(d) First four cumulants of λcl. (e) P(λcl) for d = 200, with β = 1 (blue) and β = 2.5
(red). (f)–(j) Same, but for λqu. Some of the cumulants are scaled by powers of β and d, whenever such a scaling law exists.
Additional parameters: hz = 1, hx = 0.5 and .

Figure 7. Same as figure 6, but for the splitting (3).

logarithmically with d. Notice that this dependence on the dimensionality is fundamentally different from
what was found in the TFIM (section 4), where all quantities were extensive in the number of particles. We
also note that the statistics of λcl (figure 6(e)) has significantly smaller support than that of λqu. This is a
consequence of the fact that, from its definition in equation (40), λcl depends only on the initial points |i0〉,
while λqu depends on both |i0〉 and |jτ 〉.

The results in figure 6(e) indicate that even when d →∞, the distribution of λcl will never tend to a
Gaussian. Conversely, for γcl in figure 7(e), this is clearly the case. This is supported by a comparison of the
corresponding cumulants in images (a)–(d), which are intensive for λcl and extensive for γcl. As for λqu and
γqu, even though the histograms in figures 6(j) and 7 (j) do not seem to indicate a Gaussian behavior, this is
expected to eventually occur for sufficiently large d. For λqu, the scaling with d is similar to γcl, and hence
the same argument as above applies. Conversely, the situation for γqu is more delicate, since the first
cumulant scales only logarithmically (and hence very slowly) with d. Extremely large sizes may thus be
necessary for a Gaussian behavior to be observed.

One might expect that in the limit d →∞ one should recover a classical spin model. This does not
happen, however, as is evidenced by the fact that the coherent terms Γqu and Λqu do not vanish in this limit,
but actually increase with d. The explanation for this rests essentially on a coarse-graining argument. Even
though we take d →∞, we continue to assume we have full access to all eigenstates of the system, as
appears, for instance, in the dephasing operations involved in constructing the intermediate states.

6. Conclusion

In this article, we studied how entropy production can be divided into a classical and quantum
contribution, when a system is driven out of equilibrium. A popular choice in the literature is given in
equation (3), see in particular [38]. This splitting has several interesting properties, including individual
fluctuation theorems for each term [38] and a resource-theoretic interpretation [20, 21, 36]. However, we
here noted it also has two major shortcomings. First, we showed that the classical contribution Γcl in
equation (3) dominates for highly coherent processes and at low temperatures, in contrast with what might
be expected. We observed this undesired behavior in all considered systems, from a simple driven qubit to a
many-body Ising model at criticality, and identified the divergence of the relative entropy in (4), at low
temperatures, as the underlying cause. Second, given a perturbation δg of the Hamiltonian, the radius of
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convergence of Γqu and Γcl tends to zero exponentially fast as β →∞, making this splitting impractical to
characterise the entropy production of quenched systems at low temperatures.

In order to overcome these shortcomings, we suggested a new splitting for the entropy production given
in equation (10), which was motivated by the developments of reference [30] for infinitesimal quenches.
The definition is valid arbitrarily out-of-equilibrium. We also provided a formulation in terms of stochastic
trajectories and a physical interpretation, highlighting how it can be obtained following a similar logic to
the one behind (3). Indeed, both (3) and (10) can be understood by introducing intermediate states for
comparison. The different choices, however, turn out to have crucial consequences, especially for highly
coherent processes. Indeed, in the low-temperature regime the quantum term dominates in equation (10),
but the classical one does in (3). For high temperatures and infinitesimal quenches, both splittings coincide.
A comparison between the two approaches is summarized in table 1.

More generally, our considerations illustrate that it is non-trivial to identify the classical and quantum
contributions in entropy production for an arbitrarily out-of-equilibrium process. In analogy with the
definition of work for coherent processes [26, 90], the splitting of Σ in a classical and quantum term may
not be unique, and will depend on the specific context into consideration. Nevertheless, there are some
relevant scenarios where such a splitting is unambiguous. One is in a thermalization process described by
either a Markovian master equation or as a resource-theoretic state transformation; in both cases, such a
distinction seems to be very well captured by equation (3) [20, 21, 36]. On the other hand, when an
equilibrium state is slightly moved out of equilibrium (e.g. by an infinitesimal quench), the splitting (10)
provides a more accurate description of the quantum and classical contributions. In fact, in such a scenario,
the entropy production can be decomposed into a classical and quantum contribution at all levels of the
statistics, as shown in section 3.2 (see also [30, 31, 91]). For general out-of-equilibrium processes, however,
classical and quantum contributions become inevitably mixed. Still, our results show that the splitting (10)
has a more reasonable behavior (i.e., the quantum term dominates at low temperatures and for highly
coherent processes).

In a second part of the article, we applied these ideas to a TFIM, and to a macrospin undergoing finite
time dynamics. For the Ising model, we found that the behavior close to criticality is fundamentally
different for both splittings, with the quantum component playing a predominant role for (10) and the
classical component being dominant in (3). For the macrospin model, we focused not only on the average,
but on the full statistics, including the first four cumulants and the corresponding probability distributions.
We have found that different cumulants scale with the Hilbert space dimension d in non-trivial ways, some
being extensive, others intensive or even logarithmic.

We hope that these results help to motivate further investigations on the non-trivial way in which
populations and coherences intermix in quantum thermodynamic processes. We are particularly interested
in further understanding how this unfolds for many-body systems in general. In particular, the analysis of
higher order cumulants for these models has been seldom explored in the literature, even for Σ itself. It
would also be interesting to generalize the present results for open systems, undergoing generic interactions
with a heat bath. This can be done for quasi-static processes, following the approach in [30]. Or it can be
constructed in a controllable way using collisional models [92]. Finally, these ideas could also be extended
to describe quantum correlations in bipartite systems. For instance, instead of studying the entropy
production in a work protocol, one may analyze it in the context of heat exchange between two quantum
correlated systems, which are locally thermal, as studied in [35].
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Appendix A. Nonnegativity of Λqu

In this appendix we show that Λqu defined in equation (19) is also non-negative, even though it cannot be
written as a relative entropy. The proof is essentially based on the Bogoliubov variational theorem [93]. The

first term in equation (19) reads explicitly F(
˜
ρth
τ ) = tr

{
˜
ρth
τ Hτ

}
− TS(

˜
ρth
τ ). At first sight, this is not an

equilibrium free energy, because the Hamiltonian Hτ is not the same as the one appearing in the exponent
of ρ̃th

τ (equation (17)). However, due to the presence of the trace, we can equivalently write this as

F(
˜
ρth
τ ) = tr

{
˜
ρth
τ Dρτ (Hτ )

}
− TS(

˜
ρth
τ ), which shows that it is actually an equilibrium free energy. Next, we

note that the final Hamiltonian can be rewritten as Hτ = Dρτ (Hτ ) + Hc
τ , where Hc

τ = Hτ − Dρτ (Hτ ). The
Bogoliubov variational theorem [93] then yields

F(ρth
τ ) � F(

˜
ρth
τ ) + tr

{
˜
ρth
τ Hc

τ

}
. (A1)

But, by construction, Hc
τ = Hτ − Dρτ (Hτ ) has only off-diagonal elements in the common eigenbasis of ρ̃th

τ

and ρτ . Thus, the second term in equation (A1) vanishes. Plugging the resulting inequality back into
equation (19), we finally conclude that Λqu � 0.

We can also show that for any finite temperature Λqu is zero if and only if ρτ is incoherent in the
eigenbasis of Hτ . The if part of this statement is easy: when ρτ is incoherent in the final energy eigenbasis,
Dρτ (Hτ ) = DHτ (Hτ ) = Hτ , which leads to Λqu(ρτ ) = 0. Conversely, if we assume that Λqu(ρτ ) = 0 and
β > 0, we must have F(ρ̃th

τ ) − F(ρth
τ ) = 0. This implies that

+∞∑
k=0

(−β)k

k!
tr

{
Hk

τ − Dρτ (Hτ )k
}
= 0, (A2)

which means tr Hk
τ − Dρτ (Hτ )k = 0, ∀ k ∈ N. The case k = 0 is trivial and the case k = 1 follows directly

from the definition of Dρτ (Hτ ). For the case k = 2, we use that

tr
{

H2
τ

}
= tr

{(
Dρτ (Hτ ) + Hc

τ

)2
}
= tr

{
Dρτ (Hτ )2 + 2Dρτ (Hτ )Hc

τ + (Hc
τ )2

}
.

Again, using the definition of Dρτ (Hτ ) one may verify that tr {Dρτ (Hτ )Hc
τ} = 0. Therefore we are left with

tr
{

H2
τ − Dρτ (Hτ )2

}
= tr

{(
Hτ − Dρτ (Hτ )

)2
}
= 0. (A3)

But since Hτ − Dρτ (Hτ ) is also Hermitian, we must have Hτ − Dρτ (Hτ ) = 0. Then, since Dρτ (Hτ ) = Hτ ,
for k � 3, tr

{
Hk

τ − Dk
ρτ

(Hτ )
}
= 0 follows trivially, and ρτ must be incoherent in the eigenbasis of Hτ , i.e.,

we must have [ρτ , Hτ ] = 0.

Appendix B. Diagonalization of the transverse field Ising model

The TFIM Hamiltonian in equation (75) can be diagonalized by a series of transformations, as shown in
[94]. Our notation follows closely that of reference [39], which contains a self-contained derivation of these
results. The first step is the introduction of a Jordan–Wigner transformation, that maps the spin chain onto
an equivalent system of spinless fermions,

σx
j = (c†j + cj)

∏
i<j

(1 − 2c†i ci), σz
j = 1 − 2c†j cj, (B1)

where c†j and cj are canonical creation and annihilation fermionic operators. We assume N is large and even.
We may then ignore boundary terms [95], and introduce the Fourier transform

cj =
e−ıπ/4

√
N

∑
k

ck eıkj, (B2)

where k = ±(2n + 1) π
N and n = 0, 1, ..., N/2 − 1. Equation (75) is then transformed to

H(g) =
∑
k>0

[
(g − cos k)(c†kck − c−kc†−k) + sin k(c†kc†−k + c−kck)

]
. (B3)
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Next, we introduce a new set of Fermionic operators ηk through the Bogoliubov transformation

ηk = cos(θk/2)ck + sin(θk/2)c†−k. (B4)

With the definitions

εk(g) =
√

(g − cos k)2 + sin2 k,

(sin θk, cos θk) =

(
sin(k)

εk
,

g − cos(k)

εk

)
,

(B5)

we then finally obtain

H(g) =
∑

k

εk(g)
(

2η†kηk − 1
)
. (B6)

Exploring the fact that ε−k(g) = εk(g), we can rewrite H(g) as a sum over only positive values of k,

H(g) =
∑
k>0

2εk(g)(η†kηk + η†−kη−k − 1). (B7)

This is useful because, as we will see, a perturbation δg couples pairs of modes +k and −k. Finally, if we let
|n−knk〉 be the joint eigenstates of η†−kη−k and η†kηk, where n±k = 0, 1, we may also write

H(g) =
∑
k>0

2εk(g)
(
−|0−k0k〉〈0−k0k|+ |1−k1k〉〈1−k1k|

)
. (B8)

If we consider now a perturbation δg in the field, we have

ΔH = −δg
N∑

j=1

σz
j = δg

N∑
j=1

(2c†j cj − 1) = δg
∑

k

(2c†kck − 1), (B9)

where we used equations (B1) and (B2). Finally, using equations (B4) and (B5) we obtain

ΔH = 2δg
∑
k>0

[
cos θk(η†kηk + η†−kη−k − 1) + sin θk(η†−kη

†
k − η−kηk)

]
, (B10)

where the coupling between +k and −k modes is clear from the second term. Alternatively, this can be
written as ΔH = ΔHd +ΔHc, with

ΔHd = 2δg
∑
k>0

cos θk

(
−|0−k0k〉〈0−k0k|+ |1−k1k〉〈1−k1k|

)
, (B11)

ΔHc = 2δg
∑
k>0

sin θk

(
|0−k0k〉〈1−k1k|+ |1−k1k〉〈0−k0k|

)
, (B12)

where ΔHd and ΔHc are the dephased and coherent parts of the perturbation, respectively.

Appendix C. Λcl and Λqu for the TFIM

Using the results from (B), we now show how to compute Λcl and Λqu using equations (18) and (19). Since
we consider the initial field to be g0, the initial Hamiltonian is given by

H0 =
∑

k

ε0
k(2η†kηk − 1),

=
∑
k>0

2ε0
k

(
−|0−k0k〉〈0−k0k|+ |1−k1k〉〈1−k1k|

) (C1)

where ε0
k = εk(g0) and |n−knk〉 are the joint eigenstates of η†kηk and η†−kη−k. Thus, the initial state

ρth
0 = e−βH0/Z0 can be written as

ρth
0 =

∏
k>0

ρth
0 |±k, (C2a)

ρth
0 |±k =

∑
nk=0,1, n−k=0,1

e2βε0
k (1−nk−n−k)

4 cosh2(βε0
k)

|n−knk〉〈n−knk|. (C2b)
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After the instantaneous quench, which changes the field to its final value gτ = g0 + δg, we have the final
Hamiltonian,

Hτ =
∑

k

ετk (2ξ†kξk − 1),

=
∑
k>0

2ετk
(
−|0τ−k0τk〉〈0τ−k0τk |+ |1τ−k1τk〉〈1τ−k1τk |

) (C4)

where ετk = εk(gτ ) and |nτ
−knτ

k 〉 are the joint eigenstates of the post-quench fermionic operators ξ†kξk and

ξ†−kξ−k, which are related to the pre-quench operators {ηk} according to [73]

ξk = cos(Δk/2)ηk + sin(Δk/2)η†−k, (C5)

where sin Δk = −δg sin(k)/ετkε
0
k. As discussed in appendix B, equation (C5) shows us that the perturbation

couples pairs of modes +k and −k. This is why it is more convenient to write all quantities as
ρth

0 =
∏

k>0ρ
th
0|±k and H0 =

∑
k>0

H0|±k, instead of a product/sum over the negative values of k.

The corresponding final equilibrium state ρth
τ = e−βHτ /Zτ is given by

ρth
τ =

∏
k>0

ρth
τ |±k, (C5a)

ρth
τ |±k =

∑
nτk=0,1, nτ−k=0,1

e2βετk (1−nτk−nτ−k)

4 cosh2(βετk )
|nτ

−knτ
k 〉〈nτ

−knτ
k |. (C5b)

We can proceed now to calculate ρ̃th
τ in equation (17). We first compute the dephased Hamiltonian

H0 +ΔHd, where ΔHd is given in equation (B11). That is,

Dρth
0

(Hτ ) =
∑
k>0

2ε̃τk
(
−|0−k0k〉〈0−k0k|+ |1−k1k〉〈1−k1k|

)
, (C8)

where ε̃τk = ετk cos Δk = ε0
k + δg cos θk. From this, one then finds the associated thermal state

(equation (17))

ρ̃th
τ =

∏
k>0

ρ̃th
τ |±k, (C7a)

ρ̃th
τ |±k =

∑
nk=0,1, n−k=0,1

e2βε̃τk (1−nk−n−k)

4 cosh2(βε̃τk )
|n−knk〉〈n−knk|. (C7b)

We have all we need to compute Λcl and Λqu now. We just have to plug equations (C2), (C6) and (C9)
into (18) and (19). Because all states ρth

0 , ρ̃th
τ and ρth

τ are separable in terms of ±k modes, Λcl and Λqu will be
given as sums over k. Hence, we find

Λcl =
∑
k>0

2

{
ln

[
cosh

(
βε̃τk

)
cosh

(
βε0

k

)
]
+ β

(
ε0

k − ε̃τk
)

tanh
(
βε0

k

)}
, (C11)

and

Λqu =
∑
k>0

2 ln

[
cosh

(
βετk

)
cosh

(
βε̃τk

)
]
. (C12)

Finally, in the limit of very large N, all k-sums can be converted to integrals and all quantities become
extensive in N. In particular, we can substitute

∑
k>0 → N

∫ π

0
dk
2π in equations (C11) and (C12) to obtain

equations (78) and (79).
We note that equations (78) and (79) do not assume that the quench is infinitesimal. All they assume is

that U = 1. If, in particular, we are interested in infinitesimal quenches, then we may series expand these
expressions in powers of δg, leading to

Λcl = Nβ2 δg2

∫ π

0

dk

2π
sech2(βε0

k) cos2 θk, (C10)

Λqu = Nβ2 δg2

∫ π

0

dk

2π

tanh(βε0
k)

βε0
k

sin2 θk, (C11)

where it is clear the relation of Λcl and Λqu with the dephased and coherent parts of the perturbation in
equations (B11) and (B12). Furthermore, it is easy to check that they satisfy equation (33).
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Appendix D. Γcl and Γqu for the TFIM

For completeness, in this appendix we write down the expressions for Γcl and Γqu for the TFIM, computed
in [39]:

Γqu = N

∫ π

0

dk

2π

{
1

2
tanh

(
βε0

k

) [
ln

[
1 + tanh

(
2βε0

k

)
1 − tanh

(
2βε0

k

)
]
− cos(Δk) ln

[
1 + tanh

(
2βε0

k

)
cos(Δk)

1 − tanh
(
2βε0

k

)
cos(Δk)

]]

− cosh
(
2βε0

k

)
4 cosh2 (βε0

k

) ln
[
1 + sinh2

(
2βε0

k

)
sin2(Δk)

]}
, (D1)

Γcl = N

∫ π

0

dk

2π

{
2 ln

[
cosh

(
βετk

)
cosh

(
βε0

k

)
]
− 1

2
tanh

(
βε0

k

)
cos(Δk)

×
[

ln

[
1 + tanh

(
2βετk

)
1 − tanh

(
2βετk

)
]
− ln

[
1 + tanh

(
2βε0

k

)
cos(Δk)

1 − tanh
(
2βε0

k

)
cos(Δk)

]]

+
cosh

(
2βε0

k

)
4 cosh2

(
βε0

k

) ln
[
1 + sinh2 (2βε0

k

)
sin2(Δk)

]}
. (D2)

These expressions were used in plotting figures 5(c) and (d). The problem in the analyticities of these
quantities stem from the last term in both integrals: in order to series expand them we need to satisfy the
condition sinh2(2βε0

k)sin2(Δk) < 1. This is prohibitive at low temperatures, since this function scales
exponentially with β, through sinh2(2βε0

k), but only polynomially with the perturbation, through sin2(Δk).
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