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Wigner’s friend paradox



The measurement problem
• Closed quantum systems evolve deterministically and unitarily: 

 
                                                

• But if we measure a quantum system, the outcome is random (Born’s rule): 
 
                                    and                              
 
   

|ψ⟩ → U |ψ⟩

pk = |⟨k |ψ⟩ |2 |ψ⟩ → |k⟩



Quantum mechanics should apply at all scales

• Classical physics is a limiting case of quantum theory.


• How can Born’s rule emerge from unitary evolution? 

• To measure we must interact a system with an apparatus (amplification process).

SystemApparatus

U
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UU Somehow in this 
amplification process a 

deterministic evolution turns 
into a random outcome. 

 
Measurement problem



Wigner’s friend paradox
• System is a spin 1/2 in the initial state 


• Wigner’s friend  measures  in the -basis. 


• Obtains with probability 1/2. 


• Wigner’s perspective: to make a measurement,  must interact with  with some unitary 


• The result is an entangled state: 
 
                             


• Not a statistical mixture of   and  

• Contradiction: 


• Friend obtains outcomes with probability 1/2. 


• Wigner obtains an entangled state.


• This contradiction is the measurement problem.
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Wigner, E. P. Remarks on the mind-body question. In Good, I. J. (ed.) The Scientist Speculates, 284–302 (Heinemann, London, 1961).
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Example: von Neumann measurement model
• System is a spin 1/2 in the initial state 


• Suppose  is a harmonic oscillator:  with . Then 
 
              where       = coherent state.

|ψ0⟩S = 1

2
( |↑ ⟩S + |↓ ⟩S)

F UFS = e−iHt H = igσz(a† − a)
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Wigner function of  
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Wigner’s friend paradox
Contradiction arises from 2 assumptions:


1. Quantum theory is universal and can be applied at any scale, even to a macroscopic 
observer.


2. There is an objective collapse after a measurement. 

• There is no contradiction if: 


• Quantum mechanics does not apply to conscious observers, or 


• Collapse is not an objective physical process affecting the wave function described by 
Wigner. 

Wigner, E. P. Remarks on the mind-body question. In Good, I. J. (ed.) The Scientist Speculates, 284–302 (Heinemann, London, 1961).
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Local Friendliness  
&  

Extended Wigner’s friend scenario



Local Friendliness (LF)
1. Freedom of choice.


2. Locality.


3. Absoluteness of Observed Events (AOE): an observed event is a real single event, and not 
relative to anything or anyone.


Theorem: If a superobserver (Wigner) can perform arbitrary quantum operations on an observer 
and its environment, then no physical theory can satisfy Local Friendliness. 


The proof of the Theorem is similar in spirt to Bell’s inequalities:


• See what restrictions these 3 hypotheses entail


• Then show that a quantum mechanical experiment can violate it.


Frauchiger, D. & Renner, R. Quantum theory cannot consistently describe the use of itself. Nat. Commun. 9, 3711 (2018). 




• 2 entangled spin 1/2 particles, one goes to Charlie, one to Debbie: 
 
           


• What the experiment cares about is a joint probability distribution: 
 
                                              


• where  
 

 = outcomes of the experiments performed by Alice and Bob. 
 

 = choices in the experimental setup made by Alice and Bob.  

• Proof:


• The 3 assumptions in Local Friendliness impose constraints on the 
possible correlations of 


• It is possible to find quantum experiments which violate these 
constraints.  

|ψ0⟩ = 1

2
( |↑ ⟩SA

⊗ |↓ ⟩SB
− |↓ ⟩SA

⊗ |↑ ⟩SB)

P(a, b |x, y)

a, b

x, y

P(a, b |x, y)
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photon, successfully violated such a Bell inequality derived from 
Brukner’s assumptions.

Although the EWFS background for this result was novel, the 
derived Bell inequality can be obtained from the assumptions of 
‘freedom of choice’ and KSNC, without considering the friends’ 
observations, and without using ‘locality’ (which follows from Bell’s 
stronger notion of local causality24, which in turn follows from KSNC 
in any Bell scenario25). Furthermore, the Kochen–Specker theorem22 
already establishes that KSNC + ‘freedom of choice’ leads to contra-
dictions with quantum theory. As discussed in refs. 19,20,26, this casts 
doubt on the implications of Brukner’s theorem with regard to any 
assumption specifically about the objectivity of the friends’ observa-
tions—one can respond to Brukner’s theorem simply by maintaining 
that ‘unperformed experiments have no results’27.

Nevertheless, there is a subtle but important difference between 
a standard Bell scenario in which one of two incompatible observ-
ables are chosen at random to be measured by each party and 
the scenario introduced by Brukner. In the latter, in one of four 
experimental runs, all four observables involved in the experi-
ment are being measured—one by each observer in the scenario. 
This suggests that the counterfactual reasoning in the OIF/KSNC 
assumption could be avoided by replacing it with a suitable weaker 
assumption. Indeed, Brukner discusses a weaker assumption—‘that 
Wigner’s and Wigner’s friend’s facts coexist’—before settling on 
‘The assumption of ‘observer-independent facts’ [which] is a stron-
ger condition’14.

In this Article we derive a new theorem, based on the intuition in 
the preceding paragraph around Brukner’s EWFS. It uses metaphys-
ical assumptions (that is, assumptions about physical theories) that 
are strictly weaker than those of Bell’s theorem or Kochen–Specker 
contextuality theorems, and thus opens a new direction in experi-
mental metaphysics. Our first two assumptions are, as per Brukner, 
‘freedom of choice’ (which we make more formal using the con-
cept of ‘No-Superdeterminism’ defined in ref. 24) and ‘Locality’ (in 
the same sense as Brukner; see also ref. 24). Our third assumption is 
‘Absoluteness of Observed Events’ (AOE), which is that an observed 
event is a real single event and not relative to anything or anyone. 
Note that capitalization is used for assumptions formally defined in 
this paper.

Unlike OIF, AOE makes no claim about hypothetical measure-
ments that were not actually performed in a given run. Furthermore, 
AOE is necessarily (though often implicitly) assumed even in stan-
dard Bell experiments24. For convenience, we will call the conjunc-
tion of these three assumptions ‘Local Friendliness’ (LF). This 
enables us to state our theorem.

Theorem 1: If a superobserver can perform arbitrary quantum 
operations on an observer and its environment, then no physical 
theory can satisfy Local Friendliness.

By a ‘physical theory’ we mean any theory that correctly predicts 
the correlations between the outcomes observed by the superob-
servers Alice and Bob (Fig. 1), who can communicate after their 
experiments are performed and evaluate those correlations. The 
proof of Theorem 1 proceeds by showing that LF implies a set of 
constraints on those correlations (that we call ‘LF inequalities’) that 
can, in principle, be violated by quantum predictions for an EWFS 
scenario. Thus, like Bell’s theorem and Brukner’s theorem, our theo-
rem is theory-independent—we use (like Bell and Brukner) quan-
tum mechanics as a guide for what may be seen in experiments, but 
the metaphysical conclusions hold for any theory if those predic-
tions are realized in the laboratory. (This is unlike the theorem of 
ref. 16, which is a statement about the standard theory of quantum 
mechanics.) Note also that, unlike in Brukner’s theorem, all three 
assumptions going into LF are essential for the theorem, and so are 
the friends’ observations.

For the specific EWFS Brukner considered—involving two 
binary-outcome measurement choices per superobserver—the set 

of correlations allowed by our LF assumption is identical to the 
set allowed by the assumptions of Bell’s theorem, commonly referred 
to as the local hidden variable (LHV) correlations. However, in gen-
eral, LF and LHV do not give identical constraints. Indeed, already 
for a slightly more complicated EWFS with three binary-outcome 
measurement choices per superobserver, we show that the set of 
LF correlations is a strict superset of the set of LHV correlations. 
Moreover, it is possible for quantum correlations to violate a Bell 
inequality (an inequality bounding the set of LHV correlations) 
while satisfying all of the LF inequalities. We also prove that the new 
LF inequalities we derive can nevertheless be violated by quantum 
correlations. We demonstrate these facts in an experimental simula-
tion where the friends are represented by photon paths.

We now proceed to explain the EWFS in more detail, before pre-
senting our results and discussing their implications.

The extended Wigner’s friend scenario. Let us consider the bipar-
tite version of the Wigner’s friend experiment that was introduced 

I’m Alice

x a

c

d

by

I’m Charlie

I’m Debbie

I’m Bob

Fig. 1 | Concept of the extended Wigner’s friend scenario. The friends, 
Charlie and Debbie, measure a pair of particles prepared in an entangled 
state, producing the outcomes labelled c and d, respectively (from their 
perspective). The superobservers, Alice and Bob, perform space-like 
separated measurements labelled x and y, with outcomes labelled a and b, 
on the entire contents of the laboratories containing Charlie and Debbie, 
respectively. Credit: Icons of people, Eucalyp Studio under a Creative 
Commons licence (https://creativecommons.org/licenses/by/3.0/).
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Example of probabilities - Bell & CHSH
• Example probability for 2 entangled spins: 

 
                          

,        
 
where 


• choices. In this case, angles .


• random outcomes. 


• Define averages: 
 
                                            

P(a, b |x, y) =
1
4 {1 − ab cos(θx − θy)}

a, b = ± 1

x, y = θx, θy

a, b =

⟨AxBy⟩ = ∑
a,b=±1

abP(ab |xy)

• Bell studied the restrictions that appear from a 
Local Hidden Variable (LHV) model:  
 
                                

 

 
where  is an arbitrary hidden variable. 


• This restriction leads to the CHSH inequality  
 
                                    

 

• Choose  and 
we get . Violates the inequality.

P(ab |xy) = ∑
λ

P(a |xλ)P(b |yλ)P(λ)

λ

⟨A1B1⟩ + ⟨A1B2⟩ + ⟨A2B1⟩ − ⟨A2B2⟩ − 2
LHV
⩽ 0

θx = {0,π/2}, θy = {−3π/4,3π/4}
0.82



Choices of Alice and Bob
• Alice has one of 3 choices:  

 
:  open the box and ask Charlie what he saw. 

 
: apply a unitary in , disregard Charlie and measure 

 directly. 
 
       represent two possible ways of measuring .


• Bob will do something analogous with . 

x = 1

x = 2,3 CSA
SA

x = 2,3 SA

y = 1,2,3
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photon, successfully violated such a Bell inequality derived from 
Brukner’s assumptions.

Although the EWFS background for this result was novel, the 
derived Bell inequality can be obtained from the assumptions of 
‘freedom of choice’ and KSNC, without considering the friends’ 
observations, and without using ‘locality’ (which follows from Bell’s 
stronger notion of local causality24, which in turn follows from KSNC 
in any Bell scenario25). Furthermore, the Kochen–Specker theorem22 
already establishes that KSNC + ‘freedom of choice’ leads to contra-
dictions with quantum theory. As discussed in refs. 19,20,26, this casts 
doubt on the implications of Brukner’s theorem with regard to any 
assumption specifically about the objectivity of the friends’ observa-
tions—one can respond to Brukner’s theorem simply by maintaining 
that ‘unperformed experiments have no results’27.

Nevertheless, there is a subtle but important difference between 
a standard Bell scenario in which one of two incompatible observ-
ables are chosen at random to be measured by each party and 
the scenario introduced by Brukner. In the latter, in one of four 
experimental runs, all four observables involved in the experi-
ment are being measured—one by each observer in the scenario. 
This suggests that the counterfactual reasoning in the OIF/KSNC 
assumption could be avoided by replacing it with a suitable weaker 
assumption. Indeed, Brukner discusses a weaker assumption—‘that 
Wigner’s and Wigner’s friend’s facts coexist’—before settling on 
‘The assumption of ‘observer-independent facts’ [which] is a stron-
ger condition’14.

In this Article we derive a new theorem, based on the intuition in 
the preceding paragraph around Brukner’s EWFS. It uses metaphys-
ical assumptions (that is, assumptions about physical theories) that 
are strictly weaker than those of Bell’s theorem or Kochen–Specker 
contextuality theorems, and thus opens a new direction in experi-
mental metaphysics. Our first two assumptions are, as per Brukner, 
‘freedom of choice’ (which we make more formal using the con-
cept of ‘No-Superdeterminism’ defined in ref. 24) and ‘Locality’ (in 
the same sense as Brukner; see also ref. 24). Our third assumption is 
‘Absoluteness of Observed Events’ (AOE), which is that an observed 
event is a real single event and not relative to anything or anyone. 
Note that capitalization is used for assumptions formally defined in 
this paper.

Unlike OIF, AOE makes no claim about hypothetical measure-
ments that were not actually performed in a given run. Furthermore, 
AOE is necessarily (though often implicitly) assumed even in stan-
dard Bell experiments24. For convenience, we will call the conjunc-
tion of these three assumptions ‘Local Friendliness’ (LF). This 
enables us to state our theorem.

Theorem 1: If a superobserver can perform arbitrary quantum 
operations on an observer and its environment, then no physical 
theory can satisfy Local Friendliness.

By a ‘physical theory’ we mean any theory that correctly predicts 
the correlations between the outcomes observed by the superob-
servers Alice and Bob (Fig. 1), who can communicate after their 
experiments are performed and evaluate those correlations. The 
proof of Theorem 1 proceeds by showing that LF implies a set of 
constraints on those correlations (that we call ‘LF inequalities’) that 
can, in principle, be violated by quantum predictions for an EWFS 
scenario. Thus, like Bell’s theorem and Brukner’s theorem, our theo-
rem is theory-independent—we use (like Bell and Brukner) quan-
tum mechanics as a guide for what may be seen in experiments, but 
the metaphysical conclusions hold for any theory if those predic-
tions are realized in the laboratory. (This is unlike the theorem of 
ref. 16, which is a statement about the standard theory of quantum 
mechanics.) Note also that, unlike in Brukner’s theorem, all three 
assumptions going into LF are essential for the theorem, and so are 
the friends’ observations.

For the specific EWFS Brukner considered—involving two 
binary-outcome measurement choices per superobserver—the set 

of correlations allowed by our LF assumption is identical to the 
set allowed by the assumptions of Bell’s theorem, commonly referred 
to as the local hidden variable (LHV) correlations. However, in gen-
eral, LF and LHV do not give identical constraints. Indeed, already 
for a slightly more complicated EWFS with three binary-outcome 
measurement choices per superobserver, we show that the set of 
LF correlations is a strict superset of the set of LHV correlations. 
Moreover, it is possible for quantum correlations to violate a Bell 
inequality (an inequality bounding the set of LHV correlations) 
while satisfying all of the LF inequalities. We also prove that the new 
LF inequalities we derive can nevertheless be violated by quantum 
correlations. We demonstrate these facts in an experimental simula-
tion where the friends are represented by photon paths.

We now proceed to explain the EWFS in more detail, before pre-
senting our results and discussing their implications.

The extended Wigner’s friend scenario. Let us consider the bipar-
tite version of the Wigner’s friend experiment that was introduced 

I’m Alice

x a

c

d

by

I’m Charlie

I’m Debbie

I’m Bob

Fig. 1 | Concept of the extended Wigner’s friend scenario. The friends, 
Charlie and Debbie, measure a pair of particles prepared in an entangled 
state, producing the outcomes labelled c and d, respectively (from their 
perspective). The superobservers, Alice and Bob, perform space-like 
separated measurements labelled x and y, with outcomes labelled a and b, 
on the entire contents of the laboratories containing Charlie and Debbie, 
respectively. Credit: Icons of people, Eucalyp Studio under a Creative 
Commons licence (https://creativecommons.org/licenses/by/3.0/).
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Local Friendliness
Absoluteness of Observed Events 

• Is the assumption that there exists a well-defined value 
for the outcome of each observation:  
 




• We want to marginalize over : 
 
                                         


• Consistency:  
 

        
 

 
(when Alice asks Charlie what he saw, her outcome is the 
same as that of Charlie)

P(abcd |xy)

c, d

P(ab |xy) = ∑
c,d

P(abcd |xy)

P(a |cd, x = 1,y) = δa,c
P(b |cd, x, y = 1) = δb,d

Freewill 

• 


• Alice and Bob’s choices  are 
independent of those of Charlie and 
Debbie.


Locality (no-signaling) 

•                


• 


• Because Alice and Bob are space-
like separated, Bob’s choice cannot 
affect the outcomes of Alice.

P(cd |xy) = P(cd)

x, y

P(a |cdxy) = P(a |cdx)

P(b |cdxy) = P(b |cdy)



LF inequalities
• The LF conditions then impose certain inequalities: e.g. 

 

                           
 
or 
 
                                      

 


• There are 932 inequalities in total.


• This is what the LF assumptions predict. 


• The trick is now to see if they can be violated by a quantum experiment. 


• If they can, then nature is not LF. 

⟨A1B1⟩ − ⟨A1B3⟩ − ⟨A2B1⟩ − ⟨A2B3⟩ − 2
LF
⩽ 0

−⟨A1⟩ − ⟨A2⟩ − ⟨B1⟩ − ⟨B2⟩ − ⟨A1B1⟩ − 2⟨A1B2⟩ − 2⟨A2B1⟩ + 2⟨A2B2⟩ − ⟨A2B3⟩ − ⟨A3B2⟩ − ⟨A3B3⟩
LF
⩽ 0



Quantum mechanical protocol:  

• Charlie interacts with  via entangling unitary  (e.g. CNOT)


• Alice’s actions: 
 

:  generalized measurement of Charlie  
(“open the box and ask Charlie what he saw”): 
 
                      
 

: undo   then measure : 
 
                       


• Here  are always the eigenvectors of  
with different angles .


• Bob does the same, but with 


• They fix:  

SA UCSA

x = 1

Ma|x=1 = |a1⟩⟨a1 |C ⊗ ISA

x = 2,3 UCSA
SA

Ma|x=2,3 = (IC ⊗ |ax⟩⟨ax | )U†
CSA

|ax⟩ Ax = e−iϕxσ+ + eiϕxσ−
ϕx=1,2,3

By = e−i(β−ϕx)σ+ + ei(β−ϕx)σ−

ϕ1 = 168∘, ϕ2 = 0, ϕ3 = 118∘, β = 175∘

Result is the probability distribution  

P(a, b |x, y) = ⟨ψ0 |M†
a|xMa|x ⊗ M†

b|xMb|x |ψ0⟩
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photon, successfully violated such a Bell inequality derived from 
Brukner’s assumptions.

Although the EWFS background for this result was novel, the 
derived Bell inequality can be obtained from the assumptions of 
‘freedom of choice’ and KSNC, without considering the friends’ 
observations, and without using ‘locality’ (which follows from Bell’s 
stronger notion of local causality24, which in turn follows from KSNC 
in any Bell scenario25). Furthermore, the Kochen–Specker theorem22 
already establishes that KSNC + ‘freedom of choice’ leads to contra-
dictions with quantum theory. As discussed in refs. 19,20,26, this casts 
doubt on the implications of Brukner’s theorem with regard to any 
assumption specifically about the objectivity of the friends’ observa-
tions—one can respond to Brukner’s theorem simply by maintaining 
that ‘unperformed experiments have no results’27.

Nevertheless, there is a subtle but important difference between 
a standard Bell scenario in which one of two incompatible observ-
ables are chosen at random to be measured by each party and 
the scenario introduced by Brukner. In the latter, in one of four 
experimental runs, all four observables involved in the experi-
ment are being measured—one by each observer in the scenario. 
This suggests that the counterfactual reasoning in the OIF/KSNC 
assumption could be avoided by replacing it with a suitable weaker 
assumption. Indeed, Brukner discusses a weaker assumption—‘that 
Wigner’s and Wigner’s friend’s facts coexist’—before settling on 
‘The assumption of ‘observer-independent facts’ [which] is a stron-
ger condition’14.

In this Article we derive a new theorem, based on the intuition in 
the preceding paragraph around Brukner’s EWFS. It uses metaphys-
ical assumptions (that is, assumptions about physical theories) that 
are strictly weaker than those of Bell’s theorem or Kochen–Specker 
contextuality theorems, and thus opens a new direction in experi-
mental metaphysics. Our first two assumptions are, as per Brukner, 
‘freedom of choice’ (which we make more formal using the con-
cept of ‘No-Superdeterminism’ defined in ref. 24) and ‘Locality’ (in 
the same sense as Brukner; see also ref. 24). Our third assumption is 
‘Absoluteness of Observed Events’ (AOE), which is that an observed 
event is a real single event and not relative to anything or anyone. 
Note that capitalization is used for assumptions formally defined in 
this paper.

Unlike OIF, AOE makes no claim about hypothetical measure-
ments that were not actually performed in a given run. Furthermore, 
AOE is necessarily (though often implicitly) assumed even in stan-
dard Bell experiments24. For convenience, we will call the conjunc-
tion of these three assumptions ‘Local Friendliness’ (LF). This 
enables us to state our theorem.

Theorem 1: If a superobserver can perform arbitrary quantum 
operations on an observer and its environment, then no physical 
theory can satisfy Local Friendliness.

By a ‘physical theory’ we mean any theory that correctly predicts 
the correlations between the outcomes observed by the superob-
servers Alice and Bob (Fig. 1), who can communicate after their 
experiments are performed and evaluate those correlations. The 
proof of Theorem 1 proceeds by showing that LF implies a set of 
constraints on those correlations (that we call ‘LF inequalities’) that 
can, in principle, be violated by quantum predictions for an EWFS 
scenario. Thus, like Bell’s theorem and Brukner’s theorem, our theo-
rem is theory-independent—we use (like Bell and Brukner) quan-
tum mechanics as a guide for what may be seen in experiments, but 
the metaphysical conclusions hold for any theory if those predic-
tions are realized in the laboratory. (This is unlike the theorem of 
ref. 16, which is a statement about the standard theory of quantum 
mechanics.) Note also that, unlike in Brukner’s theorem, all three 
assumptions going into LF are essential for the theorem, and so are 
the friends’ observations.

For the specific EWFS Brukner considered—involving two 
binary-outcome measurement choices per superobserver—the set 

of correlations allowed by our LF assumption is identical to the 
set allowed by the assumptions of Bell’s theorem, commonly referred 
to as the local hidden variable (LHV) correlations. However, in gen-
eral, LF and LHV do not give identical constraints. Indeed, already 
for a slightly more complicated EWFS with three binary-outcome 
measurement choices per superobserver, we show that the set of 
LF correlations is a strict superset of the set of LHV correlations. 
Moreover, it is possible for quantum correlations to violate a Bell 
inequality (an inequality bounding the set of LHV correlations) 
while satisfying all of the LF inequalities. We also prove that the new 
LF inequalities we derive can nevertheless be violated by quantum 
correlations. We demonstrate these facts in an experimental simula-
tion where the friends are represented by photon paths.

We now proceed to explain the EWFS in more detail, before pre-
senting our results and discussing their implications.

The extended Wigner’s friend scenario. Let us consider the bipar-
tite version of the Wigner’s friend experiment that was introduced 

I’m Alice

x a

c

d

by

I’m Charlie

I’m Debbie

I’m Bob

Fig. 1 | Concept of the extended Wigner’s friend scenario. The friends, 
Charlie and Debbie, measure a pair of particles prepared in an entangled 
state, producing the outcomes labelled c and d, respectively (from their 
perspective). The superobservers, Alice and Bob, perform space-like 
separated measurements labelled x and y, with outcomes labelled a and b, 
on the entire contents of the laboratories containing Charlie and Debbie, 
respectively. Credit: Icons of people, Eucalyp Studio under a Creative 
Commons licence (https://creativecommons.org/licenses/by/3.0/).
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Violations of LF ineqs.
• They actually choose as initial state        

 
 

 

           
 
where 
 

 

 
This interpolates between a maximally entangled 
state when  to a purely classical mixture 
when .

ρμ = μ |ψ0⟩⟨ψ0 |+

1 − μ
2 ( |↑ ↓ ⟩⟨ ↑ ↓ | + |↓ ↑ ⟩⟨ ↓ ↑ |)

|ψ0⟩ = 1

2
( |↑ ↓ ⟩ − |↓ ↑ ⟩)

μ = 1
μ = 0
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the four observers, Charlie, Debbie, Alice and Bob. The friend’s pro-
jective polarization measurement result is encoded in the photon 
path after the QWP, HWP and beam displacer BD1. Alice and Bob 
can perform different positive-operator valued measures (POVMs) 
on their respective system + friend, which depend on their mea-
surement settings and are described in the Methods.

The experimental results are shown in Fig. 4. The μ values cover 
the full range of interest, from none of the inequalities being vio-
lated (at low μ), to the violation of all inequalities (at high μ). The 
experimental data demonstrate the sequential violations of the Bell 
non-LF, semi-Brukner and genuine LF inequalities. The data points 
corresponding to μ = 0.80 and μ = 0.81 are of particular significance, 
as they demonstrate that it is possible to violate Bell inequalities 
without violating any LF inequalities. (We can be confident of this 
because we verified that none of the 932 LF inequalities is violated.)

This means that the correlations consistent with LF assumptions 
are a superset of the correlations consistent with an LHV model. 
The case of μ = 0.87 is the first of the plotted datasets where a con-
tradiction with the LF assumptions occurs, through the first viola-
tion of an inequality associated with LF. Finally, the two highest μ 
values verify that the genuine LF inequality can also be violated. All 
the experimental data points, except for the case of μ = 0.81, are at 
least two standard deviations away from 0, thus attesting the viola-
tion or non-violation of the inequalities with statistical significance. 
This covers all the regions we show in terms of (non-)violation of 
different inequalities, because the dataset at μ = 0.81 belongs to 
the same region as μ = 0.80. Along with the experimental data, the 
results predicted for the design measurement directions and input 
states of equation (1) are shown by solid lines. However, because 
the inequalities are device-independent, our conclusions are inde-
pendent of which states and measurement directions were actually 
employed in the experiment.

Implications of violating LF inequalities. It is interesting to 
compare the assumptions that go into the LF no-go theorem with 
those for Bell’s theorem. First, we note that the AOE assumption is 
implicit in the derivation of Bell inequalities (see ref. 24 for a deri-
vation in which it is explicitly included as ‘macroreality’). If, as is 
common, we also formulate Bell’s theorem using the other two 

assumptions of LF, namely NSD and L, then an additional assump-
tion is required. The minimal extra assumption required is ‘outcome 
independence’21, which in the bipartite scenario is the requirement 
that P(a∣bxyλ) = P(a∣xyλ), P(b∣axyλ) = P(b∣xyλ) ∀ a, b, x, y, λ (c.f. 
the definition of L in the section ‘Formalization of the LF assump-
tions’). Hence, the LF assumption is strictly weaker than the set of 
assumptions for Bell inequalities. Thus, the conclusions we could 
derive from an empirical violation of the LF inequalities are strictly 
stronger.

One popular way to accommodate the violation of Bell inequali-
ties is to reject outcome independence (which is violated by oper-
ational quantum theory24) while maintaining L and NSD. Our 
theorem shows that this strategy does not extend to the EWFS. If 
the LF inequalities were violated empirically, then, to maintain L 
and NSD, one would have to reject AOE.

It is important to keep in mind that it is much harder to satisfy 
the conditions for an experimental violation of the LF inequalities 
than of Bell inequalities. A fully convincing demonstration would 
require a strong justification for the attribution of a ‘fact’ to the 
friend’s measurement. This, of course, depends on what counts as 
an ‘observer’ (and as a ‘measurement’). Because conducting this 
kind of experiment with human beings is physically impractical, 
what do we learn from experiments with simpler ‘friends’?

Wigner’s own conclusion from his thought experiment was that 
the collapse of the wave function should happen at least before it 
reaches the level of an ‘observer’. The concept of an ‘observer’, how-
ever, is a fuzzy one. Objective collapse theories12 attempt to restore 
the absolute reality of observed events by postulating modifica-
tions to the quantum dynamics to guarantee that collapse occurs 
before a quantum superposition reaches the macroscopic level. In 
other words, this resolution requires observed events to correspond 
to sufficiently macroscopic irreversible physical processes. In that 
case, the LF inequalities would not be violated with actual observers. 
Clearly, our experiment (and that of ref. 17) did not probe collapse 
theories. Therefore, an open possibility is that the LF assumptions 
are valid, but that nature forever forbids the observation of violation 
of LF inequalities with observers, whether because of objective col-
lapse or some other limitation on coherent quantum control.

A challenge to the above resolution of the LF no-go theorem 
could come from experiments involving AI (artificial intelligence) 
agents in a quantum computer. If universal quantum computa-
tion and strong AI are both physically possible, it should be pos-
sible to realize quantum coherent simulations of an observer and 
its (virtual) environment, and realize an extended Wigner’s friend 
experiment. The experiment can even be conducted with a single 
friend, which would already allow testing semi-Brukner inequali-
ties (equation (18)). Towards the goal of challenging the LF no-go 
theorem, experiments can test agents of increasing complexity; an 
experimental violation of LF inequalities with a given class of physi-
cal systems as ‘friends’ implies that either the LF assumptions are 
false or that class of friends is not an ‘observer’.

Among interpretations of quantum mechanics that allow, in 
principle, the violation of LF inequalities, Theorem 1 can be accom-
modated in different ways. Interpretations that reject AOE include 
QBism6,7, the relational interpretation5 and the many-worlds inter-
pretation4. Bohmian mechanics8,9 violates L but not the other 
assumptions. There are some advocates for giving up NSD (either 
due to retrocausality10, superdeterminism11 or other mechanisms), 
but, as yet, no such theory has been proposed that reproduces all the 
predictions of quantum mechanics.

Finally, it was brought to our attention that the LF polytopes have 
been independently studied under the name of ‘partially determin-
istic polytopes’33, from an information-theoretic motivation: they 
are connected to the problem of device-independent randomness 
certification (see, for example, refs. 34–36 and references therein) in 
the presence of no-signalling adversaries.
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What did I learn from this?
• Propose 3 “reasonable” assumptions and 

show that Nature cannot satisfy them.


• Assumptions are weaker then Bell, so 
conclusions are stronger.


• But don’t really address the Wigner’s 
friend paradox. 


• In the experiment the friend is just a 
qubit.

Wigner’s friend paradox: how to 
reconcile unitary dynamics with the 

randomness of measurements. 

A fully convincing demonstration would require a strong 
justification for the attribution of a ‘fact’ to the friend’s 
measurement. This, of course, depends on what counts as an 
‘observer’ (and as a ‘measurement’). Because conducting this 
kind of experiment with human beings is physically impractical, 
what do we learn from experiments with simpler ‘friends’? 
Wigner’s own conclusion from his thought experiment was that 
the collapse of the wave function should happen at least before it 
reaches the level of an ‘observer’. The concept of an ‘observer’, 
however, is a fuzzy one.  



Born’s rule is an emergent property
• Measurement problem emerges when we have a 

large number of degrees of freedom. 


• This might be difficult to probe experimentally. 


• But I cannot imagine any resolution to the 
Wigner’s friend paradox that does not involve 
this.
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