

NuMI

Optical acceptance of the DDK connectors or What exactly do you mean by transmission?

Howard Budd

Light Injector

- Source part of the light injector is contructed
- A wand source is inserted into the hole in the green piece
- The purple and cyan piece is scintillator
- The scintillator excites WLS fiber
- For testing cables LED and pin diodes will be installed

- Insert 40 cm jumper into left bottom connector
- Insert 205 cm cable to be tested onto jumper
- Plug 90cm pigtail with Single Fiber Ferrules into Cable to be tested
- Single Fiber Ferrules go directly on light mixer of R580-17
- Measure all the fibers with the Single Fiber Ferrules
- Cut cable in half and insert connectors on both ends

Transmission Using Light Injector

- Eileen in Lab 7 polishes the connectors
- 2 halves connected together in the identical way as before
- transmission (after cut)/(before cut)
- Since it's a ratio the amount of light injected into the light by the light injector should not matter.
- Light Injector Fiber Number 1 is at the top of the connector in the Light Injector Box.
- Transmission is plotted for each Light Injector Fiber Number

Transmission of DDK connectors

Lausuission 0.93 0.91 0.89

0.87

0.85

0.83

0.81

0.79

0.77

0.75

0

2

3

1

- This has been shown at 2 Friday meetings
 - 14 % difference between fiber 1 & 8
 - This pattern doesn't make sense
 - When mated the connectors get mirror imaged
 - All ferrules are made by the same mold
 - DDK Hole 1- DDK Hole 8, 2-7 ...
 - These connectors are polished by the diamond moving along the long end
 - This effect is not due to the fiber polishing
 - The test is not shown

Light Injector Fiber Number

- We rotated the box by 180 degrees and got the same answer
- Eva's measurements at Sci Det indicate the connector is fine
- ◆ I tried to mechanically demonstrate their failure
 - I plugged 2 ferrules in a DDK box
 - I took 2 of the 48 mil (1.22mm) gauge pins and inserted them in holes 1 and 8, through both connectors
 - They went through fairly easily
 - A 49 mil (1.244mm) mil gauge pin does not go through any hole in any connector
 - This means the holes 1 and hole 8 match to better that 1 mil
 - This agrees with Eva's measurement
 - This test implies that the holes are meeting straight on since the pins are straight
 - The DDK connectors and their box are fine

Cut & Uncut Cable Top and Bottom

- Take 2 cables
 - 2 m clear cable (control cable)
 - two 1m clear cables connected together
 - » (used for the previous transmission test)
- Measure both on the bottom left connector on the light injector
- Measure both on the top left on the light injector

Cut & Uncut Cables Top and Bottom

((Cut/Uncut) Bot)/((Cut/Uncut) Top), Left, Clr Jump

- ((bottom 2 1m cables)/(Bot 2 m cable))/
 (top 2 1m cables)/(top 2 m cable)
- (2 1m cable)/(2m cable) is like a transmission = (cut/uncut)
- Transmission measured in the bottom connector is not the same transmission measured in the top connector
- Transmission is a function of the light injector fiber number
- Looks like it's the problem is measurement not the connectors

- If the light angular distributions, the modes, are different then the different reflections at the connector interface may be causing the effect.
- We can test this by putting grease in the connector
- The grease removes the differences in index of refraction across the gap
- The increase in transmission, about 16%, is independent of the fiber number
- Note that the transmission for injector fiber 1 for this cable is 86%, so roughly all the light is being transmitted with grease
 - However, there is some error in this because the clear pigtail had to be replaced between the transmission test and this test

This Light Difference is Hard to Kill

- We would expect that the difference would be removed as the light crosses a connector
- Remember the difference is big 14%
- The previous measurements have 3 DDK connections beside the one being tested
- Lets add another clear jumper
 - Out of light injector there are is a 40 cm jumpers and 37 cm jumper

The additional clear jumper has no effect on removing the difference

- Come hell or high water, once the light is created with this difference it will keep it, or it will be recreated it, knowing which injector fiber it came from
- I call this effect the TMC
 - Transmission Measurement Conundrum
 - Not: Target Mass Correction
- Cladding light differences should have been removed by all these jumpers
 - Cladding light is defined by light that propagates by reflecting in outer cladding air interface
 - 1.8 m of clear before it hits this junction, with 1.9 m of addition fiber to the PMT

Displacing the source

NnMI

- Bob Flight suggested displacing the source
- Bottom left connector-> 40 cm jumper->1 or 2 cables->90 cm pigtail->PMT
- ((cut/uncut) source up 4.2 cm)/ (cut/uncut) source in normal place)
- Ratio of transmission measured with the bottom connector with source in 2 different positions
- Ave = 1.03, Clearly demonstrates the TMC is not due to difference between pigtails in the light injector

Before Measurement, Coex Scintillator

- Made 2 pigtails
- ◆ 205 cm clear cable
- 90 cm clear pigtail with single fiber ferrule

The TMC tells us a transmission

- R580-17 Green Extended Tube
- Measure all fiber with Single Fiber Ferrules

Cut Measurement

- Insert connector in 205 m cable
- Eileen polishes the connectors
- Measured the same way as before

16

Transmission Using Coextruded Scin

- Ave = 82% and fairly independent of hole number.
- The result for the 2 pigtails seem to be different
 - Not sure why they should be different but maybe not enough measurements to tell

17

Transmission, Light Injector Top Connector

- Reasonable flat
 - Fiber 1 low is probably from the TMC
 - Remember this is the top connector on the injector box
- Transmission is 80.5%
- Note from the TMC its not clear what this transmission means
 - If we had made the initial measurement using the top connector we would not have seen the light depend on fiber number
 - We would have ignored fiber 1 being low
 - We would be ignorant to the TMC and thought this transmission was a defined number
 - "And there are things we don't know that we don't know"

Conclusion

- Optically the connectors pass ferrule is fine
 - The hole position and diameter look very good
 - The holes in the ferrule align to better than a mil, better than we had hoped
- We were confused by the TMC, but now "there are thing that we know that we don't know."

Backup Slides

NuMI

Measurements not shown

Polishing direction holes 1-8 & 8-1

- The Connectors near the light injector box are polished with the same orientation
- The connectors shown in the red points are polished with the same orientation,
 - This means 1st hole polished matches with the 8 th hole polished...
- The connectors shown in blue points are polished with the opposite orientation to their mate
 - 1st fibers polished mate together ...
- Polishing is not the problem
- (Fiber 4 is bad in the clear pigtail)

NuMI

So What Is Wrong with the Connector?

- For this plot we measure a cut cable
 - One previously used in a transmission test
- The DDK box is rotated by 180 degrees and cable remeasured
 - This is not exactly the rotation one wants to do to test the box, but this is the only one can due because of the key
- The DDK Box appears to be fine
- In addition the RMS of reconnection is 0.6%, it is tight.
- Bob Flight will be machining out a key so we can do exactly the correct test