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Much literature is available on developing a theoretical framework for Quantum Cloning, however
there is no significant bridge between how recent definitions of fidelity in the framework of optical
implementations of cloning [1] are related to the theoretical density matrix representation. A simple
expression for an experimental measurement of fidelity is proposed in this paper based upon previous
successful implementations [1, 2]. It is shown to hold for all symmetric N→M QC, with the symmetry
requirement being lifted for ancilla-free cloners. The fidelity is verified explicitly for the 1→2 UQC
based on stimulated emission proposed in [1], where the indistinguishability of the output clones
was also discussed.

Introduction

In 1982 Nick Herbert proposed an interesting method
of superluminal communication by attempting to uti-
lize the non-locality of Quantum Mechanics theorized in
entanglement between quantum particles [3]. However,
apart from being a result of the corner stone of relativ-
ity, the upper limit of the speed of communication to
that of light in vacuum also spares physicists the trou-
ble of time-travel paradoxes. Hence the solution to Her-
bert’s proposal was quick in coming in the form of the
“no cloning theorem” by Wooters and Zurek [4], which
states that it is impossible to perfectly clone an unknown
pure quantum state.

This simple theorem resulted in the conception of
quantum cryptography [5–8], and later clarification of the
possibility of imperfect cloning led to the field of quantum
cloning [9–15]. As well as being of central importance to
quantum cryptography, cloning has become a topic of in-
terest in the field of quantum computation [16] and in the
foundations of quantum physics in general. Barnum et
al [17] later extended the theory to the “no-broadcasting
theorem” to include the impossibility of perfectly cloning
mixed quantum states. In doing so the use of fidelity [18]
was introduced as a measure of similarity of two quantum
states by comparing their respective density matrices.

The first theoretical model of a universal quantum
cloner (UQC) was proposed by Buz̆ek and Hillery [10]
wherein unknown pure quantum states pointing any-
where on the Bloch sphere were copied equally well. The
Hilbert-Schmidt norm was primarily used in that paper
as a measure of cloning efficiency, however their UQC was
also shown to have a fidelity of 5/6. Since then the use
of fidelity has become a popular method for character-
izing cloners. The fidelity of 5/6 as an upper bound for
1 → 2 universal quantum copying has since been proved
via various methods [12, 13, 19], and indeed the method
by Gisin [13] showed this to be the upper bound over
which superluminal communication would be possible.

Bruss et al carefully characterized the cloning process,
and re-derived the Buzek and Hillery cloner as the op-
timal UQC via constructive proof [19]. In fact various

other types of cloners have been proposed and their re-
spective upper limits explored [20–22].

Experimental realizations of quantum cloning came
only recently, with De Martini et al [23] and Lamas-
Linares et al [2] demonstrating the first experimental
UQC following a proposal to clone the polarization state
of photons by Simon et al [1]. In the Simon et al pro-
posal, however, the two output clones are not in spatially
distinguishable modes, which leads to problems in defin-
ing fidelity in the popular density matrix formulation (as
will be seen later). Hence, to circumvent this problem,
the fidelity was re-defined in an intuitively appealing form
as “the average of the relative frequency of photons with
the correct polarization in the final state”.

Indeed this form predicted a fidelity of 5/6 for the pro-
posed cloner, and using the same definition of fidelity
Lamas-Linares et al measured a fidelity of 5/6 in their ex-
perimental realization. Most recently, Fasel et al demon-
strated an experimental QC via linear amplification, once
again using the Simon et al definition to measure a fi-
delity of 5/6 [24].

In this paper we wish to explore the relationship be-
tween the two definitions of fidelity and to what extent
they are equivalent. In the process we shall re-express
the Simon et al fidelity in a form which is more con-
ducive to experimental situations. It will be seen that
the two definitions are indeed analogous for all symmet-
ric cloners, with the symmetry requirement being lifted
for ancilla-free cloners.

Definition of Fidelity

The density matrix of a pure state can be most gener-
ally expressed as

%pure = |ψ〉〈ψ| = 1
2
(1 + ~s · ~σ) (1)

where 1 is the identity matrix, ~s is the Bloch vector of
the state and ~σ are the x, y and z pauli matrices. The
generality of this expression can be intuitively verified
by observing that the identity gives the density matrix
a trace of 1 while the pauli matrices allow the Bloch
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vector to point anywhere within the Bloch sphere. For
simplicity we shall at first talk about only 1 → 2 cloners,
later extending our results to the N →M case.

As shown in [19], when the conditions of unitarity, sym-
metry and isotropy are imposed on a UQC, the Bloch
vector of the original qubit cannot rotate. It does how-
ever shrink by a ’shrinking factor’ η, in keeping with the
no-cloning theorem

%red. =
1
2
(1 + η~s · ~σ) = η|ψ〉〈ψ|+ 1

2
(1− η)1 (2)

where |ψ〉 is the original input qubit. This reduction
in the magnitude of the vector results in a mixed state
of the two output clones. The symmetry requirement
and the definition for a clone to be as close as possible
to the original density matrix resulted in the following
theoretical expression for local fidelity [19]

FT = 〈ψ|%red.|ψ〉 (3)

This definition is analogous to the one originally advo-
cated by Schumacher [18] in that it is a measure of the
similarity of the original and cloned density matrices.

In the Simon et al proposal [1], quantum cloning via
stimulated emission was proposed wherein an expression
for Fidelity was given based on “right” and “wrong” pho-
tons. We shall rewrite the definition in an analogous
form which is more instructive in an experimental envi-
ronment:

FS =
RClones

RClones +RNoise
= Prob(Clone) (4)

where RClones and RNoise are count rates of clones (right
photons) and noise (wrong photons) respectively, and
Prob(Clone) is the probability of any one count being a
clone. One can see that this is exactly equivalent to the
expression of fidelity used in Eq. (5) by Lamas-Linares
et al [2]. What this implies is that in an experimental
setting, by measuring the above rates one can easily cal-
culate the fidelity of a cloner without needing to resort
to density matrices.

However, to what extent is FS truly representative of
the density matrices of the input and output qubits? In
order to answer this question let us first take a look at
the example of a 1→2 cloner. In the following exam-
ple we have a general expression for the output field of
a non-optimised universal cloner [19] with an input sig-
nal of |0〉. Here, as well as in the rest of the paper, we
shall only consider an input state of |0〉 in order to avoid
redundancy.

|ϕ〉output = α|00A〉+ β(|01B1〉+ |10B2〉) + γ|11C〉 (5)

where

|α|2XA + |β|2(XB1 +XB2) + |γ|2XC = 1 (6)

due to normalization, XA = 〈A|A〉 etc, and |0〉 and |1〉
are assumed to be orthonormal. For generality we have
lifted the normalization condition of the ancillary states
as assumed in [19]. The ancilla states can be expressed
in terms of a complete orthonormal basis spanning the
D-dimensional Hilbert space of the ancilla:

|J〉 =
D∑

i=1

λ
(J)
i |λi〉 (7)

where J is a general ancilla state. Therefore

XJ = 〈J |J〉 =
D∑

i=1

|λ(J)
i |2 = Tr{|J〉〈J |}anc. (8)

where Tr{}anc. implies tracing over the ancillary states.
The last equality has been added for convenience in the
rest of the paper.

It must be kept in mind that the two output qubits are
in different modes (distinguishable). In this example the
“right” photons of the output are in state |0〉. Observing
the output field in Eq. (5) we note that with probability
|α|2XA both output photons are in state |0〉, with prob-
ability |β|2(XB1 +XB2) only one of the output photons
is in state |0〉, and with probability |γ|2XC none of the
photons are in state |0〉. Using this in Eq. (4) gives us

FS =
2|α|2XA + |β|2(XB1 +XB2)

2|α|2XA + 2|β|2(XB1 +XB2) + 2|γ|2XC

= |α|2 + |β|2 (XB1 +XB2)
2

(9)

due to the normalization condition in Eq. (6). Let us now
compare this with FT via the reduced density matrix of
one of the clones (by tracing over the ancilla and the
other clone):

%red. = |α|2|0〉〈0| · Tr{|A〉〈A|}anc.

+|γ|2|1〉〈1| · Tr{|C〉〈C|}anc.

+|β|2|1〉〈1| · Tr{|B2〉〈B2|}anc.

+|β|2|0〉〈0| · Tr{|B1〉〈B1|}anc.

+αβ∗|0〉〈1| · Tr{|A〉〈B2|}anc.

+α∗β|1〉〈0| · Tr{|B2〉〈A|}anc.

+γ∗β|1〉〈0| · Tr{|B1〉〈C|}anc.

+γβ∗|0〉〈1| · Tr{|C〉〈B1|}anc. (10)

This gives

FT = 〈0|%red.|0〉 = |α|2XA + |β|2XB1 (11)

using Eq. (8). We can see that the only solution for
FS = FT is XB1 = XB2 , i.e. the symmetric cloner. Thus
FS is a valid measure of fidelity for all symmetric 1 → 2
cloners. It should be noted that no limits were placed on
the dimensionality of the ancilla. It can be seen that this
result also extends to all 1 → 2 ancilla-free cloners.
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N→M cloner

This analysis can be extended to the general N→M
cloner. Once again it must be kept in mind that each out-
put clone is distinguishable. Let us assume without loss
of generality that the input state of the clone = |[0]N 〉,
i.e. N particles in state |0〉. In the same vein as above,
the output of the cloner will be

|ϕ〉output =
M∑
i=0

βi

M!
i!(M−i)!∑

k=1

|[0]i[1]M−i〉(k)|B(k)
i 〉 (12)

where we have summed over all the possible output
states. |[0]i[1]M−i〉(k) represents the k’th permutation of
an output with ‘i’ clones in state |0〉 and ‘M-i’ clones in
state |1〉. There are M !

i!(M−i)! such distinguishable permu-
tations. For generality, each permutation is associated
with a distinct ancilla state |B(k)

i 〉. The states |0〉 and
|1〉 are assumed to be orthonormal, and the normaliza-
tion condition is now given by

M∑
i=0

|βi|2
M!

i!(M−i)!∑
k=1

X
B

(k)
i

= 1 (13)

Summing the number of “right” output states as before,
the simplistic expression of fidelity gives us

FS =

∑M
i=0 i.|βi|2.

∑ M!
i!(M−i)!

k=1 X
B

(k)
i∑M

i=0M.|βi|2.
∑ M!

i!(M−i)!

k=1 X
B

(k)
i

=
1
M

M∑
i=0

i.|βi|2.

M!
i!(M−i)!∑

k=1

X
B

(k)
i

(14)

where the normalization condition in Eq. (13) was used
in the second step.

Now, only the diagonal terms of the reduced density
matrix contribute to FT , therefore we shall ignore all
off-diagonal elements in calculating the reduced density
matrix of the first clone (i.e. the clone in the first output
mode). In order to to this we will need to separate out the
cases when the first mode is in state |0〉, and when it is in
state |1〉. Let us consider the case where an output has ‘i’
clones in state |0〉 and ‘M-i’ clones in state |1〉. Keeping
the first mode in state |0〉, there are (M−1)!

(i−1)!(M−i)! = s ways
to distribute the remaining clones in the remaining M-1
modes. We can specify the first ‘s’ permutations to fall
within this category, while the remaining permutations
have state |1〉 in the first mode.

This allows us to write

%red. =
M−1∑
i=1

|βi|2{
s∑

k=1

|0〉〈0|X
B

(k)
i

+

M!
i!(M−i)!∑
k=s+1

|1〉〈1|X
B

(k)
i

}

+|β0|2|1〉〈1|XB
(1)
0

+ |βM |2|0〉〈0|X
B

(1)
M

+OffDiag...

(15)

which gives us

FT = |βM |2X
B

(1)
M

+
M−1∑
i=1

|βi|2
(M−1)!

(M−i)!(i−1)!∑
k=1

X
B

(k)
i

=
M∑
i=1

|βi|2
(M−1)!

(M−i)!(i−1)!∑
k=1

X
B

(k)
i

(16)

Comparing this to Eq. (14), we see that the only solution
to FS = FT is X

B
(a)
i

= X
B

(b)
i

for all a, b. Therefore the
two expressions for fidelity are equivalent for all N →M
symmetric cloners. Once again, no limitations were made
on the dimensionality of the ancilla. It should be noted
that in the case of an ancilla-free system, X

B
(a)
i

= 1 for
all i, a. Therefore the two expressions are equivalent for
all ancilla-free cloners.

2-level ancilla

Let us consider as an example that of a UQC with a
2-level ancilla, specifically that of the optimum UQC pro-
posed by Buzek and Hillery [10]. Once again the signal
is taken to be |0〉:

|ϕ〉output =

√
2
3
|00〉⊗| ↑〉A

+

√
1
6
(|01〉+ |10〉)⊗| ↓〉A (17)

where the subscript A specifies the ancilla. The simple
expression for fidelity gives us:

Fs =
2× 2

3 + 1× 2
6

2× 2
3 + 2× 2

6

=
5
6

(18)

The reduced density matrix of the clone is

%red. =
5
6
|0〉〈0|+ 1

6
|1〉〈1| (19)

It is a simple matter to check that the FT gives the same
result as FS .

Now let us consider the Simon et al proposal of cloning
via stimulated emission [1]. In this setup the signal beam
is aligned on top of one of the output arms of a pumped
type-II downconverting crystal whilst the downconverted
photon in the other arm serves as the ancilla. Thus we
must also take into consideration the characteristic that
both the clones of the QC are in the same mode (spatially
indistinguishable). Therefore

|00〉 →
√

2|20; 01〉 (20)
|01〉+ |10〉 → 2|10; 11〉 (21)

| ↑〉A → |1〉A (22)
| ↓〉A → |0〉A (23)
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where |20; 01〉 represents two indistinguishable particles
with polarization 0, and no particles with orthogonal po-
larization 1. Hence on normalization we get

|ϕ〉 =

√
1
3
(
√

2|20; 01〉⊗|1〉A + |10; 11〉⊗|0〉A) (24)

We can see here explicitly that there is no way of calcu-
lating the reduced density matrix of an output clone in
this formulation. On the other hand FS gives us

FS =
2× 2

3 + 1× 1
3

2× 2
3 + 2× 1

3

=
5
6

(25)

which is what was purported by Simon et al [1] and ex-
perimentally verified by Lamas-Linares et al [2].

This is a compelling argument for the Simon et al pro-
posal to qualify as a 1 → 2 UQC, with a valid expression
for fidelity of cloning. At this juncture, however, the dis-
tinction (or equivalence) between cloning and state dis-
crimination needs to be addressed more clearly for this
statement to be absolute. Operationally, in order for a
device to qualify as a cloner, it is not unreasonable to
demand that both output clones be in different modes to
allow for manipulation of one clone independently of the
other (modulo entanglement). This can be implemented
in the Simon et al case by placing a 50/50 beam splitter
in the output mode, and explicitly selecting different port
coincidences. In theory, this could be achieved using a
‘QND filter’, where QND number measurements on both
ouput ports of the BS could non-destructively select dif-
ferent port ouputs. However, half of all input signals are
lost in this process. This gives us:

|20; 01〉 → 1√
2
|00〉+

1
2
(|20; 01〉C + |20; 01〉D)

|10; 11〉 → 1
2
(|01〉+ |10〉) +

1
2
(|10; 11〉C + |10; 11〉D)

(26)

where |10; 11〉C represents one horizontal and one vertical
photon in output port C of the BS etc. Plugging this into
Eq. (24), discarding same port outputs, and normalizing
we get:

|ϕ〉 =

√
2
3
|00〉⊗|1〉A

+

√
1
6
(|01〉+ |10〉)⊗|0〉A (27)

i.e. we get exactly the optimum 1 → 2 UQC as given in
Eq. (17).

At this point we would like to address the use of the
ancilla as an anticlone of the signal, since it seems to give
additional information about the input state. Firstly it
would be useful to keep in mind that the reduced den-
sity matrix of the ancilla in Eq. (27) does not corre-
spond to that of the optimum universal anticlone. The

reduced density matrix for the optimum universal anti-
clone is given by

%red.|inp.=|0〉
Uanticlone = %red.|inp.=|1〉

Uclone

= {%red.|inp.=|0〉
Uclone :: (0 ↔ 1)}

=
5
6
|1〉〈1|+ 1

6
|0〉〈0| (28)

where (0 ↔ 1) implies interchanging the computational
states 0 and 1. The reduced density matrix of the ancilla
is

%red.|ancilla =
2
3
|1〉〈1|+ 1

3
|0〉〈0| (29)

which is different from that of the optimum anticlone in
Eq. (28). Using Eq. (29), the FT of the ancilla as an an-
ticlone is 2/3. Taking the average of this with the fidelity
of the two clones gives a total fidelity of 7/9. Interest-
ingly, the upper bound for the fidelity of a 1 → 3 UQC
[12] is also 7/9. Thus Eq. (27) could also represent an
isotropic asymmetric 1 → 3 ancilla-free cloner (or more
precisely, if Type I downcoversion were utilized).

We can also see that attempting to include the ancilla
in FS in the Simon et al scheme of Eq. (24) leads to the
same result:

FS =
Clones+Anticlones

Clones+Anticlones+Noise

=
3× 2

3 + 1× 1
3

3× 2
3 + 3× 1

3

=
7
9

(30)

This may not be so surprising, since as shown above, the
two expressions of fidelity are analogous for all ancilla-
free cloners. However, it must be kept in mind that we
have used an average over individual fidelities in calcu-
lating FT for asymmetric cloners.

Under what conditions can the ancilla be considered
to be the optimum universal anticlone of the incoming
state? The reduced density matrix for the ancilla is

%red.|ancilla = |α|2|A〉〈A|+|γ|2|C〉〈C|+2|β|2|B〉〈B| (31)

In order for this to equate to the optimum anticlone of
Eq. (8) we must have β = 0 and |A〉 = |1〉, |C〉 = |0〉. We
can therefore see that it is almost equivalent to creating
a 1→3 ancilla-free universal quantum cloner, having a
shrinking factor of zero as expected.

Conclusion

In this paper a simple expression for the experimental
measurement of fidelity has been proposed and for the
case of pure input states was shown to be equivalent to
the traditional theoretical expression for fidelity for all
symmetric N→M QCs, with the symmetry requirement
being lifted for ancilla-free N→M QCs. The fidelity was
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explicitly calculated for the case of the optimal UQC [10]
and for the case of QC via stimulated emission [1, 2].
An attempt was made to provide greater insight into the
physical interpretation of Fidelity and to reconcile some-
what experiments with the theory. It was suggested that
although the Simon et al proposal appears to give the
fidelity for an optimal UQC, it seems to be more closely
associated with state discrimination since both outputs
are in the same mode.
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