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II. COHERENT STATES

A. Derivation of Coherent States

The number states studied in the previous section are mathematically very simple to

study, but very difficult to realize in the laboratory. Coherent states α, as we will now

study, are quasi-classical states produced by lasers. The mathematics of coherent states are

motivated by a simple relation, namely:

â|α〉 = α|α〉. (16)

This equation tells us that coherent states |α〉 are eigenstates of the destruction operator â.

A simple physical meaning is that measurement of a small portion of a coherent state does

not change the coherent state as long as the field is strong (quasi-classical). For example,

a small portion of a coherent state (laser) can be sampled without affecting the unsampled

portion of the coherent state. This is not the case when number states are used.

The decomposition of the coherent state in terms of the number states can be found from

the relation in eqn. (14). Assume,

|α〉 =
∑

n

cn|n〉, (17)

which implies

â|α〉 =
∑

n

cn

√
n|n − 1〉. (18)

Substituting these results into eqn. (16) yields

∑

n

cn

√
n|n − 1〉 =

∑

cnα|n〉 (19)

which brings about the recurrence relation:

cn+1

√
n + 1 = cnα. (20)

Hence,

cn =
α√
n

cn−1 =
α2

√

(n)(n − 1)
cn−1 =

αn

√
n!

c0. (21)

Therefore, fixing the c0 coefficient and using the normalization condition,

∑

n

|cn|2 = 1 (22)
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uniquely determines all of the coefficients. Using eqn. (21) and the normalization condition

gives

∑

n

∣

∣

∣

∣

∣

αn

√
n!

c0

∣

∣

∣

∣

∣

2

= 1

⇒ |c0|2
∑

n

|α|2n

n!
= 1 (23)

Recalling ex =
∑

n
xn

n!
, we arrive at

c0 = e
−|α|2

2 . (24)

Thus,

|α〉 = e
−|α|2

2

∑

n

αn

√
n!
|n〉, (25)

which is the coherent state.

B. Expectation and Variance of N

The expectation value of the number operator N in the coherent basis is given by

〈α|N |α〉 = |α|2. (26)

and

〈α|N 2|α〉 = 〈â†ââ†â〉 = 〈â†(â†â + 1)â〉 = |α|4 + |α|2. (27)

The dispersion of N is found by taking the expectation value of the variance of N , which is

given by

(∆N 2) = 〈N 2〉 − 〈N〉2 = |α|2. (28)

Physically this means that the uncertainty in the number of photons in a coherent states

goes as the square root of the number of photons in the field. The number uncertainty grows

with the strength of the field. However, the relative dispersion given by

(∆N)

N
=

1

|α| (29)

actually gets smaller with increasing field strength. This is an important result, because

lasers, or coherent laser sources thus have well defined powers at large intensities. The

uncertainty of the field is considered the standard quantum limit. If the standard quantum

noise is the dominant noise in the system, another trick, amplitude squeezing, can further

lower this noise threshold at the expense of phase uncertainty.
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C. Quadrature Uncertainties

Using the relations between the quadrature operators and creation and annihilation op-

erators in eqns. (2) and (3), it can be seen that

X̂ =
1

2
(â + â†) (30)

and

Ŷ =
−i

2
(â − â†). (31)

The expectation value of the quadrature operator X̂ in a coherent state is

〈X̂〉 = 〈1
2
(â + â†)〉 =

1

2
(α + α∗). (32)

Similarly, the expectation value of the squared quadrature operator X̂2 in a coherent state

is

〈X̂2〉 = 〈1
4
(â2+ââ†+â†â+â†2)〉 = 〈1

4
(â2+(â†â+1)+â†â+â†2)〉 =

1

4
(α2+2α∗α+1+α∗2). (33)

The expectation value of the variance is then computed to be

〈(∆X̂2)〉 = 〈X̂2〉 − 〈X̂〉2 =
1

4
. (34)

PROVE

〈(∆Ŷ 2)〉 = 〈Ŷ 2〉 − 〈Ŷ 〉2 =
1

4
. (35)

The variance product of the two quadratures is then in agreement with the standard result,

namely:

〈(∆X̂2)〉〈(∆Ŷ 2)〉 =
1

16
. (36)

D. Displacement Operator: Coherent State Generator

The operator

D̂(α) = eα∗â†−αâ (37)

can be used to generate the coherent state. As can be seen this operator is unitary. Using

[â, hata†] = 1. If two operators Â and B̂ commute with their commutator, then

eÂeB̂ = eÂ+B̂+ 1

2
[Â,B̂]. (38)
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PROVE

D̂(α) = e−|α|2/2eαâ†

eα∗â. (39)

This form for the operator is particularly simple if one is building up the coherent state from

the vacuum, since eα∗â|0〉 = |0〉. Hence,

D(α)|0〉 = e−|α|2/2eαâ† |0〉 = e−|α|2/2
∑

n

αn

√
n!
|n〉. (40)

As can be seen this is the coherent state as derived in eqn. 25.

The D̂(α) operator is often called the displacement operator and fulfills its meaning in

the quadrature representation. The wavefunction in the position representation

Ψ(x) = 〈x|α〉 = 〈x|D̂(α)|φ0〉 (41)

where φ0 is the ground state wavefunction in the quadrature representation. Using eqns.

2 and 3 which relate the quadrature operators to the annihilation and creation operators

along with the normal ordering term in eqn. 38, PROVE we arrive at

D(α) = e
α
∗2−α

2

4 eX̂(α−α∗)e−iŶ (α+α∗). (42)

Substituting this result into the wavefuntion yields

Ψ(x) = 〈x|D̂(α)|φ0〉 = 〈x|eα
∗2−α

2

4 eX̂(α−α∗)e−iŶ (α+α∗)|φ0〉 = e
α
∗2−α

2

4 ex(α−α∗)〈x|e−iŶ (α+α∗)|φ0〉
(43)

where the eigenvalue relation X̂|x〉 = x|x〉 was used. The operator e−sP/h̄ is the translation

operator of s in the x direction (see Cohen-Tannoudji’s treatment in complement EII [2]).

The wavefunction is then written as

Ψ(x) = e
α
∗2−α

2

4 ex(α−α∗)〈x − i(α + α∗)|φ0〉 = e
α
∗2−α

2

4 ex(α−α∗)φ0(x − i(α + α∗)) (44)

which has the form of a displacement in the x-quadrature.

E. problems

1. Is there an eigenstate of the creation operator?
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2. What is the variance of N̂ for the displaced Fock state. In other words, what is the

variance of N̂ in the D̂(α)|1〉 state?
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