Separability Criterion for Continuous Variables

Following the outline of the Duan et al [1] criterion for inseparability, we show that
momentum-position correlated photons of parametric down conversion are entangled or more
correctly inseparable. A two-particle state is considered separable if and only if the density

matrix of the total system can be written in the following decomposition:
p= Zpi(ﬂil ® piz) (1)

where p;; and p;o are states of particles one and two respectively and ZZ p; = 1. We define

EPR operators
Ti2 = T1 — T2, (2)
P12 = p1+ D2 (3)

where x1, x5 and py, po are position and momentum variables of particles 1 and 2 respectively.

The variance of z15 can be found by using the decomposition in eqn. 1, namely

((Az12)*), = ((212)"), + ((212)); (4)

where we recall
((212)), = TT[sz-(pu ® piz) 1] (5)
= ZPZTT[(PM ® piz) w1 (6)

= Zpi<($12)2>i (7)

This means that

(@ =3 () = (@)} ®)

Moving on, we find
((Az12)*), sz (212)%)i) — ((z12))> 9)
=Zpi (21)* = 2122 = 321 + (@2)°)1) = ((212)) (10)
- Zp (@i + (@) = 2edilw)s) = (@) (11)



We wish to write the variance of the two particle states in terms of the single particle

variances so that it is straightforward for measurement. Then,

((Az12)%), sz Yo = {n)i + (207 + ((22)%)s — (@) + (22)] — 2@1)ifz2)i) — ((212))]
sz (((Az1)?)s + ((Az1))F + (@0)] + (w2)7 — 2(z1)if2)i) — ((212)); (12)

sz A$1 )i + ((Azq)) +sz $12 <2P1($12>z)> (13)

Using the Cauchy Schwartz inequality 2. p; 32, pi (212)2) — (32, pi(212)i))” > 0, then,
A similar result is achieved for momentum entangled states,

((Ap12)?) >sz (Ap1)?)i + ((Ap2))?) (15)

Duan et al at this point summed the variances of the momentum-like and position-
like observables. This is a reasonable approach to take for squeezed states, because the
quadrature observables have the same dimensions. However, this is not satisfactory for a true
momentum-position analysis, because of the obvious difficulty with dimensions. Therefore,
we take the product of the variances to determine the inequality, which ameliorates this
problem and has a very satisfying result. The product of the momentum and position

variances for separable states is then given by

<(A$12) 2o (( Ap12 (sz Axl )i + A$2 )i) ) (Zp] Apl j <(AP2)2>3‘)>
(16)
Down conversion is symmetric such that we can assume ((Az;)?); = ((Axs)?); and
((Ap1)?)i = ((Aps)?);. This assumption, while it simplifies the calculation, is not neces-
sary to achieve the same final result. In fact, the symmetric assumption, while valid under
a simplified form of the downconversion of the Hamiltonian, is actually the minimum uncer-

tainty state, which means that any other possibility only strengthens the inequality. Hence,

((Az12)%) ,((Ap12)?), > 4 (sz ((Azy)? z) (ZPJ ({(Ap1)*); ) (17)



Using the Cauchy-Schwartz inequality

(sz ((Axy)? ) (ij ((Ap1)?) j) (sz ((Azy)? <(Ap1)2>i> (18)

and the uncertainty relation ((Az1)2);((Ap;y)?); > h*/4, which is Heisenberg’s uncertainty

relation due to noncommuting observables [z1, p;| = ik and is responsible for the diffraction

limit of optical systems, leads to the separability bound

((Az12)?) o ((Ap12)?), > B2 (19)

This bound represents the smallest product of variances which can be achieved by separable
states. This is a sufficient condition for inseparability, so that any two-particle system which

violates this bound is entangled under the assumption that quantum mechanics is complete.
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