
Quantum Cloning

Quantum cloning has been a topic of considerable interest for many years. It turns out

to be quantum limit for copying an input state and is closely related to linear amplification

when talking about optical cloning. It is commonly stated that it is impossible to clone.

In actuallity it is possible to clone perfectly, one just needs to know the input state. As

Wootters and Zurek showed it is impossible to clone any arbitrary unknown state with

perfect fidelity. This became affectionately known as the “no cloning theorem”, although it

is more correctly called the no “perfect cloning theorem”. In fact, it may be safe to say that

quantum information was founded based on this theorem.

WOOTTERS-ZUREK CLONER

The Wootters-Zurek theorem goes something like this. Suppose we have a two state

particle which we wish to copy. The quantum states of the particle are given by |0〉a and

|1〉a, where the subscript a denotes a spatio-temporal mode for the particle. Suppose initially

we are given a state |0〉a and we have a quantum cloning machine in state |Q〉x. The cloning

machine then performs the operation

|0〉a|Q〉x → |0〉a|0〉b|Q0〉x (1)

where the subscript b denotes a unique spatio-temporal mode with respect to a. Thus, the

cloning machine has made an exact copy in another place while keeping the original. Now,

suppose that we are given the |1〉a instead. We wish to have the cloner behave as

|1〉a|Q〉x → |1〉a|1〉b|Q1〉x (2)

So far so good. These transformations are perfectly allowed by quantum mechanics. Thus,

as long as we know the basis of the states, it is possible to perfectly clone. In fact, these

transformations are achieved by a controlled-not gate. Now suppose that we are given a

state which is a superposition of the two basis states

|s〉a = α|0〉a| + β|0〉a| (3)
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where α and β satisfy |α|2 + |β|2 = 1. The cloning operation must then obey the following

transformation

|s〉a|Q〉x → α|0〉a|0〉b|Q0〉x + β|1〉a|1〉b|Q1〉x (4)

The density matrix for the output system is then given by

ρ = α∗α|0〉a|0〉b|Q0〉xx〈Q0|b〈0|a〈0| + αβ∗|0〉a|0〉b|Q0〉xx〈Q1|b〈1|a〈1|

+ α∗β|1〉a|1〉b|Q1〉xx〈Q0|b〈0|a〈1| + β∗β|1〉a|1〉b|Q1〉xx〈Q1|b〈1|a〈1| (5)

We assume that the machine states form an orthonormal set, namely

x〈Q0|Q0〉x = x〈Q1|Q1〉x = x〈Q|Q〉x = 1 (6)

and

x〈Q0|Q1〉x = x〈Q0|Q〉x = x〈Q1|Q〉x = 0 (7)

We are only interested at looking at the original and the copy after the cloning. However,

it can be seen that the machine states are entangled to the states of the copy and clone.

To observe the copy and clone by themselves, we must trace over the machine states. The

orthonormality of the machine states makes the transformation simple. The reduced density

matrix of the two particle system is then given by

ρout

ab
= Trx[ρ

out

abx
] = α∗α|0〉a|0〉bb〈0a〈0| + β∗β|1〉a|1〉bb〈1a〈1| (8)

To observe the single particle reduced density matrices, we trace over the states of the other

particle. Hence,

ρout

a
= Trb[ρ

out

ab
] = α∗α|0〉aa〈0| + β∗β|1〉aa〈1| (9)

and

ρout

b
= Tra[ρ

out

ab
] = α∗α|0〉bb〈0| + β∗β|1〉bb〈1| (10)

It can be seen that the original and the copy have identical outputs. Unfortunately, the

original has been modified relative to the input state. We will discuss two ways to measure

the modification. The first method is called the “fidelity” and the second is called the

Hilbert-Schmidt norm.
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Fidelity

The fidelity is found by

F = 〈s|ρout

a
|s〉 (11)

where |s〉 is the state of the particle before entering the cloning device. It can then be seen

that the fidelity is given by

PROVE

F = |α|4 + |β|4 (12)

which has a maximum value of 1 for either α = 1 or β = 1 and a minimum value of 1

2

for |α| = |β| = 1√
2
. A fidelity of 1 means that a perfect copy has been made, because the

original and the copy both have the same state as the input. A fidelity of 1

2
is not a copy

at all, but a maximally mixed state. In fact, if we look closer at the output state in eqn.

4, it can be seen that the original, copy and machine states are maximally entangled. This

implies that if one maximally entangles a state to another two state particle, one has made

a perfectly bad copy. Also, we learn that a perfect copy can be made if we know the basis

that a particle is in. The most important result, is that we cannot inject an arbitrary state

into a cloning machine and get a perfect copy.

Hilbert-Schmidt norm

In the original Buzek-Hillery cloning paper, they used the Hilbert-Schmidt norm to mea-

sure a scalar “distance” between two density matrices. The Hilbert-Schmidt norm is defined

as

D = Tr[(ρs − ρout

a
)2] (13)

where ρs is the density matrix of the input state

ρs = α∗α|0〉aa〈0| + αβ∗|0〉aa〈1|

+ α∗β|1〉aa〈0| + β∗β|1〉aa〈1| (14)

Hence,

PROVE

D = 2|α|2|β|2 (15)
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which has a minimum value when either α = 1, β = 0 or β = 1, α = 0. In this case the

distance between the density matrix vanishes, which means that the original is unchanged

by the cloning process. It also means that the copy is perfect, because the copy is the same

as the original. The distance is maximum distance of 1

2
occurs when |α| = |β| = 1√

2
.

UNIVERSAL CLONING MACHINE

The mathematics of the universal cloning machine is considerably more involved than

the Wootter-Zurek cloner. Buzek and Hillery proposed the first universal cloning machine.

The idea is that a cloning machine can accept an arbitrary input state and copy it with

the same fidelity for all possible states. The first experimentally realizable cloning machine

was proposed by Simon et al. However, the proposal was different than the Buzek-Hillery

cloner, because the original and copy were both in the same spatio-temporal mode. Hence,

the mathmetics of the Buzek-Hillery cloner had to be neglected. Essentially, all previous

proposals assumed distinguishable particles, whereas the Simon cloner assumed indistin-

guishable particles. After Simon’s proposal, several experiments were realized.

The idea is that a seed photon, which is to be copied is injected in an optical parametric

amplifier during pair production of entangled photons. Assume that the photon is initially

horizontally polarized in the state

|s〉 = a
†
hc
|0〉 (16)

where the hc subscript denotes a the to-be-cloned horizontally polarized photon created in

mode a. The pair production state is given by

|ψ−〉 =
1√
2
(a†

hd
b†
v
+ a

†
vd
b
†
h
)|0〉 (17)

where the hp subscript, for example, represents a horizontally polarized photon created by

It should be noticed that the original photon to be cloned and one of the photons are both

created in the same mode a. Also, it is interesting to note that if one traces over the states

of the photon in mode b, then the photon in mode a is a maximally mixed state, which is

represented by a Bloch vector of zero length in the Bloch sphere. One can consider a Bloch

vector of zero length to be a perfectly blank state (much like a white piece of paper to make

a copy on). Also, the photon in mode b is the analog of the machine states discussed earlier.

Without the machine state, the photon in mode a could not be completely blank. Although,
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this was not state, it has been shown that the machine states realize the universality of the

cloning machine. The machine states, or states of the other photon or ancilla realize the

universality of the cloning machine.

The state of the original and down converted pair are given by

|C〉 = |s〉 ⊗ |Ψ−〉 =
1√
2
(a†

hc
a
†
hd
b†
v
+ a

†
hc
a
†
vd
b
†
h
)|0〉 (18)

If the input photon is made spatially, spectrally and temporally indistinguishable from the

down converted photon in mode a, then one obtains, without worrying about normalization

|C〉 = |s〉 ⊗ |Ψ−〉 = ((a†
h
)2b†

v
+ a

†
h
a†

v
b
†
h
)|0〉 (19)

=
√

2|2, 0; 0, 1〉 + |1, 1; 1, 0〉 (20)

The clone thus experiences a boson mode occupation enhancement for the term which has

the same polarization and no enhancement for the orthogonal polarization. The fidelity is

determined by using photon counting. One simply counts the number of photons weighted by

their probability of occuring. The fidelity is then the number of photons with the polarization

of the original divided by total of all possible events

F =
2 × 2 + 1 × 1

2 × 2 + 2 × 1
=

5

6
(21)

This requires a basis-dependent verification.

PROBLEM

1. Phase covariant cloner. Show that if one interferes a circularly polarized photon with

a linear polarized photon and postselects only two photon events in one arm of the beam

splitter, that all possible linear polarization states will be cloned with 5/6 fidelity.


