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The Biphoton Wavefunction From the beginning… 
𝓗𝓗𝐸𝐸𝐸𝐸 =
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�𝑑𝑑3𝒓𝒓 𝑫𝑫 ∙ 𝑬𝑬 + 𝑩𝑩 ∙ 𝑯𝑯  

𝑫𝑫 = 𝜖𝜖0𝑬𝑬 + 𝑷𝑷         ∶            𝑷𝑷 = 𝜖𝜖0 𝜒𝜒(1)𝑬𝑬 + 𝜒𝜒 2 𝑬𝑬
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+ 𝜒𝜒 3 𝑬𝑬
3

+ ⋯  

With the following assumptions: 
• The pump field is bright enough to be treated classically 
• The pump field is not too bright compared to the Coulomb field binding electrons to atoms 

• i.e., intensities a good deal less than ~1014W/mm2 

• Note: Optical damage threshold for BBO ~107W/mm2 

• The pump amplitude does not significantly change over the length of the crystal 
• A.k.a. The undepleted pump approximation 

• The pump field is relatively narrowband 
• The pump field’s time dependence factors out (approximately) 

• The pump field is paraxial 
• The longitudinal component of 𝑘𝑘p dominates over the transverse components 
• The spatial amplitude factors in to longitudinal and transverse parts 

• The nonlinear crystal in embedded in a linear material of equal refractive index 
• We can neglect internal reflections 

• The nonlinear crystal is a good deal wider than the pump beam, and much wider than the pump wavelength 
• And.. we examine only the nearly degenerate part of the downconverted spectrum 

We can find (in 1D for a Gaussian pump beam): 
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(𝑥𝑥1, 𝑥𝑥2) ≡(signal,idler) photon positions  
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The Double-Gaussian Approximation 
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Correlation measures 
The Schmidt Number    𝒦𝒦 

𝒦𝒦 ≡
1

𝑇𝑇𝑇𝑇[𝜌𝜌�𝐴𝐴2]
 

 
For the Double-Gaussian State: 
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The Fedorov Ratio    ℛ 

ℛ ≡
𝜎𝜎(𝑥𝑥1)

𝜎𝜎 𝑥𝑥1 𝑥𝑥2
  

 
For the Double-Gaussian State: 
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The Birth Zone Number  𝑁𝑁 

N ≡
𝜎𝜎(𝑥𝑥1+𝑥𝑥2)

𝜎𝜎 𝑥𝑥1−𝑥𝑥2
 
𝑑𝑑

 
𝑑𝑑 = number of dimensions (1 or 2, usually) 

For the Double-Gaussian State: 

N =
𝜎𝜎+
𝜎𝜎−

𝑑𝑑

 

Fourier Transform Properties of 
the Double-Gaussian 

The Heisenberg relations: 

𝜎𝜎𝑥𝑥+𝜎𝜎𝑘𝑘+ ≥
1
2

 

𝜎𝜎𝑥𝑥−𝜎𝜎𝑘𝑘− ≥
1
2

 

Are saturated by the Double-Gaussian state. 
 

In addition, the conditional Heisenberg relations: 

𝜎𝜎𝑥𝑥1𝜎𝜎(𝑘𝑘1|𝑘𝑘2) ≥
1
2

 

𝜎𝜎(𝑥𝑥1|𝑥𝑥2)𝜎𝜎𝑘𝑘1 ≥
1
2

 

..are also saturated by the Double-Gaussian state. 

Fig. 1: Depiction of second-order nonlinear crystal axis. The direction 
of propagation here is the z-axis, while the transverse components are 
in the x and y directions. The z-axis is also called the optic axis. 

Fig. 2: Phase-Matching relationship for nearly collinear downconverted 
light. When 𝜃𝜃 is small, we may use the small-angle approximation to 
get a simple expression for our biphoton wavefunction. 

Fig. 3: Diagram of an experiment used to measure the transverse 
position correlations between signal and idler photons in type-I SPDC. 
A pair of lenses is used to image the face of the nonlinear crystal onto  
DMD (Digital Micro-mirror Device) arrays. By selecting pixels of these 
DMD arrays to reflect toward photo detectors, one obtains the joint 
position probabilities from the histogram of coincidence counts. 

Lower bound for birth zone size 

Since   𝜎𝜎(𝑥𝑥1−𝑥𝑥2) ≥ 𝜎𝜎(𝑥𝑥1|𝑥𝑥2), 

We know that 

𝜎𝜎(𝑥𝑥1−𝑥𝑥2) ≥
1

2𝜎𝜎𝑘𝑘1
 

Typical Lab Parameters: 
For: 
𝜆𝜆𝑝𝑝 = 325nm 
𝜎𝜎𝑝𝑝 = 0.3mm 
𝐿𝐿𝑧𝑧 = 1.0mm 

We find: 
Δ𝑃𝑃𝑃𝑃 = 6.78μm; 
Δ𝐸𝐸𝐸𝐸 = 9.65μm; 
𝑁𝑁𝑃𝑃𝑃𝑃 = 7,830: d = 2 
ℛ,𝒦𝒦 = 44.25; 
 
ℎ 𝑥⃗𝑥1 ∶ 𝑥⃗𝑥2 =10.9 bits 

The Transverse 
Correlation Width 

Plot comparing estimates of the momentum difference probability density 
𝜌𝜌(𝑘𝑘−). The solid (blue) curve with wavy side-bands gives our Sinc-based 
probability density estimate, where we set a = 2 for convenience. The dashed 
(magenta) Gaussian curve gives our Gaussian-based probability density 
estimate with matching means and variances of 𝑘𝑘−. 

Plot comparing different estimates of 𝜌𝜌(𝑥𝑥−). The solid blue wavy curve is our most accurate estimate from 
the transformed Sinc-based distribution. The tall dashed (magenta) curve is the Gaussian distribution 
obtained from matching 〈𝑘𝑘−〉 and 〈𝑘𝑘−2〉, while the shallow dashed (red) curve is the Gaussian distribution 
obtained by matching 〈𝑥𝑥−〉 and 〈𝑥𝑥−2〉. The solid (green) curve gives us a peak-matching Gaussian 
approximation. We see that the widths-of-half-maximum (as indicated by the gold line) are nearly identical 
(or by less than 0.3%) for the Sinc-based and peak-matching Gaussian distributions Again, we set a = 2 for 
convenience. 

Plot of Double-Gaussian wavefunction 𝜓𝜓𝐷𝐷𝐷𝐷(𝑥𝑥1, 𝑥𝑥2)  
for 𝜎𝜎+ = 1, and 𝜎𝜎−𝑃𝑃𝑃𝑃 = 3

40
 (matching statistics of biphoton wavefunction) 

Plot of biphoton wavefunction 𝜓𝜓(𝑥𝑥1, 𝑥𝑥2)  

with 𝜎𝜎𝑝𝑝 = 1
2
 and 𝜎𝜎(𝑥𝑥1−𝑥𝑥2) = 3 2

40
.  

Δ ≡ 2𝜎𝜎 𝑥𝑥1 𝑥𝑥𝑝𝑝  ∶   𝑥𝑥𝑝𝑝 =
𝑥𝑥1 + 𝑥𝑥2

2
 

When the joint distribution factors: 
𝜌𝜌 𝑥𝑥1, 𝑥𝑥2 = 𝜌𝜌+ 𝑥𝑥+ 𝜌𝜌−(𝑥𝑥−), 
We get the simple formula: 

Δ = 𝜎𝜎(𝑥𝑥1−𝑥𝑥2). 

For the Biphoton state: 

𝜟𝜟 =
𝟗𝟗𝑳𝑳𝒛𝒛𝝀𝝀𝒑𝒑
𝟏𝟏𝟏𝟏𝟏𝟏

 
 

Consequence: 
Thinner crystals give better 
(smaller) correlation widths, at the 
expense of brightness. 

If we want to approximate our 
statistics with a Double-Gaussian, 
the Peak-Matching width, 

𝛥𝛥𝑃𝑃𝑃𝑃 =
4𝐿𝐿𝑧𝑧𝜆𝜆𝑝𝑝

9𝜋𝜋
 

fits the full width at 48.2% of the 
maximum. 

Temporal Correlation Width 

.. and based on our reference:   
arXiv:1502.06996  

Type-I SPDC 
 

𝜎𝜎(𝑡𝑡1−𝑡𝑡2)
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =

9𝐿𝐿𝑧𝑧𝜅𝜅1
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𝜎𝜎(𝑡𝑡1−𝑡𝑡2)
𝑃𝑃𝑃𝑃 =

4𝐿𝐿𝑧𝑧𝜅𝜅1
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Type-II SPDC 
 

𝑊𝑊(𝑡𝑡1−𝑡𝑡2) =
𝐿𝐿𝑧𝑧 Δ𝑛𝑛𝑔𝑔

𝑐𝑐
 

 

Notes: 

𝜅𝜅1 ≡
𝑑𝑑2𝑘𝑘1
𝑑𝑑𝜔𝜔2 �𝜔𝜔𝑝𝑝

2

:   (GVD constant) 

Δ𝑛𝑛𝑔𝑔 ≡(group index mismatch) 
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