
Compressively Characterizing High-Dimensional Entangled States
with Complementary, Random Filtering

Gregory A. Howland,1,2,* Samuel H. Knarr,1 James Schneeloch,1,2 Daniel J. Lum,1 and John C. Howell1
1Department of Physics and Astronomy, University of Rochester, 500 Wilson Boulevard,

Rochester, New York 14627, USA
2Air Force Research Laboratory, 525 Brooks Road, Rome, New York 13441, USA

(Received 23 September 2015; revised manuscript received 22 December 2015; published 12 May 2016)

The resources needed to conventionally characterize a quantum system are overwhelmingly large for
high-dimensional systems. This obstacle may be overcome by abandoning traditional cornerstones of
quantum measurement, such as general quantum states, strong projective measurement, and assumption-
free characterization. Following this reasoning, we demonstrate an efficient technique for characterizing
high-dimensional, spatial entanglement with one set of measurements. We recover sharp distributions with
local, random filtering of the same ensemble in momentum followed by position—something the
uncertainty principle forbids for projective measurements. Exploiting the expectation that entangled signals
are highly correlated, we use fewer than 5000 measurements to characterize a 65,536-dimensional state.
Finally, we use entropic inequalities to witness entanglement without a density matrix. Our method
represents the sea change unfolding in quantum measurement, where methods influenced by the
information theory and signal-processing communities replace unscalable, brute-force techniques—a
progression previously followed by classical sensing.
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I. INTRODUCTION

Practicing experimentalists most commonly perform
quantum measurement in the context of state and parameter
estimation [1]. While great historical emphasis has been
placed on using measurement to probe the validity of
quantum mechanics itself—where measurements must not
only agree with quantum predictions but also rule out any
competing explanations [2]—state estimation accepts
quantum theory a priori. Here, measurements on identi-
cally prepared copies of a system are used to generate a
model from which testable predictions can be made about
future measurement statistics [3]. This point of view lifts
the burden of validation, leading to simpler experiments
and technologies.
Even so, quantum-state estimation remains a persistent

obstacle for scaling quantum technologies. The familiar
approach of quantum tomography (QT) scales at least
quadratically poorly with added dimensions and exponen-
tially poorly with added particles. QT in an N-dimensional
Hilbert space requires of order N2 measurements [4]—
when N is a prime power, N projections are taken in each
of N þ 1 mutually unbiased bases [5]. For example,

tomography of a single-spin qubit (N ¼ 2) requires dividing
the ensemble three ways, where expectation values of the X̂,
Ŷ, and Ẑ spin components are separatelymeasured. Formost
nontrivial quantum systems, traditional, brute-force QT is
unmanageable in the lab. In particular, continuous-variable
degrees of freedom, such as transverse position and trans-
versemomentumor energy and time, whereN → ∞, cannot
be realistically characterized via QT [6].
Efforts to overcome the limitations of QT fall into three

major categories. First, often only a subset of a system’s
behavior is of interest; e.g., if one only needs to predict a
qubit’s spin along one axis, information about the other two
is irrelevant. The general tomographic density matrix can
be discarded here in favor of simpler models [7]. A
practical example is quantum key distribution (QKD),
where only two (instead of order N) bases, such as energy
and time, need to be characterized [8]. Many entanglement
witnesses only require a small subset of possible measure-
ments to confirm entanglement [9,10].
Second, one can leverage prior knowledge about a

system. In standard tomography, maximum likelihood
estimation is used to find a valid density matrix consistent
with measurement data [11,12]—a simple assumption that
quantum mechanics holds. Or, given a model of the
physical system, one can begin with a prior distribution
which is updated or parametrized in response to measure-
ments, as in Bayesian inference [13,14].
One powerful presupposition is that a signal is

structured, or compressible. For classical signals, this
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surprisingly broad assumption spawned the field of
compressed sensing (CS) to tremendous multidisciplinary
impact [15,16] with a strong presence in imaging [17–20].
In compressed sensing, signals are compressed during
measurement so they can be sampled below the Nyquist
limit [21]. Several recent efforts apply CS to quantum
measurement to dramatic effect [22–26]—in some cases,
reducing measurement times from years to hours [27]. For
tomography, all protocols exploiting positivity are a form of
compressed sensing [28].
Finally, one can choose measurements well suited to the

model and prior knowledge. There is a compelling move-
ment beyond traditional, projective measurements that
localize quantum particles. Notably, there is weak meas-
urement, where a system and measurement device are very
weakly coupled, leaving the system nearly undisturbed
[29]. With weak measurement, researchers have directly
measured the quantum wave function [30], observed
average trajectories of particles in the double-slit experi-
ment [31], and performed tests of local realism [32]. More
recently, we investigated partially projecting measurements
that lie somewhere between weak and projective measure-
ment. Using random, binary filtering in position followed
by strong projections in momentum, we measured the sharp
image and diffraction pattern of a transverse optical field
without dividing the initial ensemble, a feat impossible for
strong, projective measurements [33]. With nonprojective
measurement, the conventional wisdom that incompatible
variables must be separately investigated is discarded.
Guided by these principles, we demonstrate a novel

approach for efficiently witnessing large-dimensional
entanglement with a single set of measurements. We apply
this technique to Einstein-Podolsky-Rosen (EPR) correla-
tions in the spatial degrees of freedom of the biphoton state
produced in spontaneous parametric down-conversion
(SPDC), a system closely resembling the EPR gedanke-
nexperiment [34,35]. Inspired by the randommeasurements
used in CS, we show that random, local, partial projections
in momentum followed by random, local, partial projec-
tions in position can be used to efficiently and accurately
image EPR correlations in both domains. The ensemble is
not split—position and momentum measurements are
performed on the same photons. Remarkably, the measure-
ment disturbance introduced by the momentum filtering
manifests as a small amount of additive noise in the position
distribution, which remains unbroadened. This allows the
position and momentum measurements to be decoupled,
and the joint probability distributions to be recovered in
a 65,536-dimensional discretization of the infinite-
dimensionalHilbert space. Ourmeasurements do not violate
the uncertainty principle; rather, they highlight the complex
and subtle behavior of measurement disturbance given
nonprojective measurements.
Exploiting our expectation that the distributions are

highly correlated, we use compressive sensing optimization

techniques to dramatically under-sample—we need fewer
than 5000 measurements to obtain high-quality distribu-
tions. By comparing the conditional Shannon entropy in the
position and momentum joint distributions, we witness
high-dimensional entanglement and determine a quantum
secret key rate for the joint system without needing a
density matrix.

II. THEORY

A. Random, partially projective measurements
of an EPR state

Consider a two-photon quantum state jψi encoded in the
transverse-spatial degrees of freedom of the biphoton
produced by SPDC. SPDC is a nonlinear-optical process,
where a high-energy pump photon is converted into two
lower-energy daughter photons, labeled signal and idler.
Conservation of momentum dictates that the signal and
idler momenta be anticorrelated for a plane-wave pump.
Conservation of “birthplace,” the notion that both photons
originate from the same location in the crystal, dictates
positive correlations in the daughters’ transverse positions.
Strong correlations in incompatible observables are a

signature of entanglement—in fact, the original EPR
paradox was described using position and momentum
[34]. EPR considers the ideal state

jψi ¼
Z

dx1dx2δðx1 − x2Þjx1; x2i

¼
Z

dk1dk2δðk1 þ k2Þjk1; k2i; ð1Þ

perfectly correlated in position and perfectly anticorrelated
in momentum. Although the ideal EPR state is non-
normalizable and consequently impossible to realize in
the lab, the biphoton state generated via SPDC is very
similar [36,37].
EPR correlations are observed by measuring the joint

probability distribution in position, jψðx1; x2Þj2, and in
momentum jψðk1; k2Þj2. Because these domains of interest
are known in advance, only these two distributions are
needed—not a full density matrix. Spatial correlations are
usually measured by jointly raster scanning single-element,
photon-counting detectors through either the near field
(position) or far field (momentum) [38]. This approach
scales extremely poorly with increased single-particle
dimensionality n—measurement time scales between n3

and n4. For a typical source, this could take upwards of one
year for a modest n ¼ 32 × 32 pixel resolution [27].
To avoid dividing the ensemble, and to require many

fewer measurements, we instead apply local, partially
projective measurements in momentum followed by local,
partially projective measurements in position, to the same
photons. Our approach is illustrated in Fig. 1. The signal
and idler photons from an EPR-like state ψðx1; x2Þ are
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separately allowed to propagate to the far field. Here, each

photon is locally filtered by a random, binary mask fðkÞi ðk1Þ
(signal) or gðkÞi ðk2Þ (idler), where subscript i refers to a
particular pair of filters. Each local filter is an n-pixel,
binary intensity mask, where individual pixels fully trans-
mit (T ) or fully reject (R) with equal probability. The
momentum filtering enacts a significant partial projection
of jψi—on average, half of the local intensity and three-
quarters of the joint intensity is rejected—so this is not a
weak measurement.
All measurements are subject to uncertainty relations,

which imply unavoidable measurement disturbance.
Conventional projective measurements, often associated
with “wave-function collapse,” localize a quantum state in
one domain (e.g., momentum) at the cost of broadening it
in a conjugate domain (e.g., position). Critically, however,

random filtering does not localize the quantum state; it
maps a small amount of momentum information onto the
total intensity passing the filter. The measurement disturb-
ance of nonprojective measurements is best understood via
the entropic uncertainty principle

hðxÞ þ hðkÞ ≥ logðπeÞ; ð2Þ
where hð�Þ is the Shannon entropy. The entropic uncer-
tainty principle implies an information exclusion relation;
the more information a measurement gives about the
momentum distribution, the less information a subsequent
measurement can give about the position distribution [39].
There are no restrictions, however, on how information
loss manifests. In particular, a measurement in one domain
need not broaden, or blur, the statistics in a complementary
domain.

FIG. 1. Sequential, partial projections in position and momentum. The block diagram (a) describes a sequence of partially projective
measurements on an EPR entangled source. (b–d) Simulated joint-position and joint-momentum distributions at each point in the
experiment. Signal and idler photons from an EPR source (b) are separated and allowed to propagate to the far field (momentum). Here,
they are subjected to random binary filtering by a pixelated mask (faded gray overlay). Each pixel in the mask either fully transmits (T )
or fully rejects (R). The momentum-filtered fields (c) propagate through an optical system to an image plane of the source, where they
are again filtered with random, binary filters (d). Single-element, photon-counting detectors are placed in the T andR ports of each filter
and are connected to a coincidence circuit. The total number of coincident detection events between signal and idler channels gives a
random projection of the momentum distribution. The relative distribution of coincident detections between the T and R modes (four
possibilities) for the signal and idler photons gives a random projection of the position distribution up to a small noise floor injected by
the momentum filtering.
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The joint amplitude passing the momentum filtering is

~ψðk1; k2Þ ¼ ψðk1; k2ÞfðkÞi ðk1ÞgðkÞi ðk2Þ. To see the effect of
the momentum filtering on the position distribution, we
take a Fourier transform to find ~ψðx1; x2Þ ¼ Ff ~ψðk1; k2Þg,
which is given by the convolution of the state and filter
functions in the position domain: ~ψðx1; x2Þ ¼ ψðx1; x2Þ⋆
ðfðkÞi ðx1ÞgðkÞi ðx2ÞÞ. At high resolution, the Fourier transform
of an n-pixel, random binary pattern is approximately
proportional to δðxÞ þ ffiffiffiffiffiffiffiffi

2=n
p

ϕðxÞ, where values for ϕðxÞ
are taken from a unit variance, complex, Gaussian noise
distribution—a sharp central peak riding a small noise floor
[33] (see Ref. [40]).
Because convolution with a delta function returns the

original function, the perturbed state’s position distribution
is the true distribution with someweak additive noise terms,

j ~ψðx1; x2Þj2 ¼ N jψðx1; x2Þ⋆½ðδðx1Þ þ
ffiffiffiffiffiffiffiffiffi
2=N

p
ϕiðx1ÞÞðδðx2Þ

þ
ffiffiffiffiffiffiffiffiffi
2=N

p
ϕiðx2ÞÞ�j2: ð3Þ

Expanding this product in powers of 1=
ffiffiffiffi
N

p
, whereN ¼ n2,

yields

j ~ψðx1; x2Þj2 ¼ N fjψðx1; x2Þj2

þ
ffiffiffiffiffiffiffiffiffi
2=N

p
Re½ψ�ðx1; x2Þðψðx1; x2Þ

⋆ðδðx1Þϕ2ðx2Þ þ δðx2Þϕ1ðx1ÞÞÞ�
þOð1=NÞ þ � � � þOð1=N2Þg; ð4Þ

where N is a normalizing constant. Remarkably, disturb-
ance from filtering adds only a small noise floor, at most a
factor

ffiffiffiffiffiffiffiffiffi
2=N

p
weaker, without otherwise broadening the

position distribution. This can be seen in Fig. 1(c), where
the position distribution maintains tight correlations despite
the effect of momentum filtering. A rigorous derivation of
Eq. (4), including the effect of finite-width pixels, is given
in Ref. [40].
Next, we again perform random filtering—this time in

position—as seen in Fig. 1(d). The transmitted and rejected
ports are directed to single-element “bucket” detectors that
are not spatially resolving. Photon detection events are time
correlated with a coincidence circuit.
Each coincidence measurement contains information

about both position and momentum; these must be
decoupled to fit a measurement model,

YðkÞ ¼ AK þΦðkÞ;

YðxÞ ¼ BX þΦðxÞ þ ΓðxÞ: ð5Þ

Here, K and X are N-dimensional signal vectors represent-
ing jψðk1; k2Þj2 and jψðx1; x2Þj2, and A and B are M × N
sensing matrices. YðkÞ and YðxÞ are measurement vectors
whose elements are the inner product of X or K onto the ith

row (or sensing vector) of A or B. Noise vectors Φ
represent additive measurement noise. Noise vector ΓðxÞ
represents the noise injected by momentum filtering.
Momentum information is encoded in the total coinci-

dences between all detection modes. Each row of A is the
Kronecker product of two, random single-particle sensing
vectors ak1i ⊗ ak2i such that Ai ¼ ak1i ⊗ ak2i , where, for

example, ak1i encodes fðkÞi ðk1Þ.
Position information is encoded in the relative distribu-

tion of coincidences between signal and idler T and R
modes. By adding coincidences between like modes
(T T and RR) and subtracting coincidences between
differing modes (T R and RT ), the effect of momentum
filtering is removed up to injected noise. Like momentum,
the position-sensing vector is a Kronecker product of

two local sensing vectors: Bi ¼ bðx1Þi ⊗ bðx2Þi . However,
because of the relative measurement, the local sensing
matrices take values “1” for transmitting pixels and “−1”
for rejecting pixels.
In our experiment, we use a slightly more sophisticated,

but conceptually similar, approach (see Ref. [40]) that
retains the transmission and rejection modes from both
momentum and position. In this case, there are 16 possible
correlation measurements that are combined to give either
position or momentum information, and both A and B take
values “1” and “−1.”

B. Recovering the position and momentum
distributions

To obtain the joint-position and joint-momentum dis-
tributions from our measurements, we turn to compressive
sensing (CS). Here, we exploit our expectation that
both distributions are highly correlated. Therefore, the
distributions are sparse in their natural (position-pixel or
momentum-pixel) representations—relatively few elements
in each distribution have significant values. This allows
us to dramatically under-sample so thatM ≪ N. In this case,
there are many possible X and K consistent with the
measurements. CS posits that the correct X and K are the
sparsest distributions consistent with the measurements.
Sparse X and K are found by solving a pair of

optimization problems

min
K

μk
2
∥YðkÞ − AK∥22 þ TVðKÞ;

min
X

μx
2
∥YðxÞ − BX∥22 þ TVðXÞ; ð6Þ

where ∥ � ∥22 is the l2 (Euclidean) norm and μ are
weighting constants. The first penalty is a least-squares
term that ensures the result is consistent with measured
data. The second penalty TVð�Þ is the signal’s total
variation (TV), which is the l1 norm of the discrete
gradient
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TVðXÞ ¼
X
adji;j

jXi − Xjj; ð7Þ

where i, j run over pairs of adjacent elements in the signal.
The TV regularization promotes structured, sparse signals
over noisy, uncorrelated signals. Total variation minimiza-
tion has been extremely successful for compressed sensing
and denoising in the context of imaging [41–43]. In many
cases, a signal can be recovered from M as low as a few
percent of N. For a more complete introduction to com-
pressive sensing, see the excellent tutorials by Baraniuk
[44] and Candès and Wakin [45].
Total variation minimization is also extremely effective

for denoising signals [46]. Normally, this helps to mitigates
environmental and photon-counting shot noise (Φ), but in
our case, it also largely removes the filtering measurement
disturbance Γ. With strong measurements, e.g., raster
scanning a pinhole aperture, one requires deconvolution
techniques to obtain a similar effect. Not only is deconvo-
lution far more challenging than denoising, it can never
recover high-frequency content beyond the aperture size.
CS measurements are most effective in a representation

that is incoherent, ormaximally unbiased, with respect to the
sparse representations (in our case, position or momentum).
Fortunately, random projections perfectly suit this criteria,
leading to the surprising conclusion that random measure-
ment is actually preferable. Random matrices are over-
whelmingly likely to be restricted isometries that preserve
the relative distance between sparse signals, ensuring that
solving Eq. (6) returns the true signal instead of a sparse but

otherwise incorrect result [47]. Not only do random filters
extract information in complementary domains, they are the
among the best measurements for leveraging CS.
One might reasonably ask if our technique employs

circular reasoning—assuming the distributions are highly
correlated in order to then measure their correlations. This
is not the case. The initial assumption is a compressibility
assumption; relative to all possible distributions, our dis-
tributions are expected to be sparse in the natural pixel
basis. We do not know exactly how sparse the distributions
will be, or which elements will be significant. However, the
vast majority of possible distributions are just unstructured
noise—these are the outcomes we are initially rejecting.
The assumption is similar to assuming that a digital

photograph can be effectively compressed by the JPEG
standard [48]. A natural photographic scene contains more
low-spatial-frequency content than high-spatial-frequency
content and contains objects with well-defined edges and
recognizable shapes—regardless of the specific scene.

III. EXPERIMENT

Our experimental setup is shown in Fig. 2. An EPR-like
state at 810 nm is generated by pumping a 1-mm-thickBiBO
crystal oriented for type-I collinear SPDC with a 405-nm
pump laser. The generated fields propagate to a spatial light
modulator (SLM) in the focal plane of a 125-mm lens.
Because the phase-only SLM only retards one polarization,
it can perform per-pixel polarization rotation. These polari-
zation rotations are converted to intensity modulations with
a half-wave plate and a polarizing beam splitter. Random

Coincidence
Circuit Single-Photon

Detectors

PBS HWP

FT Lens
Pump 
Removal
Filter

Nonlinear Crystal
Pump
Laser

Signal
DMD

Idler
DMD

50/50
BS

Imaging
Lens

MM Fiber

SLM

FIG. 2. Experimental setup. A two-photon, EPR-like state is generated by pumping a nonlinear crystal for type-1 SPDC. Random,
binary patterns placed on a SLM in a Fourier plane of the crystal and on DMDs in an image plane of the crystal implement a sequence of
random, partially projecting measurements. Example patterns are shown next to the SLM and DMDs; note the separate patterns for
signal and idler photons on the SLM. Coincident detection events between single-photon detectors for signal and idler photons give
information about both the joint-position and joint-momentum distributions of the two-photon state.
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masks that cause zero or π polarization rotations perform
the momentum filtering. We exploit the negative correla-
tions in the momentum state to assign signal and idler
particles to the left and right halves of the SLM, respectively.
The signal and idler fields are routed to separate digital

micromirror devices (DMDs) via a 500-mm lens and a
50=50 beam splitter; the DMDs are placed in a crystal
image plane with 4X magnification. A DMD is a two-
dimensional array of individually addressable mirrors, each
of which can be oriented to direct light towards or away
from a detector. These correspond to the transmit and reject
ports in Fig. 1. Random patterns placed on the DMDs
implement the position filtering. The light is coupled with
10Xmicroscope objectives into multimode fibers which are
connected to avalanche photodiodes operating in geiger
(photon-counting) mode. A correlator records coincident
detection events between filtered signal and idler photons.
Single-particle sensingmatrices aðk1Þ, aðk2Þ, bðx1Þ, and bðx2Þ

are generated by taking M rows from randomly permuted
n × n Hadamard matrices. This allows the repeated calcu-
lations of AK and BX performed by the solver to use a fast
Hadamard transform, decreasing computational require-
ments [49]. Because we only collect transmitted modes
from both position and momentum filters, we require 16
separate measurements to collect all coincident combina-
tions of transmission and rejection for the four filters
(described in Ref. [40]). This is not required, in principle,
if one has eight detectors. The solver we use for Eq. (6) is
TVAL3 [50]. The full measurement and reconstruction
recipe we follow is similar to that described in Ref. [49].
Note that our choice of a single-momentum SLM and

two position DMDs was due to available equipment. One
would ideally use four SLMs to implement completely
separate position and momentum filtering for both the

signal and idler fields. The SLM is preferred for filtering
because of its high (> 90%) diffraction efficiency in
contrast to the lower (≈20%) diffraction efficiency for
the DMDs.

IV. RESULTS

A. Signal recovery

Sample recovered joint signals for position and momen-
tum are given in Fig. 3 as returned directly by the solver.
The single-particle resolution was n ¼ 16 × 16 pixels,
so the joint signal has dimensionality N ¼ n2 ¼ 65, 536.
For the sample image,M ¼ 4439 random projections were
used corresponding to M less than 0.07N. Positive corre-
lations in position and negative correlations in momentum
between signal and idler particles are clearly seen. The gaps
visible on the diagonal are an artifact of row-wise reshaping
to one dimension—these regions are physically outside the
marginal beam width.

B. Reconstruction noise

Unfortunately, the images shown in Fig. 3 do not
represent valid probability distributions due to the presence
of weak, zero-mean, additive noise shown in Fig. 4. Note
that solving the objective function, Eq. (6), does not strictly
recover a valid probability distribution as it allows negative
values. We found that current, established solvers such as
TVAL3 performed better without such additional con-
straints—improved, quantum-specific solvers are a topic
of future research.
Figure 4(a) shows slices of the joint-position

reconstruction along the signal axis, where each curve
corresponds to a particular idler pixel. Zooming in on a
region with no signal in Fig. 4(b), we observe the noise.

FIG. 3. Representative recovered joint-distributions in position and in momentum for a 16 × 16 pixel (N ¼ 256 × 256) discretization.
Only M ¼ 4439 measurements were needed, about 0.07N. Gaps along the position diagonal occur because of reshaping to one
dimension—these regions were outside the marginal width. Position and momentum units refer to the transverse plane at the nonlinear
crystal (z ¼ 0).
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This noise contains both measurement uncertainty and
solver artifacts. Potential noise sources include shot-noise,
long-term drift in the pump laser, stray light, and crystal
temperature instability. Figure 4(c) gives a histogram of the
noise shown in Fig. 4(b), which follows Gaussian statistics.
An appropriate model for signals returned by the solver is
therefore

XðrÞ ¼ X þ GðxÞ; ð8Þ

KðrÞ ¼ K þ GðkÞ; ð9Þ

whereXðrÞ andKðrÞ refer to the signals returned by the solver
and GðxÞ and GðkÞ are additive, zero-mean Gaussian noise.
The simplest way to obtain valid probability distributions

is to threshold values below a small percentage of the
maximum value to zero. As seen in Fig. 4(b), any threshold
below 5% removes the uniform noise floor without
removing any signal peaks. This approach is similar to
the common technique of subtracting dark counts from data
in coincidence measurements and other noise-suppression
techniques.

C. Witnessing entanglement

To witness and quantify entanglement, we violate an
entropic steering inequality [51–53] (see Ref. [40]); all
classically correlated states satisfy

HðX1jX2Þ þHðK1jK2Þ ≥ 2 log

�
πe

ΔxΔk

�
; ð10Þ

where HðX1jX2Þ and HðK1jK2Þ are the conditional, dis-
crete Shannon entropies of the respective position and
momentum joint distributions. Here,Δk (Δx) is the width in
momentum (position) sampled by a single-pattern pixel on
the SLM (DMD) in the transverse plane of the nonlinear
crystal. For position Δx, this is found by dividing the
physical width of a pattern pixel on the DMD by the

magnification of the imaging system. For momentum,
the physical width of a SLM pattern pixel pk is related
to Δk via the Fourier-transforming property of a lens, so
Δk ¼ pk2π=ðλfÞ, where λ is the wavelength of light and f
is the lens focal length.
The entropic steering inequality is powerful because it is

computed directly from measured probability distributions
and does not require a density matrix. Remarkably, despite
being a function of discrete distributions, it witnesses
continuous-variable entanglement. Moreover, the amount
the inequality is violated corresponds to a secret key rate for
quantum key distribution [37,54].
The conditional entropies in position and momentum for

our experimental results are given in Fig. 5 as a function of
measurement number. Different curves correspond to
increased levels of thresholding, setting values below a
percentage of the maximum value to 0. A sharp transition
from poor reconstruction to good reconstruction is clearly
demonstrated by dramatic drops in the conditional entro-
pies around M ¼ 2000. This transition is characteristic of
compressed sensing as the number of measurements
becomes sufficient to accurately reconstruct the signal
[55]—strongly suggesting we made enough measurements.
For too-small M, reconstructions fail spectacularly and
return unstructured noise. For a k-sparse signal (k out of N
elements have significant intensity), the required number of
measurements scales as ck logðN=kÞ, where c is a near-
unity constant [21]. For M beyond the transition, one is
sampling above the information rate. Traditionally, one is
concerned with sampling at or beyond the Nyquist rate,
where M ¼ N.
In momentum, the conditional entropy drops to nearly

zero; in position, it drops to less than 2 bits. The position
entropy likely levels off because of slight pixel misalign-
ment between the two-position DMDs. Physically, this
indicates that a particular signal position pixel is correlated
to about four idler pixels, whereas a particular signal-
momentum pixel is only correlated to one idler pixel.

FIG. 4. Reconstruction noise. (a) One-dimensional slices along the signal axis of the joint-position reconstruction from Fig. 3 reveal
the presence of zero-mean, additive Gaussian noise. The presence of negative values strongly suggests that this noise’s form is
nonphysical; the reconstruction process maps measurement uncertainty into this noise. A close-up of a noise-only region (signal pixels 5
to 30, all idler pixel spectra) is shown in (b). A histogram of outcomes (c) for the region shown in (b) demonstrates that the noise follows
Gaussian statistics with zero mean and standard deviation 0.014. To obtain a valid probability distribution, values below a chosen
threshold can be set to zero and the distribution normalized.
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The steering inequality is violated with as little as
2% thresholding, and by over 6 bits for thresholding
beyond 7%.
The effect of thresholding for M ¼ 5000 is given in

Fig. 6. Figure 6(a) shows the conditional entropies for

position, momentum, and their sum with the corresponding
entanglement bound. Figure 6(b) gives the mutual infor-
mation IðX1∶X2Þ and IðK1∶K2Þ, where, for example,

IðX1∶X2Þ ¼ HðX1Þ þHðX2Þ −HðX1; X2Þ: ð11Þ

Here, HðX1; X2Þ is the Shannon entropy of the joint
distribution, and HðX1Þ and HðX2Þ are Shannon entropies
of the marginal, single-particle distributions. From infor-
mation theory, this mutual information provides a maxi-
mum bit rate for communication with joint-position or
joint-momentum representations for this system [56]. The
mutual information arises as a function of thresholding,
indicating that thresholding is not trivially decreasing the
conditional entropies and that the most likely joint out-
comes are the most highly correlated. Again, the momen-
tum mutual information is larger because of slight optical
misalignments for position DMDs.
An important point is that the thresholded signal peaks

still retain the additive Gaussian noise from the
reconstruction process. Because of the data-processing
inequality [56], this noise cannot decrease the conditional
entropy and cannot increase the mutual information (this
would be like arguing that a noisy channel is better for
communication than its noiseless counterpart). Therefore,
we conservatively underestimate our ability to violate the
steering witness [see Eq. (10)].

V. CONCLUSION

We have demonstrated that local, random filtering
in momentum followed by local, random filtering in
position—of the same photons—can recover sharp, joint
distributions for both observables. This is not possible with
standard, projective measurements that localize photons in

FIG. 5. Conditional entropy versus measurement number. A sharp transition from high to low conditional entropy is seen as the
number of measurements increases. Note that N ¼ 2562, soM ¼ 2, 000 is only 0.03N. Different curves correspond to different levels of
thresholding to remove the noise floor. Bold lines indicate an average over nine trials. Faded lines enclose up to 4 standard deviations
about the mean. When the conditional entropy sum is below the bound, the state is entangled.

FIG. 6. Effect of thresholding. The effect of thresholding to
remove weak background noise on the conditional entropy
(a) and mutual information (b) is given. The bold line gives
the average for nine trials; faded lines give the results from the
individual trials. M ¼ 4439 measurements were used. When the
conditional entropy sum is below the bound, the state is
entangled.
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either position or momentum. Using the expectation that
the signals will be highly correlated allows us to use many
fewer measurements than dimensions in the system via
techniques of compressed sensing. We strongly emphasize
that we have not violated any uncertainty relations; instead,
we have chosen nonprojective measurements whose dis-
turbance can easily be mitigated.
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