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First-order perturbation theory is accurate for CW pump powers in the mW to W scale, where absolute conversion probability is at best ≈ 10−8
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rate from lossy experiments

.. and based on our reference:   
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• Accurate for times longer than pump 
coherence time (uncertainty of Δ𝜔 smaller 
than pump bandwidth)

• Width of Δ𝜔 is much smaller than phase-
matching bandwidth of SPDC light, giving rise 
to strong frequency correlations 

• Non-energy-conserving transitions are 
possible, but probability is vanishingly small 
after integration over rapid oscillations of 
Δ𝜔.
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Where in the continuum limit:
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Φ𝑥𝑦 ≡ න𝑑𝑥𝑑𝑦 𝑔𝜇𝑝
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 𝑔𝜇𝑝 𝑥, 𝑦 is the transverse spatial mode of order Ԧ𝜇𝑝
 We are free to chose the basis of transverse 

spatial modes, with Laguerre-Gaussian and 
Hermite-Gaussian modes being the most popular.

 𝑔𝜇𝑝 𝑥, 𝑦 is normalized as a quantum wavefunction whose 

magnitude square sums to unity
 For a given subset of Laguerre-Gaussian modes, Ԧ𝜇𝑝

corresponds to Orbital Angular Momentum (OAM) 
eigenvalues, and 𝑔𝜇𝑝 𝑥, 𝑦 to OAM modes.

 For all Gaussian modes with standard deviations 𝜎𝑝 and 𝜎1
for pump and signal/idler respectively:
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𝑅𝑡ℎ ≈ 94.86 ± 10.89 × 106 𝑠−1 𝑚𝑊−1

𝑅𝑒𝑥𝑝 ≈ 95.63 ± 2.71 × 106 𝑠−1 𝑚𝑊−1
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𝑅𝑡ℎ ≈ 53.87 ± 10.87 × 106 𝑠−1 𝑚𝑊−1

𝑅𝑒𝑥𝑝 ≈ 64.68 ± 1.69 × 106 𝑠−1 𝑚𝑊−1
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𝑅𝑡ℎ ≈ 23.58 ± 5.60 × 106 𝑠−1 𝑚𝑊−1

𝑅𝑒𝑥𝑝 ≈ 35.5 ± 0.8 × 106 𝑠−1 𝑚𝑊−1

Singles rate:    𝑅1 = 𝑅 ⋅ 𝐸1𝐶 𝛽1 +Φ1

Idlers rate:    𝑅2 = 𝑅 ⋅ 𝐸2𝐶 𝛽2 +Φ2

Coinc. rate:    𝑅12 = 𝑅 ⋅ 𝐸1𝐸2𝜂𝐶 𝛽12 + 𝐴12
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• Can be combined with Φ𝑥𝑦 to describe SPDC in variable width waveguides and tightly focused pump beams.

• Is a function contributing to likelihood of SPDC due to momentum conservation, whose enforcement 
mechanism is distinct from energy conservation.

• Momentum:   
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• Momentum only conserved at certain combinations of frequencies due to variation of 𝑛 𝜔 (i.e., dispersion).
• Non-momentum-conserving transitions are possible, but improbable due to washing out when integrating over a 

rapidly oscillating phase (as in energy conservation)

Bulk Crystal
• When changing the optical properties and orientation 

of the crystal is enough to achieve phase matching 
(e.g., by using different polarizations/birefringence 
or anomalous dispersion):
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Periodic Poled Crystal
• When the dispersion is incompatible with SPDC 

at desired wavelengths, you can periodically flip the 
crystal axis orientation creating an effective nonlinear 
grating that imparts its own momentum to balance 
out the offset:
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Experiment uses 782nm OBIS laser coupled into Single-mode fiber, 
followed by collimating and focusing optics to create an ideal 
Gaussian pump beam in the crystal center with focal spot diameter 
of about 250 microns. Similar optics are used on the exit side of 
the experiment to mode-match the down-converted light for good 
coupling into the exit single-mode fiber. Theoretical formula does 

not include first-order quasi-phase matching factor of 
4

𝜋2
needed to 

predict the brightness in periodically poled crystals.

Experiment uses 405nm OBIS laser incident on BiBO nonlinear 
crystals. The down-converted light is first collimated, then split 
by a 50/50 beamsplitter, and collected using focusing optics 
and Large area Single-Photon detectors to capture all of the 
SPDC light instead of a single spatial mode. The fitting constant 
𝜙 was estimated theoretically to be about 0.335, and comes 
from fitting the peaks of the full predicted biphoton
wavefunction to the wavefunction obtained for degenerate 
SPDC. A more accurate rate may be calculated numerically, but 
the qualitative dependence would be lost.

Experiment uses 773nm NewFocus laser coupled into PPKTP 
waveguide manufactured by diffusing dopant into the periodically 
poled medium to create a waveguide channel. The asymmetric 
distribution of dopant yields an oblong non-Gaussian spatial 
mode, which we approximated as Gaussian. Using the exact 
eigenmodes of the waveguide would greatly increase the accuracy 
of the theoretical description, and its corresponding agreement to 
the experiment.


