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Discriminating between quantum states is a fundamental problem in quantum information protocols. The
optimum approach saturates the Helstrom bound, which quantifies the unavoidable error probability of mistaking
one state for another. Computing the error probability directly requires complete knowledge and diagonalization
of the density matrices describing these states. Both of these fundamental requirements become impractically
difficult to obtain as the dimensions of the states grow large. In this paper, we analyze quantum illumination as a
quantum channel discrimination protocol and circumvent these issues by using the normalized Hilbert-Schmidt
inner product as a measure of distinguishability. Using this measure, we show that the greatest advantage gained
by quantum illumination over conventional illumination occurs when one uses a Bell state.
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I. INTRODUCTION

One of the main limitations to sending classical informa-
tion using quantum states is the receiver’s ability to distin-
guish the states carrying said information. If these states do
not have orthogonal support, there is an unavoidable proba-
bility that the receiver will mistake one state for another; this
creates error in the message. Therefore, it is necessary to have
a measure that quantifies the probability of making an error, or
a measure of distinguishability when analyzing which states
are optimal for sending information.

In 1969, Helstrom’s work [1] on the problem of discrim-
inating between states �0 and �1 that are, respectively, sent
with probabilities p0 and p1 established the Helstrom bound

min
{�i}

pE = 1
2 (1 − ||p0�0 − p1�1||1) (1)

as the standard for quantifying the unavoidable error of mis-
taking one state for another. Indeed, Eq. (1) is the minimiza-
tion of the error probability

pE = p0 Tr[�0�1] + p1 Tr[�1�0] (2)

with respect to a set of positive operator value measures
{�i � 0, i = 0, 1} where �0 = 1̂ − �1 and 1̂ is defined as
the identity operator. In Eq. (1), the trace norm || • ||1 is
defined as

||ρ||1 ≡ Tr[
√

ρ†ρ] (3)

where ρ is an arbitrary operator and ρ† is its Hermitian
transpose. Because the Helstrom bound is the standard for
quantifying unavoidable error, most quantum information pro-
tocols that have a distinguishing process need to compute the
trace norm, which requires diagonalization in general. This
can be difficult to work with when conducting an analysis
especially as the dimension of the state becomes large. One
such class of protocols that require diagonalization is quantum
channel discrimination (QCD). The focus of this paper is on
the optimization of a specific QCD protocol.

In QCD, one sends an input state �(in) through a quantum
channel which performs one of two operations on the state

given by {Ei, i = 0, 1}. They then receive the output state
�

(out)
i = Ei(�(in) ) which is used to determine which operator

acted on �(in). Of course, some input states will work better
than others depending on the distinguishability of �

(out)
0 and

�
(out)
1 . Here, the probability of mistaking one operation for

another is quantified by the Helstrom bound

p′
E = min

{�i}
pE = 1

2 [1 − ||p0E0(�(in) ) − p1E1(�(in) )||1] (4)

where it is assumed that an optimal measurement scheme is
used. In this context, QCD can be understood as the problem
of finding the input state that minimizes Eq. (4) over the space
of all �(in). Moreover, extending the space of input states to
higher dimension (including joint entangled states �(in)

q ) can
further reduce the error probability [2,3]. If one partitions the
joint system into a signal subsystem and an idler subsystem,
where the signal subsystem is sent as a probe, and the idler
system is held in a local memory, when the signal returns, a
joint measurement can be made; this changes Eq. (4) to

p′
E = 1

2

[
1 − ∣∣∣∣p0(E0 ⊗ 1̂I )�(in)

q − p1(E1 ⊗ 1̂I )�(in)
q

∣∣∣∣
1

]
(5)

where 1̂I is the identity operator on the idler subsystem. In
this paper, we analyze a postselected model of quantum illu-
mination (QI) as a QCD protocol where Eq. (5) is minimized
in the space of all �(in)

q . Recently, the fundamental limits of
QCD were established [4]. This limit can be less than the
minimum of Eq. (5) in the more general setting of adaptive
discrimination protocols.

In Lloyd’s seminal paper [5] on QI, the experimenter uses
a biphoton d-mode Bell state to enhance the detection of
a potential surface in a noisy background (see Fig. 1 for a
diagram). Formulating the problem with the simplest possible
mathematical treatment, Lloyd assumes that a single photon is
detected per trial if anything is detected at all. This detection
may be due to a returning signal or surrounding noise. In our
treatment of QI as a QCD problem, we denote the scenario
of receiving a mixture between signal and noise by the oper-
ation (E0 ⊗ 1̂I )�q, and the operation where the surface is not
present and only noise is detected as (E1 ⊗ 1̂I )�q. Here, �q is
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FIG. 1. Top: Diagram of conventional illumination of the target
using conventional (separable states of) light. Bottom: Diagram of
quantum illumination of the target with entangled states of light. In
the case of an entangled source, joint detection is performed between
the held idler and returned noisy signal.

an arbitrary biphoton entangled state that is not necessarily a
Bell state.

To remove the restriction of single-photon detection, it was
suggested that a full Gaussian-state analysis of QI should
be conducted; such an analysis was completed by Tan et al.
[6]. Using M copies of signal and idler beams obtained from
continuous-wave spontaneous parametric down-conversion in
the absence of pump depletion, they demonstrated an im-
provement in reducing the upper bound of the unavoidable er-
ror probability over a strictly coherent source. Our analysis is
restricted to the single-photon discrete-variable setting where
it is easier to develop arguments based solely on dimension
and quality of entanglement without choosing a specific state.
The relationship between our discrete-variable analysis to the
continuous-variable setting will be a focus of future research.
An example of QI in the more realistic continuous-variable
setting is given in Ref. [7].

To avoid the problem of diagonalization when computing
Eq. (5) for the analysis of QI, we use the Hilbert-Schmidt
(HS) inner product, Tr[ρ†σ ], to define a measure of distin-
guishability. Since the HS inner product only requires the
trace of a matrix product to compute, it significantly reduces
the difficulty of analysis. One of the main goals of this paper
is to demonstrate the efficacy of the HS inner product as a tool
for discrimination.

Given that the HS inner product significantly simplifies
our analysis of QI (as we shall show), it may yet be used
to simplify the analysis of other quantum information pro-
tocols. This is a reasonable assumption since QI is a QCD
protocol, and QCD is a fundamental root of quantum sens-
ing [8]. The approach of using the HS inner product was
used in [9] as a measure of fidelity between a Bell state

and its teleported counterpart, and it was used in [10] to
avoid the trace norm when quantifying the average distance
between two states. Although the HS inner product satis-
fies Josza’s axioms [11] of a fidelity measure, it does not
increase monotonically under general quantum operations
[11,12]. This is important, where the action of a quan-
tum channel on a pair of quantum states cannot increase
their distinguishability (or decrease their fidelity). Fortu-
nately, for the class of states considered in the model of QI
considered here, we show that the normalized HS inner prod-
uct is monotonic with respect to its parametrization.

In this paper, we analyze a modified model of Lloyd’s
original QI formulation. Not only do we seek the states
�(in)

q that minimize Eq. (5) for this model, we also show
that the d-dimensional Bell state, defined as a maximally
entangled state with equal-dimension subsystems, gives the
greatest advantage of QI over conventional illumination (CI).
Conventional illumination uses the same input signal as the
entangled case, but there are no idlers held to increase its
effective brightness; the advantage is defined as the difference
in distinguishability between signal and noise as given by QI
versus CI.

This paper is structured in the following way. In the
next section, we present some background on QI and the
mathematical framework used to conduct our analysis. After
that, we introduce the HS distinguishability measure and
show that it reduces the analysis of QI as a QCD protocol
entirely in terms of dimensional arguments and the purity of
the ancilla/idler subsystem. After that, we present the result
that the d-dimensional Bell state gives the greatest advantage
over CI for any other choice of �(in)

q . This agrees with the
recent results of De Palma and Borregaard [13] where they
used asymmetric hypothesis testing [14] to show that the two-
mode squeezed state gives the greatest advantage of QI. These
results are consistent since the two-mode squeezed state is the
continuous-variable analogue to the d-dimensional Bell state.
Finally, we conclude with a discussion on the advantages of
using a Hilbert-Schmidt based measure to address the problem
of discrimination and its possible applications to quantum
information protocols beyond QI.

II. QUANTUM ILLUMINATION

In this section, we describe the model used to analyze QI.
To do this, we present the original formulation of QI by Lloyd
[5]. Then we discuss our model, which is the postselected
model used by Weedbrook et al. [15].

In Lloyd’s original formulation of QI, only single-photon
events are considered. In this setting, the signal consists of a
single photon in dS possible modes. It also assumes that the
detector can distinguish between dS modes and its detection
window is set to only detect a single photon per trial. In
this formulation, Lloyd chooses �q to be the d-mode Bell
state, which is given by �q = |φBell〉〈φBell| where |φBell〉 =
d−1/2 ∑d

k=1 |1k〉S|1k〉I . Here, |1k〉S is the state with exactly
one photon in the signal mode k and no photons in the other
dS − 1 modes. A similar description is given for |1k〉I . Next
we describe how noise is modeled in this setting.
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When the signal is lost due to the target being absent, the
remaining state is given by

ρ (1) = (E1 ⊗ 1̂I )�q =
(

(1 − λ) |vac〉〈vac| + λ
1̂
dS

)
S

⊗ �I

(6)

where λ is the average number of noise photons received
over many trials, |vac〉S represents the vacuum where no
photons are found in any of the signal modes, 1̂S/dS is the
state representing the detection of a random mode from the
surrounding noise, and �I = TrS[�q] is the idler subsystem
held in local memory. If the surface is present, the return-
ing signal is a mixture between signal and noise, which is
given by

ρ (0) = (E0 ⊗ 1̂I )�q = η�q + (1 − η)ρ (1) (7)

where η, the average number of signal photons received over
many trials, represents the degradation of the signal due to
noise.

In the paper by Weedbrook et al. [15], they use a simpli-
fied model of Lloyd’s original formulation that assumes the
detector always receives a photon from either the signal or
surrounding noise. They also complete their analysis using a
Bell state, though they show that their result is independent
of the state chosen in their Appendix. Their formulation of QI
corresponds to a postselected model where λ = 1 in Eq. (6);
this simplifies the remaining state to be

ρ (1) = 1̂S

dS
⊗ �I . (8)

Using this simplified model, they argue that quantum discord
[16] explains the underlying advantage of QI. For computa-
tional clarity, we will also be working with this postselected
model.

In the next section, we use the normalized HS inner product
to show that the advantage of this postselected model can be
understood in terms of the purity of the idler subsystem given
by Tr[�2

I ]. In fact, a pure idler subsystem (i.e., Tr[�2
I ] = 1) is

necessarily uncorrelated from the signal, making the protocol
using such states equivalent to CI. Any value of Tr[�2

I ] < 1
implies an advantage gained by using a QI protocol. Where
the minimum value of the purity for any density operator
is d−1, when Tr[�2

I ] = d−1
I , the maximum advantage has

been gained; this is equivalent to minimizing Eq. (5). Unlike
Weedbrook et al. and Lloyd, we do not assume �q is the
d-dimensional Bell state. Instead, we derive in Sec. IV that
this state gives the greatest advantage for this model.

III. HILBERT-SCHMIDT
DISTINGUISHABILITY MEASURE

Between two arbitrary quantum states ρ and σ , the normal-
ized HS inner product is given by

〈ρ, σ 〉 ≡ Tr[ρ†σ ]√
Tr[ρ†ρ] Tr[σ †σ ]

. (9)

It has a lower extreme value of zero if and only if ρ and σ are
states with orthogonal support [17]. It has an upper extreme

value of unity if and only if ρ and σ are identical, and it is
symmetric between them. The normalized HS inner product
is invariant under unitary transformations, and it reduces to
the ordinary inner product between quantum states when ρ

and σ are pure. Moreover, we will show for the states ρ (0)

from Eq. (7) and the remaining state ρ (1) from Eq. (8) that it
is straightforwardly related to the physical parameters of QI.
Now we will write Eq. (9) explicitly in terms of these physical
parameters.

To simplify Eq. (9) and write it in terms of the physical
parameters of QI, we replace ρ and σ with ρ (0) and ρ (1),
respectively. This is computed explicitly in the Appendix.
Defining H01 as the normalized HS inner product between
ρ (0) and ρ (1) to condense notation, our relations (from the
Appendix) simplify H01 to

H01 ≡ 〈ρ (0), ρ (1)〉 = 1√
1 + η2(dSKI − 1)

(10)

where KI ≡ Tr[�2
I ]−1 is the inverse of the purity of the idler

state �I . Here, the physical parameters that completely char-
acterize QI for a fixed p0 are the relative signal fraction η, the
dimension of the signal subsystem dS , and the entanglement
between signal and idler which is captured by KI . Next, we
want to show that both the minimum error probability p′

E
and H01 are extremized simultaneously with respect to these
variables so that we can use the distinguishability measure
H01 to determine which states minimize the unavoidable error
probability without diagonalization.

To show that both H01 and p′
E are extremized simultane-

ously, we must show that they are both monotonic with respect
to parameters η, dS , and KI . For a multivariate function, we
take monotonicity to mean monotonic with respect to changes
in each variable when all others are held constant. One can
verify that H01 is strictly monotonic by taking the gradient of
Eq. (10) and showing that each term maintains the same sign
over the intervals η ∈ [0, 1], dS ∈ [2,∞], and KI ∈ [1, dI ].
The interval for dS is justified if one assumes a qubit is the
smallest signal used and one is allowed to use an arbitrary
number of modes.

From physical considerations, we can argue that p′
E mono-

tonically decreases with increasing η, dS , and KI given the
possible values of the parameters. Holding dS and KI fixed,
it is clear that the error probability strictly decreases with
increasing η since it parametrizes the degradation of the signal
due to noise. As the signal becomes less noisy, it becomes
easier to distinguish it from noise, thus decreasing the chance
of error. Given that dS represents the possible modes the signal
can be in as well as the number of modes distinguishable
by the detector, increasing dS only increases the dimension
that is used to distinguish the known signal from surrounding
noise. Therefore, when η and KI are held fixed, increasing
dS strictly decreases the probability of mistaking signal with
noise. Alternatively, lower-dimensional signals form a subset
of higher-dimensional signals, and expanding the set of states
one is minimizing over cannot produce a worse result. As
in [10], KI is the effective accessible dimension of the idler
subsystem that expands the space of joint states obtainable
through local manipulations of the signal subsystem (e.g.,
as in dense coding). Let d ′

S ≡ dSKI represent the effective
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dimension of the signal subsystem. From here, we see that
d ′

S ∈ [dS, d]. When d ′
S = dS , one can only reduce H01 down to

an amount limited by the dimension of the signal subsystem;
this is equivalent to a CI protocol. When d ′

S = d , one has
access to the entire dimension of the idler subsystem to min-
imize H01. As KI increases, the accessible dimension of the
signal increases, thus decreasing the probability of mistaking
signal from noise.

Where both H01 and p′
E decrease monotonically with

respect to η, dS , and KI , we can reach the minimum H01

and p′
E along parametric curves of increasing dS , KI , and η.

Along these trajectories, H01 is monotonic with respect to
p′

E . Because of this, the set of values of η, dS , and KI that
minimizes H01 also minimizes p′

E . Therefore, one only needs
to consider H01 when seeking to minimize Eq. (5).

Looking at Eq. (10), for a fixed η and composite dimension
d , it is clear that the minimum possible value of H01 is taken
when KI = dI . Therefore, the states that minimize Eq. (5) are
those the idler subsystems of which have minimum purity
(and therefore maximum entanglement with the signal). This
is equivalent to illumination protocols the remaining states of
which, ρ (1), are maximally mixed. Although all protocols for
which KI = dI minimize the error probability for a fixed di-
mension d , one must maximize dI to maximize the advantage
of QI. In the next section, we use the Schmidt decomposition
to show that the d-dimensional Bell state is the only state
that both has a remaining state that is maximally mixed and
maximizes the idler dimension dI .

IV. PROOF THE BELL STATE GIVES THE
MAXIMUM ADVANTAGE

In the previous section, we showed that the advantage of
QI is quantified by KI , and when KI = dI one has gained the
maximum advantage to distinguish ρ (0) from ρ (1) for fixed
values of η and d . Therefore, if two states of equal dimension
both have remaining states that are maximally mixed, they
will have the same value of H01, but their advantages may be
different. Under this circumstance, the QI protocol with the
greater value of dI will have a greater advantage.

Given an arbitrary entangled pure state �q = |φ〉〈φ|, its
Schmidt decomposition is

|φ〉 =
rmin∑
m=1

√
λm|sm〉S|im〉I ,

∑
m

λm = 1 (11)

where rmin is the minimum rank between �S and �I , |sm〉S

and |im〉I are orthonormal eigenbasis vectors for the signal
and idler subspaces, respectively, and

√
λm are the real non-

negative Schmidt coefficients. From here, we see that one
must have dS > dI or dS = dI to get KI = dI . Otherwise, its
greatest value is restricted by the rank of the signal subsystem.

Assuming maximum idler rank KI = dI , and the circum-
stances dS > dI or dS = dI , the latter case achieves the largest
possible effective signal dimension of d ′

S = d2
S for a fixed

signal, dS . Because the d-dimensional Bell state by definition
is the only state with dS = dI and KI = dI , it gives the greatest
advantage of QI over CI for any other choice of �q. Thus, we
have found that the d-dimensional Bell state minimizes the

error probability in the case of postselection on the biphoton
section of the composite Hilbert space.

V. DISCUSSION

In this paper, we treated QI as a QCD protocol to deter-
mine which states minimize the error probability and give
the greatest advantage of QI. Most approaches that address
this problem require some diagonalization process such as
when computing the trace norm or relative entropy. To avoid
this problem we used the normalized HS inner product as a
measure of distinguishability, which only requires the trace of
the matrix product between density operators.

Using this HS distinguishability measure, we identified
three parameters (η, dS, KI ) in the postselected model of QI
that completely determine the distinguishability between ρ (0)

and ρ (1). The most important of these parameters is KI =
Tr[�2

I ]−1 since it quantifies the advantage of QI over CI.
When KI = dI , one gains the maximum advantage afforded
by QI, and when KI = 1, �S and �I share zero entanglement,
which is equivalent to using a CI protocol.

Although our analysis was on QI, we believe that the HS
inner product may have applications to other quantum infor-
mation protocols. Similar analysis using the HS inner product
may be possible for other protocols that use distributed en-
tanglement among ancilla states to gain an advantage when
sending or receiving information. It is our intention to extend
this research by considering such applications.
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APPENDIX: SIMPLIFYING THE HILBERT-SCHMIDT
INNER PRODUCT IN TERMS OF η, dS, AND KI

We wish to compute H01 from Eq. (10) as

H01 = Tr[ρ (0)ρ (1)]√
Tr[ρ (0)2] Tr[ρ (1)2]

, (A1)

where

ρ (0) = η �q + (1 − η) ρ (1) and ρ (1) = 1̂S

dS
⊗ �I . (A2)

We tackle each of the HS inner products in the numerator and
denominator of Eq. (A1) one at a time.
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First, it will be useful to compute the inner product
Tr[�ρ (1)] directly:

Tr[�ρ (1)] =
dI∑

m=1

dS∑
j=1

I〈im|S〈s j |
(

�
1̂S

dS
⊗ �I

)
|s j〉S|im〉I (A3)

=
dI∑

m=1

I〈im|
⎛
⎝ dS∑

j=1

S〈s j |�|s j〉S

dS

⎞
⎠ ⊗ �I |im〉I (A4)

=
dI∑

m=1

I
〈
im

∣∣�2
I

∣∣im〉
I

dS
= Tr

[
�2

I

]
dS

(A5)

where |sm〉S and |im〉I are orthonormal bases of the signal and
idler subspace, respectively.

Next we compute the numerator Tr[ρ (0)ρ (1)], which gives

Tr[ρ (0)ρ (1)] = η Tr[�ρ (1)] + (1 − η) Tr[ρ (1)2] (A6)

= η
Tr

[
�2

I

]
dS

+ (1 − η)
Tr

[
�2

I

]
dS

(A7)

= Tr
[
�2

I

]
dS

. (A8)

In the above we have used the result

Tr[ρ (1)2] = Tr
[
1̂S

/
d2

S

]
Tr

[
�2

I

] = Tr
[
�2

I

]
dS

, (A9)

which is also needed in the denominator of Eq. (A1).
From Eqs. (A5) and (A8), we see that the inner product

between � and ρ (1) is equal to the inner product between ρ (1)

and itself; this implies that Tr[ρ (0)ρ (1)] = Tr[ρ (1)2].
Lastly, computing Tr[ρ (0)2] gives

Tr[ρ (0)2] (A10)

= η2 Tr[�2] + 2η(1 − η) Tr[�ρ (1)] + (1 − η2) Tr[ρ (1)2]

(A11)

= η2 + (1 − η2)
Tr

[
�2

I

]
dS

. (A12)

Inserting Eqs. (A8) and (A12) into Eq. (A1) and simplifying
terms gives Eq. (10).
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