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What is SPDC?

• Spontaneous: There’s no seeding or stimulation

• Parametric: Optical parameters temporarily altered by pump 
beam
– The final quantum state of the medium is left unchanged, though

• Down-Conversion: Pump photons are down-converted into 
correlated signal-idler photon pairs.
– The energies and frequencies of the signal and idler photons are below 

that of the pump photon.



What Correlations are there?

Optical Parametric processes Conserve…

Energy:     𝜔𝑝𝑢𝑚𝑝 = 𝜔1 + 𝜔2 :   𝐸 = ℏ𝜔

Momentum:   𝑘𝑝𝑢𝑚𝑝 = 𝑘1 + 𝑘2 :   p = ℏ𝑘

If 𝜔𝑝𝑢𝑚𝑝 and k𝑝𝑢𝑚𝑝 ≈ constant…

⇒ Energy and momentum correlations!



The Biphoton Birth Zone

• The region where the signal-idler photons are likely 
to be found given where the destroyed pump photon 
was:

Δ𝐵𝑍 ≡ 2𝜎 𝑥1
𝑥1+𝑥2

2

Δ𝑝𝑢𝑚𝑝= 2𝜎 𝑥1+𝑥2
2

• The Birth zone number:

𝑁 ≡
Δ𝑝𝑢𝑚𝑝

Δ𝐵𝑍

𝑑

(a measure of the strength
of these correlations)



How is SPDC even possible?
• Standard (linear) optics:

What does light do to matter?



How is SPDC even possible?
• Standard (linear) optics:

– EM waves slightly disturb bound 
electrons in a solid
• They recoil back and forth like 

springs.

– Steady state response is 
proportional to input electric field.



How is SPDC even possible?
• Standard (linear) optics:

– EM waves slightly disturb bound 
electrons in a solid
• They recoil back and forth like 

springs.

– Steady state response is 
proportional to input electric field.

• Nonlinear optics:
– Sufficiently intense light pushes 

and pulls electrons hard/far 
enough that they can’t be treated 
so simply.

– Steady state response is no longer 
proportional:
• You can have different frequency 

components in the output

– Examples:
• Optical Rectification
• Second harmonic generation



The Birth Zone Width from Quantum Optics

In four (easier-said-than-done) steps:
1. Quantize the electromagnetic field

 𝐴,  𝐵 = 𝑖ℏ 𝐴, 𝐵



The Birth Zone Width from Quantum Optics

In four (easier-said-than-done) steps:
1. Quantize the electromagnetic field

2. Find the Hamiltonian for the SPDC process

𝐻𝐸𝑀 =
1

2
 𝑑3𝒓 (𝑫 ⋅ 𝑬 + 𝑩 ⋅ 𝑯)



The Birth Zone Width from Quantum Optics

In four (easier-said-than-done) steps:
1. Quantize the electromagnetic field

2. Find the Hamiltonian for the SPDC process

3. Use the Schrödinger equation to get the biphoton
state Ψ𝑆𝑃𝐷𝐶 .
– The spatially varying part is the biphoton wavefunction

𝑖ℏ
𝑑

𝑑𝑡
𝜓 = 𝐻𝐸𝑀|𝜓〉



The Birth Zone Width from Quantum Optics

In four (easier-said-than-done) steps:
1. Quantize the electromagnetic field

2. Find the Hamiltonian for the SPDC process

3. Use the Schrödinger equation to get the biphoton
state Ψ𝑆𝑃𝐷𝐶 .
– The spatially varying part is the biphoton wavefunction

4. Calculate the Birth Zone Width from the biphoton
wavefunction.
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• The pump beam is well-collimated and narrowband

• The pump beam is bright enough to be treated classically

– But not so bright as to damage the material or to include multi-photon 
effects
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• The crystal is wider than the beam (and a lot wider than an optical 
wavelength)

• Optical constants are uniform throughout the crystal.

• The crystal is AR-coated (so we needn't consider multiple internal 
reflections)



The Birth Zone Width from Quantum Optics

Assumptions:
• The pump beam is well-collimated and narrowband

• The pump beam is bright enough to be treated classically

– But not so bright as to damage the material or to include multi-photon 
effects

• The crystal is wider than the beam (and a lot wider than an optical 
wavelength)

• Optical constants are uniform throughout the crystal.

• The crystal is AR-coated (so we needn't consider multiple internal 
reflections)

• We use frequency filtering to look at the part of the downconverted

spectrum where 𝜔1 ≈ 𝜔2 ≈
𝜔𝑝𝑢𝑚𝑝

2



The Birth Zone Width from Quantum Optics

The Quantum Biphoton State from SPDC

ΨSPDC ≈ 𝐶0 01, 02

+𝐶1𝑑𝑒𝑓𝑓 𝐼𝑝𝑢𝑚𝑝𝑇2  𝑑3𝑘1𝑑3𝑘2 𝚽 𝑘1, 𝑘2  𝑎† 𝑘1  𝑎† 𝑘2 |01, 02〉

The Biphoton Wavefunction

𝚽 𝑘1, 𝑘2 = 𝒩 𝑆𝑖𝑛𝑐
Δ𝑘𝑧𝐿𝑧

2
𝜈(𝑘1𝑥 + 𝑘2𝑥, 𝑘1𝑦 + 𝑘2𝑦)

:Δ𝑘𝑧 = 𝑘1𝑧 + 𝑘2𝑧 − 𝑘𝑝𝑢𝑚𝑝 𝑧

What can we learn about rate 𝑅 of produced photon pairs?

• 𝑅 ∝ 𝑑𝑒𝑓𝑓
2 (high nonlinearities are especially important)

• 𝑅 ∝ 𝐼𝑝𝑢𝑚𝑝 (pump photons in  → output pairs out)

• 𝑅 ∝ 𝐿𝑧
2 (The amplitude is a sum over the paths in the crystal)



The Biphoton Wavefunction (in 1D)

• With a Gaussian Pump Beam profile:

Φ 𝑘1𝑥 , 𝑘2𝑥 = 𝒩 𝑆𝑖𝑛𝑐
𝐿𝑧𝜆𝑝𝑢𝑚𝑝

8𝜋
𝑘1𝑥 − 𝑘2𝑥

2 𝑒−𝜎𝑝𝑢𝑚𝑝
2 𝑘1𝑥+𝑘2𝑥

2

• We can calculate the Transverse 
Correlation Width 𝜎 𝑥1−𝑥2

The Birth Zone Width from Quantum Optics

𝜎(𝑥1−𝑥2) =
9𝐿𝑧𝜆𝑝𝑢𝑚𝑝

10𝜋
= Δ𝐵𝑍

(agrees with experimental data too!)



The Double-Gaussian Approximation

• The exact biphoton
wavefunction is hard to 
work with...

𝜓 𝑥1, 𝑥2 = 𝒩 𝑥1 − 𝑥2 𝜋 𝒮
𝑥1 − 𝑥2

2 𝜋𝑎
− 𝒞

𝑥1 − 𝑥2

2 𝜋𝑎
+ 2 𝑎 cos

𝑥1 − 𝑥2
2

8𝑎
+ sin

𝑥1 − 𝑥2
2

8𝑎
𝑒

−
𝑥1+𝑥2

2

16𝜎𝑝𝑢𝑚𝑝
2

𝒮 𝑥 =  
0

𝑥

sin
𝜋

2
𝑡2 𝑑𝑡 𝒞 𝑥 =  

0

𝑥

cos
𝜋

2
𝑡2 𝑑𝑡 𝑎 ≡

𝐿𝑧𝜆𝑝𝑢𝑚𝑝

4𝜋



The Double-Gaussian Approximation

• The exact biphoton
wavefunction is hard to 
work with.

• Gaussian wavefunctions are 
well studied and have many 
useful properties.
– Useful Fourier-Transform 

properties
• They saturate uncertainty 

relations

– Statistical properties like 
mutual information are easy 
to calculate

– You can actually find 
quantum entropies even 
though it’s infinite-
dimensional

𝜓𝐷𝐺 𝑥1, 𝑥2 =
1

2𝜋𝜎𝑝𝑢𝑚𝑝Δ𝑃𝑀

𝑒
−

𝑥1+𝑥2
2

16𝜎𝑝𝑢𝑚𝑝
2

𝑒
−

𝑥1−𝑥2
2

4Δ𝑃𝑀
2



The Double-Gaussian Approximation
• The center of the biphoton

wavefunction is well-
approximated with a double-
Gaussian by matching peaks:

• (the low-level oscillating 
wings are not)

• Experiments may neglect 
wings due to noise floor.

Δ𝑃𝑀 =
4 𝐿𝑧𝜆𝑝𝑢𝑚𝑝

9𝜋

(fits Full Width at 48.2% of Max)

𝜓𝐷𝐺 𝑥1, 𝑥2 =
1

2𝜋𝜎𝑝𝑢𝑚𝑝Δ𝑃𝑀

𝑒
−

𝑥1+𝑥2
2

16𝜎𝑝𝑢𝑚𝑝
2

𝑒
−

𝑥1−𝑥2
2

4Δ𝑃𝑀
2



𝜎(𝑥1−𝑥2) =
9𝐿𝑧𝜆𝑝𝑢𝑚𝑝

10𝜋
= Δ𝐵𝑍 ≳ 𝜎 𝑥1 𝑥2

• Example:
– BiBO crystal for Type-I  SPDC

– 𝜆𝑝𝑢𝑚𝑝=775nm

– 𝐿𝑧 =3mm

– 𝜎𝑝𝑢𝑚𝑝 = 0.5mm

⟹ Δ𝐵𝑍 =25.8𝜇m

⟹ (Birth Zone Number) 𝑁 = 38.75 2 ≈ 1502

⇒ (Mutual Information) ℎ  𝑥1:  𝑥2 ≈ 9.55 bits

⟹ (Entanglement of Formation):  ℰ  𝜌 ≈ 9.4 ebits

⇒ (Pearson R-value)    𝑅 ≈ 0.9987

How strong are these Correlations?



How to measure these correlations?

• To measure just Δ𝐵𝑍 …
– Consider the following, based on 

Howell et al: PRL, 92 210403 (2004).
• 40𝜇m slits

• 390nm pump laser

• 2mm BBO crystal

– Our estimate:

Δ𝐵𝑍 ≈ 14.9𝜇m

– Their result (via deconvolution):

Δ𝐵𝑍 ≈ 13.5 ± 2.6𝜇m



How to measure all the correlations?

Hard way: Measure the coincidences 
coming from every pair of pixels in 
transverse position and momentum planes.

(Brute force)
𝑀 ∼ 𝑛4 𝑇 ∼ 𝑛6

For 32x32, ~ 310days



How to measure all the correlations?

Hard way: Measure the coincidences 
coming from every pair of pixels in 
transverse position and momentum planes.

Medium way: Measure coincidences coming 
from pairs expected to be correlated, and 
local neighborhood.

(Nearest K Neighbors)
𝑀 ∼ 𝑘 × 𝑛2 𝑇 ∼ 𝑘 𝑛4

For 32x32, ∼ 14 -15 days (for 𝑘 ∼ 49)



How to measure all the correlations?

Hard way: Measure the coincidences 
coming from every pair of pixels in 
transverse position and momentum planes.

Medium way: Measure coincidences coming 
from pairs expected to be correlated, and 
local neighborhood.

Easy way: Measure coincidences coming 
from random patterns and reconstruct 
whole thing using Compressive Sensing 
Tomography.

(Random Projections)
𝑀 ∼ 𝑛2 log 𝑛 𝑇 ∼ 𝑛4 log 𝑛

For 32x32, ~  8  hours



Why measure these correlations?

With strong enough correlations,
In complementary domains, 
you can prove there’s entanglement 
by way of EPR-steering!

Δ 𝑥𝐴 ⋅ Δ 𝑘𝐴 ≥
1

2

Δ 𝑥𝐴|𝑥𝐵 ⋅ Δ 𝑘𝐴|𝑘𝐵 ≥ 0

But…



EPR-steering: Essential Concepts
• The situation: Alice and Bob share a separated 

pair of particles A and B entangled in (e.g.,) 
position and momentum

• Locality: The effect of measurement cannot 
travel faster than light

• Completeness: Quantum Mechanics gives a 
complete description of reality. The uncertainty 
principle is an absolute fundamental limit.

• The steering: Alice’s choice of measurement 
controls the ensemble of possible states Bob 
measures.



From the EPR-paradox to EPR-steering
• Locality: 

Everything about particle B is in information 𝜆 in 
B’s past light cone.
– Conditioning on Alice’s results cannot reduce the uncertainty 

more than conditioning on all of 𝜆

Δ 𝑥𝐵 𝑥𝐴 ≥ Δ 𝑥𝐵 𝜆

• Completeness: 
The uncertainty principle still holds, even when 
conditioning on all this information 𝜆.

Δ 𝑥𝐵 𝜆 ⋅ Δ 𝑘𝐵 𝜆 ≥
1

2
• Putting Locality and completeness together:

We get the first EPR-steering inequality (Reid, 1989)

Δ 𝑥𝐵 𝑥𝐴 ⋅ Δ 𝑘𝐵 𝑘𝐴 ≥
1

2
• But in general, we know that:

Δ 𝑥𝐵 𝑥𝐴 ⋅ Δ 𝑘𝐵 𝑘𝐴 ≥ 0

The EPR Paradox:
Locality and Completeness 
are mutually exclusive.



The Flavors of EPR-steering
• Easy:  Show the joint entangled state is EPR-

steerable

• Medium: Demonstrate EPR-steering 
correlations (i.e., the EPR paradox)

– Useful in more robust Quantum Key 
Distribution

• Hard: “EPR-steer” something

– Actually do the tomography on Bob’s systems 
to show that Bob’s state conditioned on Alice’s 
measurement result is under her control



Proving EPR-steering (Theoretically)
• Lots of correlations can be explained 

classically
– Particles A and B could be classically 

correlated to begin with

– Alice or Bob could have an untrusted 
measurement device (a “black box”)

• But if Bob was not receiving halves of 
entangled pairs…

– Then there’s a limit to how well Alice 
can predict Bob’s measurement 
results.

ℎ 𝑥𝐵 𝑥𝐴 + ℎ 𝑘𝐵 𝑘𝐴 ≥ log 𝜋𝑒
(Walborn et al., 2011)

ℎ 𝑥 ≡ −∫ 𝑑𝑥𝜌 𝑥 log 𝜌 𝑥

ℎ 𝑥𝐵 𝑥𝐴 ≥ ∫ 𝑑𝜆 𝜌 𝜆 ℎ 𝑥𝐵 𝜆
ℎ 𝑘𝐵 𝑘𝐴 ≥ ∫ 𝑑𝜆 𝜌 𝜆 ℎ 𝑘𝐵 𝜆

ℎ 𝑥𝐵 𝜆 + ℎ 𝑘𝐵 𝜆 ≥ log 𝜋𝑒



Proving EPR-steering (Experimentally)

ℎ 𝑥𝐵 𝑥𝐴 + ℎ 𝑘𝐵 𝑘𝐴 ≥ log 𝜋𝑒

– This relies on knowing continuous probability 
densities

But…
• Discrete approximation never decreases 

entropy!*

𝐻 𝑋𝐵 𝑋𝐴 + log Δ𝑥𝐵 ≥ ℎ 𝑥𝐵 𝑥𝐴

• So violating the discrete inequality…

𝐻 𝑋𝐵 𝑋𝐴 + 𝐻 𝐾𝐵 𝐾𝐴 ≥ log
𝜋𝑒

Δ𝑥𝐵Δ𝑘𝐵

• ..witnesses position-momentum EPR-
steering!

*See PRL 110, 130407 (2013) for full treatment

ℎ 𝑥 ≡ −∫ 𝑑𝑥𝜌 𝑥 log 𝜌 𝑥

𝐻 𝑋 ≡ −  

𝑖

𝑃 𝑋𝑖 log 𝑃 𝑋𝑖



Application: Monogamy of EPR-steering Correlations

• A and B’s (sufficiently) high correlations can guarantee low 
correlations with any third party
– (good for security against eavesdroppers)

• Steering deficit: 𝛿𝐴→𝐵

𝛿𝐴→𝐵 ≡ 𝐻 𝑋𝐵 𝑋𝐴 + 𝐻 𝐾𝐵 𝐾𝐴 − log
𝜋𝑒

Δ𝑥𝐵Δ𝑘𝐵

• Monogamy inequality:

𝛿𝐴→𝐵 + 𝛿𝐶→𝐵 ≥ 0
(made by combining two uncertainty relations)

• Security:

Alice and Bob can use their 

higher correlations to distill a 
secret key for private communication .



Thanks for Listening!
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Entanglement and the Hierarchy of Locality

• Local Hidden Variables (LHV):
– Information existing in past light cone

– LHV Models:

𝜌 𝑥𝐴, 𝑥𝐵 = ∫ 𝑑𝜆 𝜌 𝜆 𝜌 𝑥𝐴 𝜆 𝜌 𝑥𝐵 𝜆

– Ruled out by Violating a Bell Inequality

• Local Hidden States (LHS):
– States determined by local hidden variables

• LHS model (for Bob):
𝜌 𝑥𝐴, 𝑥𝐵 = ∫ 𝑑𝜆 𝜌 𝜆 𝜌 𝑥𝐴 𝜆 𝑇𝑟  Π𝑋

𝐵  𝜌𝜆
𝐵

– Ruled out by violating an EPR-steering 
inequality.

• Separable model:
𝜌 𝑥𝐴, 𝑥𝐵 = ∫ 𝑑𝜆 𝜌 𝜆 𝑇𝑟  Π𝑋

𝐴  𝜌𝜆
𝐴 𝑇𝑟  Π𝑋

𝐵  𝜌𝜆
𝐵

– Ruled out by any entanglement witness.


