Air Force Research Laboratory, Rome, NY April 14, 2016

The Biphoton Birth Zone in Spontaneous Parametric Down-Conversion

Foundations and Applications

James Schneeloch

NRC Postdoctoral Fellow: Alsing Research Group

DISTRIBUTION A. Approved for public release; distribution unlimited: 88ABW-2016-0452

Outline

- Important concepts in SPDC
- Theoretical treatment of correlations
- Experimental methods
- EPR-steering with these correlations
- Application: Monogamy of EPR correlations

What is **SPDC**?

- **Spontaneous:** There's no seeding or stimulation
- Parametric: Optical parameters temporarily altered by pump beam
 - The final quantum state of the medium is left unchanged, though
- **Down-Conversion:** Pump photons are down-converted into correlated signal-idler photon pairs.
 - The energies and frequencies of the signal and idler photons are below that of the pump photon.

What Correlations are there?

Optical Parametric processes Conserve...

Energy: $\omega_{pump} = \omega_1 + \omega_2$: $E = \hbar \omega$ Momentum: $\vec{k}_{pump} = \vec{k}_1 + \vec{k}_2$: $\vec{p} = \hbar \vec{k}$

If ω_{pump} and $\vec{k}_{pump} \approx constant...$

 \Rightarrow Energy and momentum correlations!

The Biphoton Birth Zone

 The region where the signal-idler photons are likely to be found given where the destroyed pump photon was:

$$\Delta_{BZ} \equiv 2\sigma_{\left(x_1 \mid \frac{x_1 + x_2}{2}\right)}$$
$$\Delta_{pump} = 2\sigma_{\left(\frac{x_1 + x_2}{2}\right)}$$

• The Birth zone number:

$$N \equiv \left(\frac{\Delta_{pump}}{\Delta_{BZ}}\right)^{a}$$

(a measure of the strength of these correlations)

How is SPDC even possible?

• Standard (linear) optics:

What does light do to matter?

How is SPDC even possible?

- Standard (linear) optics:
 - EM waves slightly disturb bound electrons in a solid
 - They recoil back and forth like springs.
 - Steady state response is proportional to input electric field.

How is SPDC even possible?

- Standard (linear) optics:
 - EM waves slightly disturb bound electrons in a solid
 - They recoil back and forth like springs.
 - Steady state response is proportional to input electric field.
- Nonlinear optics:
 - Sufficiently intense light pushes and pulls electrons hard/far enough that they can't be treated so simply.
 - Steady state response is no longer proportional:
 - You can have different frequency components in the output
 - Examples:
 - Optical Rectification
 - Second harmonic generation

In four (easier-said-than-done) steps:

- 1. Quantize the electromagnetic field
- 2. Find the Hamiltonian for the SPDC process

$$H_{EM} = \frac{1}{2} \int d^3 \boldsymbol{r} \left(\vec{\boldsymbol{D}} \cdot \vec{\boldsymbol{E}} + \vec{\boldsymbol{B}} \cdot \vec{\boldsymbol{H}} \right)$$

In four (easier-said-than-done) steps:

- 1. Quantize the electromagnetic field
- 2. Find the Hamiltonian for the SPDC process
- 3. Use the Schrödinger equation to get the biphoton state $|\Psi_{SPDC}\rangle$.

The spatially varying part is the biphoton wavefunction

$$i\hbar \frac{d}{dt} |\psi\rangle = H_{EM} |\psi\rangle$$

In four (easier-said-than-done) steps:

- 1. Quantize the electromagnetic field
- 2. Find the Hamiltonian for the SPDC process
- 3. Use the Schrödinger equation to get the biphoton state $|\Psi_{SPDC}\rangle$.
 - The spatially varying part is the biphoton wavefunction
- 4. Calculate the Birth Zone Width from the biphoton wavefunction.

Assumptions:

- The pump beam is well-collimated and narrowband
- The pump beam is bright enough to be treated classically
 - But not so bright as to damage the material or to include multi-photon effects

Assumptions:

- The pump beam is well-collimated and narrowband
- The pump beam is bright enough to be treated classically
 - But not so bright as to damage the material or to include multi-photon effects
- The crystal is wider than the beam (and a lot wider than an optical wavelength)
- Optical constants are uniform throughout the crystal.
- The crystal is AR-coated (so we needn't consider multiple internal reflections)

Assumptions:

- The pump beam is well-collimated and narrowband
- The pump beam is bright enough to be treated classically
 - But not so bright as to damage the material or to include multi-photon effects
- The crystal is wider than the beam (and a lot wider than an optical wavelength)
- Optical constants are uniform throughout the crystal.
- The crystal is AR-coated (so we needn't consider multiple internal reflections)
- We use frequency filtering to look at the part of the downconverted spectrum where $\omega_1 \approx \omega_2 \approx \frac{\omega_{pump}}{2}$

The Quantum Biphoton State from SPDC

$$\begin{split} |\Psi_{\text{SPDC}}\rangle &\approx C_0 |0_1, 0_2\rangle \\ &+ C_1 d_{eff} \sqrt{I_{pump} T^2} \iint d^3 k_1 d^3 k_2 \ \mathbf{\Phi}(\vec{k}_1, \vec{k}_2) \ \hat{a}^{\dagger}(\vec{k}_1) \hat{a}^{\dagger}(\vec{k}_2) \ |0_1, 0_2\rangle \end{split}$$

The Biphoton Wavefunction

$$\Phi(\vec{k}_1, \vec{k}_2) = \mathcal{N} Sinc\left(\frac{\Delta k_z L_z}{2}\right) \nu(k_{1x} + k_{2x}, k_{1y} + k_{2y})$$
$$:\Delta k_z = k_{1z} + k_{2z} - k_{pump z}$$

What can we learn about rate R of produced photon pairs?

- $R \propto d_{eff}^2$ (high nonlinearities are especially important)
- $R \propto I_{pump}$ (pump photons in \rightarrow output pairs out)
- $R \propto L_z^2$ (The amplitude is a sum over the paths in the crystal)

- The Biphoton Wavefunction (in 1D)
- With a Gaussian Pump Beam profile:

$$\Phi(k_{1x}, k_{2x}) = \mathcal{N} Sinc\left(\frac{L_z \lambda_{pump}}{8\pi} (k_{1x} - k_{2x})^2\right) e^{-\sigma_{pump}^2 (k_{1x} + k_{2x})^2}$$

• We can calculate the Transverse Correlation Width $\sigma_{(x_1-x_2)}$

$$\sigma_{(x_1-x_2)} = \sqrt{\frac{9L_z\lambda_{pump}}{10\pi}} = \Delta_{BZ}$$

(agrees with experimental data too!)

The Double-Gaussian Approximation

 The exact biphoton wavefunction is hard to work with...

$$\psi(x_1, x_2) = \mathcal{N}\left[(x_1 - x_2)\sqrt{\pi} \left(\mathcal{S}\left(\frac{x_1 - x_2}{2\sqrt{\pi a}}\right) - \mathcal{C}\left(\frac{x_1 - x_2}{2\sqrt{\pi a}}\right) \right) + 2\sqrt{a} \left(\cos\left(\frac{(x_1 - x_2)^2}{8a}\right) + \sin\left(\frac{(x_1 - x_2)^2}{8a}\right) \right) \right] e^{-\frac{(x_1 + x_2)^2}{16\sigma_{pump}^2}}$$

$$S(x) = \int_0^x \sin\left(\frac{\pi}{2}t^2\right) dt \qquad C(x) = \int_0^x \cos\left(\frac{\pi}{2}t^2\right) dt \qquad a \equiv \frac{L_z \lambda_{pump}}{4\pi}$$

The Double-Gaussian Approximation

- The exact biphoton wavefunction is hard to work with.
- Gaussian wavefunctions are well studied and have many useful properties.
 - Useful Fourier-Transform properties
 - They saturate uncertainty relations
 - Statistical properties like mutual information are easy to calculate
 - You can actually find quantum entropies even though it's infinitedimensional

$$\psi^{DG}(x_1, x_2) = \frac{1}{\sqrt{2\pi\sigma_{pump}\Delta_{PM}}} e^{-\frac{(x_1 + x_2)^2}{16\sigma_{pump}^2}} e^{-\frac{(x_1 - x_2)^2}{4\Delta_{PM}^2}}$$

The Double-Gaussian Approximation

- The center of the biphoton wavefunction is wellapproximated with a double-Gaussian by matching peaks:
- (the low-level oscillating wings are not)
- Experiments may neglect wings due to noise floor.

$$\Delta_{PM} = \sqrt{\frac{4 L_z \lambda_{pump}}{9\pi}}$$

(fits Full Width at 48.2% of Max)

How strong are these Correlations?

$$\sigma_{(x_1-x_2)} = \sqrt{\frac{9L_z\lambda_{pump}}{10\pi}} = \Delta_{BZ} \gtrsim \sigma_{(x_1|x_2)}$$

- Example:
 - BiBO crystal for Type-I SPDC
 - λ_{pump} =775nm
 - $-L_z = 3$ mm
 - $\sigma_{pump} = 0.5$ mm
 - $\Rightarrow \Delta_{BZ} = 25.8 \mu \text{m}$
 - \Rightarrow (Birth Zone Number) $N = (38.75)^2 \approx 1502$
 - \Rightarrow (Mutual Information) $h(\vec{x}_1:\vec{x}_2) \approx 9.55$ bits
 - \Rightarrow (Entanglement of Formation): $\mathcal{E}(\hat{\rho}) \approx 9.4$ ebits
 - \Rightarrow (Pearson R-value) $R \approx 0.9987$

How to measure these correlations?

- To measure just Δ_{BZ} ... •
 - Consider the following, based on Howell et al: PRL, 92 210403 (2004).
 - 40µm slits
 - 390nm pump laser ٠
 - 2mm BBO crystal •
 - Our estimate:

 $\Delta_{BZ} \approx 14.9 \mu \text{m}$

– Their result (via deconvolution):

 $\Delta_{BZ} \approx 13.5 \pm 2.6 \mu \text{m}$

Coincidence

How to measure *all* the correlations?

Hard way: Measure the coincidences coming from every pair of pixels in transverse position and momentum planes.

How to measure *all* the correlations?

Hard way: Measure the coincidences coming from every pair of pixels in transverse position and momentum planes.

Medium way: Measure coincidences coming from pairs expected to be correlated, and local neighborhood.

How to measure *all* the correlations?

NLC

Hard way: Measure the coincidences coming from every pair of pixels in transverse position and momentum planes.

Medium way: Measure coincidences coming from pairs expected to be correlated, and local neighborhood.

Easy way: Measure coincidences coming from random patterns and reconstruct whole thing using Compressive Sensing Tomography.

Why measure these correlations?

With strong enough correlations, In complementary domains, you can prove there's entanglement by way of **EPR-steering**!

$$\Delta(x_A) \cdot \Delta(k_A) \ge \frac{1}{2}$$

But...

 $\Delta(x_A|x_B) \cdot \Delta(k_A|k_B) \ge 0$

EPR-steering: Essential Concepts

- The situation: Alice and Bob share a separated pair of particles A and B entangled in (e.g.,) position and momentum
- Locality: The effect of measurement cannot travel faster than light
- **Completeness**: Quantum Mechanics gives a complete description of reality. The uncertainty principle is an absolute fundamental limit.
- **The steering**: Alice's choice of measurement controls the ensemble of possible states Bob measures.

From the EPR-paradox to EPR-steering

• Locality:

Everything about particle B is in information λ in B's past light cone.

- Conditioning on Alice's results cannot reduce the uncertainty more than conditioning on all of λ

$$\Delta(x_B|x_A) \geq \Delta(x_B|\lambda)$$

• Completeness:

The uncertainty principle still holds, even when conditioning on all this information λ .

$$\Delta(x_B|\lambda) \cdot \Delta(k_B|\lambda) \ge \frac{1}{2}$$

Putting Locality and completeness together:
We get the first EPR-steering inequality (Reid, 1989)

$$\Delta(x_B|x_A) \cdot \Delta(k_B|k_A) \ge \frac{1}{2}$$

• But in general, we know that: $\Delta(x_B|x_A) \cdot \Delta(k_B|k_A) \ge 0$

The EPR Paradox:

Locality and Completeness are mutually exclusive.

The Flavors of EPR-steering

- **Easy**: Show the joint entangled state is EPR-steerable
- **Medium**: Demonstrate EPR-steering correlations (i.e., the EPR paradox)
 - Useful in more robust Quantum Key Distribution
- Hard: "EPR-steer" something
 - Actually do the tomography on Bob's systems to show that Bob's state conditioned on Alice's measurement result is under her control

Proving EPR-steering (Theoretically)

- Lots of correlations can be explained classically
 - Particles A and B could be classically correlated to begin with
 - Alice or Bob could have an untrusted measurement device (a "black box")
- But if Bob was not receiving halves of entangled pairs...
 - Then there's a limit to how well Alice can predict Bob's measurement results.

 $h(x_B|x_A) + h(k_B|k_A) \ge \log(\pi e)$ (Walborn et al., 2011)

 $h(x) \equiv -\int dx \rho(x) \log(\rho(x))$

 $\begin{aligned} h(x_B | x_A) &\geq \int d\lambda \, \rho(\lambda) h(x_B | \lambda) \\ h(k_B | k_A) &\geq \int d\lambda \, \rho(\lambda) h(k_B | \lambda) \end{aligned}$

 $h(x_B|\lambda) + h(k_B|\lambda) \ge \log(\pi e)$

Proving EPR-steering (Experimentally)

$$h(x_B|x_A) + h(k_B|k_A) \ge \log(\pi e)$$

 This relies on knowing continuous probability densities

But...

 Discrete approximation never decreases entropy!*

$$H(X_B|X_A) + \log(\Delta x_B) \ge h(x_B|x_A)$$

So violating the discrete inequality...

$$H(X_B|X_A) + H(K_B|K_A) \ge \log\left(\frac{\pi e}{\Delta x_B \Delta k_B}\right)$$

 ..witnesses position-momentum EPRsteering!

*See PRL 110, 130407 (2013) for full treatment

Figure from: Phys. Rev. X, 3, 011013 (2013).

Application: Monogamy of EPR-steering Correlations

- A and B's (sufficiently) high correlations can guarantee low correlations with any third party
 - (good for security against eavesdroppers)
- Steering deficit: $\delta_{A \to B}$

$$\delta_{A \to B} \equiv H(X_B | X_A) + H(K_B | K_A) - \log\left(\frac{\pi e}{\Delta x_B \Delta k_B}\right)$$

• Monogamy inequality:

 $\delta_{A \to B} + \delta_{C \to B} \ge 0$

(made by combining two uncertainty relations)

• Security:

Alice and Bob can use their higher correlations to distill a secret key for private communication .

Thanks for Listening!

The National Academies of SCIENCES • ENGINEERING • MEDICINE

Works Cited

- Schneeloch, James and Howell, John C. "Introduction to the Transverse Spatial Correlations in Spontaneous Parametric Down-Conversion through the Biphoton Birth Zone", J. Opt. **18**,5 (2016).
- Howell, John C., Bennink, Ryan S., Bentley, Sean J., and Boyd, R.W. "Realization of the Einstein-Podolsky-Rosen Paradox using Momentum- and Position Entangled Photons from Spontaneous Parametric Down-Conversion", *Phys. Rev. Lett.* 92, 21, (2004).
- Reid, M. D., "Demonstration of the Einstein-Podolsky-Rosen paradox using nondegenerate parametric amplification", *Phys. Rev. A* **40**, 913 (1989).
- Walborn, S.P., Salles, A., Gomes, R. M., Toscano, F., and Souto-Ribeiro, P.H., "Revealing Hidden Einstein-Podolsky-Rosen Nonlocality", *Phys. Rev. Lett.* **106**, 130402 (2011)
- Schneeloch, James, Dixon, P. Ben, Howland, Gregory A., Broadbent, Curtis J., and Howell, John C. "Violation of Continuous-Variable Einstein-Podolsky-Rosen Steering with Discrete Measurements", *Phys. Rev. Lett.* **110**, 130407 (2013).
- Schneeloch, James, "The Relationship between Discrete and Continuous Entropy in EPRsteering Inequalities", arXiv **1312.2640** (2013).
- Howland, Gregory A., and Howell, John C. "Efficient High-Dimensional Entanglement Imaging with a Compressive-Sensing Double-Pixel Camera", *Phys. Rev. X* **3**, 011013 (2013).

Entanglement and the Hierarchy of Locality

- Local Hidden Variables (LHV):
 - Information existing in past light cone
 - LHV Models:
 - $\rho(x_A, x_B) = \int d\lambda \, \rho(\lambda) \rho(x_A | \lambda) \rho(x_B | \lambda)$
 - Ruled out by Violating a Bell Inequality
- Local Hidden States (LHS):
 - States determined by local hidden variables
- LHS model (for Bob): $\rho(x_A, x_B) = \int d\lambda \,\rho(\lambda)\rho(x_A|\lambda)Tr[\widehat{\Pi}_X^B \,\widehat{\rho}_\lambda^B]$
 - Ruled out by violating an EPR-steering inequality.
- Separable model: $\rho(x_A, x_B) = \int d\lambda \,\rho(\lambda) Tr[\widehat{\Pi}_X^A \,\widehat{\rho}_\lambda^A] Tr[\widehat{\Pi}_X^B \,\widehat{\rho}_\lambda^B]$
 - Ruled out by any entanglement witness.

