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What is SPDC?

* Spontaneous: There’s no seeding or stimulation

* Parametric: Optical parameters temporarily altered by pump
beam

— The final guantum state of the medium is left unchanged, though

* Down-Conversion: Pump photons are down-converted into
correlated signal-idler photon pairs.

— The energies and frequencies of the signal and idler photons are below
that of the pump photon.
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What Correlations are there?

Optical Parametric processes Conserve...

Energy: wpymp = w1 +w,; : E=hw

—

Momentum: K,,mp = ki+k, : P=hk

If Wyymp and kyymy = constant...

= Energy and momentum correlations!
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The Biphoton Birth Zone

* The region where the signal-idler photons are likely

to be found given where the destroyed pump photon
was:

e The Birth zone number:
A d
v ()

Apz
(a measure of the strength
of these correlations)




How is SPDC even possible?

e Standard (linear) optics:

What does light do to matter?
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How is SPDC even possible?

e Standard (linear) optics: s
— EM waves slightly disturb bound
electrons in a solid

* They recoil back and forth like
springs.
— Steady state response is
proportional to input electric field.
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How is SPDC even possible?

e Standard (linear) optics:
— EM waves slightly disturb bound
electrons in a solid
* They recoil back and forth like
springs.
— Steady state response is
proportional to input electric field.

* Nonlinear optics:

— Sufficiently intense light pushes
and pulls electrons hard/far
enough that they can’t be treated
so simply.

— Steady state response is no longer
proportional:

* You can have different frequency
components in the output

— Examples:
* Optical Rectification
e Second harmonic generation
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The Birth Zone Width from Quantum Optics
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The Birth Zone Width from Quantum Optics

Assumptions:
* The pump beam is well-collimated and na

* The pump beam is bright enough to be tre

— But not so bright as to damage the materi
effects
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The Birth Zone Width from Quantum Optics

Assumptions:
* The pump beam is well-collimated and narr

* The pump beam is bright enough to be treat

— But not so bright as to damage the material
effects

* The crystal is wider than the beam (and a lot
wavelength)

e Optical constants are uniform throughout th

* The crystal is AR-coated (so we needn't cons
reflections)

TN
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The Birth Zone Width from Quantum Optics

Assumptions:
 The pump beam is well-collimated and narro

e The pump beam is bright enough to be treate
— But not so bright as to damage the material or
effects

* The crystal is wider than the beam (and a lot
wavelength)

e Optical constants are uniform throughout the

e The crystal is AR-coated (so we needn't consi
reflections)

 We use frequency filtering to look at the part
Wpump

spectrum where w; = w, = =

\_

\
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The Birth Zone Width from Quantum Optics

( The Quantum Biphoton State from SPDC \

|Wsppc) = Col04,07)
+Cydef /IpumpTZ ﬂd3k1d3k2 ®(ky, ky) at(ky)at (k) 104,0,)
\ _/

/ The Biphoton Wavefunction \

Ak,L,

q)(El, Ez) =N SlTlC( )V(klx + kZX' kly + kzy)

\ Ak, = ki + kaz — kpump 2 j

What can we learn about rate R of produced photon pairs?
e R«x dgff (high nonlinearities are especially important)
* R I,;mp (pump photonsin — output pairs out)
e R o L2 (The amplitude is a sum over the paths in the crystal)




The Birth Zone Width from Quantum Optics

The Biphoton Wavefunction (in 1D)
* With a Gaussian Pump Beam profile:

L,
q)(klx; ka) = N Sinc ( - é?;;mp (klx - k2x)2> B_O-T%ump(klx'l_kzx)z

x2

e We can calculate the Transverse
Correlation Width gy, _x.)

I, Apump

O(x1—x3) =
\ 107

= Apy

(agrees with experimental data too!)
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The Double-Gaussian Approximation

* The exact biphoton
wavefunction is hard to
work with...

v =i {s (375 -

S(x) = jxsin (gtz) dt
0

A v}“
= v
A RLI'?‘W" /




The Double-Gaussian Approximation

* The exact biphoton
wavefunction is hard to
work with.

* Gaussian wavefunctions are
well studied and have many
useful properties.

— Useful Fourier-Transform
properties
* They saturate uncertainty
relations
— Statistical properties like
mutual information are easy
to calculate

— You can actually find
quantum entropies even
though it’s infinite-
dimensional
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The Double-Gaussian ApprOX|mat|on

 The center of the biphoton
wavefunction is well-
approximated with a double-
Gaussian by matching peaks:

e (the low-level oscillating
wings are not)

* Experiments may neglect
wings due to noise floor.

(fits Full Width at 48.2% of Max) /
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How strong are these Correlations?

91,2
_ RS
O(x1—x3) = " 10 Apz = I (xq1]x2)
e Example:

— BiBO crystal for Type-I SPDC

— Apump=775nm

— L, =3mm

— Opymp = 0.5mm
= Ag, =25.8um
= (Birth Zone Number) N = (38.75)% =~ 1502
= (Mutual Information) h(x;:x,) =~ 9.55 bits
= (Entanglement of Formation): £(p) ~ 9.4 ebits
= (Pearson R-value) R = 0.9987

R



How to measure these correlations?

* To measure just Ag ...

— Consider the following, based on
Howell et al: PRL, 92 210403 (2004).

*  40um slits

Coincidence
Counter

* 390nm pump laser

* 2mm BBO crystal APD

— Our estimate:
Apy; = 14.9um

— Their result (via deconvolution):
Ap, ~ 13.5 + 2.6um —

Movable slit

NLC Pump Filter

Fixed Slit APD




How to measure all the correlations?

Hard way: Measure the coincidences
coming from every pair of pixels in
transverse position and momentum planes.

(Brute force)
M ~ n* T ~n®
For 32x32, ~ 310days
DMD

Coincidence
Counter

DMD




How to measure all the correlations?

Hard way: Measure the coincidences
coming from every pair of pixels in
transverse position and momentum planes.

Medium way: Measure coincidences coming
from pairs expected to be correlated, and
local neighborhood.

(Nearest K Neighbors)
M ~ k X n? T ~ kn*

For 32x32, ~ 14 -15 days (for k ~ 49)
DMD

Coincidence
Counter

Pump Filter

DMD




How to measure all the correlations?

Hard way: Measure the coincidences
coming from every pair of pixels in
transverse position and momentum planes.

Medium way: Measure coincidences coming
from pairs expected to be correlated, and
local neighborhood.

Easy way: Measure coincidences coming
from random patterns and reconstruct
whole thing using Compressive Sensing
Tomography.

NLC
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M ~n?log(n) T ~ n*log(n)

Pump Filter

(Random Projections)

For 32x32,~ 8 hours
DMD

Coincidence
Counter

DMD



Why measure these correlations?

With strong enough correlations,
In complementary domains,

you can prove there’s entanglement
by way of EPR-steering!

A(xy) - A(ky) = %

But...
A(xylxg) - Alkylkp) =0
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EPR-steering: Essential Concepts

The situation: Alice and Bob share a separated

pair of particles A and B entangled in (e.g.,) A

position and momentum

Locality: The effect of measurement cannot AN \\ // ,/
travel faster than light \\ \\y// //
Completeness: Quantum Mechanics gives a Alice \\/V\”/ Bob
complete description of reality. The uncertainty " N
principle is an absolute fundamental limit. // // \\?\\\ \\\
The steering: Alice’s choice of measurement AL &S ;;:ce

controls the ensemble of possible states Bob
measures.




From the EPR-paradox to EPR-steering

Locality:
Everything about particle B is in information A in
B’s past light cone.

— Conditioning on Alice’s results cannot reduce the uncertainty
more than conditioning on all of A

A(xglxa) = A(xg|A)

Completeness:
The uncertainty principle still holds, even when
conditioning on all this information A.

AGeal2) - Aksl) 2 5

Putting Locality and completeness together:
We get the first EPR-steering inequality (Reid, 1989)

1
A(xplxy) - Alkplky) = >

But in general, we know that:
A(xglxy) - Alkglky) = 0

Time
A

The EPR Paradox:
Locality and Completeness
are mutually exclusive.




The Flavors of EPR-steering

* Easy: Show the joint entangled state is EPR-

Time
steerable A
* Medium: Demonstrate EPR-steering
. . N ’ s/
correlations (i.e., the EPR paradox) RN S
— Useful in more robust Quantum Key S N
« s . N > 7
Distribution Alice \./ \/y\” Bob
. SN P N
* Hard: “EPR-steer” something Y N
/ Vi ~ AN
— Actually do the tomography on Bob’s systems 7 e . N
to show that Bob’s state conditioned on Alice’s _ S \>
measurement result is under her control Space
A B




Proving EPR-steering (Theoretically)

* Lots of correlations can be explained h(x) = _f dxp(x) log(p(x))

classically
— Particles A and B could be classically h(xglxy) = [ dA p(D)h(xg|1)
correlated to begin with hikglky) = [ dA p(WD)h(kg|2)

— Alice or Bob could have an untrusted

measurement device (a “black box”)
h(xg|A) + h(kg|A) = log(me)

* Butif Bob was not receiving halves of Time

entangled pairs...
— Then there’s a limit to how well Alice . -
can predict Bob’s measurement . ,
results. >
Alice “’ Bob

h(xglxa) + h(kplk,) = log(me) y %
(Walborn et al., 2011) >
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Proving EPR-steering (Experimentally)

h(xglx,) + h(kglk,) = log(me) h(x) = =J dxp(x) log(p ()
— This relies on knowing continuous probability
densities HX) = - Z P(X;) log(P(Xi))
But... p L
osition-position
* Discrete approximation never decreases 250
entropy!*
200
H(Xg|Xy) + log(Axg) = h(xglxs)
£ 150
* Soviolating the discrete inequality... 2
5 100
H(X51X,) + H(KglKy) = log [ —— i
= log| ————
BlAa Blfig g Axphky o
* ..witnesses position-momentum EPR-
Steering! > Sig:'uf;?DMDIE;ﬂeIS]' P >0
*See PRL 110, 130407 (2013) for full treatment Figure from:

Phys. Rev. X, 3, 011013 (2013).



Application: Monogamy of EPR-steering Correlations

A and B’s (sufficiently) high correlations can guarantee low
correlations with any third party

— (good for security against eavesdroppers)

Steering deficit: 64_,5

e
04-p = H(XplX4) + H(Kp|Ky) — log (Ax Ak >
pAKp

Monogamy inequality:

0pp +0csp 20

(made by combining two uncertainty relations)

Security:

Alice and Bob can use their
higher correlations to distill a C
secret key for private communication .

et



Thanks for Listening!
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Entanglement and the Hierarchy of Locality

e Local Hidden Variables (LHV): LHV States
— Information existing in past light cone
— LHV Models:
p(xa,xp) = [ dA p(D)p(xalN)p(x5]2) : LHS States

— Ruled out by Violating a Bell Inequality

Separable
States

Local Hidden States (LHS):

— States determined by local hidden variables

e LHS model (for Bob): Time
p(xa, xp) = [ dA P(A)P(xAM)Tr[HX 121 ]
— Ruled out by violating an EPR-steering AN, S
inequality. . . 7 I
\\\ \/y\/ ///
* Separable model: S L
P ~ —_ ~ y /\(\ N
p(xa,xp) = [ dApW)Tr|11§ p|Tr|11E 57 ] 4y N
— Ruled out by any entanglement witness. 7 A } RN N
t " space
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