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Abstract

This document expands upon the relationship between discrete and continuous entropy given in

(Phys. Rev. Lett. 110 130407), “Violating Continuous Variable Einstein-Podolsky-Rosen Steering

with Discrete Measurements”. We provide a detailed derivation for the inequality relating the

continuous conditional entropy to its discrete approximation, and show how this connection works

between discrete and continuous entropic quantities in general. In addition, we use this connection

to show how to derive the continuous variable Einstein-Podolsky-Rosen steering inequality with

discrete measurements as seen in (Phys. Rev. Lett. 110 130407), and make an additional comment

which strengthens this result.
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EXTENDED PROOF OF ENTROPY CONNECTION INEQUALITIES

To derive our continuous variable Einstein-Podolsky-Rosen (EPR)-steering inequality

(20)[1], we used a fundamental connection between continuous and discrete entropies (9)

to show that any two continuous random variables x and y that can be discretized into

equally spaced windows of size ∆x and ∆y satisfy the following inequality;

h(y|x) ≤ H(Y |X) + log(∆y), (1)

where the base of the logarithms here and throughout this paper are equal to the base in

which one chooses to measure the entropy.

The Fundamental Connection between Continuous and Discrete Entropies

Consider an experiment to measure random variable x which can take the value of any

real number with probability density ρ(x). The experiment is only capable of measuring x

to discrete windows Xℓ of size ∆x. The probability of measuring x to be within window Xℓ

is

P (Xℓ) =

∫

∆xℓ

dx ρ(x), (2)

where the region of integration ∆xℓ is the range of values of x between xℓ −
1

2
∆x and

xℓ + 1

2
∆x, and xℓ is the value of x at the center of the window Xℓ. The Shannon entropy of

this discrete probability distribution is given by

H(X) = −
∑

ℓ

P (Xℓ) log(P (Xℓ)), (3)

and the Shannon entropy of the continuous probability density function ρ(x) is expressed as

h(x) = −

∫

dx ρ(x) log(ρ(x)). (4)

We now define the probability density function ρℓ(x) as the probability distribution of x

conditioned on having been measured within window Xℓ. The continuous entropy hℓ(x) is

defined as the entropy of ρℓ(x) where

ρℓ(x) =
ρ(x)

P (Xℓ)
(5)
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for all values of x in the window Xℓ, and is zero otherwise.

By breaking up the continuous entropy h(x) into a sum over all windows,

h(x) = −
∑

ℓ

∫

∆xℓ

dx ρ(x) log(ρ(x)), (6)

and expressing h(x) in terms of P (Xℓ) and ρℓ(x),

h(x) = −
∑

ℓ

∫

∆xℓ

dx
(

ρℓ(x)P (Xℓ)
)

log
(

ρℓ(x)P (Xℓ)
)

= −
∑

ℓ

P (Xℓ)

∫

∆xℓ

dx ρℓ(x)

(

log(ρℓ(x)) + log(P (Xℓ)

)

, (7)

and then in terms of hℓ(x),

h(x) = −
∑

ℓ

P (Xℓ)

∫

∆xℓ

dx ρℓ(x) log(ρℓ(x)) −
∑

ℓ

P (Xℓ) log(P (Xℓ)), (8)

we obtain the fundamental connection between discrete and continuous entropies;

h(x) =
∑

ℓ

P (Xℓ)hℓ(x) + H(X). (9)

Continuing the Extended Proof

This connection (9) exists for joint entropies as well as for marginal entropies. Using

this, we now define hℓm(x, y) as the entropy of the joint distribution ρℓm(x, y) in which x is

conditioned on being measured within window Xℓ and y is conditioned on being measured

within window Ym.

The conditional entropies h(y|x) and H(Y |X) are defined as differences between joint

and marginal entropies [2],

h(y|x) ≡ h(x, y) − h(x), (10a)

H(Y |X) ≡ H(X, Y ) −H(X). (10b)

By using the fundamental connection (9) for both marginal and joint entropies, along with

the definition of conditional entropy (10a), we can show that

h(y|x) =
∑

ℓ,m

P (Xℓ, Ym)hℓm(x, y) −
∑

ℓ

P (Xℓ)hℓ(x) + H(Y |X)

=
∑

ℓ

P (Xℓ)
∑

m

P (Ym|Xℓ)hℓm(x, y) −
∑

ℓ

P (Xℓ)hℓ(x) + H(Y |X). (11)
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Conditioning on additional events on average reduces the entropy. This is a consequence

both of Jensen’s inequality and the fact that the entropy is a concave function [2]. As such,

we can say that where

ρ(x) =
∑

ℓ

P (Xℓ)ρℓ(x), (12)

we have the inequality

h(x) ≥
∑

ℓ

P (Xℓ)hℓ(x). (13)

Similarly, where [3]

ρℓ(x) =
∑

m

P (Ym|Xℓ)ρℓm(x), (14)

we have the inequality

hℓ(x) ≥
∑

m

P (Ym|Xℓ)hℓm(x). (15)

When this relation (15) is substituted as a minimum value of hℓ(x) in the expression for

h(y|x), (11), it can be shown that

h(y|x) ≤
∑

ℓ,m

P (Xℓ, Ym)hℓm(y|x) + H(Y |X). (16)

The uniform distribution maximizes the entropy, so that when all windows ∆ym are of equal

size, we have hℓm(y|x) ≤ log(∆y), which completes our proof of (1).

This approach allows us to summarize the connection between continuous and discrete

entropic quantities including the mutual information, h(x : y) defined as h(x)+h(y)−h(x, y).

In short:

h(x) ≤ H(X) + log(∆x),

h(x, y) ≤ H(X, Y ) + log(∆x∆y),

h(x|y) ≤ H(X|Y ) + log(∆x),

h(x : y) ≥ H(X : Y ).

This also translates to three or more variables easily, giving us

h(x, y, z) ≤ H(X, Y, Z) + log(∆x∆y∆z),

h(x, y|z) ≤ H(X, Y |Z) + log(∆x∆y),

h(x|y, z) ≤ H(X|Y, Z) + log(∆x),

h(x : y, z) ≥ H(X : Y, Z),
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and in particular, we have

h(~x|~y) ≤ H( ~X|~Y ) + log

( n
∏

i=1

∆xi

)

, (17)

where ~x is a vector of the random variables (x1, x2, ..., xn).

It remains to be shown whether such a simple relationship exists between the conditional

mutual informations h(x : y|z) and H(X : Y |Z). Since the conditional mutual information

h(x : y|z) can be either greater or less than the ordinary mutual information, h(x : y), [2]

the relationship between h(x : y|z) and H(X : Y |Z) may not be straightforward.

INCORPORATING THE ENTROPY CONNECTION INTO OUR STEERING IN-

EQUALITY

Where xAi and xBi are another ordinary pair of random variables, we can substitute the

larger discrete approximations (1) for each continuous conditional entropy in the steering

inequality derived by Walborn et. al [4],

h(xBi|xAi) + h(kBi|kAi) ≥ log(πe), (18)

to derive our entropic EPR steering inequality suitable for experimental investigations of

continuous variable entanglement. For a particular spatial degree of freedom i ∈ {1, ..., n},

(i.e. a particular dimension in space) we’ve shown that

H(XBi|XAi) + H(KBi|KAi) ≥ log

(

πe

∆xBi∆kBi

)

. (19)

When different spatial degrees of freedom are statistically independent of one another, the

entropies add, giving us the n-dimensional discrete steering inequality

H( ~XB| ~XA) + H( ~KB| ~KA) ≥

n
∑

i=1

log

(

πe

∆xBi∆kBi

)

. (20)

Comment on Steering Inequality Derivation

Though the steering inequality just arrived at (20) is quite valid, it is in fact stronger than

the prior derivation suggests. The prior derivation requires the assumption that different

spatial degrees of freedom be independent of one another, so that the steering inequality
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in multiple dimensions (20) is just the sum of the steering inequalities in each dimension

(19). We can in fact do away with this assumption, by noting that without any additional

assumptions, Walborn et. al’s steering inequality [4] in n spatial degrees of freedom is

h(~xB |~xA) + h(~kB|~kA) ≥ n log(πe), (21)

because Bia lynicki-Birula and Mycielski’s entropic uncertainty relation [5] in n spatial de-

grees of freedom is

h(~x) + h(~k) ≥ n log(πe), (22)

which requires no additional assumptions to prove.

Knowing this, we can use the steering inequality (21) and the connection (17) to prove our

steering inequality (20) without any extra assumptions. This strengthens the significance

of our experimental violation of (20), so that, loopholes aside, it is a solid demonstration of

EPR-steering without special caveats.
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