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Position-momentum Bell nonlocality with entangled photon pairs
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Witnessing continuous-variable Bell nonlocality is a challenging endeavor, but Bell himself showed how
one might demonstrate this nonlocality. Although Bell nearly showed a violation using the Clauser-Horne-
Shimony-Holt (CHSH) inequality with sign-binned position-momentum statistics of entangled pairs of particles
measured at different times, his demonstration is subject to approximations not realizable in a laboratory setting.
Moreover, he does not give a quantitative estimation of the maximum achievable violation for the wave function
he considers. In this article, we show how his strategy can be reimagined using the transverse positions and
momenta of entangled photon pairs measured at different propagation distances, and we find that the maximum
achievable violation for the state he considers is actually very small relative to the upper limit of 2+/2. Although
Bell’s wave function does not produce a large violation of the CHSH inequality, other states may yet do so.
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I. INTRODUCTION

Although there are many predictions of quantum mechanics
that disagree with classical intuition, perhaps the most striking
finding is that quantum mechanics predicts the violation of
Bell inequalities, ruling out the possibility that correlations
between distant events can always be explained by shared
information in the past. Violating Bell inequalities is more than
experimental metaphysics; Bell-nonlocal entangled systems
(i.e., those whose statistics cannot be described by a local-
hidden-variable (LHV) model) can be used to prove secure key
rates in device-independent quantum key distribution [1]. Of
particular significance in quantum information protocols is the
demonstration of Bell nonlocality in continuous-variable (CV)
systems; their high dimensionality offers the possibility of
transmitting much more information with individual particles
than what their spins or polarizations can convey.

To demonstrate Bell nonlocality [2] in continuous ob-
servables, one must violate a continuous-variable Bell in-
equality. By some standards, a fully general (i.e., contextual)
continuous-variable Bell inequality does not yet exist since we
cannot deduce Bell nonlocality (yet) simply from knowing the
first- and higher-order moments of continuous observables for
different measurement settings. However, there has been much
research into demonstrating continuous-variable nonlocality
by examining low-dimensional observables derived from the
continuous observables of interest (examples include pseu-
dospin observables [3] and parity observables [4]). In addition,
there have been efforts to demonstrate continuous-variable
Bell nonlocality with the statistics of discrete functions (e.g.,
binning functions) of continuous observables [5—10] (in these
cases, field quadratures). Indeed, since an LHV model for
a continuous-variable joint probability distribution is also
a model for its consequent statistics, violating the CHSH
inequality with such (e.g., discrete) statistics will demonstrate
the nonlocality of the underlying continuous observables.

In fact, one of the first historical attempts at showing that
continuous-variable nonlocality was possible was developed
by Bell himself [11,12], who showed that with sign binning,
there were wave functions that may violate the Clauser-
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Horne-Shimony-Holt (CHSH) inequality [13]. Ironically, he
also showed that the position-momentum statistics of the
maximally entangled Einstein-Podolsky-Rosen (EPR) state
cannot violate a Bell inequality since they admit an explicit
LHV model.

In spite of theoretical demonstrations that it is possible
to demonstrate CV Bell nonlocality with sign binning, there
have been no experiments to date that give a successful
demonstration of Bell nonlocality for continuous observables
(although there has been progress in doing so for field
quadratures [5—10]). In this article, we show how one might
plausibly demonstrate CV Bell nonlocality with the transverse
spatial statistics of entangled photon pairs. Furthermore, we
show how the nonlocal state Bell considers actually causes a
very small violation of the CHSH inequality.

To those familiar with the transverse spatial statistics of
highly entangled photon pairs, it may seem impossible to
demonstrate nonlocality in that degree of freedom. Indeed,
it is reasonably popular to approximate the joint transverse
spatial amplitude of such photon pairs as a double-Gaussian
[14,15] function. Such wave functions have Gaussian Wigner
functions, which are nonnegative, and so admit an LHV
model (as shown later). However, there are multiple states
of entangled photon pairs (see Fig. 1) whose Wigner functions
have significant regions of negative values. Although this
does not by itself guarantee nonlocality, it provides sufficient
motivation to see if there are states other than the one Bell
considers that might give a more substantial violation.

A. Continuous-variable CHSH inequality with sign binning

In a narrow sense, all Bell inequalities descend in one form
or another from the same model of contextual [16] LHVs that
gave rise to the original CHSH inequality [13]. As such, many
current tests of Bell nonlocality rely on one form or another of
the CHSH inequality [17].

To begin, an LHV model for, say, the measurement
outcomes of the positions x| and x; of a pair of particles is one
where the correlations between x; and x, are explained (if not
also determined) by a complete knowledge of every piece of
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information that could possibly be conveyed to each particle (at
or below the speed of light) from points in the past. To describe
these pieces of information in a general way, we assign the
variable(s) 1. These models are local in that A (at the very
least) encodes all information in the intersection of the past
light cones of both particles. If the position correlations can be
explained by all local information A, then the joint probability
density p(x;,x;) can be expressed in the following form:

p(x1,x2) = /d?» (e p(x1 M) p(x2| ). (D

The CHSH and many other Bell inequalities are mathematical
consequences of LHV models of this form. By violating the
CHSH inequality, we rule out the possibility that the joint
probability density can be expressed in this form. If we can
show that the joint probability density is not expressible in this
way, it then follows that knowing every piece of information
in the past light cones of both particles cannot explain the
correlations between them. This opens up new possibilities
where there is either information outside both particles’
light cones that will explain the correlations (implying a
nonlocal universe) or no information at all that will explain
these correlations (implying a nondeterministic universe). As
quantum metaphysics, these are interesting questions but are
well beyond the scope of this work.

The derivation of the CHSH Bell inequality is based both on
the essential LHV model and on the measurements considered
having a bounded (although possibly continuous) spectrum
of possible results [18]. To keep things general, let x be a
real-valued random variable and f(x) be a function whose
range is in the closed set [—1,1]. Let & and &’ be two
possible measurement settings for one party, and let 8 and
B’ be two possible measurement settings for a second party.
If the position statistics can be described by an LHV model
(1), then the correlation {f(x;) f(x2))«,p must be expressible
as the form

FEDfODap = / @ pO)FEDan(fCDpn (D)

for some A. Next, since, for all x, f(x) € [—1,1], all expec-
tations ( f(x)) must fall within the same range, independent
of conditioning. With a little extra algebra (see [13]), one can
show that the inequality

D) fx2))ap — (F (1) f(x2))aprl
FUS D2 e g+ (fEDfx2))ap) <2 €))

must be valid if an LHV model of the form (1) exists. Indeed,
when x has a binary spectrum (i.e., {—1, 4 1}), we see how the
CHSH inequality as it applies to polarization measurements
[19-21] is a special case of this more general formulation.

B. Bell’s wave function and CHSH violation

What makes Bell nonlocality in continuous variables
especially difficult is that many useful approximations to
continuous-variable quantum states have positive-definite
Wigner functions and so explicitly admit an LHV model.
To see how this works, we consider the Wigner function
W (x1,x2,k1,ko) for apair of particles (in one spatial dimension)
with position observables *; and %, and momentum observ-

PHYSICAL REVIEW A 93, 012105 (2016)

ables &, and k,. The joint probability density p(x;,x,) can be
expressed in terms of the Wigner function:

p(x1,x2) = / / dkdl, Wonmkiok), @)

where
W(x1,x2,k1,k2)

= (21)2 /:/ dqldqzei(41x1+qzxz)
JT

7 q1 92\ 74 q1 q2

XW(kl-i- 2,k2+ 2)!” (kl 2,k2 2)- &)
Note that if the correlations admit an LHV model, then
p(x1,x7) has the form seen in Eq. (1). Because of this, when
the Wigner function happens to be positive-definite (obey-
ing the form of a probability density), we can immediately
describe p(x1,x;) with an LHV model; the hidden variables
A would be the arguments of the Wigner function, while
the probability densities in parentheses would constitute the
Wigner function itself.

Since wave functions with nonnegative Wigner functions
admit an LHV model, we know that such states will never
violate Bell inequalities based on those measurement statistics.
In spite of these difficulties, there are relatively simple wave
functions that can violate a continuous-variable Bell inequality.
Indeed, Bell provided a specific example in [12]:

_ & +X2)2 _ & ﬂ'z)z

YBV(xy,x0) = N[(x) —x2)* —802]e  *F e * . (6)

where N is a normalization constant. This “Bell-violating”
wave function is especially convenient because it is separable
in terms of the rotated (orthogonal) coordinates:
X Xt N X1 — X2
+ = ) -
V2 V2

As a result, the Wigner function for 8" is separable this
way as well, i.e.,

(7

WEV (xy,x0.k1 k) = WV (e k)W kD), (8)

where

1 . ~ .
W(.x+,k+) EE // dq+elq+x+w<k+ + %)w*<k+ _ %)7

€))

and W(x_,k_) is similarly defined for x_ and k_. Now,
WJ(rBV)(x+,k+) is a Gaussian:

2
2 kg

1 -5 -
W) = —e FTe Mo (10)
T

X

but since ¥8Y)(x1,x,) has both quadratic and Gaussian factors

depending on x_, WEBV)(x,,k,) is a more elaborate function
with negative values:

WY (x_ k)

Tt +2x20% (=5 + 4k20?)

~ liro

V)

+ot (11 +8K202 + 16k ot)]e e @7

2
,\‘E k

(1)
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FIG. 1. (a) Plot of the Wigner function WSSPDC)(x,,k,) obtained from direct calculations of the biphoton amplitude from spontaneous
parametric down-conversion (SPDC), a popular source of entangled photon pairs (as shown in [14,22,23]). We note that although the biphoton
Wigner function can be approximated as a Gaussian, there are significant regions of negativity. (b) Plot of Bell’s Wigner function W (x_ k)
(11) for o_ chosen to match position moments of the SPDC biphoton state. The values below the level (thick red) contours are negative. The
units of x_ and k_ are arbitrary units of distance and reciprocal distance, chosen to give an appropriate scaling of the Wigner functions.

In Fig. 1(b), we plot w8 V)(x_ ,k_) to show where the negative
values occur.

To demonstrate Bell nonlocality for continuous variables
(in this case, the positions x; and x; of a pair of particles), Bell
examined (for different measurement settings) the signs of the
position measurement outcomes (41 for x > 0 and —1 for
x < 0). He then took for his correlation measure the mean
of the product of these signs. Since these mean products are
bounded between —1 and 1, these statistics can be readily used
in the CHSH inequality to test for nonlocality in continuous
variables (e.g., f(x) in (2) could be Bell’s piecewise sign
function). To examine these correlations for different mea-
surement settings, he treated the pair of systems described by
the wave function (6) as though they were free noninteracting
particles and time evolved their joint state to different points
in time #; and f, according to the free-particle Schrodinger
equation. Calculating the sign correlation at different pairs
of times allowed him to show by example how one might
violate the CHSH Bell inequality with continuous-variable
states.

II. ADAPTING BELL’S APPROACH TO MEASUREMENTS
OF PHOTON PAIRS

Although Bell showed theoretical violation of the CHSH
inequality by propagating his wave function with the free-
particle Hamiltonian to different times, one may violate
the CHSH inequality experimentally by considering Bell’s
wave function as describing a biphoton transverse position
amplitude (say, for signal and idler photons in degener-
ate spontaneous parametric down-conversion (SPDC)) and
considering the sign correlation measurement performed at
different propagation distances as opposed to different times.
The justification for this comes from the fact that the
paraxial Helmholtz equation (governing the propagation of
the individual photons) is mathematically identical (variable
names aside) to the Schrodinger equation for a free particle

moving in two transverse dimensions, e.g.,

*A  9*A . DA A )
axz  ayr P ax2  ay2 ' h o1’
(12)

where A(x,y,z) gives the spatial dependence of the amplitude
of either the signal or idler electric field and &, is the wave
number of the pump electric field (i.e., twice the signal or idler
wave numbers).

Using his Wigner function W®Y)(x,x5,k;,k2), in the
approximation that oy > o_ (so that WiBV)(x+,k+) may be
neglected as a constant factor), Bell showed a qualitative vio-
lation of the CHSH inequality (3) for optimum measurement
settings. However, if we are to use this relationship (12) to
get a quantitative violation, we need to show that a violation
is possible without such approximation, as the diffraction of
light implies this approximation works for only a narrow range
of distances. Indeed, in Bell’s own treatment, the spreading of
the entangled wave packet over time implies his approximation
(and subsequent result) is valid for only a narrow range of time
settings [24].

A. Quantitative violation of CHSH inequality with Bell’s wave
function as a biphoton amplitude

In order to see whether it is empirically feasible to violate
the CHSH inequality for position and momentum with sign
binning, we need to be able to violate this inequality without
taking such limits (e.g., o+ > o_). By performing numerical
calculations of the Fresnel-propagated biphoton field, we find
that with a biphoton field resembling Bell’s wave function and
using typical values of oy = 1 mm and o_ = 0.01 mm, we
are able to show that we could violate the CHSH inequality
(3) but only by at most a small amount (i.e., our maximum
value was 2.00041, although with a numerical error bound
less than 107%; see Fig. 2). In order to realize such a minute
violation, we would need approximately 10® coincidence
counts to barely resolve each of the 16 probabilities in
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@) CHSH Violation vs. Propagation Distances
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(b) CHSH Violation vs. Misalignment
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FIG. 2. (a) Contour plot of the violation of the CHSH inequality for different propagation distances z; and z, (in mm). These plots were
calculated using Bell’s wave function with o, = 1 mm, o_ = 0.01 mm, and a wavelength of 650 nm for each photon. (b) Contour plot of the
violation of the CHSH inequality at the optimal values of z; and z, (—3 and 48 mm, respectively) for different misalignments (in mm) of
the detectors. dx, = dx; + dx; is a parallel position misalignment (both shifted the same direction), while dx,, = dx; — dx; is an antiparallel
misalignment (both shifted in opposite directions). A negative value indicates a violation of the CHSH inequality.

the CHSH inequality to an uncertainty of 1.0 x 10~ and
that is assuming any systematic error due to misalignment
[see Fig. 2(b)] or other factors is insignificant. We also
performed similar calculations for the biphoton state created
from type-1 SPDC, but any violation was inconclusive as
the uncertainty in the results from these highly oscillatory
probability densities was larger than the obtained violations.
Although this underscores the difficulty in a successful
demonstration of position-momentum Bell nonlocality, it is
still useful to consider what sort of experimental setup might be
used in a successful demonstration once a more suitable state is
discovered.

B. Imagining an experimental demonstration with photon pairs

The idealized setup we consider is as seen in Fig. 3. A
pump laser and nonlinear crystal serve as a source of entangled
photon pairs, although other sources may be substituted. The
pump light is filtered out, and the photon pairs are separated by
a 50:50 beam splitter into separate arms. Each arm contains a
4F imaging system, where spatially resolving pairs of photon
detectors are placed in the image planes conjugate to the exit
face of the photon pair source. In addition, these detectors
are placed on translation stages, allowing us to measure the
sign correlations for different propagation distances in the
different arms.

The reason we would need a 4F imaging system in each
arm is that the biphoton field formed in those conjugate
planes would be identical to the field just as it exits the
source (although reflected and subject to the paraxial
approximation). Without it, negative propagation distances
would be impossible to realize, as there are no photon pairs
before the source [25].

Although the 50:50 beam splitter halves the collection
efficiency of photon pairs, it does not alter the transverse
spatial statistics of the photon pairs. Alternatively, if we use a
source of entangled photon pairs of orthogonal polarizations
(as with type-2 SPDC), a polarizing beam splitter can better
separate the pairs, allowing for a larger collection efficiency.
Here, we are interested only in an idealized setup that may be
improved upon in future developments.

Coincidence
Counter

APD —
Translation StageIl ' I

Pump Filter Translation Stage

NLC

FIG. 3. Diagram of an idealized setup to violate the CHSH
inequality for position and momentum with sign binning. A laser
and a nonlinear crystal (NLC) serve as a source of entangled photon
pairs, whose state is determined by both the particulars of the laser
and the geometry of the NLC. We would then image the exit face of
this photon-pair source onto pairs of avalanche photodiodes (APDs)
with a 4F imaging system. By translating the APDs along the optic
axis, we may use coincidence counts to measure the transverse
sign correlations as a function of a variable propagation distance
in each arm.
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C. Engineering a suitable biphoton amplitude

Once a more suitable biphoton amplitude is discovered,
it is important to consider how such a state can be created
experimentally. Here, we consider engineering a biphoton state
from a source of SPDC photon pairs. The biphoton amplitude
in SPDC is determined by two major factors. The first factor is
the pump spatial profile, which we may control with a spatial
light modulator and standard optical components. The second
factor is how the second-order nonlinear coefficient varies
over the length of the nonlinear crystal (what we call the lon-
gitudinal nonlinearity profile). For standard nonlinear crystals,
this nonlinearity profile is a constant top-hat function over the
propagation distance z (being one value within the crystal and
zero outside the crystal). As discussed in [26], the transverse
biphoton amplitude (in momentum space) is related to the
Fourier transform of the nonlinearity profile of the crystal. If
we could continuously vary the nonlinearity within the nonlin-
ear crystal while controlling the pump spatial profile, we could
exactly reproduce Bell’s wave function among many others as
a transverse spatial amplitude for photon pairs in SPDC.

Although we cannot continuously vary the nonlinearity
profile of the crystal, itis possible (as also shown in [26]) to use
a periodically poled nonlinear crystal and adjust the duty cycle
(i.e., the fraction of positive to negative poling within each
poling period) as a function of the crystal length to get a bipho-
ton amplitude closely resembling the state we want. The high
fidelity required for the approximating biphoton wave function
in the periodically poled nonlinear crystal makes this approach
challenging, although not outside the realm of possibility.

PHYSICAL REVIEW A 93, 012105 (2016)

III. CONCLUSION

Historically, the CHSH inequality and other Bell
inequalities have largely been used for finite-dimensional
discrete observables. However, Bell himself showed how one
might use the CHSH inequality to witness the nonlocality
of continuous observables. Since a local-hidden-variable
model for a continuous-variable joint probability distribution
implies a similar model for any statistics derived from that
distribution, violating the CHSH inequality with sign-binned
statistics demonstrates the nonlocality of the underlying
continuous observables. Although Bell showed a qualitative
demonstration of position-momentum Bell nonlocality, we
showed that the state he considers gives a small quantitative
violation, although other states may yet do much better. In
addition, we showed how his approach can be reenvisioned
as an experiment measuring similar correlations between
entangled photon pairs and discussed important challenges
and issues, which, when overcome, lead to a successful
demonstration of position-momentum Bell nonlocality.
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