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Scalable controlled-NOT gate for linear optical quantum computing using microring resonators
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We propose a scalable version of a Knill-Laflamme-Milburn (KLM) controlled-NOT (CNOT) gate based upon
integrated waveguide microring resonators (MRR), vs the original KLM approach using beam splitters. The core
element of our KLM CNOT gate is a nonlinear phase-shift gate (NLPSG) using three MRRs, which we examine
in detail. We find an expanded parameter space for the NLPSG over that of the conventional version. Whereas
in all prior proposals for bulk optical realizations of the NLPSG the optimal operating point is precisely a single
zero-dimensional manifold within the parameter space of the device, we find conditions for effective transmission
amplitudes which define a set of one-dimensional manifolds in the parameter spaces of the MRRs. This allows
for an increased level of flexibility in operation of the NLPSG that allows for the fabrication of dynamically
tunable MRR-based devices with high precision and low loss.
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I. INTRODUCTION

In 2001, Knill, Laflamme, and Milburn (KLM) proposed
an efficient scheme for linear optical quantum computing
[1]. The KLM proposal is based upon a probabilistic, two-
qubit, controlled NOT (CNOT) gate along with local unitary
operations on individual qubits. Some years later, Okamoto
et al. demonstrated experimentally a realization of the KLM
CNOT gate in bulk optics [2]. The KLM CNOT gate, shown
schematically in Fig. 1, is itself composed of two nonlinear
phase-shift gates (NLPSGs), the essential two-qubit element
of the CNOT gate. Each NLPSG is a probabilistic device
involving three optical modes that, in the bulk optical real-
ization, encounter strategically placed and optimally reflective
beam splitters that appropriately route the free-space evolu-
tion of photonic states through the system. The KLM CNOT

gate performs a two-qubit operation, namely, a flip of the
target qubit (t) conditioned on the value of the control qubit

(c), as |i〉c| j〉t
CNOT−−−→ |i〉c|i ⊕ j〉t .

In the dual rail encoding scheme indicated in Fig. 1, each
qubit requires a single photon in one of two optical modes; it is
a two-qubit gate acting on a two-photon system. Specifically,
the “bunching” of two photons in any of the individual modes
(in or out) is a failure of the gate. That such failures must be
rejected is the origin of the probabilistic nature of the gate.
The role of each NLPSG is to ensure that states involving two
photons in the same mode interfere completely destructively
at the next SU(2) [or U(2) as in our proposal here] linear
optical element they encounter. This is accomplished in the
gate shown in Fig. 1 as long as the NLPSG imparts a phase
shift of π rad on the two-photon branch of any single-mode
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state that evolves through it,

|ψ〉 = α0|0〉 + α1|1〉 + α2|2〉 NLPSG−−−→ |ψ ′〉
= α0|0〉 + α1|1〉 − α2|2〉, (1)

wherein normalization of the input state and the output states
requires that |α0|2 + |α1|2 + |±α2|2 = 1.

There is currently no known way to effect the trans-
formation in Eq. (1) deterministically and nondestructively
via unitary evolution. Instead, the transformation is realized
probabilistically by using two auxiliary optical modes with
one ancillary input photon. Projecting out a specific final state
of the two-mode auxiliary subsystem produces the desired
local isometry [Eq. (1)] on the remaining mode. It has been
shown in [1,3] that this action is successful with a maximum
probability of 1

4 , and that the result of the projective measure-
ment faithfully indicates the success of the transformation.
Consequently, the optimal probability of success for the KLM
CNOT gate is 1

16 [1,4].
Bulk optical realizations of the KLM CNOT are not scal-

able, discounting them as potential candidates for components
of a viable quantum computer. Separate from scalability,
bulk realizations based upon beam splitters and linear phase
shifters lack any significant opportunity for dynamical tuning
of parameters as might be desirable in a practical operating
environment. The ability to “scan” the parameter space of a
device in situ to find a set of parameters allowing for optimal
operation, viz., a success probability of 1

4 for an NLPSG,
allows for further tailoring of device and system design to a
specific quantum computation.

Previously, we have predicted the existence of multidi-
mensional Hong-Ou-Mandel manifolds in the operating pa-
rameter space of a double-bus microring resonator (MRR)
[5–8]. This structure, which we identify as a fundamental
circuit element for scalable quantum information process-
ing in silicon nanophotonics, admits infinitely many more
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FIG. 1. Schematic diagram of the KLM CNOT gate composed of
two NLPSGs.

possibilities for realizing the Hong-Ou-Mandel effect than
does a traditional 50/50 beam splitter (BS) in bulk optics.
Further, the double-bus ring resonator is inherently scalable
and easy to integrate in silicon nanophotonics. In brief, the
replacement of each BS by a double-bus MRR increases
the number of tunable parameters from one to three per
replacement (one transmission coefficient for the BS; two
transmission coefficients and one round trip phase for the
MRR), greatly expanding the parameter space for the entire
device. Thus, as we demonstrate here, the optimal single-point
solution for the three BS transmission coefficients in the KLM
BS version of the NLPSG dilates into sets of one- and two-
dimensional manifolds when three MRRs are used.

Our purpose here is twofold; (1) to propose a scalable
version of the NLPSG based upon the fundamental circuit
element we examined in Ref. [5], as the key nonlinear element
of the CNOT gate, and (2) to examine the higher-dimensional
manifolds within the NLSG parameter space on which the
desired nonlinear phase shift occurs with optimal probability
1
4 . Figure 2 summarizes our proposal. In Fig. 2(a) we show the
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FIG. 2. A schematic diagram of a nonlinear sign gate (a) in bulk
optics and (b) as implemented via our proposal using directionally
coupled silicon nanophotonic waveguides and microring resonators
(mrr). The nonlinear sign flip is effected on the state in mode c,
as given in Eq. (1); modes a and b are auxiliary modes required
for the probabilistic action of the gate. The black arrow connecting
parts (a,b) of the figure effectively summarizes the advancement we
discuss in detail in this paper.

basic design for an NLPSG in bulk optics; this is essentially
the same design as proposed in Ref. [1]. Figure 2(b) shows our
scalable version based upon a network of silicon nanopho-
tonic waveguides directionally coupled to three double-bus
MRRs. In Ref. [5], we carefully demonstrated the emergence
of Hong-Ou-Mandel manifolds (HOMMs) as a result of pas-
sive quantum optical feedback induced by the topology of
the double-bus MRR. That work is precisely an example of
the same sort of parameter space dilation that we examine
in this paper in the context of the KLM CNOT. It is well
known that the individual technological advantages possessed
by the KLM CNOT we propose here can be implemented
in other ways. Specifically, linear optical phase shifters and
beam splitters can be implemented in silicon nanophotonics
and integrated in a scalable way [9,10], parameter spaces
can be enlarged in tunable ways by cascading standard lin-
ear optical elements such as Mach-Zehnder interferometers
(MZIs) [11], and dynamically reconfigurable photonic devices
implementing arbitrary linear optical transformations have
been demonstrated [12]. The major result of the present work
is the theoretical demonstration of a comparatively simple
device that simultaneously exhibits all three of these oper-
ational advantages. In a very loose sense, the KLM CNOT

that we propose is an advancement in terms of its inherent
packaging and its relative ease of fabrication and integration.
The quantum optical analysis we provide here is properly
construed more as a design optimization scheme than as a new
theoretical insight.

The paper is organized as follows: In Sec. II we review,
for the sake of continuity of the idea and consistency of the
notation, the basic workings of the NLPSG. We discuss in
Sec. III the nontrivial details of the mode swap algebra that we
introduce in analyzing our MRR-based version of the NLPSG.
Sec. IV is where we present our main results by developing the
optimal success manifolds for the NLPSG. Finally, in Sec. V
we summarize our findings and briefly discuss other related
ongoing work.

II. LOCAL ISOMETRY PERFORMED BY THE NLPSG

Referring throughout to the labeling scheme introduced in
Fig. 2(a), the nonlinear phase shift is to occur in the mode
propagating through the system along the upper rail, a1,in →
a1,out. The lower two rails support the required auxiliary
modes upon which a projective measurement of the output is
performed in order to complete the phase shift. The operation
of the NLPSG proceeds as follows. The system input is
prepared in the global state,

|�〉 = |ψ〉1 ⊗ |1〉2 ⊗ |0〉3. (2)

The global output state resulting from purely unitary evo-
lution can be written in the form

|� ′〉 = Û |�〉 = β|�NLPSG〉 +
√

1 − |β|2|�⊥〉, (3)

where 0 � |β| � 1, Û describes the unitary evolution of the
global system from input to output, |�NLPS〉 is the branch
of the output state that induces the nonlinear phase shift
upon projective measurement, and |�⊥〉 is the branch that is
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rejected by the measurement such that 〈�⊥ |�NLPS〉 = 0. The
projection operator is

P̂NLPSG ≡ Î(c) ⊗ P̂(2,3)
1,0 , (4)

where

P̂(2,3)
1,0 ≡ [|1〉2 ⊗ |0〉3][2〈1| ⊗ 3〈0|] (5)

characterizes the successful operation of the NLPSG. Just
prior to the measurement, the state of the system can be
written as

|� ′〉 = Û |�〉 = P̂NLPSGÛ |�〉 + (Î − P̂NLPSG)Û |�〉. (6)

The state of the system after a measurement in which a single
photon is detected in output mode 2 and no photons are
detected in output mode 3 is given by

|�NLPSG〉 = P̂NLPSG|� ′〉√
〈� ′|P̂NLPSG|� ′〉

. (7)

The probability of success for the NLPSG is then given by

pNLPSG
success = 〈� ′|P̂NLPSG|� ′〉 = |β|2. (8)

Comparing Eq. (3) with Eqs. (1) and (2), successful operation
of the NLPSG requires that

|�NLPSG〉 = |ψ ′〉1 ⊗ |1〉2 ⊗ |0〉3

= (α0|0〉1 + α1|1〉1 − α2|2〉1) ⊗ |1〉2 ⊗ |0〉3. (9)

Unitary evolution of the global state vector produces

|� ′〉 = Û |ψ〉1 ⊗ |1〉2 ⊗ |0〉3

= Û (α0|0〉1 + α1|1〉1 + α2|2〉1) ⊗ |1〉2 ⊗ |0〉3, (10)

|� ′〉 = (α0 + α1{Û â†
1,inÛ †}

+ α2√
2
{Û â†

1,inÛ †}2
){Û â†

2,inÛ †}|0, 0, 0〉out, (11)

where we have added curly braces to highlight the similarity
transformations that carry the input operators to the output
ones. We write these linear transformations as [1]

â†
j,in → Û â†

j,inÛ † =
3∑

k=1

ST
jk

â†
k,out =

3∑
k=1

Sk j â
†
k,out, (12)

where the coefficients ST
jk encode the reliance of the input-

output operator transformation on the system parameters la-
beled in Fig. 2(b). In terms of these coefficients, we can
write after some algebra and after accounting for the matrix
transpose by reordering the indices of matrix elements,

|� ′〉 = [α0S22|0〉1 + α1(S11S22 + S21S12)|1〉1 + α1S11(S11S22 + 2S21S12)|2〉1] ⊗ |1〉2 ⊗ |0〉3

+
⎧⎨
⎩α0

∑
j �=2

S j2â†
j,out + α1

∑
( j,k)�={(1,2),(2,1)}

S j1Sk2â†
j,outâ

†
k,out + α2√

2

∑
( j,k,l )�={perm(1,1,2)}

S j1Sk1Sl2â†
j,outâ

†
k,outâ

†
l,out

⎫⎬
⎭|0, 0, 0〉,

(13)

where the branch of the state vector due to the part in curly
braces is ultimately rejected by the projective measurement
with probability pNLPSG

fail = 1 − |β|2; see Eq. (3). Recalling the
normalization condition on the coefficients α j and comparing
Eq. (13) with Eqs. (3) and (9), we arrive at the following
constraints that determine the successful implementation of
the NLPSG with pNLPSG

sucess = |β|2:

α0S22 = βα0, (14)

α1(S11S22 + S21S12) = βα1, (15)

α2S11(S11S22 + 2S21S12) = −βα2. (16)

Mathematical consistency between Eqs. (15) and (16) requires
that S11 = 1 ± √

2; physical consistency, |S11| � 1, further
restricts this to the value

S11 = 1 −
√

2. (17)

Combining Eqs. (14)–(17),

pNLPSG
success = |β|2 = |S22|2 = 1

2 |S21|2|S12|2. (18)

For an optimal choice of linear optical couplings, namely,
one particular combination of beam splitter reflectance in

bulk optical implementations, see Fig. 2(a), it has long been
established that the maximum possible probability of success
for the NLPSG is pNLPSG

success,max = 1
4 [1,3].

III. MODE SWAP ALGEBRA

In order to analyze the operation of the scalable NLPSG
shown in Fig. 2(a), we must work out the coefficients Si j in
order to get ST

i j = S ji, that describe the linear transformation
of creation operators which characterizes the unitary evolution
of the three-mode fields through the device. Previously, we
have proposed the directionally coupled double-bus MRR as a
fundamental circuit element for optical quantum information
processing in silicon nanophotonics [5]. Comparing Fig. 2(a)
with Fig. 1 from Ref. [5], it is clear that our proposed NLPSG
is an integrated network of three such fundamental circuit
elements. To aid in the discussion we group the NLPSG into
three “blocks,” with each block involving a single MRR-based
circuit element coupling two of the modes; the remaining
mode involves a linear phase shift. For example, regarding
modes 2 and 3 of block 1 in Fig. 2(a), the input boson opera-
tors, â3,in and b̂21, to the MRR are analogous to the operators
â and f̂ , respectively, in Ref. [5]; a similar analogy holds for
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the outputs â12, â2,out ↔ ĉ, l̂ . Along mode 1, ĉ12 = e−iδ1 â1,in.
Boson operators carrying two subscripts are internal to the
NLPSG; we will eliminate them algebraically in deriving the
operator input-output relations for the device.

In the notation we have adopted here the input-output op-
erator transformations for the individual fundamental circuit
elements implicated in Fig. 2(a) can be written as(

â2,out

â12

)
= M(1)

(
b̂21

â1,in

)
,

(
ĉ23

b̂21

)
= M(2)

(
ĉ12

b̂32

)
,(

b̂32

â3,out

)
= M(3)

(
â2,in

â23

)
, (19)

where the superscript on the 2 × 2 matrix M( j) labels the
MRR to which it corresponds. Each of these matrices has the
form

M( j) =
(

Aj Bj

Cj Dj

)
, (20)

having matrix elements [5]

Aj = η j − τ ∗
j e−iθ j

1 − η∗
j τ

∗
j e−iθ j

, Bj = − γ jκ
∗
j e−iφ j

1 − η∗
j τ

∗
j e−iθ j

, (21)

Cj = −κ jγ
∗
j e−i(θ j−φ j )

1 − η∗
j τ

∗
j e−iθ j

, Dj = τ j − η∗
j e

−iθ j

1 − η∗
j τ

∗
j e−iθ j

, (22)

that depend explicitly on the system parameters, namely, the
round-trip phase shifts (θ j ) of a ring, the direct transmis-
sion amplitudes (τ j, η j ), and the cross-coupling amplitudes
(κ j, γ j ) at the directional coupler. The other phase shifts φ j

represent the phase partition induced by the specific locations
of the couplings of the rings with the waveguides; the phase
partitions have no effect on our results, so we implicitly set
them to φ j = θ j/2 (symmetrically coupled rings).

We can now write the three-mode input-output operator
transformations for the three individual blocks of the NLPSG
as ⎛

⎝ ĉ12

â2,out

â12

⎞
⎠ = T(1)

⎛
⎝â1,in

b̂21

â3,in

⎞
⎠, (23)

⎛
⎝ĉ23

b̂21

â23

⎞
⎠ = T(2)

⎛
⎝ĉ12

b̂32

â12

⎞
⎠, (24)

⎛
⎝â1,out

b̂32

â3,out

⎞
⎠ = T(3)

⎛
⎝ ĉ23

â2,in

â23

⎞
⎠, (25)

where the transfer matrices have block-diagonal structure

T(1,3) = eiδ1,3 I1 ⊕ M(1,3), (26)

T(2) = M(12) ⊕ eiδ2 I3. (27)

The symbol Ik in Eqs. (26) and (27) represents the 1 × 1
identity matrix appropriate to mode k.

It is clear that, according to Eqs. (23)–(25), there is no
direct algebraic substitution that will result in an operator

input-output relation of the desired form, namely,⎛
⎝â1,out

â2,out

â3,out

⎞
⎠ = S

⎛
⎝â1,in

â2,in

â3,in

⎞
⎠, (28)

where the matrix S describes the unitary “scattering” of the
input operators into the output ones. Instead, owing to the
directional nature of the couplings between waveguides and
MRRs and to the topology of each MRR itself, we must alge-
braically adjust the relations encoded in the transfer matrices,
T( j), via Eqs. (23)–(25) by introducing a set of three-mode
swap operations as follows.

Let the matrix G, having elements gi j , represent an arbi-
trary element of the group GL(3) consisting of general linear
transformations on three independent coordinates (x, y, z),

such that (x, y, z)
GL(3)−−−→ (x′, y′, z′) via⎛

⎝x′
y′
z′

⎞
⎠ = G

⎛
⎝x

y
z

⎞
⎠ =

⎛
⎝g11 g12 g13

g21 g22 g23

g31 g32 g33

⎞
⎠

⎛
⎝x

y
z

⎞
⎠

=
⎛
⎝g11x + g12y + g13z

g21x + g22y + g23z
g31x + g32y + g33z

⎞
⎠, (29)

and define the three operations (3)
i [G] such that

(3)
1 [G] ≡ 1

g11

⎛
⎝ 1 −g12 −g13

g21 m3,3 m3,2

g31 m2,3 m2,2

⎞
⎠, (30)

(3)
2 [G] ≡ 1

g22

⎛
⎝ m3,3 g12 −m3,1

−g21 1 −g23

−m1,3 g32 m1,1

⎞
⎠, (31)

(3)
3 [G] ≡ 1

g33

⎛
⎝ m2,2 m2,1 g13

m1,2 m1,1 g23

−g31 −g32 1

⎞
⎠. (32)

We have introduced in Eqs. (30)–(32) the standard minors
mi, j , defined as the result of eliminating row i and column j
from G and computing the determinant of the resulting 2 × 2
submatrix. With these operations, we can “swap” independent
variables for dependent ones according to⎛

⎝x
y′
z′

⎞
⎠ = (3)

1 [G]

⎛
⎝x′

y
z

⎞
⎠,

⎛
⎝x′

y
z′

⎞
⎠ = (3)

2 [G]

⎛
⎝x

y′
z

⎞
⎠,

and

⎛
⎝x′

y′
z′

⎞
⎠ = (3)

2 [G]

⎛
⎝x

y
z′

⎞
⎠. (33)

We will refer to the operations (3)
j [G] as mode swap (MS)

operations on the jth mode of the three-mode input-output
linear optical system. Specifically, consider MS operations
on mode 2 for each of the blocks of the circuit in Fig. 2(a).
Appealing to Eqs. (23)–(25), (30), and (31), we can write for
block 1,⎛
⎝ ĉ12

â2,out

â12

⎞
⎠ = T(1)

⎛
⎝â1,in

b̂21

â3,in

⎞
⎠ MS2−−→

⎛
⎝ĉ12

b̂21

â12

⎞
⎠ = (3)

2 [T(1)]

⎛
⎝ â1,in

â2,out

â3,in

⎞
⎠,

(34)
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for block 2,⎛
⎝ĉ23

b̂21

â23

⎞
⎠ = T(2)

⎛
⎝ĉ12

b̂32

â12

⎞
⎠ MS2−−→

⎛
⎝ĉ23

b̂32

â23

⎞
⎠ = (3)

2 [T(2)]

⎛
⎝ĉ12

b̂21

â12

⎞
⎠,

(35)

and for block 3,⎛
⎝â1,out

b̂32

â3,out

⎞
⎠ = T(3)

⎛
⎝ ĉ23

â2,in

â23

⎞
⎠ MS2−−→

⎛
⎝â1,out

â2,in

â3,out

⎞
⎠ = (3)

2 [T(3)]

⎛
⎝ĉ23

b̂32

â23

⎞
⎠.

(36)

We define the mode swap operation less for any reason
motivated by physics and more for the satisfaction of human
convenience, for upon observing Eqs. (34)–(36), it becomes
clear that we can now consistently substitute Eq. (34) into (35)
and then the proceeds of that step into Eq. (36), resulting in⎛

⎝â1,out

â2,in

â3,out

⎞
⎠ = (3)

2 [T(3)] (3)
2 [T(2)] (3)

2 [T(1)]

⎛
⎝ â1,in

â2,out

â3,in

⎞
⎠. (37)

Another MS operation produces⎛
⎝â1,out

â2,out

â3,out

⎞
⎠ = (3)

2

[ (3)
2 [T(3)] (3)

2 [T(2)] (3)
2 [T(1)]

]⎛⎝â1,in

â2,in

â3,in

⎞
⎠,

(38)

allowing us to identify the S matrix encoding the operator
transformations for the global linear optical network in terms
of transfer matrices, T( j), describing the local input-output
relations for each of the individual blocks of the circuit,
specifically,

S = (3)
2

[ (3)
2 [T(3)] (3)

2 [T(2)] (3)
2 [T(1)]

]
. (39)

The mode swap operation we have introduced in the foregoing
calculation can be generalized for any application of an N-
mode linear optical system comprised of directionally coupled
waveguides and MRRs in a very straightforward fashion. Us-
ing simple algebra, the form (N )

j [G] on the linear transforma-
tion GL(N ) accomplishes the MS on mode j for j � N . The
results for any N can be expressed in a reasonably compact
form by introducing the higher-order minors mklm · · ·︸ ︷︷ ︸

N−2rows

,pqr · · ·︸ ︷︷ ︸
N−2cols

of G. We will present elsewhere this procedure, its underlying
multilinear algebraic structure, and examples of its use.

Working out the unitary part of the evolution using the
Heisenberg picture [3], we actually want to express the input
creation operators in terms of the output ones,⎛

⎝â†
1,in

â†
2,in

â†
3,in

⎞
⎠ = (S−1)∗

⎛
⎝â†

1,out

â†
2,out

â†
3,out

⎞
⎠. (40)

The bosonic commutation relations [â j,out, â†
k,out] = δ jk ,

[â j,out, âk,out] = [â†
j,out, â†

k,out] = 0, with similar relations for
the input operators, constrain the S matrix to be unitary,
S−1 = S† = (ST )∗, which in turn, implies that (S−1)∗ = ST

so that ⎛
⎝â†

1,in

â†
2,in

â†
3,in

⎞
⎠ = ST

⎛
⎝â†

1,out

â†
2,out

â†
3,out

⎞
⎠, (41)

as in Eq. (12).

IV. OPTIMAL SUCCESS MANIFOLDS FOR THE NLPSG

In order to preserve bosonic commutation relations, each
of the directional couplers must obey the reciprocity relations
[13],

|κ j |2 + |τ j |2 = 1,

κ jτ
∗
j + κ∗

j τ j = 0,
(42)

with similar relations for κ j → γ j and τ j → η j . The engineer-
ing of directional couplers is such that the direct transmis-
sion amplitudes are real, (τ j, η j ) → (|τ j |, |η j |). According to
Eq. (42), then,

κ j = i
√

1 − |τ j |2,

γ j = i
√

1 − |η j |2.
(43)

Regarding the proposed device in Fig. 2(a), this apparently
leaves three (3) round trip phase shifts θ j , three (3) in-line
phase shifts δ j , and six (6) coupling parameters (|τ j |, |η j |) for
a total of 12 physical design parameters describing the system.
Two of the in-line phase shifts, namely, δ1 and δ3, appear to be
external and, therefore, superfluous, but, as we shall discuss
below, are actually required to tune the system in certain
ways to effectively compensate for the internal phase shift δ2,
which is in no way superfluous. Nevertheless, owing to the
compensatory role they play, we shall omit δ1 and δ3 from the
list of design and optimization parameters we consider, paring
the set of these down to ten (10).

In light of Eq. (17), a little bit of simple algebra reveals that
Eqs. (15) and (16) are identical constraints; in other words
these two equations place two constraints, one on the real
parts and the other on the imaginary parts, on the complex
elements of the S matrix. Similarly, Eq. (14) itself places
two (2) more independent constraints on the system for a
total of four (4) constraints due to the specific required action
of the NLPSG. Interjecting all of this into our accounting
from the previous paragraph, we arrive at a total of six (6)
free design and optimization parameters for our proposed
NLPSG. In a similar vein to our already published results
regarding the Hong-Ou-Mandel effect [5], we now search for
N-dimensional manifolds within the parameter space of the
device, where N � 6, upon which the NLPSG operates with
the theoretically maximal probability of success of 1

4 .
We shall seek solutions with maximum success probability

mimicking the solution and procedure of the bulk beam split-
ter NLPSG (see [3]) as if each MRR in Fig. 2(b) was collapsed
to a BS as in Fig. 2(a) with effective transmission and reflec-
tion coefficients t, r respectively. We will first treat analytically
the optimal operating conditions on a one-dimensional (1D)
manifold for which the MRRs are all set to be on resonance,
θi = 2π , with balanced phase partitioning, φi = θi

2 = π , and
all linear phase shifts δi = 0 for i = {1, 2, 3}. Under these
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conditions, Eqs. (21) and (22) take the forms

M(1) =
(

t1 r1

r1 −t1

)
, M(2) =

(−t2 r2

r2 t2

)
,

and M(3) =
(

t3 r3

r3 −t3

)
, (44)

where we have introduced for each MRR real, effective trans-
mission and reflection coefficients, ti and ri, respectively, with

ti ≡ ηi − τi

1 − ηiτi
, (45)

and, referring to Eqs. (42) and (43),

ri =
√

(1 − |τi|2)(1 − |ηi|2)

1 − ηiτi
, (46)

from which is it straightforward to show that r2
i + t2

i = 1.
Note that for each MRR, −1 � ηi, τi � 1 are the physical
upper and lower transmission coefficients, while −1 � ti � 1
is a parameter that has the form of an effective transmis-
sion coefficient. Equation (45) then defines a 1D manifold
ηi(τi; ti ) ≡ (ti + τi )/(1 + tiτi ) parametrized by ti. The S ma-
trix relating the input boson operators to the outputs as desired
for the Heisenberg picture description of the unitary part of the
evolution of the NLPSG via Eq. (41) then takes the form, after
some lengthy algebra,

S = 1

t2
√

1 − t2
1

√
1 − t2

3 − 1

⎛
⎜⎜⎜⎜⎝

t2 −
√

1 − t2
1

√
1 − t2

3 −t3
√

1 − t2
2 t1

√
1 − t2

2

√
1 − t2

3

−t1
√

1 − t2
2 −t1t2t3 t2

√
1 − t2

3 −
√

1 − t2
1

t3
√

1 − t2
1

√
1 − t2

2 t2
√

1 − t2
1 −

√
1 − t2

3 −t1t3

⎞
⎟⎟⎟⎟⎠, (47)

such that det(S) = −1.
In order to analyze the operations of the NLPSG under

the foregoing conditions, we must apply the constraints that
induce the desired local isometry on the unitarily evolved state
in the target mode, mode 1. Specifically, Eq. (17) requires that
S11 = 1 − √

2, which, combined with Eq. (15) [or (16)], and
recalling that β is real in this case, implies that

β = S12S21√
2

. (48)

Clearly, Eq. (14) further requires that

β = S22. (49)

Using the explicit forms of the matrix elements given in
Eq. (47) we can find conditions on the effective transmission
amplitudes, ti, that satisfy the constraints given by Eqs. (17),
(48), and (49). Specifically, we find a fixed solution,

t2 = 1 + 2
√

2

7
≈ 0.546 918, (50)

along with the relationships

t3 =
[

(2
√

3
√

2 − 4 − t1)(2
√

3
√

2 − 4 + t1)

(1 − t1)(1 + t1)

] 1
2

, (51)

and

|β|2 = (1 + √
2)

(
12

√
2 − 16 − t2

1

)
t2
1

16(1 − t1)(1 + t1)
. (52)

Optimizing |β|2 with respect to t1 by solving ∂
∂t1

|β|2t1=T1
= 0

yields |β|2max = 1
4 for the optimal value of t1 → t1,optimal ≡

T1 =
√

2(
√

2 − 1) ≈ 0.910 18. Recalling that the probability
of success for the NLPSG is |β|2, the maximum value we
obtain here agrees completely with that originally posed by
Knill, Laflamme, and Milburn. Further, using the optimal

value T1, in Eq. (51), we find the optimal value for the

remaining effective transmission amplitude, t3
optimize−−−−→ T3 =

T1 =
√

2(
√

2 − 1) ≈ 0.910 18.

Summarizing what we have found so far, under conditions
of exact resonance and balanced phase partitioning of the
MRRs, in-line phase shifts of 0 mod 2π along all waveguides,
and real direct transmission amplitudes at all directional cou-
ples, the circuit shown in Fig. 2(b) will successfully perform
a nonlinear sign flip on mode 1 with a maximum possible
probability of success of 1

4 whenever the effective transition
amplitudes for the MRRs are tuned to the optimal values,

T1 = T3 =
√

2(
√

2 − 1),

T2 = 1 + 2
√

2

7
.

(53)

All of this is in direct correspondence with the results of KLM
and Skaar et al. [3] regarding the optimal operating point for
a NLPSG.

Here is the central point of our work. Whereas, in all prior
proposals or realizations of the NLPSG the optimal operating
point is precisely that—a single zero-dimensional manifold
within the parameter space of the device—the conditions
placed by Eq. (53) on the effective transmission amplitudes
define curves, i.e., one-dimensional manifolds, in the parame-
ter spaces of the MRRs. This allows for an increased level of
flexibility in operation of the NLPSG that we propose.

To see how this arises, recall Eq. (45) defining the effective
transmission amplitudes for the MRRs. Substituting the fixed
optimal values from Eq. (53) for the effective transmission
amplitudes results in optimal operating curves for each of the
MRRs,

Ti = ηi − τi

1 − ηiτi
⇒ ηi(τi; Ti ) = Ti + τi

1 + Tiτi
. (54)
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FIG. 3. The one-dimensional manifolds η2
i (τi; Ti ) vs τ 2

i (i =
{1, 3}, black solid; i = 2, black dashed) obtained from Eq. (54) on
which optimal operation (|β|2 = 1/4) of the scalable NLPSG occurs
under conditions of resonant (θi = 0 mod 2π ), balanced MRRs, and
δI = 0 mod 2π phase shifts in the waveguides. In contrast with
bulk optical realizations, these curves provide theoretical evidence
for vastly enhanced flexibility in implementation and integration
of the NLPSG based on directionally coupled MRRs in silicon
nanophotonics.

Equation (54) is effectively the engineering blueprint for the
optimal operation of the scalable NLPSG we propose.

In Fig. 3 we plot the one-dimensional manifolds η2
i (τi; Ti )

vs τ 2
i (i = {1, 3}, black solid; i = 2, black dashed) obtained

from Eq. (54), for optimal operation of the scalable NLPSG
as determined via the conditions developed in Eqs. (48)–(53).
It is important to note that even though the effective transmis-
sion coefficients for the outer MRRs are equal T1 = T3, this
does not imply that the physical transmission coefficients are
necessarily equal, since τ1 �= τ3 ⇒ η1 �= η3. Thus, for each
MRR there exists the freedom to choose τi independently.
This is in stark contrast to the single fixed-point solution
(τ1, τ2, τ3) in the case of the bulk optics KLM BS-based
version of the NLPSG. In addition to the inherent scalability
of an MRR-based KLM NLPSG, this result emphasizes the
dynamic tunability that arises due to the expanded available
parameter space for the device.

We next try to find other optimal solutions (|β|2max = 1
4 )

about the on-resonance(θi = 0 mod 2π ) solutions. To this
end, we set ti = Ti and δi = 0, but allow the MRRs to
be off resonance (θi �= 0 mod 2π ). The latter condition im-
plies that the coefficients Ai, Bi,Ci, Di of Eqs. (21) and
(22) are complex. A detailed analysis [14] shows that this
yields exp(iθA2 ) = 1 and β = 1/2 exp[−i(θA1 + θA1 )] (where
we have written Ai = |Ai| exp[iθAi ]) which translates into (i)
θ2 = 0 mod 2π , but with (ii) θA1 (η1, τ1, θ1), θA3 (η3, τ3, θ3)
arbitrary. Condition (i) leads to the same curve as in Fig. 3
for τ2, η2(τ2; T2). Condition (ii) implies that arbitrary choices
of η1,3, τ1,3, θ1,3 lead to arbitrary values of the phase θA1,3 ,
and hence these variables are simply constrained by their am-
plitudes (Ti=1,3)2 = |Ai(ηi, τi, θi )|2. These latter constraints

FIG. 4. The two-dimensional manifolds from Eq. (55) on which
optimal operation (|β|2 = 1

4 ) of the scalable NLPSG occurs under
conditions of on-resonance θ2 = 0 mod 2π in the middle MRR, but
off-resonance θ1,3 �= 0 mod 2π in the outer two MRRs (again with
δI = 0 mod 2π phase shifts in the waveguides).

implicitly define two-dimensional (2D) surfaces,

(T1,3)2 = |η1,3|2 + |τ1,3|2 − 2|η1,3||τ1,3| cos θ1,3

1 + |η1,3|2|τ1,3|2 − 2|η1,3||τ1,3| cos θ1,3
, (55)

as shown in Fig. 4. Note that the center cross section
θ1,3 = 0 is the squared version of Eq. (48) for the condition

FIG. 5. The 1D manifold resulting from the intersection of two
2D manifolds on which optimal operation (|β|2 = 1

4 ) of the scalable
NLPSG occurs under conditions of on-resonance θi = 0 mod 2π for
all MRRs and δ1,3 = 0 mod 2π for the outer waveguide phases, but
taking δ2 = π/30 mod 2π phase shift for the inter-MRR waveguide.
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t1,3 = T1,3 which reproduces the set of τ1,3, η1,3(τ1,3; T1,3)
curves in Fig. 3.

A. Role of the inter-MRR phase shift (δ2)

Here we explore the role of the inter-MRR phase shift
δ2 �= 0 mod 2π while keeping all the MRRs on resonance
(θi = 0 mod 2π ) and again using ti = Ti to ensure that |β|2 =
1
4 . The analysis is much more involved now since A2 =
|A2| exp[iθA2 ] is complex with nonzero phase θA2 . The solution
is developed in [14] and involves the intersection of the 2D
surface of the form of Eq. (55) (now with index i = 2) with the
2D surface θA2 (η2, τ2, θ2) = −δ2 for a given value of δ2 �= 0.
These two surfaces intersect on a 1D manifold that can be
numerically found, and representatively shown in Fig. 5 for
δ2 = π/30 (near-balanced inter-MRR waveguide phase). To
avoid the reduction to this lower 1D manifold (with a reduced
number of solutions compared with that of Fig. 3 with i = 2),
one would want to adjust δ2 → 0, which could be achieved
operationally by applying, say, thermal heating to electrodes
placed over this inter-MRR waveguide.

V. SUMMARY AND OUTLOOK

The net result of the (nonexhaustive) solutions presented
in Figs. 3–5 is that by using MRRs [as in Fig. 2(b)] instead
of BSs one can achieve optimal NLPSG operation (|β|2 = 1

4 )
while retaining great flexibility in the choice of the parameters
ηi, τi, θi for each individual MRR, determining its (upper and
low) coupling transmission coefficients and phase delay (near-

ness to resonance). This is to be contrasted with the single-
point solution for the triple of BS transmission coefficients
in the conventional NLPSG configuration in Fig. 2(a). In
addition, current silicon (and SiN) CMOS foundry technology
(e.g., American Institute for Manufacturing) allows for the
fabrication of tunable MRR-based devices with high precision
and low loss. The analysis shown here for the increased
dimensionality for operational parameter space of the NLPSG
as the core building block for an integrated waveguide MRR-
based CNOT gate makes this a promising avenue for other
quantum information processing devices using MRRs.
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