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• What our group has done:
• We’ve found strong and intuitive inequalities that 

witness CV entanglement and EPR-steering 
correlations in the lab.
• And used them successfully too!

• This is important because:
• Determining  𝜌AB (by tomography) gets 

exceptionally hard for high-dimensional systems.
• Scales as N4 in needed number of measurements.

• Sometimes you want to witness more than 
entanglement.
• EPR-steering

• Bell nonlocality
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What is EPR-steering?
• It is an intermediate degree of nonlocal correlation.

• Bell correlations
• Rules out all LHVs

• EPR steering correlations 
• Rules out some LHV’s
• demonstrates EPR paradox

• Entanglement correlations
• Doesn’t rule out LHV’s
• Accepted resource in many QI tasks (e.g. superdense coding)

• Nonclassical correlations
• Any correlations necessarily destroyed by local measurement .

• Why care about demonstrating EPR-steering?
• You can verify entanglement even when one party’s 

measurements are untrusted!



The situation in EPR-steering
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How can Alice prove there’s entanglement?
•If Alice were preparing and sending states to Bob, the 
measurement correlations could only be so high.

• Bob could tell Alice to measure 𝒙, even though she sent a state 

with definite 𝒌.

•An EPR-steering inequality gives a bound to these local 
correlations.



EPR-Steering Inequalities
 (1989)     M.D. Reid [1]
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she showed ∆𝑖𝑛𝑓
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 (2011)     S.P. Walborn et. al [2]
from ℎ 𝑥𝐵 + ℎ 𝑘𝐵 ≥ log(𝜋𝑒)

they showed ℎ 𝑥𝐵 𝑥𝐴 + ℎ 𝑘𝐵 𝑘𝐴 ≥ log 𝜋𝑒
(state of the art for CV EPR-steering)
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ℎ 𝑥 = ∫ 𝑑𝑥 𝜌 𝑥 log 𝜌 𝑥 ℎ 𝑥𝐵 𝑥𝐴 = ℎ 𝑥𝐴, 𝑥𝐵 − ℎ 𝑥𝐴



Limitations of the state of the art

• Need to know  𝜌(𝑥𝐴, 𝑥𝐵) and 𝜌(𝑘𝐴, 𝑘𝐵).

• Approximating continuous entropies less useful 
for experiment
• No rigorous demonstration

ℎ 𝑥 ≈ log Δ𝑥 + 𝐻(𝑋)
• 𝑥 is cut into windows 𝑋 of size Δ𝑥

• Approximation only good at 
high resolution

• State of the art is excellent 
for theoretical investigations

ℎ 𝑥𝐵 𝑥𝐴 + ℎ 𝑘𝐵 𝑘𝐴 ≥ log 𝜋𝑒
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𝐻 𝑋 = − 

𝑖

𝑃 𝑋𝑖 log(𝑃 𝑋𝑖 )



Our first Inequality
• It is known that..

ℎ 𝑥 ≤ log Δ𝑥 + 𝐻(𝑋)
(Bialynicki-Birula 1985) [3]

• And that..

(Walborn et. al 2011) [2]

• We proved..
ℎ 𝑥 𝑦 ≤ log Δ𝑥 + 𝐻(𝑋|𝑌)

• Which gave us our first result

𝐻 𝑋𝐵 𝑋𝐴 + 𝐻 𝐾𝐵 𝐾𝐴 ≥ log
𝜋𝑒

Δ𝑥𝐵Δ𝑘𝐵
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ℎ 𝑥𝐵 𝑥𝐴 + ℎ 𝑘𝐵 𝑘𝐴 ≥ log 𝜋𝑒



• Relies only on experimental data
• No approximations necessary

• Provides rigorous experimental demonstration of 
entanglement and EPR-steering for CVs.

• Complements existing state of the art
• Reduces to same inequality for large resolution

• Witnesses EPR-steering in the same states (for large 
enough resolution)

• Allows us to formulate second steering inequality 
based on mutual information

𝐻 𝑋𝐵 𝑋𝐴 + 𝐻(𝐾𝐵|𝐾𝐴) ≥ log
𝜋𝑒

Δ𝑥𝐵Δ𝑘𝐵
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Our Second Inequality

Why?

• Mutual information is an extremely general measure of 
correlation, better than covariance and many others.
• Mutual information captures arbitrary statistical dependence

• Not just linear dependence.

• Persistence of correlations across conjugate observables is a 
calling card of entanglement.

• This inequality is symmetric between parties (more restrictive)
• Violation implies Alice and Bob can trust that they share entanglement 

even when their mistrust is mutual.

𝐼 𝑋𝐴: 𝑋𝐵 + 𝐼 𝐾𝐴: 𝐾𝐵 ≤ max
𝐴,𝐵

log
𝐿𝑥𝐿𝑘

𝜋𝑒
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𝐼 𝑋𝐴: 𝑋𝐵 = 𝐻 𝑋𝐴 − 𝐻(𝑋𝐴|𝑋𝐵)



Experimental data

• Used down-converted 325 → 650 nm light 
from BBO nonlinear crystal.

• Measured joint coincident detections to get 
joint probability distributions in both image 
and Fourier planes of the crystal.
• Recorded at different resolutions

• Successful violation of both inequalities at 
16x16 and 24x24 resolutions

Experimental diagram and data from 
PRL 108 142603 (2012) [4]

Results
First inequality Nσ min Nσ max
8x8 3.65 5.9
16x16 8 11.2
24x24 12.3 16.4
Second inequality Nσ min Nσ max
8x8 -6.3 -2.8
16x16 3.4 6.96
24x24 6.56 10.7
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Asymmetry between parties

• Our first inequality is not symmetric between 
parties.

• The bound depends on one party.

• The conditioning is on the other party.

• In principle, we do not need high resolution in 
both detectors to demonstrate EPR steering.

• Bob has a hard lower limit to his detector 
resolutions

• Alice does not.
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Conclusion/Related work
• We have two new inequalities

• They witness entanglement/EPR-steering in more 
systems than conditional variances.

• They only need experimental data

• We’ve really used them in the lab! Successfully!

• Related work
General case for Entropic EPR-steering inequalities:

• “EPR-steering inequalities from entropic uncertainty relations” 
(PRA 87, 062103) [5].

Do better uncertainty relations make better steering inequalities?

• “EPR-steering inequalities with quantum memories” (arXiv: in 
submission) [6]
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Notes: Our First steering inequality

The uncertainty (i.e. entropy) of the discrete approximation is 
never less than of the thing itself.

ℎ 𝑥 =  

𝑖

𝑃 𝑋𝑖 ℎ𝑖 𝑥 + 𝐻(𝑋)

ℎ 𝑥 ≤ log Δ𝑥 + 𝐻(𝑋)

ℎ 𝑥, 𝑦 ≤ log Δ𝑥Δ𝑦 + 𝐻 𝑋, 𝑌

 What we show is that this true for conditional entropies as 
well (not obvious).

ℎ 𝑥 𝑦 ≤ log Δ𝑥 + 𝐻(𝑋|𝑌)

… which gives us our first inequality.
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Notes: Why entropy?
• Entropy is a more sensitive 

measure of uncertainty 
than standard deviation.
• e.g. sharp bimodal distributions

𝐻 𝑋 ≡ − 

𝑖

𝑃 𝑋𝑖 log2 𝑃(𝑋𝑖)

• Entropy is the fundamental 
concept used in information 
theory.
• And its many applications!
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Notes: Why EPR-”steering”?

• Alice and Bob share subsystems A and B, 

entangled in  𝑥 and 𝑘.
• If Alice measures 𝑥𝐴 …

• If Alice measures 𝑘𝐴 …

What happens to the state of B?

She can “steer” the distribution of states 
Bob measures, but this still means..
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