How Big Is That?

Prof. Kelly Douglass

February 27, 2018

Diameter of hydrogen atom	$1.06 \times 10^{-8} \text{ cm}$	Typical m	nasses
Diameter of the Moon	$3.5 \times 10^3 \text{ km}$		$.08M_{\odot}$
Diameter of the Earth	$1.3 \times 10^4 \text{ km}$	Normal star 1	M_{\odot}
Diameter of the Sun	$1.4 \times 10^6 \text{ km}$		$0 \widetilde{M_{\odot}}$
Diameter of the Milky Way	$1.7 \times 10^5 \text{ ly}$		$0^{11}-10^{12}M_{\odot}$
Distance to the Moon	$3.8 \times 10^5 \text{ km}$		$0^{14}-10^{15} M_{\odot}$
Distance to the Sun	$1.5 \times 10^8 \text{ km}$	V	<u> </u>
Distance to the nearest star	4.2 ly	Typical luminosities	
Distance to the center of the Milky Way	$2.8 \times 10^{4} \text{ ly}$	· -	L_{\odot}
Distance to the nearest galaxy	$1.7 \times 10^5 \text{ ly}$		$10^{3} - 10^{5} L_{\odot}$
Mass of hydrogen atom	$1.67 \times 10^{-24} \text{ g}$		$1.0^9 - 10^{10} L_{\odot}$
Mass of the Moon	$7.4 \times 10^{25} \text{ g}$		$10^{12} - 10^{13} \widetilde{L_{\odot}}$
Mass of the Earth	$6.0 \times 10^{27} \text{ g}$	•	C
Mass of the Sun $(1M_{\odot})$	$2.0 \times 10^{33} \text{ g}$	Typical tin	nespans
Mass of the Milky Way	$3 \times 10^{12} M_{\odot}$	Planetary revolution	n 1 year
Luminosity of the Sun $(1L_{\odot})$	$3.8 \times 10^{33} \text{ erg/s}$	Galaxy rotation	$10^7 - 10^9 \text{ yr}$
Luminosity of the largest stars	$10^5 L_{\odot}$	Life of giant stars	$10^6 - 10^9 \text{ yr}$
Luminosity of the Milky Way	$2 \times 10^{10} L_{\odot}$	Life of normal stars	10^{10} yr
Luminosity of quasar 3C 273	$10^{12}L_{\odot}$		
Earth's rotation period (1 day)	$8.64 \times 10^4 \text{ s}$	Typical s	peeds
Moon's revolution period	27.322 days	Planetary orbits 10 km/s	
Earth's revolution period (1 year)	365.25 days	Stellar motion in gala	axies 100 km/s
Sun's revolution period within Milky Way	$2.4 \times 10^8 \text{ yr}$	Between nearby gala	axies 100 km/s
Age of the Solar System	$4.6 \times 10^9 \text{ yr}$		
Expected life span of the Sun	$1.5 \times 10^{10} \text{ yr}$	$1.5 \times 10^{10} \text{ yr}$ Other important constants	
Age of the Universe	$1.4 \times 10^{10} \text{ yr}$	$1 \text{ ly} = 9.46 \times 10^{12} \text{ km}$	
Earth's equator rotation speed	$0.47 \mathrm{\ km/s}$	$1 \text{ ly} = 9.46 \times 10^{17} \text{ cm}$	$1 \text{ km} = 10^5 \text{ cm}$
Earth's revolution speed	30 km/s	1 hour = 3600 s	
Sun's speed within the Milky Way	250 km/s	1 year = 3.16×10^7 s	
Milky Way's speed within the local Universe	550 km/s	$1 \text{ erg} = 1 \text{ g cm}^2/\text{s}^2$	
		$2.99792458 \times 10^5 \text{ km/s}$	Speed of light
	c=2.	$.99792458 \times 10^{10} \text{ cm/s}$	Speed of light
		c = 1 ly/yr	Speed of light
m + 11 + 41	G=6	$6.67 \times 10^{-8} \text{ cm}^3 \text{g}^{-1} \text{s}^{-2}$	Gravitational constant
Typical lengths		$H_0 = 20 \text{ km/s/Mly}$	Hubble constant
Normal star diameter 10 ⁶ km		$1/H_0 = 1.5 \times 10^{10} \text{ yr}$	Hubble time
Distance between stars a few ly			
Normal galaxy diameter 10 ⁵ ly			
Distance between galaxies 10^6 ly			