
Astronomy 111 — Practice Midterm #2

Prof. Douglass

Fall 2025

Name:

If this were a real exam, you would be reminded of the Exam rules here: “You may consult only one
page of formulas and constants and a calculator while taking this test. You may not consult any books,
digital resources, or each other. All of your work must be written on the attached pages, using the reverse
sides if necessary. The final answers, and any formulas you use or derive, must be indicated clearly (answers
must be circled or boxed). You will have one hour and fifteen minutes to complete the exam. Good luck!”

Your results will improve if you take this practice test under realistic test-like conditions: in one sitting,
with your already-prepared cheat sheet at hand, and with the will to resist peeking at the solutions until
you are finished. Also, as usual:

� First, work on the problems you find the easiest. Come back later to the more difficult or less familiar
material. Do not get stuck.

� The amount of space left for each problem is not necessarily an indication of the amount of writing it
takes to solve it.

� You must show your work to receive full credit.

� Numerical answers are incomplete without units and should not be written with more significant figures
than they deserve.

� If you need a physical or astronomical constant that is not on your equation sheet, do not give up:
estimate its value. If your estimate is reasonable, you will not lose any credit.

� Remember, you can earn partial credit for being on the right track. Be sure to show enough of your
reasoning that we can figure out what you are thinking.

R⊙ = 6.96× 1010 cm R⊕ = 6.378× 108 cm

M⊙ = 1.989× 1033 g M⊕ = 5.972× 1027 g

L⊙ = 3.827× 1033 erg/s G = 6.674× 10−8 dyn cm2 g−2

T⊙ = 5772 K c = 3× 1010 cm/s

1 AU = 1.496× 1013 cm k = 1.38× 10−16 erg/K

1 pc = 206, 265 AU σ = 5.6704× 10−5 erg s−1 cm−2 K−4
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Planet Mass [g] Radius [cm]

Mercury 3.301× 1026 2.441× 108

Venus 4.867× 1027 6.052× 108

Mars 6.417× 1026 3.396× 108

Jupiter 1.898× 1030 7.149× 109

Saturn 5.683× 1029 6.027× 109

Uranus 8.681× 1028 2.556× 109

Neptune 1.024× 1029 2.476× 109
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1. Please write in complete sentences, and feel free to use equations and/or sketches to help explain your
thoughts.

(a) (5 points) Earth is not a blackbody; its UV-visible albedo is 0.37, and its infrared emissivity is 1.0.
As a result, by what factor is its temperature different from that of a blackbody?

Solution: Assuming uniform surface temperature,

T =

(
1−A

ε

L

16πσr2

)1/4

=

(
1−A

ε

)1/4

Tbb =

(
1− 0.37

1

)1/4

Tbb

T = 0.89Tbb

(b) (5 points) Why do we know Europa has liquid-water oceans under its smooth ice surface?

Solution: Europa repels Jupiter’s magnetic field in much the same way as an electrically-
conducting surface the size of the moon would. Both solid ice and silicate rock are poor
electrical conductors, but liquid salt water has the necessary electrical conductivity. Thus, we
infer that Europa has a subsurface ocean under all of its surface ice.

This is consistent with the pack-ice appearance of and lack of craters on Europa’s surface, as
well as the tidal heating it experiences. None of these conclusively show, though, that there is
liquid water under the surface now; only the magnetic-field measurements do.
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(c) (5 points) A small main-belt asteroid has a mass MA = 1018 g and a radius RA = 6 × 105 cm.
Calculate the asteroid’s bulk density, describe the sorts of rocks and minerals that are likely to
make it up, and describe its structure.

Solution:

ρ =
MA

VA

=
3MA

4πR3
A

=
3× 1018 g

4π(6× 105 cm)3

ρ = 1.11 g/cm
3

This is much less than the density of the silicate minerals that comprise most of the asteroids
(the mafic minerals): those are around 3 g/cm3. Thus, this asteroid is a very porous collection
of silicate rocks and probably not very solid: it is likely to be a “rubble pile.”

(d) (5 points) Besides mass and distance from the Sun, what is the biggest difference between Uranus
and Neptune on one hand, and Jupiter and Saturn on the other?

Solution: Uranus and Neptune are ice giants: their icy-rocky cores comprise a much larger
fraction of their mass than is the case for the gas-giant planets Jupiter and Saturn.
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2. A Hot Jupiter is a planet with a mass the same as Jupiter’s (MJ = 1.8986 × 1030 g) and a radius 1.22
times that of Jupiter’s (RJ = 71, 492 km) that orbits extremely close to its star. Suppose one of these
is in orbit around a Sun-like star.

(a) (10 points) What is the minimum orbital radius of this Hot Jupiter? Give your answer in units of
AU.

Solution: The minimum orbital radius of the planet is its Roche limit:

aRoche
∼= 2.46Rplanet

(
ρplanet

ρ

)1/3

∼= 2.46R⊙

(
M⊙

4
3πR

3
⊙

4
3πR

3

M

)1/3

∼= 2.46

(
M⊙

MJ

)1/3

(1.22RJ) = 2.46

(
1.99× 1033 g

1.8986× 1030 g

)1/3

(1.22)(7.1492× 109 cm)

aRoche
∼= 2.18× 1011 cm = 0.015 AU

(b) (5 points) What would happen to a typical Hot Jupiter if it were placed in an orbit smaller than
this?

Solution: The planet’s self gravity would be weaker than the tidal forces from the Sun, so
the Hot Jupiter would get pulled apart. This would result in some sort of ring or disk forming
around the Sun.
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3. (10 points) Show that in a thin, uniform-temperature atmosphere on a terrestrial planet, the pressure
depends upon the altitude z according to

P (z) = P0e
−z/H (1)

where P0 is the pressure at the surface (z = 0). Be sure to define the expression for the scale height H
in terms of the planet’s surface properties (temperature, gravitational acceleration, etc.).

Solution: The equation for hydrostatic equilibrium in one dimension for the atmosphere is

dP

dz
= −ρg = −µP

kT
g (2)

Let H ≡ kT

µg
. Then

dP

dz
= −P

H∫ P (z)

P0

dP ′

P ′ = − 1

H

∫ z

0

dz′

ln

(
P (z)

P0

)
= − z

H

P (z)

P0
= e−z/H

P (z) = P0e
−z/H
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4. Limit of differentiation

(a) (10 points) Derive a formula for the temperature T as a function of radius r inside a uniform,
spherical Solar System body which has a radius R, surface temperature Ts, density ρ, radioactive
heating power per unit mass Λ, and thermal conductivity κT .

Solution: The Poisson equation for heating and heat conduction within a spherically symmet-
ric body is

1

r2
d

dr

(
r2

dT

dr

)
= −ρΛ

κT∫ r

0

d

dr′

(
r′2

dT

dr′

)
dr′ = −ρΛ

κT

∫ r

0

r′2 dr′

r2
dT

dr
= − ρΛ

3κT
r3∫ T (r)

T0

dT = − ρΛ

3κT

∫ r

0

r′ dr′

T (r)− T0 = − ρΛ

6κT
r2

At r = R, T (R) = Ts, so

Ts − T0 = − ρΛ

6κT
R2

T0 = Ts +
ρΛ

6κT
R2

Therefore,

T (r) = Ts +
ρΛ

6κT
(R2 − r2)
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(b) (5 points) Suppose that ρ = 3.35 g/cm3 and κT = 4.79×105 erg s−1 g−1 K−1, and that the radioac-
tive heating rate is as it was when the Solar System was brand new, Λ = 2.233× 10−3 erg s−1 g−1.
What is the maximum radius for a Solar System object with a core temperature that never exceeds
that on the surface by more than 2000 K so that it does not differentiate?

Solution:

T (0) =
ρΛ

6κT
R2 + Ts

R =

√
6κT

ρΛ
(T (0)− Ts) =

√
6(4.79× 105 erg s−1 g−1 K−1)

(3.35 g/cm
3
)(2.233× 10−3 erg s−1 g−1)

(2000 K)

R = 8.77× 105 cm
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5. (10 points) A cylindrical “planetoid” with radius R and length H rotates rapidly with its axis perpen-
dicular to the Solar System and revolves at an orbital radius r. Its thermal conductivity is very poor,
so its surface temperature is determined just by Solar heating and blackbody radiation. Take its albedo
to be A and its emissivity to be ε.

Derive a formula for the temperature over the planetoid’s entire surface.

Solution: The power being absorbed by the surface is due to the sunlight incident on the side of
the planetoid facing the Sun.

Pin =
(1−A)L⊙

4πr2
(2RH) (3)

The power emitted by the surface is due to blackbody radiation.

Pout = εσT 4
s 2πRH (4)

Due to energy conservation, these two quantities must be equal.

Pin = Pout

(1−A)
L⊙

4πr2
2RH = εσT 4

s 2πRH

Ts =

(
1−A

ε

L⊙

4π2σr2

)1/4

Since the circular ends of the planetoid do not receive any sunlight, their temperature Ts = 0.
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6. Late giant-planet formation and the ultimate fate of Earth. Someday, a couple billion years
from now, the Sun will become a red giant star, and stay that way for about 2 Myr before shedding its
outer layers and giving rise to a white dwarf from the inner ones.

Suppose, plausibly, that when this happens, half of the Sun’s mass expands into a uniform-density,
pressure-supported, nonrotating sphere mostly made of atomic hydrogen gas that is just barely large
enough to engulf the Earth in its orbit at r = 1 AU. The rest of the Sun’s mass stays at the center, in a
much smaller core.

(a) (5 points) What is the density of the gas in which the Earth is engulfed?

Solution:

ρ =
M

V

=
M

4
3πR

3
=

3 · 0.5(1.989× 1033 g)

4π(1.496× 1013 cm)3

ρ = 7.09× 10−8 g/cm
3

(b) (10 points) What is our Earth’s Keplerian orbital speed v, what is its orbital angular momentum L,
and what headwind speed does our Earth, with mass M⊕, face in the Sun’s red-giant atmosphere?

Solution: Since the uniform-density envelope just barely extends past Earth’s orbit, 1M⊙ still
lies within Earth’s orbit (to a good approximation), so

F = ma

−GM⊙M⊕

r2
= −M⊕

v2

r

v =

√
GM⊙

r
=

√
(6.674× 10−8 dyn cm2 g−2)(1.989× 1033 g)

1.496× 1013 cm

v = 2.98× 106 cm/s

L = Iω

= (M⊕r
2)
(v
r

)
= M⊕vr = (5.972× 1027 g)(2.98× 106 cm/s)(1.496× 1013 cm)

L = 2.66× 1047 g cm2/s

Since the expanded Solar atmosphere is not rotating, the headwind speed is the same as
the Keplerian orbital speed.
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(c) (10 points) Show that the path of our Earth’s Hill sphere through the Solar atmosphere has volume

V = 2π2r3
(

M⊕
3M⊙

)2/3
, and calculate the massM that Earth would have if it were suddenly to accrete

all this mass. Express your answer in Jupiter masses.

Solution:

V = 2πrSHillsphere

= 2πr(πr2H)

V = 2π2r3
(

M⊕

3M⊙

)2/3

If it were to accrete all this mass, the Earth’s mass would become

M = M⊕ + ρV

= M⊕ +

(
3 · 0.5M⊙

4πr3

)(
2π2r3

(
M⊕

3M⊙

)2/3
)

= M⊕ +
π

4
(3M⊙M

2
⊕)

1/3 = (5.972× 1027 g) +
π

4
(3(1.989× 1033 g)(5.972× 1027 g)2)1/3

M = 4.74× 1029 g = 0.25MJ

Just a bit less than Saturn’s mass.
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(d) (10 points) Does the Earth stay in orbit, or does it drift into the Sun’s core? Calculate the rate at
which the headwind robs the planet of angular momentum as the planet accretes the gas that falls
within its Hill sphere, and estimate the time it would take for the headwind to drag Earth into the
center of the red-giant Sun.

Solution: The rate of loss of angular momentum is equal to the torque exerted on the planet
from the gas that it is accreting:

τ =
dM

dt
vHW

= (fgasS)vHW

= (ρv)(πr2H)v

= πr2Hρv2

=
G

8r2
(3M4

⊙M
2
⊕)

1/3

The torque vector points opposite the angular momentum vector, because the headwind points
opposite the Earth’s momentum, so it drains Earth’s angular momentum, according to the
usual timescale relation:

tdrag =

∣∣∣∣∣ LdL
dt

∣∣∣∣∣
=

L

τ

=
8r2M⊕vr

G
(3M4

⊙M
2
⊕)

−1/3

=
8r3v

G

(
M⊕

3M4
⊙

)1/3

=
8(1.496× 1013 cm)(2.98× 106 cm/s)

6.674× 10−8 dyn cm2 g−2

(
5.972× 1027 g

3(1.989× 1033 g)4

)1/3

tdrag = 6.01× 1018 s = 1.91× 1011 yr

This is much longer than 2 Myr, the time that the Sun will last as a red giant, so the Earth
will stay in orbit and become a Saturn-sized gas giant orbiting the eventual white dwarf.
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