
Astronomy 142: Problem Set 1 Due Tuesday Jan. 30 at the beginning of lecture

1. The Planck formula for the intensity (energy per unit time, per unit area, per unit wavelength, per unit
solid angle) of a blackbody is

Bλ(λ, T ) =
2hc2

λ5

1

ehc/λkT − 1

Approximations to the Planck formula for very long or very short wavelengths often turn out to be
useful. Derive those expressions here as an exercise in making approximations.

(a) Carefully consider the Planck formula. To what quantity should we compare the wavelength to
determine whether or not the wavelength is large or small?

Solution: Look at the dimensionless variable x = λkT/hc. This appears in the exponential
in the denominator of the Planck function. When x ≫ 1, 1/x ≪ 1, and e1/x may be replaced
with the first-order approximation. So, evidently, we need to consider whether x may be large
or small compared to 1, which is the same as λ being large or small compared to hc/kT .

(b) To what form does the Planck function reduce for very long wavelengths? This is called the
Rayleigh-Jeans limit of the blackbody function.

Solution: Long wavelengths means λ ≫ hc/kT , or x ≫ 1, or 1/x ≪ 1. In this case we can
make the first-order approximation to the exponential:

1

ehc/λkT − 1
=

1

e1/x − 1
≈ 1

(1 + 1/x)− 1
= x =

λkT

hc

Bλ(λ, T ) ≈
2hc2

λ5

λkT

hc
=

2ckT

λ4

(c) To what form does the Planck function reduce for very short wavelengths? This is called the Wien
limit of the blackbody function.

Solution: For short wavelengths 1/x ≫ 1, so e1/x ≫ 1 as well:

1

ehc/λkT − 1
=

1

e1/x − 1
≈ 1

e1/x
= e−1/x = e−hc/λkT

Bλ(λ, T ) ≈
2hc2

λ5
e−hc/λkT

2. The absolute bolometric magnitude of the Sun is M⊙ = 4.75, and the luminosity of the Sun is L⊙ =
3.827×1033 erg/s. Show that the apparent bolometric magnitude m and absolute bolometric magnitude
M of a star with luminosity L that lies a distance r away from the Solar System are related by

M = m− 5 log

(
r

10 pc

)
= 4.75− 2.5 log

(
L

L⊙

)
The difference between the apparent and absolute magnitudes, m − M = 5 log (r/10 pc), is called the
distance modulus.
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Solution: The absolute magnitude is the magnitude that the star would have if it were 10 pc away,
so

M −m = 2.5 log

(
f(r)

f(10 pc)

)
= 2.5 log

(
L

4πr2
4π(10 pc)2

L

)
= 2.5 log

[(
10 pc
r

)2
]
= 5 log

(
10 pc
r

)
= −5 log

(
r

10 pc

)
M = m− 5 log

(
r

10 pc

)
For absolute magnitudes M and M⊙ of the star and the Sun, we have

M −M⊙ = 2.5 log

(
f⊙(10 pc)
f(10 pc)

)
= 2.5 log

(
L⊙

4π(10 pc)2
4π(10 pc)2

L

)
= 2.5 log

(
L⊙

L

)
= −2.5 log

(
L

L⊙

)
M = M⊙ − 2.5 log

(
L

L⊙

)
= 4.75− 2.5 log

(
L

L⊙

)

3. A variable star changes in brightness by a factor of 4. What is the change in magnitude?

Solution: Suppose that its flux at time t2 is larger by a factor of 4 than its flux at time t1:

f2 = 4f1

Then

m1 −m2 = 2.5 log

(
f2
f1

)
= 2.5 log

(
4f1
f1

)
m1 −m2 = 1.5

It changes by 1.5 magnitudes.

4. Suppose there is a type of star we can identify independent of distance, and we know that all examples
of the star have the same absolute magnitude M . Then a measurement of the apparent magnitude m
of one such star can be used to infer its distance. Suppose further that the apparent magnitude can be
determined to an accuracy of ±0.01 magnitudes. What is the accuracy to which distances to the stars
can be determined?

(Hint: Recall that for any function f(x), a small interval ∆x in the independent variable corresponds
to an interval

∆f =
df

dx
∆x

in the value of the function.)
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Solution: First solve the definition of distance modulus for distance:

m−M = 5 log (r/10 pc)

r = (10 pc) 10(m−M)/5

Then differentiate r with respect to m:

dr

dm
=

d

dm
(10 pc) 10(m−M)/5

=
d

dm
(10 pc) e(m−M) ln 10/5

= (10 pc) e(m−M) ln 10/5 d

dm

(
m−M

5
ln 10

)
= (10 pc)e(m−M) ln 10/5

(
ln 10

5

)
dr

dm
= r

ln 10

5

Therefore,

∆r =
dr

dm
∆m = r

ln 10

5
∆m, or

∆r

r
=

∆m ln 10

5
=

(0.01)(2.303)

5

∆r

r
= 0.005 = 0.5%

In reality, the technique is not nearly this accurate because corrections due to extinction add con-
siderably larger uncertainties. We will discuss extinction later in the course.

5. (a) Show that, for a blackbody which occupies a small solid angle ∆Ω, at low temperatures the relation
between temperature and B − V color is something like

T ≈ 7400 K
(B − V ) + 1.4

(Hint: Use the Wien approximation and assume the properties of the B and V filters given in
Lecture 3.)

Solution:

B − V = 2.5 log

(
fV
fB

)
= 2.5 log

(
Bλ(λV , T )∆λV ∆Ω

Bλ(λB , T )∆λB∆Ω

)
= 2.5 log

[(
λB

λV

)5
ehc/λBkT − 1

ehc/λV kT − 1

∆λV

∆λB

]

If the temperature is low, so that T ≪ hc/kλ for both wavelengths, then

ehc/λkT ≫ 1
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and the Wien approximation applies. Therefore,

B − V ≈ 2.5 log

[(
λB

λV

)5

ehc/λBkT−hc/λV kT ∆λV

∆λB

]

= 2.5 log

[(
λB

λV

)5
∆λV

∆λB

]
+ 2.5 log

(
ehc/λBkT−hc/λV kT

)
= 2.5 log

[(
λB

λV

)5
∆λV

∆λB

]
+ 2.5 log e ln

(
ehc/λBkT−hc/λV kT

)
= 2.5 log

[(
λB

λV

)5
∆λV

∆λB

]
+ 2.5 log e

hc

kT

(
1

λB
− 1

λV

)

= 2.5 log

[(
430 nm
540 nm

)5
90 nm
100 nm

]

+ 2.5 log e
(6.6261× 10−27 erg s)(3× 1010 cm/s)

(1.38× 10−16 erg/K)T

(
1

430 nm
− 1

540 nm

)
= −1.351 +

7400 K
T

T =
7400 K

(B − V ) + 1.4

(b) This relation is a very poor approximation at high temperatures. Why?

Solution: If the temperature T is too high, then the ehc/λkT ≫ 1 approximation fails. Since
T appears in an exponential, making it very sensitive to the value of hc/λkT , it fails pretty
badly.

©2024 University of Rochester 4


