1. Suppose that two stars with masses m_{1} and m_{2} are in circular orbits about their common center of mass with radii r_{1} and r_{2}, respectively. The orbital period is P.
(a) Show that $r_{1}=m_{2} r /\left(m_{1}+m_{2}\right)$ and $r_{2}=m_{1} r /\left(m_{1}+m_{2}\right)$, where $r=r_{1}+r_{2}$ is the distance between the two stars.
(b) The speeds of the stars in orbit are constant and given by $v_{1}=\Omega r_{1}$ and $v_{2}=\Omega r_{2}$, respectively, where $\Omega=2 \pi / P$ is the angular speed of revolution of either star about the center of mass. Show that Newton's second law, applied to either star, leads to

$$
m_{1}+m_{2}=\frac{\Omega^{2} r^{3}}{G}
$$

This should look familiar: it is Kepler's third law, in a slightly different form than usual.
(c) Show that if the orbital axis (the line through the center of mass, perpendicular to the plane of the orbits) is inclined by an angle i with respect to our line of sight, then the maximum Doppler velocities that will be observed for the two stars relative to the Doppler velocity of their center of mass are $v_{1 r}=\Omega r_{1} \sin i$ and $v_{2 r}=\Omega r_{2} \sin i$, respectively.
(d) Eliminate r_{1} and r_{2} from the previous expressions to show that

$$
r=\frac{v_{1 r}+v_{2 r}}{\Omega \sin i} \quad \text { and } \quad \frac{m_{2}}{m_{1}}=\frac{v_{1 r}}{v_{2 r}}
$$

Note that the right-hand side of each expression contains only observables. With these, and the results of part b, measurements can be used to obtain the masses and separations of the stars.
(e) Suppose that a certain binary is eclipsing, and you have measured the period to be 11 days and the radial velocities to be $v_{1 r}=75 \mathrm{~km} / \mathrm{s}$ and $v_{2 r}=100 \mathrm{~km} / \mathrm{s}$. What are the masses (in M_{\odot}) and separation (in R_{\odot}) of the two stars?
2. Single-line spectroscopic binaries and the "mass function." Consider the binary star system from the previous problem.
(a) From the equations you derived in the previous problem, show that the sum of the stellar masses is given in terms of the radial velocities by

$$
m_{1}+m_{2}=\frac{P}{2 \pi G} \frac{\left(v_{1 r}+v_{2 r}\right)^{3}}{\sin ^{3} i}
$$

(b) Next, show that

$$
\begin{equation*}
\frac{m_{2}^{3}}{\left(m_{1}+m_{2}\right)^{2}} \sin ^{3} i=\frac{P}{2 \pi G} v_{1 r}^{3} \tag{1}
\end{equation*}
$$

In the right hand side, only the observable quantities P and $v_{1 r}$ appear. This quantity, $f\left(m_{1}, m_{2}\right)=$ $P v_{1 r}^{3} / 2 \pi G$, is called the mass function.
(c) Show that the left hand side of Eqn. 1 is always less than m_{2}; in other words, m_{2} is always greater than the mass function.
Note: Equation 1 is useful for single-line spectroscopic binaries: those in which one of the stars (1) is much brighter than the other, so that only its spectral lines are seen. In particular, the lower limit to the mass of the unseen companion, m_{2}, obtained in this manner has been useful in the identification of black holes in binary stellar systems, as we will see in a couple of weeks.
3. At the center of the Sun, the mass density is $\rho_{c}=1.52 \times 10^{5} \mathrm{~kg} / \mathrm{m}^{3}$ and the mean opacity is $\kappa=$ $0.12 \mathrm{~m}^{2} / \mathrm{kg}$. (The opacity is a measure of how opaque a material is - it is often a function of temperature, density, and chemical composition.) What is the mean free path for a photon at the Sun's center?
4. Suppose we somehow know that the mass density with a star of mass M and radius R decreases linearly from the center to the surface of the star and vanishes at the surface, i.e.,

$$
\rho(r)=\rho_{c}\left(1-\frac{r}{R}\right)
$$

(a) What is the density ρ_{c} at the center of the star in terms of M and R ?
(b) Show that the pressure at the center of the star is

$$
P_{c}=\frac{5}{4 \pi} \frac{G M^{2}}{R^{4}}
$$

5. Suppose that the mass density of a star of radius R increases quadratically with distance from the center,

$$
\rho(r)=\rho_{c}\left[1-\left(\frac{r}{R}\right)^{2}\right]
$$

(a) Find the mass M of the star in terms of ρ_{c} and R.
(b) Find the average density of the star in terms of ρ_{c}.
(c) Show that the central pressure of the star is

$$
P_{c}=\frac{15}{16 \pi} \frac{G M^{2}}{R^{4}}
$$

