
Astronomy 142: Problem Set 2 Due Tuesday Feb. 6, at the beginning of class

1. Suppose that two stars with masses m1 and m2 are in circular orbits about their common center of mass
with radii r1 and r2, respectively. The orbital period is P .
(a) Show that r1 = m2r/(m1+m2) and r2 = m1r/(m1+m2), where r = r1+r2 is the distance between

the two stars.

Solution: By the definition of the center of mass,

r1
r2

=
m2

m1

Combining this with the definition r = r1 + r2 gives

r1 =
m2

m1
r2 =

m2

m1
(r − r1)

r1

(
1 +

m2

m1

)
=

m2

m1
r

r1 =
m2

m1 (1 +m2/m1)
r

r1 =
m2

m1 +m2
r

and

r2 = r − r1

=

(
1− m2

m1 +m2

)
r

=

(
m1 +m2

m1 +m2
− m2

m1 +m2

)
r

r2 =
m1

m1 +m2
r

(b) The speeds of the stars in orbit are constant and given by v1 = Ωr1 and v2 = Ωr2, respectively,
where Ω = 2π/P is the angular speed of revolution of either star about the center of mass. Show
that Newton’s second law, applied to either star, leads to

m1 +m2 =
Ω2r3

G

This should look familiar: it is Kepler’s third law, in a slightly different form than usual.

Solution:

F = ma

G
m1m2

r2
= m1

v21
r1

= m1Ω
2r1 = m1Ω

2 m2

m1 +m2
r

m1 +m2 =
Ω2r3

G

(c) Show that if the orbital axis (the line through the center of mass, perpendicular to the plane of
the orbits) is inclined by an angle i with respect to our line of sight, then the maximum Doppler
velocities that will be observed for the two stars relative to the Doppler velocity of their center of
mass are v1r = Ωr1 sin i and v2r = Ωr2 sin i, respectively.

Solution: If the orbital axis is inclined by an angle i with respect to the line of sight, then all
vectors in the orbital plane that are also in the plane of the axis and line of sight are inclined
with respect to the line of sight by the angle π/2 − i. The maximum and minimum radial
velocities fit this description, so the Doppler velocity amplitudes for the stars are

v1r = r1Ωcos
(π
2
− i

)
= r1Ωsin i

and similarly
v2r = r2Ωsin i
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(d) Eliminate r1 and r2 from the previous expressions to show that

r =
v1r + v2r
Ωsin i

and
m2

m1
=

v1r
v2r

Note that the right-hand side of each expression contains only observables. With these, and the
results of part b, measurements can be used to obtain the masses and separations of the stars.

Solution: Adding the radial velocities just obtained gives

v1r + v2r = (r1 + r2)Ω sin i = rΩsin i

r =
v1r + v2r
Ωsin i

Dividing the radial velocities gives

v1r
v2r

=
r1
r2

=
m2r

m1 +m2

m1 +m2

m1r
=

m2

m1

(e) Suppose that a certain binary is eclipsing, and you have measured the period to be 11 days and
the radial velocities to be v1r = 75 km/s and v2r = 100 km/s. What are the masses (in M⊙) and
separation (in R⊙) of the two stars?

Solution: If the binary is eclipsing we know that i = 90◦. Therefore, using the results of parts
d and b gives

r =
v1r + v2r
Ωsin i

=
(75 + 100)× 105 cm/s

2π
(11 day × 86400 s/day)

r = 2.65× 1012 cm = 38R⊙

m1 +m2 =
Ω2r3

G
=

4π2

(11× 86400 s)2
(2.65× 1012 cm)3

6.674× 10−8 dyn cm2 g−2

m1 +m2 = 1.22× 1034 g = 6.11M⊙

Combining m1 +m2 with the expression

v1r
v2r

=
m2

m1
= 0.75

allows us to solve for m1 and m2:

m1 =
6.11M⊙

1.75
= 3.49M⊙ and m2 = 6.11M⊙ −m1 = 2.62M⊙

2. Single-line spectroscopic binaries and the “mass function.” Consider the binary star system from the
previous problem.

(a) From the equations you derived in the previous problem, show that the sum of the stellar masses
is given in terms of the radial velocities by

m1 +m2 =
P

2πG

(v1r + v2r)
3

sin3 i
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Solution:

m1 +m2 =
Ω2r3

G

=
Ω2

G

(
v1r + v2r
Ωsin i

)3

=
1

ΩG

(v1r + v2r)
3

sin3 i

m1 +m2 =
P

2πG

(v1r + v2r)
3

sin3 i

(b) Next, show that
m3

2

(m1 +m2)2
sin3 i =

P

2πG
v31r (1)

In the right hand side, only the observable quantities P and v1r appear. This quantity, f(m1,m2) =
Pv31r/2πG, is called the mass function.

Solution:

m1 +m2 =
P

2πG

(v1r + v2r)
3

sin3 i

=
P

2πG

1

sin3 i

(
v1r + v1r

m1

m2

)3

=
P

2πG

v31r
sin3 i

(
m1 +m2

m2

)3

m3
2

(m1 +m2)2
sin3 i =

P

2πG
v31r ≡ f(m1,m2)

(c) Show that the left hand side of Eqn. 1 is always less than m2; in other words, m2 is always greater
than the mass function.
Note: Equation 1 is useful for single-line spectroscopic binaries: those in which one of the stars
(1) is much brighter than the other, so that only its spectral lines are seen. In particular, the lower
limit to the mass of the unseen companion, m2, obtained in this manner has been useful in the
identification of black holes in binary stellar systems, as we will see in a couple of weeks.

Solution:

f(m1,m2) =
m3

2

(m1 +m2)2
sin3 i <

m3
2

(m1 +m2)2
= m2

1

(1 +m1/m2)
2

But 1/(1 +m1/m2)
2 < 1 since m1/m2 is a positive number. Therefore, f(m1,m2) < m2.

3. At the center of the Sun, the mass density is ρc = 1.52 × 105 kg/m3 and the mean opacity is κ =
0.12 m2/kg. (The opacity is a measure of how opaque a material is — it is often a function of temperature,
density, and chemical composition.) What is the mean free path for a photon at the Sun’s center?

Solution:
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From dimensional analysis, we see that

ℓc =
1

κρc
=

1

(0.12 m2/kg)(1.52× 105 kg/m3
)

ℓc = 5.5× 10−3 cm

4. Suppose we somehow know that the mass density with a star of mass M and radius R decreases linearly
from the center to the surface of the star and vanishes at the surface, i.e.,

ρ(r) = ρc

(
1− r

R

)
(a) What is the density ρc at the center of the star in terms of M and R?

Solution: We can find this out by calculating M from the form given for the density:

M =

∫
ρ(r)dV = ρc

∫ (
1− r

R

)
r2 sin θ dr dθ dϕ

= 4πρc

∫ R

0

(
r2 − r3

R

)
dr

= 4πρc

[
r3

3
− r4

4R

]R
0

=
πρcR

3

3

ρc =
3M

πR3

(b) Show that the pressure at the center of the star is

Pc =
5

4π

GM2

R4

Solution: Begin by integrating the radial pressure gradient:

dP

dr
= −GM(r)ρ(r)

r2∫ 0

P (0)

dP = −G

∫ R

0

M(r)ρ(r)

r2
dr

P (0) = Pc =

∫ R

0

GM(r)ρ(r)

r2
dr

Before solving this we have to integrate the radial profile of the density to get an expression for
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M(r):

M(r) =

∫ r

0

ρ(r′) dV = ρc

∫ (
1− r′

R

)
r′2 sin θ dr′ dθ dϕ

=
12M

R3

∫ r

0

(
r′2 − r′3

R

)
dr′

= 12M

[
1

3

( r

R

)3

− 1

4

( r

R

)4
]

M(r) = M

[
4
( r

R

)3

− 3
( r

R

)4
]

Now use M(r) to solve for Pc = P (0):

Pc =

∫ R

0

GM(r)ρ(r)

r2
dr

=
3GM2

πR3

∫ R

0

1

r2

[
4
( r

R

)3

− 3
( r

R

)4
](

1− r

R

)
dr

=
3GM2

πR6

∫ R

0

(
4r − 7

r2

R
+ 3

r3

R2

)
dr

=
3GM2

πR6

[
2r2 − 7

3

r3

R
+

3

4

r4

R2

]R
0

Pc =
5

4π

GM2

R4

5. Suppose that the mass density of a star of radius R increases quadratically with distance from the center,

ρ(r) = ρc

[
1−

( r

R

)2
]

(a) Find the mass M of the star in terms of ρc and R.

Solution:

M =

∫
ρ(r) dV = ρc

∫ R

0

[
1−

( r

R

)2
]
r2 sin θ dr dθ dϕ

= 4πρc

∫ R

0

(
r2 − r4

R2

)
dr

= 4πρc

[
r3

3
− r5

5R2

]R
0

=
8πρcR

3

15

(b) Find the average density of the star in terms of ρc.
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Solution:

ρ̄ =
M

V
=

8πρcR
3

15

3

4πR3
=

2

5
ρc

(c) Show that the central pressure of the star is

Pc =
15

16π

GM2

R4

Solution: First generate an expression for M(r) by integrating the radial density profile be-
tween 0 and r:

M(r) =

∫
ρ(r′) dV = ρc

∫ [
1−

(
r′

R

)2
]
r′2 sin θ dr′ dθ dϕ

= 4πρc

∫ r

0

(
r′2 − r′4

R2

)
dr′

= 4πρc

[
r′3

3
− r′5

5R2

]r
0

=
M

2

[
5
( r

R

)3

− 3
( r

R

)5
]

Then insert M(r) into the integral of the equation for hydrostatic equilibrium:

Pc =

∫ R

0

GM(r)ρ(r)

r2
dr

=
GMρc

2

∫ R

0

1

r2

[
5
( r

R

)3

− 3
( r

R

)5
] [

1−
( r

R

)2
]
dr

=
GMρc

2

∫ R

0

(
r

3
− 8r3

15R2
+

r5

5R4

)
dr =

GMρc
2

[
r2

6
− 2r4

15R2
+

r6

30R4

]R
0

Pc =
15

16π

GM2

R4
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