
Astronomy 142: Problem Set 4 Due February 20 at the beginning of lecture

1. Consider a star of radius R where the temperature T and mean particle mass µ are uniform inside,
except for a tiny layer on the surface in which the temperature drops from T to a much lower value.

(a) Derive an expression for the period of the fundamental radial oscillation of this star.

Solution: This is simpler than the uniform-density star; the speed of sound is uniform in the
interior:
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(b) Suppose a star like this were observed to have a radius R = 1.5R⊙ and we could tell from its
spectrum that it has the same mean particle mass and specific-heat ratio as the Sun. Suppose
furthermore it oscillates with a period of 2 hours. What is its interior temperature T?

Solution: Such a star would be similar in its properties to a δ Scuti star:

T =
µ

γk

(
4R

Π

)2

= 2.44× 107 K

2. Clarinets can play more than one note, even without pushing on the keys. Presumably stars can too.

(a) What is the next-lowest pitch (frequency) that can be played by the clarinet considered in the
class notes? This mode is called the first overtone; the lowest-frequency mode is called the
fundamental. Give your answer in Hz and/or in musical notation.

Solution: There has to be a pressure antinode (a maximum) at the closed end (the mouthpiece)
and a pressure node at the open end. If the clarinet bore is of length L the wavelength of
the fundamental mode will be λ1 = 4L since L = λ/4 wavelengths will obey the boundary
conditions. The next mode that would fit places one additional pressure node within the
clarinet, so that λ2 = 4L/3 since L = 3λ/4. This is the first overtone.

Thus, the frequency is a factor of three higher than the fundamental:

f1 = vs/λ1 = vs/4L = 142 Hz

f2 = vs/λ2 = 3vs/4L = 3f1 = 426 Hz

The fundamental is near D below middle C. The first overtone is near A in the middle of the
staff. (Experts will note this clarinet is tuned a little flat.)

(b) What is the next-shortest period of oscillation (i.e., the first overtone) of the uniform-density star
considered in class?

Solution: Much like the clarinet, the frequency of the star’s first overtone is 3× higher than
its fundamental, so the period is three times shorter:
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(c) The brightest classical Cepheid variable in the sky is Polaris, the North Star (α Ursae Minoris).
Its pulsation period is 3.97 days and its amplitude is 0.03 mag. Its spectrum and color show that
it has an effective temperature of 7200 K. It has a couple of companion stars from which its mass
can be determined to be 4.3M⊙ and its distance has been measured with trigonometric parallax,
yielding from its flux a luminosity of 2200L⊙. Estimate the periods of Polaris’ fundamental and
first-overtone pulsations. In which mode is Polaris likely to be pulsating?

Solution: We need the average density in order to calculate oscillation periods:

L = 4πR2σT 4
e

ρ =
3M

4πR2
=

3σT 4
eM

L

Π1 =

√
6π

γGρ
=

√
2πL

γσT 4
eGM

= 8.7× 105 s = 10 days

Π2 =
1

3
Π1 = 2.9× 105 s = 3.3 days

The assumption of constant density is crude and we know this should introduce an error, but
all the same it looks like the estimate of the period of Polaris is a better match for the first
overtone than for the fundamental mode. Note that detailed models also give the same answer.

Oscillation in the first overtone is rare among Cepheids. That Polaris is doing so is thought to
have something to do with its peculiarly small oscillation amplitude; perhaps Polaris is in the
process of switching its mode of pulsation from the first overtone to the fundamental.

Note that D.G. Turner et al. (2013) made a determination of the distance to Polaris based
on careful measurements of the mean brightness and spectral type compared to other stars of
the same spectral type and accurately known distances and found a new distance 30% smaller
than that measured by Hipparcos using trig parallax. The measurement by Turner reduces the
luminosity to the point that the fundamental mode agrees better with the observed pulsation
period than the first overtone. Turner et al. have been extremely careful, but the Hipparcos
parallax measurement had high signal-to-noise. Most astronomers will bet on Hipparcos and
the overtone pulsation and give large odds because many more things can go wrong in the
treatment by Turner et al. than with Hipparcos in this distance range.

3. Brown Dwarfs: Consider a star of such very low mass as to be only marginally capable of thermonuclear
heat production. Under the assumptions that the star is all hydrogen (Z = A = 1), that gravity is
balanced by nonrelativistic electron degeneracy pressure, and that protons, at the same temperature and
pressure as the electrons, act as an ideal gas, derive the equation relating the star’s central temperature
Tc to its total mass M . If Tc ≥ 3 × 106 K is required to sustain the pp chain fusion reactions, what is
the minimum mass of a luminous star? Express your answer in solar masses (M⊙) and compare it to
the mass of Jupiter (1 MJup = 2× 1030 g).

“Stars” with mass less than this minimum never undergo hydrogen fusion energy generation. These are
the brown dwarfs.

Solution: The central pressure and mass density in a body supported by electron degeneracy pres-
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sure are given by

Pc = 0.77
GM2

R4

ρc = 1.43
M

R3

Since Z = A = 1 by assumption, the protons have the same pressure and temperature as the
electrons and will behave like an ideal gas. Thus, we have an additional expression for Pc:

Pc =
ρckTc

mp

and therefore

Tc =
mpPc

kρc
=

0.77GMmp

1.43kR

Using the mass-radius relation derived in class (with Z/A = 1),

R = 0.114
h2

Gmem
5/3
p

M−1/3

we can eliminate R from the expression for Tc:

Tc =
0.77GMmp

1.43k

Gmem
5/3
p

0.114h2
M1/3

= 4.72
G2mem

8/3
p

h2k
M4/3

= 1.24× 10−36M4/3 K g−4/3

We know that Tc needs to be greater than about 3×106 K to ignite the pp chain of fusion reactions.
Therefore, from this expression the star must have a mass of at least

M = 0.8× 1036 g (T/K)
3/4

= 6× 1031 g = 0.03M⊙

to undergo fusion (and thus to be luminous in the long term). This limit corresponds to a body
about 30 times more massive than Jupiter (0.001M⊙) and about 30 times less massive than the
Sun. This result is close to the present accepted value of 0.08M⊙ produced by much more detailed
calculations; we did not get the exact answer because we ignored the Coulomb interaction between
electrons, which is more involved. The important point is that stars cannot be made with arbitrarily
small masses because electron degeneracy pressure keeps small objects from getting hot enough for
fusion.

4. Begin with the relativistic form of electron degeneracy pressure and the expressions for central pressure
from weight and central density in a relativistic-degenerate equation of state:

Pe = 0.123 hcn4/3
e Pc = 11

GM2

R4
ρc = 12.9

M

R3

Substitute ne = Zρ/Amp and manipulate to obtain both an expression for the electron degeneracy
pressure in a star made of material with nuclear charge Z and mass number A, and an expression for
the (Stoner-Andersen-Chandrasekhar) maximum mass of such a star. You will thus fill in the steps left
out in arriving at the results in the lecture on white dwarfs.
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Calculate the maximum mass of a carbon white dwarf, expressing your answer in solar masses.

Solution: We substitute ne = Zρ/Amp into Pe = 0.123hcn
4/3
e and obtain

Pe = 0.123
hc

m
4/3
p

(
Z

A

)4/3

ρ4/3

The SAC mass is that for which the relativistic electron pressure balances the pressure due to the
weight, i.e.,

11
GM2

SAC

R4
= 0.123

hc

m
4/3
p

(
Z

A

)4/3 (
12.9

MSAC

R3

)4/3

Canceling the factors of R gives

M
2/3
SAC = 0.340

hc

Gm2
p

(
Z

A

)4/3

m2/3
p

or

MSAC = 0.198

(
hc

Gm2
p

)3/2 (
Z

A

)2

mp

= 1.78× 1057mp

= 2.88× 1033 g

= 1.44M⊙

for Z/A = 0.5, as is the case for carbon.

5. Two oboe players can hear each other; one hovers just outside a black hole’s horizon at r = 1.01Rsch

and the other is at rest far away from the black hole. (This is the George Lucas version of outer space.)
Each plays an A4 note (f = 440 Hz). What is the frequency of the note each hears played by the other?

Solution: The frequency f = 440 Hz corresponds to a period 1/f = 2.27 ms. If that is the note
played by the oboist near the black hole such that ∆τ = 1/f then the distant observer hears

∆t =
∆τ√

1− 2GM/rc2
=

2.27 ms√
1− 1/1.01

= 22.8 ms f =
1

∆t
= 43.9 Hz

This is an F more than two octaves below middle C and barely within the range of human hearing.

If it is the note played by the “inertial” oboist (∆t = 1/f) then the oboist by the black hole hears

∆τ = ∆t

√
1− 2GM

rc2
= 2.27 ms

√
1− 1

1.01
= 0.226 ms f =

1

∆τ
= 4.42 kHz

This is a C# more than four octaves above middle C, but still in the human range of hearing.
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