
Astronomy 142: Problem Set 5 Due March 5 at the beginning of lecture

1. Stable black hole orbits:

(a) Derive an expression for the orbital frequency of the innermost stable circular orbit (ISCO) around
a black hole fISCO in terms of the black hole’s mass.

Solution: The ISCO has a coordinate radius of rISCO = 3RSch = 6GM/c2 = 53.2 km. The
circumference of circular orbits and the orbital velocity are the same in all reference frames, so
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(b) The black hole in GRO J1655-40 is observed to have a mass of M = 6.0M⊙ and emits X-rays
which exhibit quasiperiodic oscillations at a frequency of 450 Hz. It is thought that this frequency
indicates material in orbit. If the black hole were not spinning, how far (radially, in cm) from the
ISCO would this orbit be, in the view of a distant observer?

Solution: Invert the previous result for f to estimate the coordinate radius r of the orbit
corresponding to 450 Hz:

r =

(
GM

4π2f2

)1/3

= 4.64× 106 cm = 46.4 km

Therefore, the radial distance from the ISCO orbit is

∆r = 3RSch − r =
6GM

c2
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= 6.8× 105 cm = 6.8 km

(c) If the black hole were not spinning, how far (radially, in cm) would this orbit be from the ISCO in
the view of an observer in the vicinity of these orbits? Presume the local observer to be capable of
measuring the distance instantaneously.

Solution: Inside the gravitational well we have to account for curvature effects. Using the
integral from Recitation 5 we have
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= 8.4× 105 cm = 8.4 km

2. Black hole evaporation: Hawking radiation from a black hole with mass M is emitted at a rate and

©2024 University of Rochester 1



Astronomy 142 Problem Set 5 Spring 2024

spectrum identical to a blackbody with temperature T = hc3/16π2kGM .

(a) Calculate the effective temperature and luminosity of a very small black hole with mass M = 1015 g.
At what wavelength is the peak luminosity? In which part of the electromagnetic spectrum is this
wavelength?

Solution: To a good approximation the BH radiates only electromagnetic energy as a spherical
blackbody with circumference 2πRSch, so

L = 4πR2
SchσT

4

Using RSch = 2GM/c2, T = hc3/16π2kGM , and σ = (2π5/15)(k4/h3c2) we obtain
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For M = 1015 g the temperature and luminosity are

T = 1.23× 1011 K L =
hc6

30720π2G2M2
= 3.6× 1015 erg/s

According to Wien’s Law, this corresponds to a blackbody that peaks at

λmax = 0.29 cm K/T = 2.4× 10−12 cm

E = hc/λmax = 9.93× 10−12 J

≈ 62 MeV

well into the γ-ray range.

(b) Show that Hawking radiation leads to a decrease in the mass of black holes at a rate

dM

dt
= − A

c2M2

where A is a constant. Compute the value of A. Then use this expression to derive a formula for
the lifetime of a black hole with initial mass M0.

Solution: The rest energy of the black hole is E = Mc2. As it radiates energy its rest energy
decreases at an equal but opposite rate:

L = −dE

dt
A

M2
= −c2

dM

dt
dM

dt
= − A

c2M2

where A = hc6/(30720π2G2) was estimated in part (a). To find the lifetime we separate
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variables and integrate: ∫ τ
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(c) Calculate the mass of a black hole with a lifetime of 1.4 × 1010 yr. As we will see, the Universe is
about this old; thus any remaining primordial black holes created in the Big Bang must be heavier
than the mass you calculate, assuming they have not accreted more material.

Solution: From part (b),

M0 =

(
hc4τ

10240π2G2

)1/3

= 1.74× 1014 g

This is about 10% of the mass of a large mountain like Everest; astronomically, small asteroids
a few hundred meters in diameter have similar masses.

3. The pressure and temperature at the center of the Sun are Pc = 2.1 × 1017 dyne cm−2 and Tc =
15.7×106 K. What are the central pressure and temperature of a 1.5M⊙ star with the same composition
as the Sun?

(Hint: Empirical measurements of eclipsing binaries show that stellar mass and radius are close to
linearly proportional with coefficient 1 in solar units. Use this to infer the missing piece of information
needed to solve this problem.)

Solution: According to the empirical mass-radius relation for the components of eclipsing binaries,
mass and radius are close to linearly proportional with coefficient 1 in solar units. Therefore the
radius of a 1.5M⊙ star is about 1.5R⊙. Using the scaling relations developed in class, we get

Pc = 2.1× 1017(1.5)2(1.5)−4 dyne cm−2 = 9.3× 1016 dyne cm−2

Tc = 15.7× 106(1.5)

(
1

1.5

)
(1) K = 15.7× 106 K

4. A helium star: Consider stars with composition of a type called extreme “Population II”: objects made
only of hydrogen (fraction X by mass) and helium (fraction 1−X by mass), with negligible quantities
of everything else.

(a) Starting with the definition µ = ρ
n for the average particle mass, where ρ is the mass density and

n is the number of particles (electrons, protons, and helium nuclei) per unit volume, show that the
average mass in an extreme Population II star is

µ =
4mp

5X + 3

Hint : Recall that each hydrogen atom contributes two particles when ionized, and each helium
atom contributes three.
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Solution: We know that in terms of the number density of H and He, ρ = µn = mpnH+4mpnHe

and n = 2nH + 3nHe, so

µ =
ρ

n
=

nH + 4nHe

2nH + 3nHe
mp

We can eliminate nHe from this expression in favor of the hydrogen mass fraction X by noting
that

mpnH = Xρ 4mpnHe = (1−X)ρ

Dividing the two expressions gives

nHe =
nH(1−X)

4X

which we substitute back into the expression for µ:

µ =
nH + 4nH(1−X)/4X

2nH + 3nH(1−X)/4X
mp =

4X + 4(1−X)

8X + 3(1−X)
mp =

4mp

5X + 3

(b) Show that the luminosity in a star that is supported by ideal gas pressure scales with average
particle mass, total mass, and internal temperature as

L ∝ µ7M5T 0.5

Solution: Since the star is supported by ideal gas pressure,

P = nkT =
ρ

µ
kT

T =
Pµ

ρk
∝ GM2R−4

MR−3

µ

k
∝ µM

R

The luminosity in the center of the star was given in class as

L ∝ R3T 4

R2/ℓ
∝ ℓRT 4

In low-mass stars ℓ ∝ T 3.5ρ−2. Thus

L ∝ RT 7.5

ρ2
∝ R

(
µM

R

)7.5
R6

M2
∝ µ7.5M5.5R−0.5

Using T ∝ µM/R one more time to eliminate R gives

L ∝ µ7M5T 0.5

(c) A 1M⊙ Population II star with X = 0.75 is quite similar to the Sun; it has luminosity L⊙ and
radius R⊙. Use this information and the result of part b to estimate the luminosity, radius, and
surface temperature of a 1M⊙ pure helium star (X = 0).

Solution: The standard 1M⊙ star has X = 0.75 so in its center the average particle mass is
about µ = 0.59mp. In the He star with X = 0, µ = 4mp/3. Therefore, in terms of the normal
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star, the luminosity of the 1M⊙ He star is

LHe =

(
µ7M5T 0.5

)
He

(µ7M5T 0.5)X=0.75

L(X = 0.75)

=

(
4mp/3
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)7(
108 K

1.57× 107 K

)0.5
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= 760L⊙

To get the radius we use T ∝ µM/R to express the radius in terms of the normal star:

RHe = RH

(
(µM/T )He

(µM/T )X=0.75

)
= R⊙

4mp/3

0.59mp

1.57× 107 K

108 K

= 0.36R⊙

The effective temperature is given by the usual expression L = 4πR2σT 4, so

Te ∝
(

L

R2

)1/4

Te(He) =

(
LHe

R2
He

R2
X=0.75
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)1/4

Te(X = 0.75)

=

(
760

0.362

)1/4

5800 K

= 51000 K

As shown in the figure below, this places the He star well to the left of and below the main
sequence, as determined using eclipsing binary stars.
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5. Radiation pressure and hydrostatic equilibrium in giant stars: Recall that the momentum of a
photon is p = E

c .

(a) Derive an expression for the radiation pressure, defined as the outward momentum per unit time per
unit area, delivered to the outer layers of a star with luminosity L, assuming that all the photons
from the interior are absorbed in those layers.

Solution: By outer layers we mean r = R:

Prad =
F

A

=
1

4πR2

dp

dt

=
1

4πR2

1

c

dE

dt

Prad =
L

4πR2c

(b) Calculate the total radiation force on the outer layers of a star with L = L⊙. How does the
radially outward force from radiation compare to the force of gravity on the layers if the layers lie
at R = 100R⊙, have mass m = 10−6M⊙, and the rest of the star has a mass M = 1M⊙?

Solution: F = PA so

Frad =
L

c
=

3.827× 1033 erg/s

3× 1010 cm/s

Frad = 1.3× 1023 dynes

Fgrav = −GMm

R2
= − (6.674× 10−8 dyn cm2 g−2)(1.989× 1033 g)2(1× 10−6)

((100)(6.96× 1010 cm))2

= −5.5× 1027 dynes

So even with the high luminosity radiation pressure is several orders of magnitude too small to
hold up the star. Gas pressure holds up the star, and radiation pressure is too small to blow
off the outer layers.

(c) Repeat part b for a typical AGB star: L = 7000L⊙, Te = 3000 K, same masses. (Hint : You will
need to first work out the star’s radius.)

Solution: First solve for the radius of the star:

L = 4πR2σT 4
e

R =

√
L

4πσT 4
e

=

√
(7000)(3.827× 1033 erg/s)

4π(5.6704× 10−5 erg s−1 cm−2 K−4)(3000 K)4

R = 2.2× 1013 cm = 310R⊙
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Thus

Frad =
L

c
=

(7000)(3.827× 1033 erg/s)

3× 1010 cm/s

Frad = 8.9× 1026 dynes

Fgrav = −GMm

R2
= − (6.674× 10−8 dyn cm2 g−2)(1.989× 1033 g)2(1× 10−6)

(2.2× 1013)2

Fgrav = −5.6× 1026 dynes

This time radiation wins out and the outer layers will be propelled further outward.

6. Time above the horizon

(a) Plot the amount of time (in hours) spent above the horizon each day as a function of declination
(in degrees) for observations made at latitudes of +43◦ (Rochester) and +31◦ (Kitt Peak, Arizona).

Solution: First, get a formula for that time. For an object on the horizon, ZA = 90◦, so
cosZA = 0:

cosZA = cosHAh cos δ cosλ+ sin δ sinλ

0 =

HAh = ± cos−1

(
− sin δ sinλ

cos δ cosλ

)
Note that cos−1 is double-valued, because cosx = cos(−x). So the object rises when

HAh− = − cos−1

(
− sin δ sinλ

cos δ cosλ

)
and sets when

HAh+ = +cos−1

(
− sin δ sinλ

cos δ cosλ

)
taking HA hours to rise to the meridian and the same time to set. The total time in hours
above the horizon is

∆t = HAh+ −HAh−

= 2 cos−1

(
− sin δ sinλ

cos δ cosλ

)
This is what we need to plot. We can put our latitudes and declinations in degrees, but note
that we need an answer in hours, for which we multiply an answer in degrees by 24

360 . We
also note that most plotting programs (including python) expect their angular inputs to be in
radians, not degrees. The results (calculated in python) are shown below. Note that the curves
cross at zero declination and twelve hours.
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You will note while you plot that some of the declination values result in angles with cosines
greater than 1 or less than -1:

− sin δ sinλ

cos δ cosλ

{
< −1 → δ > tan−1(cotλ)

> 1 → δ < tan−1(− cotλ)

From the shape of the rest of the curve, we can guess what this means. The first of these cases
describes objects so far north in the sky that they never set; such objects are called circumpolar.
The latter describes objects lying so far south that they never rise.

(b) Suppose that you want to go observing in Rochester “tonight” (March 4), and take pictures of M1
(the Crab Nebula) and M8 (the Lagoon Nebula). Look up the coordinates of these objects, and
the sidereal time at midnight “tonight,” and estimate when each of these objects rises and sets. Is
this a good time of year to observe M1 and M8? (Note: You must show your work, and few-minute
accuracy will suffice.)

Solution: The coordinates of these two objects are:

αM1 = 05h34m31.97s = 5.58h δM1 = +22◦00′52.1′′ = 22.01◦

αM8 = 18h03m18.06s = 18.06h δM8 = −24◦23.2′ = −24.39◦

From the sidereal time calculator that we used in recitation, we get

LST0 = 10h43m19s = 10.72h

for Rochester (longitude 77.6◦W, latitude +43◦). Thus, M1 reaches the meridian

5.58h − 10.72h = −5.14h

before midnight, so within a few minutes of 6:51pm. M8 transits at

18.06h − 10.72h = 7.34h
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or 7:20am. Now, according to

∆t = 2 cos−1

(
− sin δ sinλ

cos δ cosλ

)
M1 stays above Rochester’s horizon for 14.95 hours, ±7.48 hours from the time that it transits.
M8 stays up for 8.67 hours, ±4.33 hours from transit. Therefore, M1 rises at

−5.14h − 7.48h = −12.62h = 11 : 22 am

and sets at
−5.14h + 7.48h = 2.33h = 2 : 19 am

M8 rises at
7.34h − 4.33h = 3.01h = 3 : 00 am

and sets at
7.34h + 4.33h = 11.67h = 11 : 40 am

So we get about half a night for both M1 and M8, considering the times of sunset and sunrise
(6:04pm, 6:39am). It is a decent time of year to observe both of these objects.

You can check this with TheSkyX or Stellarium, both of which do a very precise calculation:
indeed, all of our results come within a couple of minutes.
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