
Astronomy 142: Problem Set 5 Due Tuesday, February 25 at the beginning of lecture

1. Clarinets can play more than one note, even without pushing on the keys. Presumably stars can too.

(a) What is the next-lowest pitch (frequency) that can be played by the clarinet considered in class?
This mode is called the first overtone; the lowest-frequency mode is called the fundamental.
Take the length of the instrument to be 60 cm, the temperature of the air to be 15◦C, the average
particle mass of the air µ = 4.81× 10−23 g, and the adiabatic index γ = 7/5 (ideal diatomic gas at
15◦C). Give your answer in Hz and/or in musical notation.

Solution: There has to be a pressure antinode (a maximum) at the closed end (the mouthpiece)
and a pressure node at the open end. If the clarinet bore is of length L the wavelength of
the fundamental mode will be λ1 = 4L since L = λ/4 wavelengths will obey the boundary
conditions. The next mode that would fit places one additional pressure node within the
clarinet, so that λ2 = 4L/3 since L = 3λ/4. This is the first overtone.

Thus, the frequency is a factor of three higher than the fundamental:

f1 = vs/λ1 = vs/4L = 142 Hz

f2 = vs/λ2 = 3vs/4L = 3f1 = 426 Hz

The fundamental is near D below middle C. The first overtone is near A in the middle of the
staff. (Experts will note this clarinet is tuned a little flat.)

(b) What is the next-shortest period of oscillation (i.e., the first overtone) of the uniform-density star
considered in class?

Solution: Much like the clarinet, the frequency of the star’s first overtone is 3× higher than
its fundamental, so the period is three times shorter:

Π2 =
4

3

∫ R

0

dr

vs
=

1

3

√
6π

γGρ
=

√
2π

3γGρ

(c) The brightest classical Cepheid variable in the sky is Polaris, the North Star (α Ursae Minoris).
Its pulsation period is 3.97 days and its amplitude is 0.03 mag. Its spectrum and color show that
it has an effective temperature of 7200 K. It has a couple of companion stars from which its mass
can be determined to be 4.3M⊙ and its distance has been measured with trigonometric parallax,
yielding from its flux a luminosity of 2200L⊙. Estimate the periods of Polaris’ fundamental and
first-overtone pulsations. In which mode is Polaris likely to be pulsating?

Solution: We need the average density in order to calculate oscillation periods:

L = 4πR2σT 4
e

ρ =
3M

4πR2
=

3σT 4
eM

L

Π1 =

√
6π

γGρ
=

√
2πL

γσT 4
eGM

= 8.7× 105 s = 10 days

Π2 =
1

3
Π1 = 2.9× 105 s = 3.3 days

The assumption of constant density is crude and we know this should introduce an error, but
all the same it looks like the estimate of the period of Polaris is a better match for the first
overtone than for the fundamental mode. Note that detailed models also give the same answer.
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Oscillation in the first overtone is rare among Cepheids. That Polaris is doing so is thought to
have something to do with its peculiarly small oscillation amplitude; perhaps Polaris is in the
process of switching its mode of pulsation from the first overtone to the fundamental.

Note that D.G. Turner et al. (2013) made a determination of the distance to Polaris based
on careful measurements of the mean brightness and spectral type compared to other stars of
the same spectral type and accurately known distances and found a new distance 30% smaller
than that measured by Hipparcos using trig parallax. The measurement by Turner reduces the
luminosity to the point that the fundamental mode agrees better with the observed pulsation
period than the first overtone. Turner et al. have been extremely careful, but the Hipparcos
parallax measurement had high signal-to-noise. Most astronomers will bet on Hipparcos and
the overtone pulsation and give large odds because many more things can go wrong in the
treatment by Turner et al. than with Hipparcos in this distance range.

2. Consider a star of radius R where the temperature T and mean particle mass µ are uniform inside,
except for a tiny layer on the surface in which the temperature drops from T to a much lower value.

(a) Derive an expression for the period of the fundamental radial oscillation of this star.

Solution: This is simpler than the uniform-density star; the speed of sound is uniform in the
interior:

vs =

√
γP

ρ
=

√
γρkT

ρµ
=

√
γkT

µ

so

Π = 4

∫ R

0

dr

vs
= 4

√
µ

γkT

∫ R

0

dr = 4R

√
µ

γkT

(b) Suppose a star like this were observed to have a radius R = 1.5R⊙ and we could tell from its
spectrum that it has the same mean particle mass and specific-heat ratio as the Sun. Suppose
furthermore it oscillates with a period of 2 hours. What is its interior temperature T?

Solution: Such a star would be similar in its properties to a δ Scuti star:

T =
µ

γk

(
4R

Π

)2

= 2.44× 107 K

3. Brown Dwarfs: Consider a star of such very low mass as to be only marginally capable of thermonuclear
heat production. Under the assumptions that the star is all hydrogen (Z = A = 1), that gravity is
balanced by nonrelativistic electron degeneracy pressure, and that protons, at the same temperature and
pressure as the electrons, act as an ideal gas, derive the equation relating the star’s central temperature
Tc to its total mass M . If Tc ≥ 3 × 106 K is required to sustain the pp chain fusion reactions, what is
the minimum mass of a luminous star? Express your answer in solar masses (M⊙) and compare it to
the mass of Jupiter (1 MJup = 2× 1030 g).

“Stars” with mass less than this minimum never undergo hydrogen fusion energy generation. These are
the brown dwarfs.
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Solution: The central pressure and mass density in a body supported by electron degeneracy pres-
sure are given by

Pc = 0.77
GM2

R4

ρc = 1.43
M

R3

Since Z = A = 1 by assumption, the protons have the same pressure and temperature as the
electrons and will behave like an ideal gas. Thus, we have an additional expression for Pc:

Pc =
ρckTc

mp

and therefore

Tc =
mpPc

kρc
=

0.77GMmp

1.43kR

Using the mass-radius relation derived in class (with Z/A = 1),

R = 0.114
h2

Gmem
5/3
p

M−1/3

we can eliminate R from the expression for Tc:

Tc =
0.77GMmp

1.43k

Gmem
5/3
p

0.114h2
M1/3

= 4.72
G2mem

8/3
p

h2k
M4/3

= 1.24× 10−36M4/3 K g−4/3

We know that Tc needs to be greater than about 3×106 K to ignite the pp chain of fusion reactions.
Therefore, from this expression the star must have a mass of at least

M = 0.8× 1036 g (T/K)
3/4

= 6× 1031 g = 0.03M⊙

to undergo fusion (and thus to be luminous in the long term). This limit corresponds to a body
about 30 times more massive than Jupiter (0.001M⊙) and about 30 times less massive than the
Sun. This result is close to the present accepted value of 0.08M⊙ produced by much more detailed
calculations; we did not get the exact answer because we ignored the Coulomb interaction between
electrons, which is more involved. The important point is that stars cannot be made with arbitrarily
small masses because electron degeneracy pressure keeps small objects from getting hot enough for
fusion.

4. Begin with the relativistic form of electron degeneracy pressure and the expressions for central pressure
from weight and central density in a relativistic-degenerate equation of state:

Pe = 0.123 hcn4/3
e Pc = 11

GM2

R4
ρc = 12.9

M

R3

Substitute ne = Zρ/Amp and manipulate to obtain both an expression for the electron degeneracy
pressure in a star made of material with nuclear charge Z and mass number A, and an expression for
the (Stoner-Andersen-Chandrasekhar) maximum mass of such a star. You will thus fill in the steps left
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out in arriving at the results in the lecture on white dwarfs.

Calculate the maximum mass of a carbon white dwarf, expressing your answer in solar masses.

Solution: We substitute ne = Zρ/Amp into Pe = 0.123hcn
4/3
e and obtain

Pe = 0.123
hc

m
4/3
p

(
Z

A

)4/3

ρ4/3

The SAC mass is that for which the relativistic electron pressure balances the pressure due to the
weight, i.e.,

11
GM2

SAC

R4
= 0.123

hc

m
4/3
p

(
Z

A

)4/3 (
12.9

MSAC

R3

)4/3

Canceling the factors of R gives

M
2/3
SAC = 0.340

hc

Gm2
p

(
Z

A

)4/3

m2/3
p

or

MSAC = 0.198

(
hc

Gm2
p

)3/2 (
Z

A

)2

mp

= 1.78× 1057mp

= 2.88× 1033 g

= 1.44M⊙

for Z/A = 0.5, as is the case for carbon.

5. Black hole evaporation: Hawking radiation from a black hole with mass M is emitted at a rate and
spectrum identical to a blackbody with temperature T = hc3/16π2kGM .

(a) Calculate the effective temperature and luminosity of a very small black hole with mass M = 1015 g.
At what wavelength is the peak luminosity? In which part of the electromagnetic spectrum is this
wavelength?

Solution: To a good approximation the BH radiates only electromagnetic energy as a spherical
blackbody with circumference 2πRSch, so

L = 4πR2
SchσT

4

Using RSch = 2GM/c2, T = hc3/16π2kGM , and σ = (2π5/15)(k4/h3c2) we obtain

L = 4π

(
2GM

c2

)2 (
2π5

15

)(
k4

h3c2

)(
hc3

16π2kGM

)4

=
32

15(16)4π2

hc6

G2M2

=
hc6

30720π2G2M2
=

A

M2
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For M = 1015 g the temperature and luminosity are

T = 1.23× 1011 K L =
hc6

30720π2G2M2
= 3.6× 1015 erg/s

According to Wien’s Law, this corresponds to a blackbody that peaks at

λmax = 0.29 cm K/T = 2.4× 10−12 cm

E = hc/λmax = 9.93× 10−12 J

≈ 62 MeV

well into the γ-ray range.

(b) Show that Hawking radiation leads to a decrease in the mass of black holes at a rate

dM

dt
= − A

c2M2

where A is a constant. Compute the value of A. Then use this expression to derive a formula for
the lifetime of a black hole with initial mass M0.

Solution: The rest energy of the black hole is E = Mc2. As it radiates energy its rest energy
decreases at an equal but opposite rate:

L = −dE

dt
A

M2
= −c2

dM

dt
dM

dt
= − A

c2M2

where A = hc6/(30720π2G2) was estimated in part (a). To find the lifetime we separate
variables and integrate: ∫ τ

0

dt = −c2

A

∫ 0

M0

M2 dM

τ =
c2

A

M3
0

3
=

10240π2G2

hc4
M3

0

(c) Calculate the mass of a black hole with a lifetime of 1.4 × 1010 yr. As we will see, the Universe is
about this old; thus any remaining primordial black holes created in the Big Bang must be heavier
than the mass you calculate, assuming they have not accreted more material.

Solution: From part (b),

M0 =

(
hc4τ

10240π2G2

)1/3

= 1.74× 1014 g

This is about 10% of the mass of a large mountain like Everest; astronomically, small asteroids
a few hundred meters in diameter have similar masses.
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6. Time above the horizon

(a) Using Python, plot the amount of time (in hours) spent above the horizon each day as a function
of declination (in degrees) for observations made at latitudes of +43◦ (Rochester) and +31◦ (Kitt
Peak, Arizona). (Note: You must submit both your code and your plot to receive full credit.)

Solution: First, get a formula for that time. For an object on the horizon, ZA = 90◦, so
cosZA = 0:

cosZA = cosHAh cos δ cosλ+ sin δ sinλ

0 =

HAh = ± cos−1

(
− sin δ sinλ

cos δ cosλ

)
Note that cos−1 is double-valued, because cosx = cos(−x). So the object rises when

HAh− = − cos−1

(
− sin δ sinλ

cos δ cosλ

)
and sets when

HAh+ = +cos−1

(
− sin δ sinλ

cos δ cosλ

)
taking HA hours to rise to the meridian and the same time to set. The total time in hours
above the horizon is

∆t = HAh+ −HAh−

= 2 cos−1

(
− sin δ sinλ

cos δ cosλ

)
This is what we need to plot. We can put our latitudes and declinations in degrees, but note
that we need an answer in hours, for which we multiply an answer in degrees by 24

360 . We
also note that most plotting programs (including python) expect their angular inputs to be in
radians, not degrees. The results (calculated in python) are shown below. Note that the curves
cross at zero declination and twelve hours.
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You will note while you plot that some of the declination values result in angles with cosines
greater than 1 or less than -1:

− sin δ sinλ

cos δ cosλ

{
< −1 → δ > tan−1(cotλ)

> 1 → δ < tan−1(− cotλ)

From the shape of the rest of the curve, we can guess what this means. The first of these cases
describes objects so far north in the sky that they never set; such objects are called circumpolar.
The latter describes objects lying so far south that they never rise.

(b) Suppose that you want to go observing in Rochester “tonight” (February 24), and take pictures of
M1 (the Crab Nebula) and M8 (the Lagoon Nebula). Look up the coordinates of these objects, and
the sidereal time at midnight “tonight,” and estimate when each of these objects rises and sets. Is
this a good time of year to observe M1 and M8? (Note: You must show your work, and few-minute
accuracy will suffice.)

Solution: The coordinates of these two objects are:

αM1 = 05h34m31.97s = 5.58h δM1 = +22◦00′52.1′′ = 22.01◦

αM8 = 18h03m18.06s = 18.06h δM8 = −24◦23.2′ = −24.39◦

From the sidereal time calculator that we used in recitation, we get

LST0 = 10h10m52s = 10.18h

for Rochester (longitude 77.6◦W, latitude +43◦). Thus, M1 reaches the meridian

5.58h − 10.18h = −4.61h

before midnight, so within a few minutes of 7:24pm. M8 transits at

18.06h − 10.18h = 7.88h

or 7:53am. Now, according to

∆t = 2 cos−1

(
− sin δ sinλ

cos δ cosλ

)
M1 stays above Rochester’s horizon for 14.95 hours, ±7.48 hours from the time that it transits.
M8 stays up for 8.67 hours, ±4.33 hours from transit. Therefore, M1 rises at

−4.61h − 7.48h = −12.08h = 11 : 55 am

and sets at
−4.61h + 7.48h = 2.87h = 2 : 52 am

M8 rises at
7.88h − 4.33h = 3.55h = 3 : 32 am

and sets at
7.88h + 4.33h = 12.21h = 12 : 12 pm

So we get about half a night for both M1 and M8, considering the times of sunset and sunrise
(5:54pm, 6:53am). It is a decent time of year to observe both of these objects.

You can check this with TheSkyX or Stellarium, both of which do a very precise calculation:
indeed, all of our results come within a couple of minutes.
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