
Astronomy 142: Problem Set 6 Due Tuesday, March 26 at the beginning of lecture

1. A certain star has a measured V magnitude equal to 13.54 and a measured B magnitude of 14.41. A U
magnitude is measured that leads to a B-V color excess of E(B − V ) = 0.25.

(a) Calculate the visual extinction AV toward the star, the star’s extinction-corrected V magnitude
and the extinction-corrected B-V color index, and the extinction-corrected apparent bolometric
magnitude and effective temperature of the star. Bolometric corrections and effective temperatures
can be found in Table 1.

(B-V)0 Te BC (B-V)0 Te BC

-0.35 40000 -4.5 0.5 6320 -0.04
-0.31 31900 -3.34 0.53 6200 -0.05
-0.3 30000 -3.17 0.6 5920 -0.06
-0.26 24200 -2.5 0.64 5780 -0.07
-0.24 22100 -2.23 0.68 5610 -0.1
-0.2 18800 -1.77 0.72 5490 -0.15
-0.16 16400 -1.39 0.81 5240 -0.19
-0.14 15400 -1.21 0.92 4780 -0.25
-0.12 14500 -1.04 0.98 4590 -0.35
-0.09 13400 -0.85 1.15 4410 -0.65
-0.06 12400 -0.66 1.3 4160 -0.9
0 10800 -0.4 1.41 3920 -1.2
0.03 10200 -0.32 1.48 3680 -1.48
0.06 9730 -0.25 1.52 3500 -1.76
0.09 9260 -0.2 1.55 3360 -2.03
0.15 8620 -0.15 1.56 3230 -2.31
0.2 8190 -0.12 1.61 3120 -2.62
0.33 7240 -0.08 1.73 3050 -3.21
0.38 6930 -0.06 1.8 2940 -3.46
0.45 6540 -0.04 1.91 2640 -4.1
0.47 6450 -0.04

Table 1: Color index, effective temperatures, and bolometric correction for main-sequence stars.

Solution: For dark diffuse clouds, recall from lecture that

R =
AV

E(B − V )
= 3.06 =⇒ AV = 3.06E(B − V ) = (3.06)(0.25) = 0.77

Therefore the corrected magnitude and color index are

V0 = V − 0.77 = 12.78

(B − V )0 = B − V − E(B − V ) = 0.87− 0.25 = 0.62

For this color index the bolometric correction is -0.065 and Te = 5850 K. The apparent bolo-
metric magnitude is m = V0 − 0.065 = 12.71.

(b) Suppose you had ignored extinction. Use the observed V magnitude and color index to infer a
bolometric magnitude and effective temperature for the star, and compare your results to those of
part a, assuming the star is main sequence. How large an error in luminosity is made by ignoring
extinction?
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Solution: Ignoring extinction we obtain B-V = 0.87, a bolometric correction of -0.22, a Te =
5010 K and an apparent magnitude of m = 13.32. Therefore,

∆m = mext −mno ext = 2.5 log

(
fno ext

fext

)
= 2.5 log

(
Lno ext

Lext

)
Lno ext

Lext
= 10(mext−mno ext)/2.5 = 0.57

This is almost a factor of two error in luminosity.

(c) Estimate the absolute bolometric magnitude of the star, calculate its distance, and estimate its
spectral type. You can use the data file ZAMS.txt on the course website.

Solution: With its corrected colors the star appears to be Solar type, so its class is about G2.
Therefore, taking a value M = 4.68 for its absolute bolometric magnitude, its distance r is
given by

m = M + 5 log (r/10 pc)

r = (10 pc)10(m−M)/5 = (10 pc)10(12.71−4.68)/5

r = 403.6 pc

2. Suppose a newly-formed O5 star (Te = 35000 K, R = 18R⊙) lies within a dusty shell of radius 0.2 pc.
Under the assumption that the grains are small spherical blackbodies heated by light from the central
star, calculate the temperature of the grains in the dusty shell. At what wavelength do the dust grains
shine brightest?

Solution: The star emits a total power L = 4πR2σT 4
e and does so isotropically. At the radius r of

the dust shell the stellar flux is f = L/4πr2. If the spherical grains have radius a, their geometrical
cross section is πa2, so they absorb a power

Pabs = fA =
L

4πr2
πa2

If the grain is treated as a spherical blackbody of surface area 4πa2, then it emits Lgr = 4πa2σT 2
gr.

If it is in thermal equilibrium with starlight then the input and output power (luminosity) are equal:

Pabs = Lgr

L

4πr2
πa2 =

R2σT 4
e

r2
πa2 = 4πa2σT 4

gr

Tgr = Te

(
R

2r

)1/2

= (35000 K)

(
(18)(7× 1010 cm)

(2)(0.2)(3.1× 1018 cm)

)1/2

Tgr = 35.3 K

By Wien’s Law, the blackbody with this temperature has peak brightness

λmax =
0.29 cm K

35.3 K
= 82.2 µm

which lies in the far-IR range.
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3. Suppose a spherical cloud is made of pure molecular hydrogen and has a uniform number density
106 cm−3, uniform temperature 100 K, and mass 1M⊙.

(a) Show that this cloud is gravitationally stable; that is, it could be in hydrostatic equilibrium.

Solution: The Jeans mass for this density (ρ = µn = 3.3 × 10−18 g/cm3), composition (µ =
3.347× 10−24 g for H2) and temperature is

MJ =

(
kT

µG

)3/2 (
3

4πρ

)1/2

= 4.2× 1033 g = 2.1M⊙ > Mcloud

so it will not collapse under its own weight.

(b) To what temperature would it have to cool in order to become gravitationally unstable?

Solution: If the Jeans mass were less than or equal to the cloud mass then it would be unstable,
so we find the critical temperature from the inequality

MJ =

(
kT

µG

)3/2 (
3

4πρ

)1/2

≤ 1M⊙

T ≤
(
4πG3µ4nM2

3k3

)1/3

= 60.6 K

(c) Suppose the cloud radiates like a blackbody and stays uniform in temperature and constant in size
as it does so. How long, in hours, will it last before it becomes gravitationally unstable?

Hint : Recall that the luminosity of a spherical blackbody with radius R is L = 4πR2σT 4 and
that the thermal energy of N atoms at temperature T is E = 3/2 NkT . Note that the factor in
the thermal energy expression is actually 5/2 for a gas of diatomic molecules like hydrogen if the
temperature is high enough (but 100 K is not high enough).

Solution: Since

E =
3

2
NkT =

3

2

M

µ
kT L = −dE

dt

we can derive, separate, and integrate the following differential equation:

dE

dt
=

3

2

M

µ
k
dT

dt
= −L = −4πR2σT 4

− 3kM

8πR2σµT 4

dT

dt
= 1

− 3kM

8πR2σµ

∫ T1

T0

dT

T 4
=

∫ t1

t0

dt

− 3kM

8πR2σµ

[
− 1

3T 3

]T1

T0

= t1 − t0 = ∆t

∆t =
kM

8πR2σµ

(
1

T 3
1

− 1

T 3
0

)
Since T0 = 100 K and T1 = 61.7 K and the cloud radius is

R = (3M/4πρ)1/3 = 5.2× 1016 cm
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we obtain
∆t = 7.54× 104 sec ≈ 20.9 hr

This is a short time on the scale of the dimensions and internal velocities of such a cloud, which
shows that radiative cooling is efficient enough that a molecular-cloud fragment can find itself
suddenly unstable.

4. Extinction toward open clusters: On the course website, you will find photometric data files on
the zero-age main sequence (ZAMS) derived from observations of nearby stars, and six additional open
clusters.

(a) Choose two of the clusters, and for each cluster, determine the color excesses E(B−V ) and E(U−B)
by plotting their U−B colors as functions of their B−V colors on the same plot as U−B vs. B−V
for the ZAMS, and shifting the cluster data until they line up best with the ZAMS. Estimate the
uncertainties in both quantities by the range of each color excess over which the fit to the ZAMS is
good.

Solution: See the left panel in the figures at the end of these solutions and the Python notebook
posted on the course website. Note that none of the corrections come out as nicely as the Hyades,
which you did in recitation; these clusters are much more distant and their members are much
fainter, so the magnitude measurements are fewer and contain larger uncertainties. The range
of E(B−V ) over which the fits are about right is roughly ±0.03 to ±0.05 magnitudes. Results
are listed in the table below.

(b) Measurements on large collections of open clusters typically give E(U −B)/E(B − V ) = 0.72, but
with substantial scatter about this value that is partly due to observational uncertainties and partly
due to real differences between the extinction in various directions. How does this value compare
with your results? Are they the same within uncertainties or does it look as if the extinction toward
your cluster really has a different ratio of color excesses?

Solution: Five of the clusters are indistinguishable from E(U − B)/E(B − V ) = 0.72. Only
NGC 7790 came out significantly different, with E(U − B)/E(B − V ) = 0.42 giving the best
fit. Thus, we would not be surprised for this cluster to demand a value of R different from 3.06.

5. Measuring distances to open clusters by main-sequence fitting:

(a) For each of the two clusters you used in the previous problem, calculate extinction-corrected B−V
colors and V magnitudes for the stellar members, (B − V )0, and mV 0 = V0. Plot (with Python or
similar) V0 as a function of (B − V )0, the extinction-corrected H-R diagrams.

Solution: Computed by

(B − V )0 = B − V − E(B − V )

V0 = V −R · E(B − V )

Details are available in HW6.ipynb. See also the table below and the center panels of the below
figures.

(b) The difference along the V axis between the main sequences of your clusters and the ZAMS are the
same as the distance moduli of your clusters. Plot (again, using Python or something similar) each
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extinction-corrected HR diagram along with that of the ZAMS and shift the cluster’s points until
the cluster’s main sequence and the ZAMS line up well. What is the distance modulus (magnitudes)
and distance (in parsecs) of each cluster?

Solution: Computed from
DM = m−M = V0 −MV

where the values of MV are those on the ZAMS curve. Details are in HW6.ipynb. See also the
table below and the rightmost panels of the below figures. To compute the distance in parsecs:

DM = 5 log (r/10 pc)

r = 10DM/5+1 pc

Solution:

Tabulated values and plots for the previous two problems:

Cluster E(B − V ) E(U −B) Av V0 −Mv r [pc]
NGC 129 0.55 0.4 1.7 11.1 1660
NGC 1647 0.37 0.27 1.1 8.7 550
NGC 5662 0.31 0.22 0.9 9.2 692
NGC 6067 0.38 0.27 1.2 10.8 1445
NGC 6087 0.19 0.13 0.6 9.8 912
NGC 7790 0.53 0.22 1.6 12.4 3020
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6. Disks generally decrease strongly in density from the inside out. Eventually they cease to be self-
gravitating, changing their structure. Consider the outer reaches of a galactic disk at a distance at
which the gravitational forces are dominated by the central part of the galaxy (mass M), which you can
assume to be spherical. The disk is still supported centrifugally in the radial direction and hydrostatically
in the vertical direction, but now the weight of a test particle is determined by the vertical component
of the force from the galactic center (like the situation of a protoplanetary disk around a young star).

(a) Under the assumptions r ≫ z and that the vertical component of random stellar velocities vz is
independent of z, solve the equation of hydrostatic equilibrium at radius r for the mass density ρ
as a function of z. What is the density scale height?

Solution:

The geometry is shown below:
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θ

M

GM
r2+z2

GM
r2+z2 cos θ

r

z

dP

dz
= −ρgz

v2z
dρ

dz
= −ρ

G

z2 + r2
cos θ = −ρ

G

z2 + r2
z√

z2 + r2
≈ −ρ

GM

r3
z for z ≪ r

This can be separated and integrated from the mid-plane at z = 0, where the density is ρ0, up
to vertical height z:

dP

dz
= −ρ

GM

r3
z∫ ρ(z)

ρ0

dρ′

ρ′
= −GM

v2zr
3

∫ z

0

z′ dz′

ln ρ(z)− ln ρ0 =
GM

2v2zr
3
z2 =

z2

H2
H =

√
2v2zr

3

GM

ρ(z) = ρ0e
−(z/H)2

Vertically the disk follows a Gaussian functional form.

The scale height is H =
√
2v2zr

3/GM .

(b) Under the assumption that the vertical component of random stellar velocities vz is also independent
of r, show that the disk is flared, i.e., the scale height increases with increasing radius.

Solution:

If vz does not vary with r then H ∝ r3/2. So the disk is flared because H increases sharply
with r.

(c) Look online for an image of the galaxy NGC 3628. Might this be a good example of a flared galactic
disk? Why or why not? Discuss briefly.

Solution:

This picture of NGC 3628, the “Hamburger Galaxy,” comes from APOD (Sept. 5, 2018).
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The disk is flared, but from the heavy dust obscuration and bright starlight it looks as if there
is still a lot of mass out at the edge. So the conditions might not be what we have been
considering when solving the problem. The disk could be flared for other reasons, such as the
perturbations produced by the nearby galaxies M65 and M66.
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