
Astronomy 142: Problem Set 6 Due Tuesday, March 25 at the beginning of lecture

1. Two oboe players can hear each other; one hovers just outside a black hole’s horizon at r = 1.01Rsch

and the other is at rest far away from the black hole. (This is the George Lucas version of outer space.)
Each plays an A4 note (f = 440 Hz). What is the frequency of the note each hears played by the other?

Solution: The frequency f = 440 Hz corresponds to a period 1/f = 2.27 ms. If that is the note
played by the oboist near the black hole such that ∆τ = 1/f then the distant observer hears

∆t =
∆τ√

1− 2GM/rc2
=

2.27 ms√
1− 1/1.01

= 22.8 ms f =
1

∆t
= 43.9 Hz

This is an F more than two octaves below middle C and barely within the range of human hearing.

If it is the note played by the “inertial” oboist (∆t = 1/f) then the oboist by the black hole hears

∆τ = ∆t

√
1− 2GM

rc2
= 2.27 ms

√
1− 1

1.01
= 0.226 ms f =

1

∆τ
= 4.42 kHz

This is a C# more than four octaves above middle C, but still in the human range of hearing.

2. Stable black hole orbits:

(a) Derive an expression for the orbital frequency of the innermost stable circular orbit (ISCO) around
a black hole fISCO in terms of the black hole’s mass.

Solution: The ISCO has a coordinate radius of rISCO = 3RSch = 6GM/c2 = 53.2 km. The
circumference of circular orbits and the orbital velocity are the same in all reference frames, so

f =
1

P
=

vϕ
2πr

=

√
GM/r

2πr
=

1

2π

√
GM

r3

fISCO =
1

2π

√
GM

r3ISCO

=
1

2π

√
GM

(
c2

6GM

)3

=
c3

12πG
√
6

1

M

(b) The black hole in GRO J1655-40 is observed to have a mass of M = 6.0M⊙ and emits X-rays
which exhibit quasiperiodic oscillations at a frequency of 450 Hz. It is thought that this frequency
indicates material in orbit. If the black hole were not spinning, how far (radially, in cm) from the
ISCO would this orbit be, in the view of a distant observer?

Solution: Invert the previous result for f to estimate the coordinate radius r of the orbit
corresponding to 450 Hz:

r =

(
GM

4π2f2

)1/3

= 4.64× 106 cm = 46.4 km

Therefore, the radial distance from the ISCO orbit is

∆r = 3RSch − r =
6GM

c2
−
(

GM

4π2f2

)1/3

= 6.8× 105 cm = 6.8 km
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(c) If the black hole were not spinning, how far (radially, in cm) would this orbit be from the ISCO in
the view of an observer in the vicinity of these orbits? Presume the local observer to be capable of
measuring the distance instantaneously.

Solution: Inside the gravitational well we have to account for curvature effects. Using the
integral from Recitation 4 we have

∆L =

∫ rISCO

r

dr′√
1−RSch/r′

= RSch

∫ rISCO/RSch

r/RSch

du√
1− 1/u

= RSch

[
1

2
ln

(
1/
√

1− 1/u+ 1

1/
√

1− 1/u− 1

)
+
√
u(u+ 1)

]rISCO/RSch

r/RSch

= RSch

[
1

2
ln

(
1 +

√
1− 1/u

1−
√
1− 1/u

)
+
√
u(u+ 1)

]rISCO/RSch

r/RSch

= 8.4× 105 cm = 8.4 km

3. The pressure and temperature at the center of the Sun are Pc = 2.1 × 1017 dyne cm−2 and Tc =
15.7×106 K. What are the central pressure and temperature of a 1.5M⊙ star with the same composition
as the Sun?

(Hint: Empirical measurements of eclipsing binaries show that stellar mass and radius are close to
linearly proportional with coefficient 1 in solar units. Use this to infer the missing piece of information
needed to solve this problem.)

Solution: According to the empirical mass-radius relation for the components of eclipsing binaries,
mass and radius are close to linearly proportional with coefficient 1 in solar units. Therefore the
radius of a 1.5M⊙ star is about 1.5R⊙. Using the scaling relations developed in class, we get

Pc = 2.1× 1017(1.5)2(1.5)−4 dyne cm−2 = 9.3× 1016 dyne cm−2

Tc = 15.7× 106(1.5)

(
1

1.5

)
(1) K = 15.7× 106 K

4. A helium star: Consider stars with composition of a type called extreme “Population II”: objects made
only of hydrogen (fraction X by mass) and helium (fraction 1−X by mass), with negligible quantities
of everything else.

(a) Starting with the definition µ = ρ
n for the average particle mass, where ρ is the mass density and

n is the number of particles (electrons, protons, and helium nuclei) per unit volume, show that the
average mass in an extreme Population II star is

µ =
4mp

5X + 3

Hint : Recall that each hydrogen atom contributes two particles when ionized, and each helium
atom contributes three.
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Solution: We know that in terms of the number density of H and He, ρ = µn = mpnH+4mpnHe

and n = 2nH + 3nHe, so

µ =
ρ

n
=

nH + 4nHe

2nH + 3nHe
mp

We can eliminate nHe from this expression in favor of the hydrogen mass fraction X by noting
that

mpnH = Xρ 4mpnHe = (1−X)ρ

Dividing the two expressions gives

nHe =
nH(1−X)

4X

which we substitute back into the expression for µ:

µ =
nH + 4nH(1−X)/4X

2nH + 3nH(1−X)/4X
mp =

4X + 4(1−X)

8X + 3(1−X)
mp =

4mp

5X + 3

(b) Show that the luminosity in a star that is supported by ideal gas pressure scales with average
particle mass, total mass, and internal temperature as

L ∝ µ7M5T 0.5

Solution: Since the star is supported by ideal gas pressure,

P = nkT =
ρ

µ
kT

T =
Pµ

ρk
∝ GM2R−4

MR−3

µ

k
∝ µM

R

The luminosity in the center of the star was given in class as

L ∝ R3T 4

R2/ℓ
∝ ℓRT 4

In low-mass stars ℓ ∝ T 3.5ρ−2. Thus

L ∝ RT 7.5

ρ2
∝ R

(
µM

R

)7.5
R6

M2
∝ µ7.5M5.5R−0.5

Using T ∝ µM/R one more time to eliminate R gives

L ∝ µ7M5T 0.5

(c) A 1M⊙ Population II star with X = 0.75 is quite similar to the Sun; it has luminosity L⊙ and
radius R⊙. Use this information and the result of part b to estimate the luminosity, radius, and
surface temperature of a 1M⊙ pure helium star (X = 0).

Solution: The standard 1M⊙ star has X = 0.75 so in its center the average particle mass is
about µ = 0.59mp. In the He star with X = 0, µ = 4mp/3. Therefore, in terms of the normal
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star, the luminosity of the 1M⊙ He star is

LHe =

(
µ7M5T 0.5

)
He

(µ7M5T 0.5)X=0.75

L(X = 0.75)

=

(
4mp/3

0.59mp

)7(
108 K

1.57× 107 K

)0.5

L⊙

= 760L⊙

To get the radius we use T ∝ µM/R to express the radius in terms of the normal star:

RHe = RH

(
(µM/T )He

(µM/T )X=0.75

)
= R⊙

4mp/3

0.59mp

1.57× 107 K

108 K

= 0.36R⊙

The effective temperature is given by the usual expression L = 4πR2σT 4, so

Te ∝
(

L

R2

)1/4

Te(He) =

(
LHe

R2
He

R2
X=0.75

LX=0.75

)1/4

Te(X = 0.75)

=

(
760

0.362

)1/4

5800 K

= 51000 K

As shown in the figure below, this places the He star well to the left of and below the main
sequence, as determined using eclipsing binary stars.
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5. Radiation pressure and hydrostatic equilibrium in giant stars: Recall that the momentum of a
photon is p = E

c .

(a) Derive an expression for the radiation pressure, defined as the outward momentum per unit time per
unit area, delivered to the outer layers of a star with luminosity L, assuming that all the photons
from the interior are absorbed in those layers.

Solution: By outer layers we mean r = R:

Prad =
F

A

=
1

4πR2

dp

dt

=
1

4πR2

1

c

dE

dt

Prad =
L

4πR2c

(b) Calculate the total radiation force on the outer layers of a star with L = L⊙. How does the
radially outward force from radiation compare to the force of gravity on the layers if the layers lie
at R = 100R⊙, have mass m = 10−6M⊙, and the rest of the star has a mass M = 1M⊙?

Solution: F = PA so

Frad =
L

c
=

3.827× 1033 erg/s

3× 1010 cm/s

Frad = 1.3× 1023 dynes

Fgrav = −GMm

R2
= − (6.674× 10−8 dyn cm2 g−2)(1.989× 1033 g)2(1× 10−6)

((100)(6.96× 1010 cm))2

= −5.5× 1027 dynes

So even with the high luminosity radiation pressure is several orders of magnitude too small to
hold up the star. Gas pressure holds up the star, and radiation pressure is too small to blow
off the outer layers.

(c) Repeat part b for a typical AGB star: L = 7000L⊙, Te = 3000 K, same masses. (Hint : You will
need to first work out the star’s radius.)

Solution: First solve for the radius of the star:

L = 4πR2σT 4
e

R =

√
L

4πσT 4
e

=

√
(7000)(3.827× 1033 erg/s)

4π(5.6704× 10−5 erg s−1 cm−2 K−4)(3000 K)4

R = 2.2× 1013 cm = 310R⊙
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Thus

Frad =
L

c
=

(7000)(3.827× 1033 erg/s)

3× 1010 cm/s

Frad = 8.9× 1026 dynes

Fgrav = −GMm

R2
= − (6.674× 10−8 dyn cm2 g−2)(1.989× 1033 g)2(1× 10−6)

(2.2× 1013)2

Fgrav = −5.6× 1026 dynes

This time radiation wins out and the outer layers will be propelled further outward.

6. A certain star has a measured V magnitude equal to 13.54 and a measured B magnitude of 14.41. A U
magnitude is measured that leads to a B-V color excess of E(B − V ) = 0.25.

(a) Calculate the visual extinction AV toward the star, the star’s extinction-corrected V magnitude
and the extinction-corrected B-V color index, and the extinction-corrected apparent bolometric
magnitude and effective temperature of the star. Bolometric corrections and effective temperatures
can be found in Table 1.

(B-V)0 Te BC (B-V)0 Te BC

-0.35 40000 -4.5 0.5 6320 -0.04
-0.31 31900 -3.34 0.53 6200 -0.05
-0.3 30000 -3.17 0.6 5920 -0.06
-0.26 24200 -2.5 0.64 5780 -0.07
-0.24 22100 -2.23 0.68 5610 -0.1
-0.2 18800 -1.77 0.72 5490 -0.15
-0.16 16400 -1.39 0.81 5240 -0.19
-0.14 15400 -1.21 0.92 4780 -0.25
-0.12 14500 -1.04 0.98 4590 -0.35
-0.09 13400 -0.85 1.15 4410 -0.65
-0.06 12400 -0.66 1.3 4160 -0.9
0 10800 -0.4 1.41 3920 -1.2
0.03 10200 -0.32 1.48 3680 -1.48
0.06 9730 -0.25 1.52 3500 -1.76
0.09 9260 -0.2 1.55 3360 -2.03
0.15 8620 -0.15 1.56 3230 -2.31
0.2 8190 -0.12 1.61 3120 -2.62
0.33 7240 -0.08 1.73 3050 -3.21
0.38 6930 -0.06 1.8 2940 -3.46
0.45 6540 -0.04 1.91 2640 -4.1
0.47 6450 -0.04

Table 1: Color index, effective temperatures, and bolometric correction for main-sequence stars.

Solution: For dark diffuse clouds, recall from lecture that

R =
AV

E(B − V )
= 3.06 =⇒ AV = 3.06E(B − V ) = (3.06)(0.25) = 0.77
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Therefore the corrected magnitude and color index are

V0 = V − 0.77 = 12.78

(B − V )0 = B − V − E(B − V ) = 0.87− 0.25 = 0.62

For this color index the bolometric correction is -0.065 and Te = 5850 K. The apparent bolo-
metric magnitude is m = V0 − 0.065 = 12.71.

(b) Suppose you had ignored extinction. Use the observed V magnitude and color index to infer a
bolometric magnitude and effective temperature for the star, and compare your results to those of
part a, assuming the star is main sequence. How large an error in luminosity is made by ignoring
extinction?

Solution: Ignoring extinction we obtain B-V = 0.87, a bolometric correction of -0.22, a Te =
5010 K and an apparent magnitude of m = 13.32. Therefore,

∆m = mext −mno ext = 2.5 log

(
fno ext

fext

)
= 2.5 log

(
Lno ext

Lext

)
Lno ext

Lext
= 10(mext−mno ext)/2.5 = 0.57

This is almost a factor of two error in luminosity.

(c) Estimate the absolute bolometric magnitude of the star, calculate its distance, and estimate its
spectral type. You can use the data file ZAMS.txt on the course website.

Solution: With its corrected colors the star appears to be Solar type, so its class is about G2.
Therefore, taking a value M = 4.68 for its absolute bolometric magnitude, its distance r is
given by

m = M + 5 log (r/10 pc)

r = (10 pc)10(m−M)/5 = (10 pc)10(12.71−4.68)/5

r = 403.6 pc

7. Suppose a newly-formed O5 star (Te = 35000 K, R = 18R⊙) lies within a dusty shell of radius 0.2 pc.
Under the assumption that the grains are small spherical blackbodies heated by light from the central
star, calculate the temperature of the grains in the dusty shell. At what wavelength do the dust grains
shine brightest?

Solution: The star emits a total power L = 4πR2σT 4
e and does so isotropically. At the radius r of

the dust shell the stellar flux is f = L/4πr2. If the spherical grains have radius a, their geometrical
cross section is πa2, so they absorb a power

Pabs = fA =
L

4πr2
πa2

If the grain is treated as a spherical blackbody of surface area 4πa2, then it emits Lgr = 4πa2σT 2
gr.
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If it is in thermal equilibrium with starlight then the input and output power (luminosity) are equal:

Pabs = Lgr

L

4πr2
πa2 =

R2σT 4
e

r2
πa2 = 4πa2σT 4

gr

Tgr = Te

(
R

2r

)1/2

= (35000 K)

(
(18)(7× 1010 cm)

(2)(0.2)(3.1× 1018 cm)

)1/2

Tgr = 35.3 K

By Wien’s Law, the blackbody with this temperature has peak brightness

λmax =
0.29 cm K

35.3 K
= 82.2 µm

which lies in the far-IR range.

8. Suppose a spherical cloud is made of pure molecular hydrogen and has a uniform number density
106 cm−3, uniform temperature 100 K, and mass 1M⊙.

(a) Show that this cloud is gravitationally stable; that is, it could be in hydrostatic equilibrium.

Solution: The Jeans mass for this density (ρ = µn = 3.3 × 10−18 g/cm3), composition (µ =
3.347× 10−24 g for H2) and temperature is

MJ =

(
kT

µG

)3/2(
3

4πρ

)1/2

= 4.2× 1033 g = 2.1M⊙ > Mcloud

so it will not collapse under its own weight.

(b) To what temperature would it have to cool in order to become gravitationally unstable?

Solution: If the Jeans mass were less than or equal to the cloud mass then it would be unstable,
so we find the critical temperature from the inequality

MJ =

(
kT

µG

)3/2(
3

4πρ

)1/2

≤ 1M⊙

T ≤
(
4πG3µ4nM2

3k3

)1/3

= 60.6 K

(c) Suppose the cloud radiates like a blackbody and stays uniform in temperature and constant in size
as it does so. How long, in hours, will it last before it becomes gravitationally unstable?

Hint : Recall that the luminosity of a spherical blackbody with radius R is L = 4πR2σT 4 and
that the thermal energy of N atoms at temperature T is E = 3/2 NkT . Note that the factor in
the thermal energy expression is actually 5/2 for a gas of diatomic molecules like hydrogen if the
temperature is high enough (but 100 K is not high enough).
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Solution: Since

E =
3

2
NkT =

3

2

M

µ
kT L = −dE

dt

we can derive, separate, and integrate the following differential equation:

dE

dt
=

3

2

M

µ
k
dT

dt
= −L = −4πR2σT 4

− 3kM

8πR2σµT 4

dT

dt
= 1

− 3kM

8πR2σµ

∫ T1

T0

dT

T 4
=

∫ t1

t0

dt

− 3kM

8πR2σµ

[
− 1

3T 3

]T1

T0

= t1 − t0 = ∆t

∆t =
kM

8πR2σµ

(
1

T 3
1

− 1

T 3
0

)
Since T0 = 100 K and T1 = 61.7 K and the cloud radius is

R = (3M/4πρ)1/3 = 5.2× 1016 cm

we obtain
∆t = 7.54× 104 sec ≈ 20.9 hr

This is a short time on the scale of the dimensions and internal velocities of such a cloud, which
shows that radiative cooling is efficient enough that a molecular-cloud fragment can find itself
suddenly unstable.

9. Extinction toward open clusters: On the course website, you will find photometric data files on
the zero-age main sequence (ZAMS) derived from observations of nearby stars, and six additional open
clusters.

(a) Choose two of the clusters, and for each cluster, determine the color excesses E(B−V ) and E(U−B)
by plotting their U−B colors as functions of their B−V colors on the same plot as U−B vs. B−V
for the ZAMS, and shifting the cluster data until they line up best with the ZAMS. Estimate the
uncertainties in both quantities by the range of each color excess over which the fit to the ZAMS is
good.

Solution: See the left panel in the figures at the end of these solutions and the Python notebook
posted on the course website. Note that none of the corrections come out as nicely as the Hyades,
which you did in recitation; these clusters are much more distant and their members are much
fainter, so the magnitude measurements are fewer and contain larger uncertainties. The range
of E(B−V ) over which the fits are about right is roughly ±0.03 to ±0.05 magnitudes. Results
are listed in the table below.

(b) Measurements on large collections of open clusters typically give E(U −B)/E(B − V ) = 0.72, but
with substantial scatter about this value that is partly due to observational uncertainties and partly
due to real differences between the extinction in various directions. How does this value compare
with your results? Are they the same within uncertainties or does it look as if the extinction toward
your cluster really has a different ratio of color excesses?
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Solution: Five of the clusters are indistinguishable from E(U − B)/E(B − V ) = 0.72. Only
NGC 7790 came out significantly different, with E(U − B)/E(B − V ) = 0.42 giving the best
fit. Thus, we would not be surprised for this cluster to demand a value of R different from 3.06.

10. Measuring distances to open clusters by main-sequence fitting:

(a) For each of the two clusters you used in the previous problem, calculate extinction-corrected B−V
colors and V magnitudes for the stellar members, (B − V )0, and mV 0 = V0. Plot (with Python or
similar) V0 as a function of (B − V )0, the extinction-corrected H-R diagrams.

Solution: Computed by

(B − V )0 = B − V − E(B − V )

V0 = V −R · E(B − V )

Details are available in HW6.ipynb. See also the table below and the center panels of the below
figures.

(b) The difference along the V axis between the main sequences of your clusters and the ZAMS are the
same as the distance moduli of your clusters. Plot (again, using Python or something similar) each
extinction-corrected HR diagram along with that of the ZAMS and shift the cluster’s points until
the cluster’s main sequence and the ZAMS line up well. What is the distance modulus (magnitudes)
and distance (in parsecs) of each cluster?

Solution: Computed from
DM = m−M = V0 −MV

where the values of MV are those on the ZAMS curve. Details are in HW6.ipynb. See also the
table below and the rightmost panels of the below figures. To compute the distance in parsecs:

DM = 5 log (r/10 pc)

r = 10DM/5+1 pc

Solution:

Tabulated values and plots for the previous two problems:

Cluster E(B − V ) E(U −B) Av V0 −Mv r [pc]
NGC 129 0.55 0.4 1.7 11.1 1660
NGC 1647 0.37 0.27 1.1 8.7 550
NGC 5662 0.31 0.22 0.9 9.2 692
NGC 6067 0.38 0.27 1.2 10.8 1445
NGC 6087 0.19 0.13 0.6 9.8 912
NGC 7790 0.53 0.22 1.6 12.4 3020
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