1. Cepheids in M31

(a) Suppose you found a classical Cepheid with a period of 30 days in M31, and you measure its average V magnitude to be 18.6. Calculate its absolute magnitude and estimate the distance to M31.

Solution: Use the relations given in lecture:

$$
\begin{aligned}
& \overline{M_{V}}=-2.77 \log \Pi-1.69=-5.78 \\
& \overline{m_{V}}-\overline{M_{V}}=5 \log (d / 10 \mathrm{pc}) \\
& d=(10 \mathrm{pc}) 10^{\left(\overline{m_{V}}-\overline{M_{V}}\right) / 5} \\
&=0.752 \mathrm{Mpc}
\end{aligned}
$$

(b) W Virginis stars (Population II Cepheids) are a factor of four less luminous than classical Cepheids for the same pulsation periods. By what factor would a derived distance to M31 be in error if M31 Cepheids of one type were mistakenly identified as the other? (This mistake was unwittingly made by Hubble before a distinction between the two types was discovered.)

Solution: The flux measured is the same in either case, but the above equations used to turn the flux and luminosity into a distance are equivalent to

$$
f=\frac{L}{4 \pi r^{2}}=\frac{L^{\prime}}{4 \pi r^{\prime 2}},
$$

where we can take L to be the Cepheid I luminosity and L^{\prime} the W Virginis luminosity (which is a factor of 4 smaller). Thus, the ratio between the distance r^{\prime} inferred under the assumption that the star is a Pop. II Cepheid and the distance r if it were a Pop. I Cepheid is

$$
\frac{r^{\prime}}{r}=\sqrt{\frac{L^{\prime}}{L}}=\frac{1}{2}
$$

i.e., the distance would be underestimated by a factor of 2 .
2. Suppose that a quasar is as bright as a solar-type star (they share similar apparent magnitudes) but the quasar is a factor of a million further away than the star. What is the quasar's luminosity?

Solution: The luminosity ratio is

$$
\frac{L^{\prime}}{L}=\left(\frac{r^{\prime}}{r}\right)^{2}
$$

and taking $L=L_{\odot}$ and $r^{\prime}=10^{6} r$, we get $L^{\prime}=10^{12} L_{\odot}$ for the quasar. That is quite a large luminosity - our Galaxy only puts out a total of about $2 \times 10^{10} L_{\odot}$.

