
Astronomy 142: Problem Set 9 Due April 15 at the beginning of lecture

1. Quasar luminosities

(a) Suppose that a quasar is as bright as a solar-type star (they share similar apparent magnitudes)
but the quasar is a factor of a million further away than the star. What is the quasar’s luminosity?

Solution: The luminosity ratio is

L′

L
=

(
r′

r

)2

and taking L = L⊙ and r′ = 106r, we get L′ = 1012L⊙ for the quasar. That is quite a large
luminosity — our Galaxy only puts out a total of about 2× 1010L⊙.

(b) A certain quasar has an average luminosity of 3.3× 1013L⊙ and an X-ray brightness that can vary
substantially in as little as three hours. Assume that the quasar’s black-hole engine is accreting at
the Eddington rate and show that these two findings are consistent with each other.

Solution: If the central BH is producing luminosity at the Eddington limit, then its mass is

M =
2e4L

3Gmpm2
ec

5
= 2× 1042 g = 109M⊙

Note that in CGS, the units of e are statcoulombs, or

e = 4.803× 10−10 cm3/2 g1/2 s−1

It is easiest to do the problem in these units.

The Schwarzschild radius of a 109M⊙ black hole is

RSch =
2GM

c2
= 3× 1014 cm = 3× 10−4 ly = 2.8 light hours

about the same as the “variablity size” of the X-ray emitting region. This is not shocking,
since the X-rays would arise in the hottest part of the accretion disk, and that would be the
bit closest to the event horizon.

2. Mass accretion can be used to power things besides active galaxies and can use engines besides black
holes. A “junior” version of an AGN black hole is a 0.5M⊙ protostar accreting fully ionized hydrogen
gas from its surrounding disk and producing luminosity from this accretion at the Eddington rate.

(a) What is its luminosity in L⊙?

Solution:

L =
3GMmpm

2
ec

5

2e4
= 6.3× 1037 erg/s = 1.6× 104L⊙

(b) Suppose the accreted material falls freely to the star’s surface from a distance much greater than
the protostar radius of 1.5R⊙. At what rate in M⊙ yr−1 is the protostar accreting matter?

Solution: If a mass m falls from infinity to radius r = 1.5R⊙ from a mass M , its potential
energy has changed by −GMm/r and since the infalling material is effectively brought to rest
on the surface of the star, all of this energy is converted to heat. That the material is brought
to rest at the stellar surface, rather than being in orbit, means that you cannot use the virial
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theorem here. Therefore,

L =
d

dt

(
GMm

r

)
=

GM

r

dm

dt

dm

dt
=

rL

GM
= 1× 1023 g/s = 1.5× 10−3M⊙ yr−1

3. M87 has an accretion disk around its central black hole for which the rotational velocity has been
measured in HST spectra. The disk extends 20 pc from the center and exhibits Doppler velocities as
large as ±500 km/s with respect to the galaxy’s overall radial velocity.

(a) Calculate the mass of the black hole in M87 to two significant digits. Comment on the assumptions
under which you did your calculation (e.g., orbital plane viewed edge-on; note the appearance of
the galaxy and its disk in the notes) and the effect this may have on the accuracy of your answer.

Solution: If the orbit is Keplerian, the central mass can be obtained from the second law:

F =
GMm

r2
= ma =

mv2

r
=⇒ M =

rv2

G

If v = vr (i.e., the orbit is viewed edge-on), then this works out to be 1.16× 109M⊙.

Inspecting the HST and VLBI images, we see that the disk in M87 looks like it is inclined well
away from edge on. It is hard to tell by how much, so we should regard the mass we worked
out as a lower limit to the real mass. If we knew the angle θ between our line of sight and the
plane of the disk, we would divide our edge-on answer by cos θ to get the central mass.

(b) M87 is 16 Mpc away. With the mass you calculated for its central black hole, calculate the diameter
of the black hole’s event horizon (in pc) and the angle the event horizon subtends (in arcseconds).

Solution:

DS =
4GM

c2
=

4(6.674× 10−8 dyn cm2 g−2)(1.16× 109M⊙)

(3× 1010 cm/s)2

DS = 6.86× 1014 cm = 2.22× 10−4 pc

∆θ =
DS

d
=

2.22× 10−4 pc

16 Mpc

= 1.4× 10−11 rad = 2.9× 10−6 arcsec

(c) Compare this result with the diffraction-limited angular resolution ∆θ = 1.2λ/D (where D is
telescope diameter) of the Hubble Space Telescope (D = 2.4 m) at a wavelength of 400 nm. Do the
same for the VLBA (D = 8611 km) at a wavelength of 2 cm. Can we see details in images as small
as the horizon? How far away would M87 have to be for the event horizon to subtend an angle
equal to the best angular resolution?
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Solution:

HST: ∆θ = 1.2
λ

D
= 2.0× 10−7 rad = 0.041 arcsec

VLBA: ∆θ = 1.2
λ

D
= 2.8× 10−9 rad = 5.8× 10−4 arcsec

So neither HST nor VLBA has enough angular resolution to see details as small as the BH
horizon of M87. We would have to move it closer:

4GM

c2d
= 1.2

λ

D

d =
GMD

0.3c2λ
=

{
79.7 kpc (VLBA)

1.11 kpc (HST)

The first of these distances would place M87 about twice as far away as the Large Magellanic
Cloud. The second would put it inside our Galaxy.

4. The largest apparent superluminal motions seen so far in quasar jets are about 20c.

(a) What would this imply for the ejection speed v (in units of c to three significant figures) and jet
angle with the line of sight θ (in degrees) if the jet is oriented for maximum apparent superluminal
motion?

Solution: Just plug in and solve:

v⊥,apparent = v
1√

1− v2/c2
= 20c

=
20c√
401

= 0.999c

θ = arccos
(v
c

)
= 2.86◦

(b) If this ejection speed applies to 3C 273, at what angle from the jet axis (in degrees) do we view this
quasar?

Solution: We should expect two angles, one greater than and one less than 2.86◦, because we
are off the apparent superluminal motion maximum. 3C 273 has v⊥,apparent = 7c, so for the
given ejection speed of v = 20c/

√
401 the angles are determined by

v⊥,apparent =
v sin θ

1− v/c cos θ
= 7c

or, more simply,

β⊥ =
β sin θ

1− β cos θ

where β = v/c = 20/
√
401 and β⊥ = v⊥,apparent/c = 7. We solve for θ by multiplying it out,

squaring, eliminating sine and cosine terms using cos2 θ + sin2 θ = 1, and solving the resulting
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quadratic equation. This could be solved with approximations since β is very close to 1 and
β2
⊥ ≈ β2, but we will solve exactly:

β⊥ − β⊥ cos θ = β sin θ

β2
⊥ − β2

⊥β
2 cos2 θ − 2β2

⊥β cos θ = β2 sin2 θ = β2 − β2 cos2 θ

(β2
⊥ + 1)β2 cos2 θ − 2β2

⊥β cos θ + (β2
⊥ − β2) = 0

Thus,

cos θ =
2β2

⊥β ±
√
4β4

⊥β
2 − 4(β2

⊥ + 1)β2(β2
⊥ − β2)√

2(β2
⊥ + 1)β2

=
β2
⊥ ±

√
β4
⊥ − (β2

⊥ + 1)(β2
⊥ − β2)

(β2
⊥ + 1)β

=
β2
⊥ ±

√
β2
⊥β

2 + β2 − β2
⊥

(β2
⊥ + 1)β

=

{
0.999959 positive root

0.962489 negative root

for which θ = 0.52◦ or 15.7◦. The larger angle would of course lead to a larger projected length
on the sky for a given physical length, and since the jet in 3C 273 is pretty long, θ = 15.7◦

seems much more likely.
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