
Astronomy 142: Problem Set 10 Due Tuesday, April 29 at the beginning of class

1. Consider 1016 M⊙ of atomic hydrogen spread uniformly over a volume 10 Mpc in diameter and with a

velocity dispersion
√

v2 = 1000 km/s.

(a) Take the hydrogen to be an ideal monatomic gas, so that the thermal energy per molecule is
E = 3

2kBT . What is the temperature of the big hydrogen cloud?

Solution:
1

2
mHv2 =

3

2
kBT =⇒ T =

mHv2

3kB
= 4× 107 K

At this temperature the hydrogen would be ionized.

(b) What is the Jeans mass of this material in M⊙? What is the radius of a sphere with total mass
equal to the Jeans mass (which we may as well call the Jeans length)?

Solution:

From the class notes, we have

MJ =

(
kBT

mHG

)3/2 (
3

4πρ

)1/2

RJ =

(
3MJ

4πρ

)1/3

=

(
kBT

mHG

)3/2 (
R3

M

)1/2

=

(
MJR

3

M

)1/3

= 7.6× 1013M⊙ = 0.98 Mpc

These values are quite big, i.e., much larger than the typical size of one galaxy.

(c) Compare your answer from part b to typical masses and sizes of galaxies and galaxy groups. If
galaxy cluster-sized objects formed first in the early Universe, which formed next: galaxy-sized
objects or galaxy group-sized objects?

Solution:

Assuming we start with a cloud the size of the Coma cluster, it would be expected to fragment
into collapsing blobs of Jeans size (mass and radius). Those are much bigger than individual
galaxies, as shown above, but are about the right size for galaxy groups.

Thus we would expect the cluster-sized clouds to fragment first into group-sized clumps, which
then cool and fragment into galaxy-sized clumps. This is hierarchical fragmentation, in
which large scales collapse first, followed by the small scales.

2. In a few billion years, our galaxy and the Andromeda galaxy will merge. Compute the expected number
of collisions between stars when this occurs. Assume that the typical star in each galaxy is an M dwarf
with a radius of 0.5R⊙, there are N = 1011 stars in the Milky Way and 1012 stars in Andromeda, and
that the average space density of stars in the Milky Way is n = 1 pc−3, equal to that in the solar
neighborhood.

Solution:
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The collisional cross section for each star is

σ = πR2 =
π[(0.5)(6.96× 108 m)]2

(3.1× 1016 m/pc)2
= 4× 10−16 pc2

To determine the effective path through our galaxy, we want to compute the mean path length ℓ
between collisions. First we note that

ℓ ∼ V 1/3

where V is the volume of stars in the galaxy. We can relate this to the number of stars in the Milky
Way via the number density, which is just number per unit volume:

n =
N

V

V =
N

n
= 1011 pc3

ℓ ≈ 4.6 pc

Thus the probability of a collision of any particular star is

nσℓ = (1 pc−3)(4× 10−16 pc2)(4.6× 103 pc)

= 1.8× 10−12

So with 1012 stars, the expected number of collisions is

(1012)(1.8× 10−12) = 1.8

I.e., only a few collisions are even likely to occur.

3. The Lorentz transformation between two inertial reference frames with coordinate systems (x, t) and
(x′, t′), with the latter moving at constant speed v in the +x direction, is

x′ = γ(x− vt) y′ = y z′ = z t′ = γ
(
t− vx

c2

)
γ =

1√
1− v2/c2

Suppose two events are observed by experimenters in each reference frame. The intervals between their
coordinates in the “unprimed” coordinate system are ∆x = x1 − x2, ∆y = y1 − y2, ∆z = z1 − z2, and
∆t = t1 − t2. Show that the intervals between the two events in the “primed” coordinate system have
different values than in the unprimed system, but that both observers agree on the value of the absolute
interval

∆s2 = c2∆t2 −∆x2 −∆y2 −∆z2 = c2∆t′2 −∆x′2 −∆y′2 −∆z′2

Solution: Since the motion v is along the x direction, we can immediately note that

∆y2 = ∆y′2 ∆z2 = ∆z′2
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So the Lorentz transformation only applies to coordinates x and t:

∆x′ = γ(x1 − vt1)− γ(x2− vt2)

= γ(∆x− v∆t)

̸= ∆x

∆t′ = γ
(
t1 −

vx1

c2

)
− γ

(
t2 −

vx2

c2

)
= γ

(
∆t− v∆x

c2

)
̸= ∆t

However,

c2∆t′2 −∆x′2 = c2γ2

(
∆t− v∆x

c2

)2

− γ2(∆x− v∆t)2

= c2γ2

(
∆t2 − 2v∆x∆t

c2
+

v2∆x2

c4

)
− γ2(∆x2 − 2v∆x∆t+ v2∆t2)

= c2∆t2γ2

(
1− v2

c2

)
−∆x2γ2

(
1− v2

c2

)
= c2∆t2 −∆x2

and therefore

∆s2 = c2∆t2 −∆x2 −∆y2 −∆z2 = c2∆t′2 −∆x′2 −∆y′2 −∆z′2

4. Light is emitted at t = 0 from an object at r = 0 and arrives later at a telescope located at r = R(t)r∗.
Use the Robertson-Walker absolute interval,

ds2 = c2dt2 − dℓ2 = c2dt2 −R2(t)

(
1

1− kr2∗
dr2∗ + r2∗dθ

2 + r2∗ sin
2 θdϕ2

)
to show that the proper distance ℓ traveled by the light is not equal to the coordinate distance r unless
the Universe is flat.

Solution: Light travels along trajectories such that ds2 = 0. Thus, on one hand we have

ds2 = c2dt2 − dℓ2 = 0

ℓ = c

∫ t

0

dt′ = ct

And on the other hand, noting that dθ = dϕ = 0 for any particular direction, we have

ds2 = c2dt2 −R2(t)

(
1

1− kr2∗
dr2∗

)
= 0

and

R(t)

∫ r∗

0

dr′∗√
1− kr′2∗

= c

∫ t

0

dt′ = ct = ℓ

©2025 University of Rochester 3



Astronomy 142 Problem Set 10 Spring 2025

Thus,

ℓ = R(t)

∫ r∗

0

dr′∗√
1− kr′2∗

=


R(t)

∫ r∗
0

dr′∗ = R(t)r∗ = r k = 0

R(t)
∫ r∗
0

dr′∗√
1−r′2∗

= R(t) sin−1 r∗ ̸= r k = +1

R(t)
∫ r∗
0

dr′∗√
1+r′2∗

= R(t) sinh−1 r∗ ̸= r k = −1

So only in the case of a flat universe (k = 0) is ℓ = r.
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