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Approximations in the equations of astrophysics

Astrophysical objects, be they planets, stars, nebulae, or galaxies, are all very complex

compared to the physical systems you have so far encountered.

In order to simplify the relevant systems of equations that describe these objects to the

point that they can be solved, astrophysicists employ approximations to the functions

involved.

↭ The approximations used in introductory treatments of the subjects are often very

crude, but they can still be useful in illuminating the general operating features of

astrophysical systems.

Good, simple approximations can often be obtained from power-series representations of

elementary functions.
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Series expansions and first-order approximations

Power series expansions can

be found using a Taylor

Series expanded about

a = 0:

f (a + x) =
∞

∑
m=0

f m(x)
∣∣∣∣
x=a

xm

m!

When x → 1, x2
, x3

, etc. are

even smaller and have a

negligible affect the Taylor

series. A first-order

expansion ignores terms of

higher power than x1
.

What is the first-order approximation of

f (x) = log
10
(1 + x)?

f (x) ↑ f (0) +
f ↓(0)

1!
x + . . . = 0 + x

df
dx

∣∣∣∣
x=0

+ . . .

To solve for
df
dx , let f (x) = y. Then ey ln 10 = 1 + x.

Taking the derivative of both sides,

dy
dx

=
1

(1 + x) ln 10

So,

f (x) ↑ x
ln 10
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Common expansions and first-order approximations

sin x =
∞

∑
m=0

(↔1)m x2m+1

(2m + 1)!
= x ↔ x3

6
+

x5

120
↔ . . . ↑ x

cos x =
∞

∑
m=0

(↔1)m x2m

(2m)!
= 1 ↔ x2

2
+

x4

24
↔ . . . ↑ 1

tan x =
∞

∑
m=1

B2m(↔4)m(1 ↔ 4
m)

(2m)!
x2m = x +

x3

3
+

2x5

15
+ . . . ↑ x

arctan x =
∞

∑
m=0

(↔1)m x2m+1

2m + 1
= x ↔ x3

3
+

x5

5
↔ . . . ↑ x

ex =
∞

∑
m=0

xm

m!
= 1 + x +

x2

2
+ . . . ↑ 1 + x

ln (1 + x) =
∞

∑
m=0

(↔1)m xm+1

m + 1
= x ↔ x2

2
+

x3

3
↔ . . . ↑ x

(1 + x)n =
∞

∑
m=0

n!

m!(n ↔ m)!
xm = 1 + nx +

n(n ↔ 1)
2

x + . . . ↑ 1 + nx
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First-order approximations

Find the approximations to first order in x.

↗
ex cos x ↑

√
(1 + x)1 ↑ 1 +

x
2

1

ex ↔ 1
↑ 1

1 + x ↔ 1
↑ 1

x

4
n

tan x
(2 + x)n(2 ↔ x)n =

4
n

tan x
(4 ↔ x2)n ↑ 4

n
tan x
4n ↑ x

eix ↔ e↔ix

2i
↑ 1 + ix ↔ (1 ↔ ix)

2i
= x
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Scaling relations

Sometimes the difference between results under different approximations or assumptions

takes the form of a common function of some key physical parameters, multiplied by

different factors that are independent of these parameters.

In this case, the cruder approximation gives a useful scaling relation.

Example

The mass density of a uniform sphere of mass M and radius R, at the center and

throughout the sphere, is

ρ0 =
M
V

=
3

4π

M
R3
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Scaling relations

Example

Solve for the mass density at the center of a spherically symmetric region of mass M and

density that varies according to ρ(r) = ρ0e↔r/R
.

M =
∫

V
ρdV =

∫
2π

0

dε
∫ π

0

sin ϱdϱ
∫ ∞

0

ρ(r)r2dr

= 4πρ0

∫ ∞

0

r2e↔r/Rdr

= 4πρ0R3

∫ ∞

0

u2e↔udu

The value of the integral is 2 (integrate by parts twice), so

M = 8πρ0R3 ↫ ρ0 =
1

8π

M
R3
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Scaling relations

It appears as if the mass density at the center of the sphere will always have the form

ρ0 =

[
factor independent of

mass and radius

]
↘ M

R3

no matter what the details of the density. Common astrophysical nomenclature:

ρ0 ∝
M
R3

↭ Jargon: The central density is said to be proportional to = “goes as” = “scales with”
M
R3
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Why are scaling relations useful?

↭ Even if you do not know how the density varies with radius in the sphere, you would

know what the ratio of central densities is for objects of a given size or mass ratio:

↭ ρ0 changes by a factor of 2
3 = 8 if R changes by a factor of 2.

↭ ρ0 changes by a factor of 2 if M changes by a factor of 2.

↭ If we know everything about one “standard” object, scaling relations tell us a

surprising amount about other similar objects for which we only know a few ratios

of properties to the “standard.”
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Characteristic scales

Note that the sphere does not have a sharp edge in the exponential density case:

ρ(r) = ρ0e↔r/R
.

↭ R is not “the” radius of the sphere but rather a radius characteristic of the material in

the sphere.

↭ Characteristic scales are important because they often suggest appropriate

approximations.

Example

If we were making a calculation involving ρ(r) and we were concerned about small r, we

would mean “r small compared to R” and could apply the first-order approximation

ρ(r) = ρ0e↔r/R ↑ ρ0

(
1 ↔ r

R

)
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Scaling relations using known quantities

It is often convenient to peg a scaling relation to a known quantity. For example, the

period of a planet orbiting a star of mass M at radius r is

P = 2π

√
r3

GM
∝ M↔1/2r3/2

To use this, we can calculate 2π/
↗

G every time, but it is better to re-express everything

in terms of known time, mass, and distance units:

P = 1 year

(
M

M≃

)↔1/2 ( r
1 AU

)3/2

This is convenient not only because we can use the scaling relation to understand how M
and r affect P, but we also express it in units most convenient for our intuition.
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Averages

Astrophysicists frequently cannot measure certain important parameters of a system, but

may know how those parameters are distributed in a population of such systems.

↭ In this case we may use the average of the parameters.

↭ By “distribution of parameter x” we mean the probability p(x) that x has a certain

value, as a function of x.

↭ Convention: If p is a continuous function of x, and x can range over values from a to

b > a, then it is normalized:

∫ b

a
p(x) dx = 1 = 100%

In other words, x must have some value between a and b.
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Averages

Given the probability distribution p(x), we define the average value of x as

⇐x⇒ =
∫ b

a
x p(x) dx

In general, the average value of any function of x, say f (x), is similarly

⇐f (x)⇒ =
∫ b

a
f (x) p(x)dx

This is very similar to the sort of average you will learn in statistical mechanics, known as

the ensemble average.
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Averages: Binary star systems

Example

In binary star systems, astronomers can measure the component of orbital velocity along

the line of sight for each star, i.e., the “radial velocity,” vr, via a Doppler shift.

↭ If the orientation of such a system was known — the inclination angle i of the

system’s axis with respect to our line of sight — the velocity measurements would

allow us to derive the stars’ masses.

Orbital axis

line of sight

Orbit

vr

vt v

inclination i

90
⇑ ↔ i

vr = v cos

(π

2
↔ i

)

= v sin i
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Averages: Binary star systems

Example

↭ If the stars are too close to observe their orientation, then i cannot be determined.

↭ Still, an estimate of sin i would be useful. Could we make a reasonable assumption?

↭ Let us try an average value, assuming that binary star orbits are in general uniformly

distributed. That is, all orientations are equally likely:

p(i) = constant = C, i = 0 ⇓ π

2

1 =
∫ π/2

0

p(i)di = C
∫ π/2

0

di =
πC
2

↫ C =
2

π
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Averages: Binary star systems

Example

Now that we know p(i),

⇐sin i⇒ =
∫ π/2

0

sin i p(i) di =
2

π

∫ π/2

0

sin i di

=

[
↔ 2

π
cos i

]π/2

0

= ↔ 2

π
(↔1 ↔ 0) =

2

π

Thus, a reasonable estimate of the true orbital speed v given the measured line-of-sight

speed vr is

v =
vr

⇐sin i⇒ =
π

2
vr

Note that a more sophisticated treatment with axes randomly oriented yields ⇐sin i⇒ = π/4.
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Averages: Binary star systems

Example

Allowing all orientations requires us to average over the full sky (Ω) defined by ϱ, ε:

p(ϱ, ε) = constant = C

1 =
∫

2π

0

dε
∫ π

0

sin ϱdϱ p(ϱ, ε) = 2π · 2 · C ↫ p(ϱ, ε) =
1

4π

⇐sin i⇒ =
∫

Ω
dΩ p(ϱ, ε) sin ϱ =

1

4π

∫
2π

0

dε
∫ π

0

sin
2 ϱdϱ

=
1

2

∫ π

0

1 ↔ cos 2ϱ

2
dϱ

=
1

4

[
ϱ ↔ 1

2
sin 2ϱ

]π

0

=
π

4
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