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Stellar interiors & the Sun
↭ Principles of stellar structure
↭ Hydrostatic equilibrium
↭ Pressure, density, and temperature in

the Sun’s center
↭ Opacity of the Sun: diffusion of light

from center to surface
↭ The structure of the Sun’s outer layers:

convection zone, photosphere,
chromosphere, and corona

↭ Solar activity: magnetism, sunspots,
and flares

↭ Solar energy

Reading: Kutner Ch. 6, Ryden Sec. 7.1–7.2 &
15.1.3–15.2

Layers of the Sun (image from NASA/Goddard).

February 4, 2025 (UR) Astronomy 142 | Spring 2025 2 / 38

https://www.nasa.gov/image-article/sun/


Theoretical principles of stellar structure

↭ Vogt-Russell “Theorem:” The mass and chemical composition of a star uniquely
determine its radius, luminosity, internal structure, and subsequent evolution. Not
completely right but a very good approximation.

↭ Stars are spherical to a good approximation
↭ Stable stars are in hydrostatic equilibrium: the weight of each infinitesimal piece of

the star’s interior is balanced by the pressure differential across the piece.
↭ Most of the time the pressure is gas pressure and is described well in terms of density and

temperature by the ideal gas law

PV = NkT or P =
ρRT

M

↭ However, in very hot or giant stars, the pressure exerted by light — radiation pressure —
can dominate!
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Theoretical principles of stellar structure

Energy is transported from the inside to the outside, most of the time in the form of light.
↭ The interiors of stars are opaque. Photons are absorbed and re-emitted many times

on their way from the center to the surface in a random walk process called diffusion.

↭ The opacity depends on the density, temperature, and chemical composition.

↭ Most stars have regions in their interiors in which the radial variations of
temperature and pressure are such that hot bubbles of gas can “boil” up toward the
surface. This process, called convection, is a very efficient energy transport
mechanism and can frequently be more important than light diffusion.
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Basic equations of stellar structure

Hydrostatic equilibrium
dP

dr
= →GM(r)ρ

r2

Mass conservation
dM(r)

dr
= 4πr

2ρ

Energy generation
dL(r)

dr
= 4πr

2ρε

Energy transport
dT

dr
= → 3

16ϱ

κρ

r2
L(r)
4πr2

Adiabatic temperature gradient(
dT

dr

)

rad
= →

(
1 → 1

γ

)
µ

k

GM(r)
r2

Convection occurs if
T

P

dP

dT
<

γ

γ → 1

Equations of state
Pressure

P(ρ, T, composition) =
ρkT

µ
+

4ϱT
4

3c

in general throughout most normal stars.
Opacity

κ = κ(ρ, T, composition) in general

Energy generation
ε = ε(ρ, T, composition) in general

Boundary conditions are

M(r) ↑ 0
L(r) ↑ 0

}
as r ↑ 0

T ↑ 0
P ↑ 0
ρ ↑ 0





as r ↑ R↓

where M(r) and L(r) are the mass and luminosity
contained within radius r.
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Basic equations of stellar structure

This network of equations must be solved simultaneously, and there are no analytical
solutions to the equations of stellar structure; usually, stellar-interior models are
generated numerically. Does that mean we cannot do anything without a computer
program?
↭ No; progress can be made by assuming a formula for one of the parameters and then

solving for the rest.

↭ In this manner we can learn the workings of some of these differential equations and
establish scaling relations useful in understanding the shapes of the empirical R(M),
Te(M), L(M), and L(Te) results.

↭ It will be useful to first derive the stellar-structure equation we will use most: the
equation of hydrostatic equilibrium.
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Hydrostatic equilibrium

This is the principle that the gravitational force on any piece of the star is balanced by the
pressure across the piece. This also holds for planetary atmospheres (see Kutner 23.3,
Ryden 9.2, 14.1).
↭ Because planetary atmospheres are thin compared to the radii of planets, it is

sufficient to approximate atmospheres as plane parallel slabs with constant
gravitational acceleration. Thus,

dP

dz
= →ρg

a 1D Cartesian differential equation in z which can be solved in various cases.
↭ In stellar interiors, we still get a 1D differential equation (because stars are

spherically symmetric), but we cannot ignore the spherical shape or the radial
dependence of gravitational acceleration.
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Hydrostatic equilibrium

M(r)
∆m

r

R

∆r

M

M(r): mass contained in radius r

Consider a spherical shell of radius r and
thickness ∆r ↔ r within a star with mass
density (mass per unit volume) ρ(r). Its
weight is

∆F = →GM(r)∆m

r2

= →GM(r)
r2 4πr

2∆rρ(r)

= →4πGM(r)ρ(r)∆r

Note the minus sign: force points inward.
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Hydrostatic equilibrium

If the star is in hydrostatic equilibrium, then the weight is balanced by pressure
differences across the shell:

→∆F = P(r)4πr
2 → P(r + ∆r)4π(r + ∆r)2

↗ P(r)4πr
2 →

[
P(r) +

dP

dr
∆r

]
4πr

2

= →dP

dr
4πr

2∆r

to first order since ∆r ↔ r. Therefore,

dP

dr
=

∆F

4πr2∆r
= →4πGM(r)ρ(r)∆r

4πr2∆r
= →GM(r)ρ(r)

r2
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Crude stellar models

A surprisingly large amount about stellar interiors can be learned by starting with a
formula for the mass density ρ(r) and solving the equations of hydrostatic equilibrium
and the equation of state self-consistently for pressure and temperature.
↭ The most useful is if the formula for density resembles the real thing; if not, P and T

will be way off.

↭ We will consider problems with density in polynomial or exponential form in this
course.

↭ Using simple expressions for the density, the hydrostatic equilibrium equation can be
easily integrated.
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Crudest approximation: the “uniform Sun”

We know the distance to the Sun (from radar measurements), its mass (from Earth’s
orbital period), and its radius (from angular size and known distance):

r = 1 AU = 1.4960 ↘ 1013 cm

M≃ = 1.988 ↘ 1033 g

R≃ = 6.957 ↘ 1010 cm

Therefore, we know the average mass density (mass/volume) is

ρ≃ =
M≃
V≃

=
3M≃
4πR

3
≃

= 1.41 g/cm3

= 26% of Earth’s density of ⇐ 5.5 g/cm3

What would the pressure and temperature of the Sun be if it had uniform density?
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The “uniform Sun”

With ρ(r) = ρ≃ = 3M≃/4πR
3
≃,

dP

dr
= →GM(r)ρ

r2 = →G

r2

(
M≃

r
3

R
3
≃

)(
3M≃
4πR

3
≃

)
= →3GM

2
≃

4πR
6
≃

r

The surface has P(R≃) = 0 if it does not move, so

∫ 0

P(0)
dP = →3GM

2
≃

4πR
6
≃

∫
R≃

0
r dr

→P(0) = →3GM
2
≃

4πR
6
≃

R
2
≃

2
=⇒ P(0) =

3
8π

GM
2
≃

R4
≃

↫ PC ⇑ P(0) = 1.34 ↘ 1015 dyne/cm2 = 1.3 ↘ 109 atmospheres

February 4, 2025 (UR) Astronomy 142 | Spring 2025 12 / 38



The “uniform Sun”
Thus, the pressure elsewhere inside the uniform density Sun is

∫
P(r)

PC

dP
⇓ = →3GM

2
≃

4πR
6
≃

∫
r

0
r
⇓

dr
⇓ = P(r)→ PC = →3GM

2
≃

8πR
6
≃

r
2

P(r) =
3

8π

GM
2
≃

R4
≃

→ 3
8π

GM
2
≃

R
6
≃

r
2

=
3

8π

GM
2
≃

R4
≃

(
1 → r

2

R2
≃

)

Now we can solve for the temperature using the fact that the Sun is an ideal gas:

PV = NkT =⇒ P = nkT =
ρkT

µ

where N is the number of particles, n = N/V is number density, and µ is average particle
mass.
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The “uniform Sun”

Solving for temperature gives

T(r) =
µP(r)

kρ
=

µ

k

4πR
3
≃

3M≃

3
8π

GM
2
≃

R4
≃

(
1 → r

2

R2
≃

)

=
1
2

µGM≃
kR≃

(
1 → r

2

R2
≃

)

Suppose the average mass of the particles in this ideal gas is the same as the mass of the
proton, µ = 1.67 ↘ 10→24 g. Then

TC ⇑ T(0) = 1.2 ↘ 107 K

Note that in our approximations we end up with T = 0 at the surface, while in reality it is
about 6000 K. However, that is indeed much less than 12 MK.

February 4, 2025 (UR) Astronomy 142 | Spring 2025 14 / 38



Central pressure in a star: scaling relation
Return for a moment to the central pressure in a uniform star:

PC =
3

8π

GM
2

R4

The only part of the equation which depends on the functional form of the density is the
dimensionless coefficient 3/8π. Otherwise the central pressure is proportional to M

2
R
→4.

As you will see in the homework, for densities such as

ρ(r) = ρC

(
1 → r

R

)
and ρ(r) = ρC

[
1 →

(
r

R

)2
]

the central pressures are

PC =
5

4π

GM
2

R4 and PC =
15

16π

GM
2

R4
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Central pressure in a star: scaling relation
It turns out this is a simple scaling relation for stars:

PC ∝
GM

2

R4

and the proportionality constant gets larger as the central density gets larger. A complete
calculation for stars of low to moderate mass yields the expression

PC ↗ 19
GM

2

R4

For the Sun, M≃ = 1.99 ↘ 1033 g and R≃ = 6.96 ↘ 1010 cm, so

PC ↗ 19
GM

2
≃

R4
≃

= 2.1 ↘ 1017 dyne cm→2 ⇐ 1011 atmospheres
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Central pressure in a star: scaling relation
For other main sequence stars, we can derive an expression for the central pressure in
terms of M≃ and R≃:

PC ↗ 19
GM

2

R4 = 19
GM

2

R4

(
M≃
M≃

)2 (
R≃
R≃

)4

= 19
GM

2
≃

R4
≃

(
M

M≃

)2 (
R≃
R

)4

= 19
(6.67 ↘ 10→8 cm g→1 s→2)(1.99 ↘ 1033 g)2

(6.96 ↘ 1010 cm)4

(
M

M≃

)2 (
R≃
R

)4

=
(

2.1 ↘ 1017 dyne/cm2
)(

M

M≃

)2 (
R≃
R

)4

PC ↗
(

2 ↘ 1011 atm
)(

M

M≃

)2 (
R

R≃

)→4
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Central density and temperature of the Sun

The central pressure of the Sun is about 100 times larger than that of the “uniform” Sun.
So what is the central density?

Guess: ρC is 100 times higher than the average density (equivalent to guessing that
internal temperature does not vary much with radius).
↭ For the Sun, this is not a bad guess; the central density turns out to be 110 times the

average density: ρC = 150 g/cm3. So we can obtain another scaling relation from
ρC ∝ MR

→3:

ρC = 25
M

R3 =
(

150 g/cm3
)(

M

M≃

)(
R≃
R

)3
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Central density and temperature of the Sun

As we will see in a couple of weeks, the average gas-particle mass in the center of the
Sun, considering its composition and the fact that the center is completely ionized, is
µC = 1.5 ↘ 10→24 g. But the material is still an ideal gas, so

TC =
PCV

NCk
=

PC

nCk
=

PCµC

ρCk
= 15.7 ↘ 106 K

And indeed, T does not vary much with radius. We can make a scaling relation out of
this as well to use on stars with different mass, radius, and composition:

TC =
PCµC

ρCk
∝

GM
2

R4
R

3

M
µC = 15.7 ↘ 106 K for the Sun

TC =
(

15.7 ↘ 106 K
)(

M

M≃

)(
R≃
R

)(
µ

µ≃

)
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Opacity and luminosity in stars
At the high densities and temperatures found on average in stellar interiors, matter is
opaque. The mean free path, or average distance a photon can travel before being
absorbed, is about

ω = 0.5 cm

for the Sun’s average density and temperature.

Photons produced in the center of the Sun have to randomly walk their way out, a
process called diffusion.
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Opacity and luminosity in stars
How many steps (in number of mean free paths) does it take for a photon to get from the
center of the sun to the surface?

Let us work in 1D. Suppose a photon starts off at the center of the star and has an equal
chance to go right or left after each absorption and re-emission step. The average position
after N steps is

⇔xN↖ = (x1 + x2 + · · ·+ xN)/N = 0

However, the average value of the square of position is nonzero. Consider step N + 1,
assuming an equal chance of going left or right:

⇔x2
N+1↖ =

1
2
⇔(xN → ω)2↖+ 1

2
⇔(xN + ω)2↖

=
1
2
⇔x2

N → 2xNω+ ω2↖+ 1
2
⇔x2

N + 2xNω+ ω2↖

= ⇔x2
N↖+ ω2
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Opacity and luminosity in stars

If this expression for ⇔x2
N+1↖ is true for all N, then we can find ⇔x2

N
↖ by starting at zero and

adding ω2
N times (using induction):

⇔x2
N↖ = Nω2

Thus, to randomly walk a distance
√
⇔x2

N
↖ = L the photon needs to take, on average,

N = L
2/ω2 steps

In 3D, the photon needs to take 3 times as many steps, so to travel a distance R it needs

N =
3R

2

ω2 steps
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