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Formulas to remember

Pulsating stars

Adiabatic speed of sound:
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√
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ρ
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µ
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γ = 5/3 for monatomic gases, 7/5 for diatomic gases at room temperature.

Pulsation period, fundamental mode, uniform-density star:

Π = 4
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Special relativity

Lorentz factor
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(
v
c

)2 (3)

where v is the relative velocity between two inertial reference frames.

Time dilation
∆t = γ∆τ (4)

where ∆τ is the “proper time” interval between two events in the same location (like the ticks of a clock)
as measured by an observer at rest with respect to that location, and ∆t is the time interval between those
same two events as measured by an observer to whom the first observer seems to be moving at relative speed
v.

Degenerate matter, white dwarfs, and neutron stars

Electron degeneracy pressure
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Radius v. mass, non-relativistic limit
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Central density and temperature, non-relativistic limit, white dwarf
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Maximum mass of an electron-degeneracy-pressure-supported object
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Black holes

Event horizon (Schwarzschild singularity) coordinate radius

RSch =
2GM

c2
(9)

The coordinate radius r is a distance measured by a distance observer from the center of the black hole.

Gravitational time dilation and space warping A time interval ∆τ and small (≪ coordinate radius
r) radial interval ∆L measured by a “local” observer near a black hole are related to ∆t and ∆r measured
by a distant observer by
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∆τ√
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> ∆τ ∆L =
∆r√

1− RSch

r

> ∆r (10)

Note that ∆L is measured by the local observer instantaneously, in the manner of a measuring tape; the
positions of the ends of ∆L are measured simultaneously by that observer. Note also that ∆τ is a time
interval between two events in the same location (like the ticks of a clock) in the reference frame of the local
observer.

Workshop problems

Remember! The workshop problems you will do in groups in Recitation are a crucial part of the process
of building up your command of the concepts important in ASTR 142 and subsequent courses. Do not,
therefore, do your work on scratch paper and discard it. Better for each of you to keep your own account of
each problem in some sort of bound notebook.

1. Newton worked on sound as well, but he turned out to be slightly off about how it propagated. He
thought it was an isothermal pressure disturbance (constant temperature as pressure changes) instead
of an adiabatic one (no heat flows from the pressure fluctuations). In modern terms, Newton’s formula
for the (isothermal) speed of sound would be

vs,isoT =

√
kT

µ
(11)

where µ is the average mass of particles (atoms or molecules) in the gas. (Newton did not know about
Boltzmann’s constant or molecular masses, so he was unaware of what the proportionality constant
should be in the relation he proposed for sound speed.)

If Newton had been correct in these details, what would be the formula for pulsation periods of a
uniform-density star, and by what factor do the periods for adiabatic and isothermal pulsations differ?

2. The quantum-mechanical, or de Broglie, wavelength corresponding to a particle with momentum px =
mvx is λ = h

px
.
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(a) Present a brief argument to show that degeneracy pressure is important when a particle is confined
to a space similar in size to, or smaller than, its de Broglie wavelength.

(b) Show from the relative sizes of their de Broglie wavelengths that electron degeneracy pressure can
be larger than electron thermal pressure (so electrons are degenerate) while the nuclei that are
mixed in with the electrons still behave like an ideal gas.

3. (a) You are a group of astronomers in the 1910s–1920s who have a lot of time on the Mt. Wilson
60- and 100-inch telescopes, and access to archival images going back about 50 years. From your
archives and measurements, you find that Sirius A has a distance of 2.64 parsecs, that its orbit with
Sirius B has a semimajor axis of angular length 7.56 arcsec and a period of 49.9 years, and that the
semimajor axis of its own orbit (about the center of mass) is 2.41 arcsec. What are the masses of
Sirius A and B, in units of the solar mass?

(b) You figure out when Sirius B is at apastron, and take a spectrum of it then; the shape of its
continuum indicates a temperature of 25,200 K, and the integral across the spectrum indicates a
luminosity of 0.026L⊙ at the distance of 2.64 parsecs. What is the radius of Sirius B, in units of
the solar radius?

4. (a) An observer far from a black hole observes a clock, identical to her own, that lies near a black
hole. The black hole’s clock appears to tick at half the rate that hers does (it has twice the tick
period that hers does). What is the coordinate radius of the black hole’s clock, in units of the
Schwarzschild radius?

(b) The same observer can see yet another clock, far from any black holes, and receding from her at a
high speed; this clock also appears to tick at half the rate as hers. How fast is this clock receding
from her, in units of the speed of light?

(c) Observers at each of those clocks look back at the clock held by the original observer. By what
factor, faster or slower, does the rate at which her clock ticks seem to differ from theirs?

5. A non-spinning black hole has horizon circumference equal to 2π in some units. A local observer sets
particles into orbits, the circumferences of which are 4π, 6π, and 8π in the same units. The local observer
compares the orbit circumferences he measures with those measured by a distant observer; the two sets
agree.

(a) The distant observer measures the distances between the rings of particles using surveying tech-
niques. What does she get?

(b) The local observer measures the distances between the rings by running a measuring tape in the
radial direction between them. What does he get? (Note that these radial intervals are not small
compared to the coordinate radii!)

Hint: The integral you need to do is not that difficult, but it does take more time than I would like
you to spend on it, so I will give it to you:
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Learn your way around the sky, lesson 5. (A feature exclusive of ASTR 142 recitations.) You may find
the lab’s celestial globes and the program Stellarium useful in answering these questions about the celestial
sphere and the constellations.

6. In Recitation #1, you considered a star with right ascension and declination α and δ, drew a Cartesian
coordinate system with the x-axis pointing through α = δ = 0 and the z-axis pointing toward δ = 90◦,
and derived an expression for a unit vector pointing at the star, in terms of the Cartesian unit vectors
x̂, ŷ, and ẑ. You got

n̂ = cos δ cosαx̂+ cos δ sinαŷ + sin δẑ (14)
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(a) In the same coordinate system, construct a unit vector that points toward the zenith and depends
upon LST and latitude.

(b) Derive an expression for the angle between this new unit vector and the old one above. Look for
a simplification that allows you to express the result in terms of the difference between LST and
the right ascension of the object. This new angle is called the zenith angle (ZA); the right-angle
complement, the altitude, is the angular distance between the star and the horizon. The difference
between LST and RA is called the hour angle (HA).

Intro to Python, lesson 5. (A feature exclusive of ASTR 142 recitations.)

7. Show the relationship between a neutron star’s mass and its size, average density, gravitational acceler-
ation at the surface, and the rate of change of that acceleration, dg/dR.
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