
Astronomy 142 — Recitation #8

Prof. Douglass

April 4, 2025

Formulas to remember

Galactic cloud position from longitude and radial velocity measurements

v(r) = rΩ(r) = vr,max + r⊙Ω(r⊙) sin ℓ r = r⊙
v(r) sin ℓ

vr + v(r) sin ℓ
(1)

Distribution of light in normal galaxies

Elliptical galaxies L(r) = L(0)e−(r/r0)
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Spiral galaxy bulges L(r) = LB(0)e
−(r/rB0)

1/4

Spiral galaxy disks L(r) = LD(0)e−(r/rD0)
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Leavitt’s Law

Classical Cepheid variables

MV = −2.77 logΠ− 1.69

mV −MV = 5 log

(
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Workshop problems

Remember! The workshop problems that you will do in groups in Recitation are a crucial part of the
process of building up your command of the concepts important in ASTR 142 and subsequent courses. Do
not, therefore, do your work on scratch paper and discard it. Better for each of you to keep your own account
of each problem in some sort of bound notebook.

1. Spiral structure in the Milky Way. Figure 1 contains reproduced Hi 21 cm line observations obtained
with the Dwingeloo radio telescope when successively directed to points along the galactic equator at
intervals of 5◦ in galactic longitude (van de Hulst et al. 1954). The value of Galactic longitude (in
degrees) corresponding to each spectrum is obtained by adding 33 to the number with which it is labeled
in Figure 1, subtracting 360 if the result exceeds 360. From the horizontal scale in Figure 1, the frequency
shift and the radial velocity with respect to the local standard of rest is directly obtained. (Recall that
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a small interval in frequency ∆ν corresponds to a small interval in wavelength given by ∆λ = −c∆ν/ν2,
and that the wavelength shift due to motion of a light source with nonrelativistic radial velocity v is
∆λ/λ = v/c.

Determine the Galactocentric distances of the diffuse clouds represented by peaks in the 21 cm line
spectra (Figure 1) and plot the distances as a function of angular position to reveal the spiral structure of
atomic gas in the Milky Way. Assume that r⊙ = 8.4 kpc and Ω(r⊙) = 9.8×10−16 rad/s = 30 km/s/kpc.

(a) For ℓ = 8◦ − 63◦, find the Hi peak with the largest redshift; assume that this peak represents
hydrogen at the tangent point, deduce vr, r, vr/r = Ω(r) − Ω(r⊙), and then Ω(r). The radial
velocities can be measured on the figure with a ruler.

(b) For the other peaks in each (or every other) longitude interval, you are now in a position to
consecutively calculate vr, sin ℓ, Ω(r)−Ω(r⊙), r, and then, using the law of sines, θ (see Figure 2).
Begin with the first (left) maximum of the profile at ℓ = 88◦. This can done rather conveniently in
Excel; remember that the Excel trig functions expect the arguments to be in radians.

(c) Plot each cloud in a polar diagram representing the galactic plane. (In such plots, the Sun is
usually drawn above the Galactic center so that the ℓ = 0 axis points down.) Remember that the
distance r is measured from the Galactic center. You may find it helpful to do this plot in Cartesian
coordinates, which in the layout of Figure 2 would be x = r sin θ and y = r cos θ.

(d) When r is found to be smaller than r⊙, the distance ambiguity applies. This ambiguity cannot be
solved without additional data and consideration. Therefore, limit your investigation to the region
outside the solar orbit, with the exception of the tangent points. (You have already completed
one side.) This means that for 0 < ℓ < 180◦, use only the peaks for which vr < 0; and for
180◦ < ℓ < 360◦, use only the peaks for which vr > 0.

(e) Connect the plotted positions of the hydrogen clouds by smooth lines, in so far as continuity is
suggested by the successive profiles. Compare your results to the cartoon of the Galaxy’s structure
as is currently known (from the lecture notes). Which spiral features do you detect?

Learn your way around the sky (A feature exclusive of ASTR 142 recitations.) You may find the lab’s
celestial globes and the program Stellarium useful in answering these questions about the celestial sphere
and the constellations.

2. Because of the obliquity of the ecliptic (i.e. the tilt of the Earth’s equatorial plane with respect to the
plane of the Solar System), the declination of the Sun changes throughout the year. As mentioned last
week, the ecliptic is tilted by ψ = 23.44◦; the Sun appears lowest in the sky — to a northern observer
— at Winter solstice (9:20 UTC on December 21, 2024) and highest in the sky half a year later. Make
an educated guess: what is the functional form of the Sun’s declination as a function of time, δ⊙(t)?

3. Over the past few weeks, we have learned that sidereal time does not advance at a uniform rate with
respect to the mean Sun (or time measured on a well-regulated clock) owing to the eccentricity of
Earth’s orbit around the Sun and to the obliquity of the ecliptic. If all has gone well, you have derived
the following formulas for the corrections to the sidereal time from these two effects, known together as
the Equation of Time:

∆θε(t) =
∆ω0

ω
sin (ω(t− t0)) ∆θo(t) =

∆ω0(V E)

2ω
sin (2ω(t− t1)) (2)
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Figure 1: Profiles of the hydrogen emission line at 21 cm, from van de Hulst et al. (1954).
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Figure 2: Geometry of longitude and LSR radial velocity measurements. The dotted circle is the orbit of
the LSR about the Galactic center.

where the angles ∆θε and ∆θo come out in radians as these equations are written, where

ω =

√
GM⊙

AU3
= 1.99× 10−7 rad/s

∆ω0 = −ωp − ωa

2
ωp
a
=

1

a(1± ε)

√
GM⊙

(
2

a(1± ε)
− 1

a

)
∆ω0(V E) = ω − ω cosψ

t0 = Jan 4, 2025 at 13:28 = day 3.5611 (perihelion)

t1 = Mar 20, 2025 at 09:01 = day 78.3757 (Vernal equinox)

and where the times are given in UTC (coordinated universal time, i.e. time at 0 longitude). Plot the
declination of the Sun against the total orbital correction to the sidereal time, ∆θε(t)+∆θo(t), for times
ranging through 2025. Arrange your plot so that it is square and so that the angular scale is the same
on both axes.

4. Google “analemma,” and compare the images you find to the plot you just made. From this comparison,
explain the meaning of the axes of your plot.

5. Why do copies of your plot appear on the faces of sundials and on old-fashioned globes?

Intro to Python (A feature exclusive of ASTR 142 recitations.)

6. Review your solution for computing the effect of the elliptical shape of the Earth’s orbit on local sidereal
time under the assumption that the orbit, though elliptical, lies in the Earth’s equatorial plane.

The real orbit (path of the Sun) does not lie in the equatorial plane at all; the Sun travels through the
sky along the ecliptic instead of the celestial equator. These paths are not the same angular length; yet
both the real and mean Sun get from equinox to solstice (6 hours of sidereal time) in a quarter of a year.
Thus, the angular speed ω0 of the real Sun varies along its track because of the tilt of the ecliptic.

(a) For simplicity, suppose that the Earth’s orbit is circular, but that the ecliptic and the celestial
equator are tipped by ψ = 23.5◦ and that they intersect at the vernal and autumnal equinoxes.
Calculate the difference between the angular speeds of mean and real Sun, ∆ω0 = ω − ω0, at the
vernal equinox.
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(b) Argue that ∆ω0 has the same value at the vernal and autumnal equinoxes and the opposite of these
values at the solstices, and that these are the maximum tilt-related differences between angular
speed of the real and mean Sun.

(c) Propose a simple form for ∆ω0(t) that satisfies the results from part b, and integrate it to obtain
the angular difference ∆θ0(t) between the real and mean Sun.

(d) Plot ∆θ0(t) over the course of a year, and compare the result to that obtained for the angular
difference ∆ωε(t) due to orbital eccentricity. Also plot the net angular difference between the real
and mean Sun by adding these two results. This combined result is called the equation of time and
relates sidereal time (or, if you like, sundial time) to clock time (mean solar time).

7. Let’s make our own Leavitt Law. The DDO Cepheid database (https://www.astro.utoronto.ca/
DDO/research/cepheids/cepheids.html) is a great place to find a good list of Galactic Cepheids. And
Gaia is a great reference for parallaxes: https://gea.esac.esa.int/archive/.

(a) From our class website, download the CSV version of the Physical Data table from the DDO Cepheid
database. Import this file into Python as an Astropy table object:

cepheids_ddo = Table.read('cepheids-ddo.csv', format='ascii.csv')

(b) Create a text file that contains only the STAR column from the Physical Data table:

cepheids_ddo[['STAR']].write('cepheid_names.txt',

format='ascii.fixed_width_no_header',

delimiter=' ')

Note the double square brackets around the column name. Astropy tables can be written to a
file, but not an astropy table column. cepheids ddo[’STAR’] is an astropy column object, while
cepheids ddo[[’STAR’]] is an astropy table object with one column. Because the star names have
spaces in them, we use the format ascii.fixed width no header to save the file without quotation
marks around each name (astropy’s default) so that the Gaia database can read in the names. We
also need to set the delimiter (the character used to indicate the beginning and end of a column) to
a space so that astropy will not write the file with its default delimiter character of | (which Gaia’s
database also will not accept).

(c) In the Gaia archive, select the File tab on the Search page. Use Choose File to select the text file
of star names that you just saved. Wait for the system to validate the targets.

(d) Select a search radius of 0.5 arcsec, and select gaiadr3.gaia source from the Search in dropdown
menu. Then press the Submit Query button. If all goes well, Gaia will find 505 of your targets.

(e) Download your results in CSV format.

(f) Import the downloaded file into Python. Merge the two tables together, keeping the parallax,
phot g mean mag, and target id columns from the Gaia table, and the STAR and PERIOD columns
from the DDO table:

from astropy.table import join

cepheids = join(cepheids_ddo['STAR', 'PERIOD'],

cepheids_gaia['target_id', 'parallax', 'phot_g_mean_mag'],

keys_left='STAR',

keys_right='target_id')

(g) Calculate the mean absolute magnitudes of the stars in the G band.

(h) Plot the results in the way that the Leavitt Law is normally plotted: absolute magnitude v. log
period.
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(i) Fit a trend line to these results to find the slope and intercept. How does your fit compare to the
Leavitt Law shown in class?
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